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CHAPTER 1 

GENERAL INTRODUCTION 

Abstract 

This chapter reviews the progress of research on cell migration, the interactions 

between cells when collective migration occurs including chemical signals, mechanical 

signals, and the role of cells in collective migration. These computational methods to 

investigate migration patterns in collective migration are overviewed. 

1.1 Cell Migration 

Cell migration is a fundamental act of cellular life activity, which is as important as 

proliferation, apoptosis, and functional differentiation. This thesis is aimed at clarifying the 

migration patterns of cell populations in order to understand cell-cell interactions. Cell 

migration is associated with tissue morphogenesis, immune surveillance, and cancer 

metastasis during development. Cell migration events in vivo involve the migration of 

single cells and therefore the subject of a large number of in vitro studies is dominated by 

single-cell migration, contributing to the study of various relevant cell behaviors.  

Invasion of cancer cells can spread between tissues, which has profound implications 

for the spread of cancer. During this migration process, cells metastasis as single and 

multicellular cells through pathways such as the vasculature (Figure 1.1) [1]. The behavior 

of single-cell migration within tissues is critical to a range of physiological processes such 

as embryonic development and wound healing in addition to having an impact on tumor 

development. The dynamic migration process of a cell varies as it progresses through the 

tissue cycle. This involves cell division as well as the directionality and speed of movement 

through the tissue [2, 3]. The migration of tumor cells is different from that of cells in 
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normal tissue, with more intense physical interactions between cells and between cells and 

the Extracellular matrix (ECM) [4-6]. Tumor cell populations have a greater capacity to 

metastasize, with significantly reduced adhesion in their years, but at the same time are able 

to migrate as a population to other tissues. 

1.2 Collective Migration 

The analysis of cell migration has been expanded by researchers with the observation 

that cancer cells often invade and migrate in collective populations as adherent groups. 

Collective cell migration is a process whereby a population of cells moves in concert 

through cell-cell communication and cell-environment interactions. A growing number of 

studies have shown that clusters of tumor cells acting collectively are more aggressive 

compared to single cells [7]. Interactions between cells have a long-term effect on cell 

migration patterns. Inter-cellular coordination keeps them adherent and moving faster and 

more efficiently overall [8]. A large number of studies have analyzed the interactions from 

a mechanical and molecular aspect. It requires a complement of different aspects to try to 

explain the mechanisms of collective cell migration. In this study, the interactions between 

cells in collective migration are elaborated in terms of cell culture, preparation of mimetic 

cell scaffolds, and analysis of cell migration trajectories. 

Figure 1.1 Schematic diagram of collective invasion of cancer cells from the primary lesion spread to 

other lesions through vasculature. 
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Unlike single-cell migration, cells in collective cell migration are coordinated with 

each other [9-11]. In cell populations, leader cells regulate the interconnectedness of cells 

in the population through feedback mechanisms mediated by molecular and mechanical 

signals [12-14].  

Typically, leader cells have distinct morphological and migratory behavior and have a 

role in leading collective invasion in collective migration. Leader cells can remodel the 

matrix in a variety of ways, such as through force-mediated and polarized assembly of 

fibronectin (FN) to deform and remodel the matrix [15-17]. The matrix remodeled by the 

leader cells leaves behind microscopic traces that can be exploited by less invasive follower 

cells [18-20], which collectively migrate to interact with each other on the basis of the 

microscopic traces to further expand the area of invasion. The establishment of polarization 

is due to the presence of two cell types. They differ in morphology and characteristics and 

are often referred to by researchers as leader and follower cells. Leader cells provide 

guidance for collective migration through intercellular interactions before other follower 

cells [21]. 

1.3 Cell Interactions in Collective Migration 

In collective cell migration, adhesion junctions are formed between cells [22]. 

Collective behavior facilitates the invasion of a cell population into a new region by 

coordinating mechanosensitive adhesion junctions [23]. However, collective migration in 

both two-dimensional planes and three-dimensional structures involves interactions that 

include both force-mediated and molecular signals. The pathways such as PI3K-Rac 

signaling are involved in actin remodeling and mediating collective migration. Through 

PI3K-dependent integrin adhesion and modulation of Rho-GTPase signaling, Cadherin-

induced regulation of actomyosin contractility at more distant sites of the cell affects global 

cellular mechanics [24, 25]. Many cells in collective cell migration are able to constantly 

reorient their movements. In a relatively crowded environment, contact inhibition of 
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locomotion [26, 27] arises, i.e., cells move in separate directions after contact with each 

other. In addition, the speed and polarity of the cells change. Collective migration relies on 

the establishment of polarized cell populations that are asymmetric in their anterior-

posterior aspect.  

Interactions in collective cell migration include those between cells and those between 

cells and the matrix (Figure 1.2) [28]. The forces between cells and matrix usually consist 

of contraction forces driving the cells and adhesive forces between cells and matrix. The 

active contraction force is driven by the gradient generated by chemotaxis. This drives the 

actin filaments to produce contractile forces by the actin molecular motor. This corresponds 

to adhesive forces, which are mediated by the detachment of proteins at focal adhesions 

[29]. This adhesive force is related to the speed of cell movement relative to the substrate. 

Adhesive between cells and matrix is usually analyzed in terms of viscous damping forces 

similar to Stokes drag, and the dynamics of this movement are non-linear and associated 

with reinforcing feedback [30]. Adhesion between cells is mediated by transmembrane 

protein complexes and associated with the sliding of connexins [31-33]. Cells are resisted 

elastically by surrounding cells as they move [34, 35], which to some extent creates a 

squeeze on the cell causing a change in cell morphology. The pressure causes the cells to 

Figure 1.2 Schematic diagram of top and side views of force and cadherin in cell–cell and cell–matrix 

interactions. 
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extrude in their original position or insert in a new position [36, 37]. The presence of 

adhesion and friction allows cells to interact with each other in their movement, providing 

the impetus for collective migration. 

1.4 EMT in Physiological Processes 

Epithelial-mesenchymal transformation (EMT) refers to the morphological 

transformation in which epithelial cells lose their epithelial properties, transform into 

mesenchymal phenotype, and obtain migration ability (Figure 1.3) [38]. It causes epithelial 

cells generated at specific sites to detach from epithelial tissues and migrate to other 

locations. This is the basis of normal development, wound healing, and malignant epithelial 

tumors. During normal development and tumorigenesis, various stimuli of the 

microenvironment can induce EMT of epithelial cells through various different signaling 

pathways. EMT induces changes in cell function and phenotype, such as loss of cell polarity 

and changes in cell morphology. Invasiveness acquired through the regulation of 

microRNA-200 family and microRNA-205 genes, as well as the expression changes of 

transcription inhibitors ZEB1 and SIP1, may be an important step in tumor progression [39, 

40].  

In the early stages of cancer metastasis, cancer cells leave the primary tumor as 

individual cells and migrate through the effects of EMT. EMT involves a series of 

biological changes in which epithelial cells lose their epithelial properties and acquire 

Figure 1.3 Schematic diagram of epithelial -mesenchymal transformation. 
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mesenchymal properties. When EMT is induced in cells, the cell function and 

characteristics are greatly altered; such changes include loss of cell polarity, altered cell 

morphology, and acquisition of invasive capacity, along with downregulation of epithelial 

cell genes and upregulation of mesenchymal cell genes [41, 42]. Transforming growth 

factor β1 (TGF-β) is a cell growth factor and representative EMT-inducing factor [43-45]. 

When TGF-β acts on epithelial cells, various transcriptional regulatory mechanisms are 

activated through the TGF-β signaling pathway. TGF-β induces EMT by inhibiting the 

transcription of intercellular adhesion molecules (e.g., E-cadherin), decreasing genes 

characteristically expressed in epithelial cells, and increasing genes characteristically 

expressed in mesenchymal cells [46]. In EMT, epithelial and mesenchymal features are 

considered as binary “on/off.” However, in vitro experiments showed that epithelial and 

mesenchymal markers are coexpressed in the same cells [47]. This observation suggests 

that EMT progressively develops in a state in which epithelial and mesenchymal properties 

are mixed [48]. Screening for cell surface markers in breast cancer showed that EMT 

exhibits a distinctive mixed phenotype and develops in a progressive pattern [49]. 

Furthermore, these mixed tumor cell subpopulations increase the metastatic potential in 

vivo [50]. 

This is considered to be a key mechanism for epithelial cancer cells to acquire 

metastatic phenotype through single-cell invasion. These experimental results support EMT 

induced cell migration in ECM, and fiber structure promotes colonization. Cells migrate 

through actin aggregation at the front edge of the cell population to produce lamellar cells. 

For adhesion, they are mainly generated by the molecular mechanism composed of 

integrins and related adhesion proteins [51-53]. E-cadherin is a major mediator of collective 

cell interactions [54, 55]. In morphogenesis and cancer models, the loss of E-cadherin is 

accompanied by the migration mode of EMT, leading to the weakening of cell connectivity, 

followed by cell separation and the increase of N-cadherin. The collective migration 

process of cells based on EMT has been studied to varying degrees through molecular 
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mechanisms and mechanism models [56-58]. More and more studies have shown that the 

relationship between EMT and cell collective migration is very complex in the process of 

tumor metastasis. Whether it is cell-cell or cell-matrix interaction, multiple factors will be 

integrated to affect migration mode [59]. Cell-to-cell interactions are strongly dependent 

on cadherin. Cadherin is a highly conserved calcium-dependent transmembrane protein that 

constitutes a major component of adherents’ junctions. The expression levels of different 

types of cadherin are associated with the development of cancer. Epithelial (E-) and 

neuronal (N-) cadherin form intercellular adhesions. The intracellular cadherin domains 

connect to β- and α- catenin, that associate with the actin cytoskeleton to mediate 

mechanotransduction [60]. During EMT, downregulation of E-cadherin expression and an 

upregulation of N-cadherin expression is usually observed simultaneously. This conversion 

between cadherin involves a weakening of cell-to-cell junctions [61]. These interactions 

include molecular mechanisms and have been extensively described in conjunction with 

mechanistic models [56-58]. 

1.5 Collective Cell Migration Model in Vitro 

The phenotype of migrating cells depends on the biochemical composition, stiffness, 

and overall morphology of the matrix. It is typical to distinguish between their dimensional 

systems. Migration in a one-dimensional system generally refers to cells migrating along 

individual collagen fibers, where the cells can only be oriented in line with the fibers. Cells 

migrating within the vessel or along the surface are migrating in two dimensions, in which 

case the direction of cell migration is largely not constrained by the orientation of individual 

fibers but can be more selective within the plane. When cells are enclosed in a matrix, i.e., 

migrating in a three-dimensional environment, migration is more spatially possible [62]. In 

most studies, when it comes to interactions in cell migration, the two-dimensional plane is 

widely used because it possesses operability and ease of observation. Instruments and 

models for testing adhesion and mechanical distribution based on cell-to-cell interactions 
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have been widely studied. These models involve cell polarity, morphology and signaling 

pathways associated with migration [63].  

PI3K, PTEN, and PtdIns(3,4,5)P3 play a role in chemotaxis by controlling the actin 

skeleton of the cell to regulate cell motility. PtdIns(3,4,5)P3 generated by PI3K plays a role 

through different downstream signal components, including GTPase RAC, ARF-

GTPASES, and kinase Akt. Some pathways such as PI3K-PTEN and some parallel 

pathways interact to produce chemotaxis. This chemotaxis involves the production and 

degradation of PtdIns(3,4,5)P3 and results in a net accumulation [24]. This net accumulation 

is at the leading edge of the cell, where it acts to promote the polymerization of actin and 

allows the cell to produce more pseudopods at the leading edge. Cells are able to undergo 

directed motility in response to the PtdIns(3,4,5)P3 gradient in response to chemotaxis [64-

66]. 

The generation of interactions is dependent on the regulation of signals from the 

microenvironment and therefore three-dimensional models are built to better match 

realistic physiological structures. The two-dimensional plane has a flat topography that 

facilitates the cells to be free from directional constraints. ECMs with a two-dimensional 

structure possess different mechanical properties. Cells exhibit very different migratory 

behavior towards different ECMs [67-69]. In addition to the stiffness and smoothness of 

the fiber bundles, which have a strong influence on cell spreading, other physicochemical 

properties such as composition and fiber density have different inducing effects on cell 

migration [70]. Higher porosity gives the possibility for cells to diffuse to a greater extent. 

1.6 Biomimetic Nanofibrous Structures 

Nowadays, electrospinning, phase separation, and molecular self-assembly 

technologies have been developed to manufacture nanofiber scaffolds. In particular, 

electrospun technology has been recognized as a more easy and adaptive method to produce 

ultra-thin fibers. Compared with other technologies, its diameter ranges from submicron to 
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nanometer fibers. Electrospun technology has been used as the main method to design 

biomaterial scaffolds. The electrospun fiber has high specific surface area and high porosity, 

which can imitate the local ECM structure and improve the effective response of cells 

(Figure 1.4). It is applicable to biomedical applications, including tissue engineering, 

catalysis, wound management, drug delivery, and filtration [71]. This convenient 

technology was first discovered by Rayleigh in 1897 [72]. Later, Taylor established the 

basic principle of electrospinning, which was inspired by the electrically driven ejector in 

1969 [73]. Generally, electrospinning equipment uses a high-voltage power supply to 

generate high potential. Under the action of the electric field, the positively charged 

polymer solution is attracted to the opposite electrode, causing the solution (Taylor cone) 

sprayed in a straight line to form a fiber [74]. Recent electrospun fiber manufacturing 

methods include coaxial [75], side-by-side [76], triaxial [77], multi-fluid [78], and 

nanostructured fibers. These can not only create many types of structural surfaces but also 

obtain controllable nanofibers. The most commonly used synthetic polymers for 

electrospinning are linear aliphatic polyesters, including PLLA, PGA, and PCL. They can 

easily adjust the mechanical, architectural and degradation characteristics. However, most 

of them are hydrophobic and lack active binding sites for cell adhesion. Therefore, other 

modifications are required. Surface modification can be used to improve the physical, 

Figure 1.4 Cells migrate on aligned and random fibers that mimic the ECM. 
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chemical, and biological properties of nanofibers. Methods such as plasma modification, 

wet chemical method, and surface polymerization create more favorable microenvironment 

in vivo [79]. In addition, water-soluble compounds including polyvinylpyrrolidone [80], 

polyethylene glycol [81], and polyethylene oxide [82] are often used as drug carriers. They 

are ideal candidates for biomedical applications. Therefore, people have realized that it is 

an effective method to produce polymer hybrid nanofibers by mixing two or more polymers, 

which can maximize their respective advantages. 

1.7 Clustering Methods in Biology 

In biology, the goal of research often involves a large number of individuals. Each of 

these individuals has unique characteristics, but in further studies, individuals are closely 

related to each other. Finding individuals with similar characteristics in a group is helpful 

for collective events and large-scale analysis. Clustering methods can find similar 

characteristics in the group structure. In the application of clustering, whether the target 

groups are similar or not is my point of interest. In flow cytometry, each cell in the 

population is fluorescently labeled with markers, and when they are passed through a fixed 

wavelength laser, the cells in the population are excited with fluorescence and the intensity 

is recorded. The fluorescence intensity is not only related to the excitation wavelength, but 

most notably to the gene expression level. The observations consist of measurements from 

different channels, so the cells with different fluorescence intensities in different channels 

or cells with different gene expressions can be compared. A similar approach can help to 

identify genes with co-regulatory effects in order to distinguish disease marker genes. In 

clustering methods, how to define similarity and how many unused groups the samples 

should be divided into based on similarity are the most important questions. In statistics, 

the purpose of clustering is to divide a sample into subsets where samples within a subset 

are more similar than those in different subsets, which is the concept of clustering[83]. The 

combination of bioinformatics and computer vision offers a new approach to modern 
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applications of biology. The multi-view learning algorithm uses medical images for 

clustering analysis, allowing the results of clustering to be combined with views that are 

sample features more easily captured. The method has shown excellent performance in 

processing cancer datasets [84]. Object clustering methods on a subset of attributes were 

used to describe data from metabolomics analyses, and clustering effects based on 

pathology and intervention effect studies demonstrated better results compared to principal 

component analysis (PCA) [85]. Clustering is the partitioning of a data set into clusters 

according to a particular criterion (distance), such that the similarity of data objects within 

the same cluster is as great as possible, while the differences between data objects no longer 

within the same cluster are also as great as possible. Unsupervised learning in machine 

learning is involved here, where the labelling information of the training samples is 

unknown and the goal is to uncover the intrinsic properties, structure and information of 

the training samples to provide a basis for further data mining. 

1.8 Time-series Clustering 

A time-series (or dynamic series) is a series of values of the same statistical indicator 

arranged in the order of their occurrence in time. Time-series databases contain valuable 

information that can be obtained through pattern discovery, and clustering a common 

solution is used to reveal certain regular patterns in time-series datasets. Time-series data 

is often too large to understand in an intuitive way, and understanding time-series problems 

is made somewhat easier by time-series clustering, which divides the different time-series 

data and then analyses them separately. Time-series clustering is one of the most commonly 

used exploration techniques and is often one of the required processes for more complex 

data mining algorithms. Representing the cluster structure of a time-series as a visual image 

can help users quickly understand the data structure, clusters, anomalies, and other rules in 

a dataset (Figure1.5).  
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Data analysis and mining technology is a combination of machine learning algorithms 

and data access technology, using machine learning to provide statistical analysis, 

knowledge discovery and other means to analyze large amounts of data, while using data 

access mechanisms to achieve efficient reading and writing of data [86]. Machine learning 

has an irreplaceable position in the field of data analysis and mining. 

Pattern recognition originated in the field of engineering, while machine learning 

originated in computer science [87]. The combination of these two different disciplines has 

brought about the adaptation and development of the field of pattern recognition [88]. As 

genomic and other sequencing projects continue to evolve, the focus of bioinformatics 

research is gradually shifting from the accumulation of data to how to interpret that data. 

In the future, new discoveries in biology will rely heavily on our ability to combine and 

correlate diverse data in multiple dimensions and at different scales, rather than relying 

solely on a continued focus on traditional domains. 

In research and applications, it is often necessary to observe data containing multiple 

variables, collect a large amount of data and then analyze it to find patterns. Large 

multivariate data sets undoubtedly provide a wealth of information for research and 

applications, but they also increase the workload of data collection to some extent. More 

Figure 1.5 Schematic diagram of clustering method including original data collection, feature extraction 

of individuals, similarity measurement of feature, clustering by similarity. 
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importantly, in many cases, many variables may be correlated with each other, thus 

increasing the complexity of the problem analysis. If each indicator is analyzed separately, 

the analysis is often isolated and cannot fully utilize the information in the data, so blindly 

reducing the indicators can lose a lot of useful information and thus generate wrong 

conclusions. Therefore, there is a need to find a reasonable method to reduce the number 

of indicators to be analyzed while minimizing the loss of information contained in the 

original indicators, in order to achieve a comprehensive analysis of the collected data. Since 

there are certain correlations among the variables, it is possible to consider turning the 

closely related variables into as few new variables as possible, so that these new variables 

are two unrelated, and then fewer integrated indicators can be used to represent the various 

types of information present in each variable, respectively. Dimensionality reduction is a 

method of pre-processing high-dimensional feature data, and is a very widely used data 

pre-processing method. The purpose of dimensionality reduction is to keep the most 

important features of high-dimensional data and remove the noise and unimportant features, 

so as to achieve the purpose of improving the speed of data processing. In practical 

production and application, dimensionality reduction can save me a lot of time and cost 

within a certain range of information loss.  

1.9 Summary 

Collective cell migration is a major mechanism of cancer metastasis. Cancer cells can 

spread between tissues. EMT is one of the bases of tumor metastasis. Many research 

supported that mesenchymal and epithelial cell act as leader and follower, respectively. To 

mimic the ECM, the microenvironment and structure are required. Topographical features 

of the ECM can be recreated by spinning polymers into fibers and depositing them as a thin 

layer on a surface. Cells can adhere and migration on it. To clarify the complexity of 

migration phenomena, many methodologies treat all cells together and from a colony aspect 

to get an overall impression of the migration pattern. It is more accuracy to analyze from a 



CHAPTER 1 

 

14 

 

single-cell aspect. The single-cell property can detail the interaction in collective migration. 

In this study, the objective is from the aspect of cell trajectory to investigate the 

interaction between epithelial and mesenchymal cells. First, the electrospun fiber was used 

to mimic the ECM structure, epithelial and mesenchymal cells were seeded on fiber with 

different ratios. The cell positions and migration properties like directions and distance of 

cells were recorded to see the effect of mesenchymal cells. Second, to further investigate 

the relationship of epithelial and mesenchymal cells in collective migration, all cells were 

clustered using machine learning. From the time-lapse observation, the high-dimension 

time-series data was obtained. Then the dimension reduction and clustering algorithm were 

conducted. The epithelial and mesenchymal cells were clustered into different groups by 

similarity. At the last, the time-series clustering method was optimized by comparing 

parameters.  
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CHAPTER 2 

QUANTITATIVE ANALYSIS OF COLLECTIVE MIGRATION  

BY SINGLE-CELL TRACKING 

Abstract 

This chapter presents the quantitative analysis of cell migration properties. 

Electrospun fibers were used to mimic the ECM structure. Different proportions of 

mesenchymal and epithelial cells were seeded on the fibers. The analysis was 

performed by time-lapse observation combined with manual tracking of cell 

trajectories. 

2.1 Introduction 

The basic mechanisms of cell migration have been extensively studied [1]. Cell 

migration is based on the establishment of a front-to-rear polarity axis involving 

rearrangement of the cytoskeleton and polarization of the membranes. Underlying this 

front-to-rear polarity is front-to-rear polarization of the Rho family signaling cascade, 

whereby Rac1 and CDC42 induce rapid cytoskeletal rearrangements at the front of a 

cell [2]. This leads to the formation of membrane-like protrusions such as filopodia and 

lamellipodia. Adhesion between the cell adhesion protein integrin and the ECM is 

promoted, leading to forward migration of cells [3]. However, during collective 

migration, cells invade the ECM while maintaining E-cadherin–dependent cell 

adhesion. During collective migration, the migration mechanism of individual cells 

occurs for each cell in the population. In addition, there is a leader cell with a highly 

invasive and ECM remodeling capacity in collective migration and subsequent group 
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of follower cells [4-6]. The leader and follower cells are defined based only on their 

relative positions in the cluster and are located at the front and rear of the cluster, 

respectively. Leader cells are highly invasive and play important roles in ECM 

remodeling during migration [7-10]. The diverse mixed phenotype is involved in 

regulating collective migration and forming a “leader–follower” structure at different 

stages of EMT [11]. These results suggest that EMT-induced cells behave as “leaders,” 

exhibiting migratory behavior along fibrous structures in the ECM. However, the 

interactions between “leader” and “follower” cells and role of migration enhancement 

in metastasis remain unclear. 

The microenvironment surrounding the tissues plays an important role in 

maintaining normal cellular behavior. The microenvironment varies between normal 

tissues and tumors, suggesting that cancer development and metastasis are influenced 

by the surrounding microenvironment [12-15]. Classical cell migration assays, such as 

chemotaxis assays [16, 17] involve the addition of chemokines to the culture 

environment to induce cell migration according to a concentration gradient. Wound 

healing assays [18-20] based on scratch assays can be used to evaluate cell migration 

properties by measuring tissue matrix build-up and associated cell differences in 

healing. In chemotaxis assays, environments with fixed concentration gradients are 

uncommon in cancer cell migration in vivo; the manner in which cells migrate in scratch 

assays differs from that in which cancer cells migrate collectively in a 3D environment. 

Traditional assays cannot adequately track cell population migration, supporting the 

necessity of constructing cancer cell migration models that simulate the in vivo 

environment. A recently established migration evaluation system mimics the in vivo 

cellular environment. In this system, cells migrate on flat culture dishes coated with FN 

or ECM gels (e.g., collagen) present in the ECM [21]. Cells present in the ECM in a 

fibrous structure have an elongated morphology in vivo. Therefore, in flat culture dishes 

or gels without anisotropy, cells have a different morphology and applied tension 
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compared to their original morphology. The extension and migration directions of 

pseudopods, which are important for cell migration, may greatly differ from the original 

morphology [22]. Nanofiber materials fabricated by electrospinning have attracted 

considerable attention. Because nanofibers mimic fibrous and anisotropic structures in 

vivo, they are expected to be used as scaffolds in regenerative medicine [23-26]. 

This study focused on leader–follower cell interactions. To quantitatively analyze 

these interactions and reproducibly observe cell migration on fibers, a method to mimic 

collective migration were designed by co-culturing TGF-β1-induced EMT 

mesenchymal cells [TGF (+)] with EMT-negative cells [TGF (−)]. The migration 

capacity of mimicked cell populations was evaluated. The populations of TGF (+) and 

TGF (−) cells at different ratios were generated and compared their migratory behaviors. 

The morphology, trajectory, migration velocity, straightness, and directional angle were 

evaluated to quantitatively examine the migration of cell populations and effect of TGF 

(+) on cell migration. 

2.2 Materials and Methods 

2.2.1 Electrospinning 

Tetrahydrofuran was used as the solvent in the electrospun polymer solution to 

prepare 20 wt % Polystyrene (PS). The PS solution was electrospun into aligned 

nanofiber structures using a commercial electrospinning setup (NANON, MECC, 

Fukuoka, Japan). The polymer solution in the syringe was ejected from the needle at a 

constant flow rate. A high voltage was applied to the needle, and the charged polymer 

solution was collected using a grounded rotating collector. During electrospinning, the 

flow rate was 0.1 mL/h and collector speed was 15.7 m/s. The electric field was 2.5 

kV/cm. The fibers were treated with O2 plasma (40 kHz/100 W, 25 Pa, 30 s) and coated 

with 10 μg/mL FN (37 °C, 2 h). 
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2.2.2 Cell Culture 

NMuMG cells (ATCC CRL-1636) and fluorescently labeled NMuMG cells were 

cultured in Dulbecco’s Modified Eagle Medium (DMEM) supplemented with 10% fetal 

bovine serum (FBS). Fluorescent labeling of NMuMG was performed by induction of 

the pDsRed2-C1 vector. All experiments were approved by the ethics committee of the 

institution. The medium used to induce EMT in NMuMG–DsRed contained 10 ng/mL 

TGF-β1 (Sigma) and was cultured for 3 days. Unlabeled NMuMG cells were designated 

as TGF (−) and EMT-induced NMuMG-DsRed cells were designated as TGF (+). Cell 

aggregates were prepared by suspending the two cell types at different ratios (1 × 105 

cells/mL). The cell suspension (500 μL) was seeded into 24-well grid plates (Elplasia 

#4445, Kuraray, Tokyo, Japan) for 3D culture and incubated at 37 °C, 5% CO2, and 95% 

humidity for 3 h. FluoroBrite DMEM (Gibco) containing 10% FBS was used for 

fluorescence observation (Figure 2.1). After seeding, cell aggregates formed in the 

wells. These aggregates were collected and suspended in 500 μL of medium containing 

25 μL of CellLightTM Histone 2B-GFP and BacMam 2.0 (Thermo Fisher Scientific K.K., 

Tokyo, Japan). The aggregates were designated as TGF (N), which represented the 

percentage of TGF (+) cells (N%). After 24 h of pre-incubation on the fiber sheets, time-

lapse images were acquired using a Biostation (Nikon, Tokyo, Japan) at 15-min 

intervals for 24 h. 

Figure 2.1  Schematic diagram of aligned PS fibers and cell culture.  
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2.2.3 Morphological Analysis of Colony 

Fluorescent images of the colonies were binarized and analyzed using Fiji software. 

The shape of a cell colony was determined by increased area and circularity. Circularity 

was determined using Equation (2.1), where S and P are the area and perimeter of the 

colony, respectively. A circularity of 1 indicates that the shape is a perfect circle; as the 

value approaches 0, the shape was considered to have elongated (Figure 2.2). 

𝐶𝑖𝑟𝑐𝑢𝑙𝑎𝑟𝑖𝑡𝑦 = 4𝜋 ×
𝑆

𝑃2
 (2.1) 

The definition of the center of mass of a colony was determined using Equation 

(2.2). This value represents the average of the coordinates of n cells in the collective at 

a certain time (Figure 2.2). The initial position was set to (0,0). 

𝐶𝑒𝑛𝑡𝑒𝑟 𝑜𝑓 𝑚𝑎𝑠𝑠 =
1

𝑛
∑(𝑥i, 𝑦i)

𝑛

𝑖=1

 (2.2) 

where 𝑥i, 𝑦i are the coordinates of cell i. 

2.2.4 Migratory Analysis of Single Cell 

Fluorescent images of cell nuclei were binarized and analyzed using the Fiji plug-

in (TrackMate) to extract the coordinates of motion of each cell at each time point and 

Figure 2.2 The definition of circularity and center of mass.  



CHAPTER 2   

 

30 

 

trajectory. The velocity, distance, directionality, and angle of cell migration were 

calculated using these coordinates. The straightness was determined using Equation 

(2.3) as the ratio of the Euclidean distance of cell migration to the total distance (Figure 

2.3). 

𝑆𝑡𝑟𝑎𝑖𝑔ℎ𝑡𝑛𝑒𝑠𝑠 =
𝑑Euclid
𝑑Total

 (2.3) 

where dEuclid is the Euclidean distance of movement of cells, dTotal is the total 

distance of movement of cells. 

The directional angle is the angle between the direction of cell migration and 

direction perpendicular to the fiber (Figure 2.3). This is used to further investigate the 

direction difference of cells. 

Figure 2.3 The definition of straightness and direction angle.  
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2.3 Results and Discussion 

2.3.1 Cell Migration on Fiber 

This thesis characterized the motility of migrating cells in a cell population by 

analyzing cell behaviors at the single-cell level. The migration of cell populations with 

different ratios of mesenchymal and epithelial cells were analyzed. First, a system was 

set up to observe collective migration using different ratios of TGF (+) and TGF (−) 

cells on directed PS fibers, the surfaces of which were coated with ECM protein (FN). 

This design mimics the fibrous structure in vivo (Figure 2.1). Colony elongation and 

migration of TGF (+) and TGF (−) cells were evaluated as the migration of cell colonies 

at different TGF (+) mixing ratios (Figure 2.4). TGF (+) cells were induced with 

Figure 2.4 TGF(+) cells (red) and TGF(-) cells (green) were inoculated onto the fibers. TGF(N) 

represents the percentage of TGF(+) cells as N%. 
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NMuMG-expressing DsRed to distinguish TGF (+) from TGF (−). Under different 

percentages of TGF (+) cells, the cells migrated in the colony within 24 h. In the absence 

of TGF (+) cells [TGF (0)], the cells were strongly attached to each other and the shape 

of the population did not change significantly. When the percentage of TGF (+) 

exceeded 50%, the cells were loosely adhered and frequently separated from the colony. 

2.3.2 Migration of Colony 

Migration from a colony and single-cell perspective were analyzed. First, the 

colony elongation and migration were observed. Circularity was calculated which is 

determined by the area and perimeter of the colony. The shapes of cell colonies with 

different TGF (+)/TGF (−) ratios during migration are shown in Figure 2.5A. TGF (N) 

Figure 2.5 Changes in Colony Shape. (A) Area at different TGF (N) and time. Increased area is the 

difference in area calculated every 3 hours. (B) Circularity changes with different time. (C) 

Circularity at 0 h and 24 h with different TGF (N). The N is the initial proportion of TGF (+) cells. 
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represents the percentage of TGF (+) cells as N%. In TGF (0)–(40), in which TGF (+) 

cells accounted for the minority of cells, the area increased as N increased and with 

increasing observation time. Figure 2.5B shows the variation in circularity over time, 

and Figure 2.5C shows a comparison of circularity at 0 and 24 h. In TGF (0)–(40) cells, 

the circularity at 24 h decreased significantly compared to that at 0 h, indicating an 

elongated colony shape. In contrast, in TGF (60)–(100), changes in the area and 

circularity revealed an unstable state, possibly because of the mesenchymal properties 

of TGF (+) in most of the colonies, leading to weak cell adhesion and more dispersed 

migration. 

The definition of the center of mass of a colony represents the average of cells 

coordinates. In Figure 2.6, TGF (0) and TGF (100) did not move as colonies, as their 

endpoints returned to their original state. TGF (20) moved along the fiber, showing only 

slight changes in the direction of movement. TGF (80) also moved approximately the 

same distance but in repeated forward and backward directions. The centers of mass of 

Figure 2.6 Movement of center of mass under different TGF(N). The arrow is the direction of the 

last movement of the center of mass. 
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TGF (40) and TGF (60) moved similar shorter distances. TGF (+) cell increasing result 

in the promotion of the entire colony migration most of the time. 

2.3.3 Migration of Single Cells 

2.3.3.1 Trajectories of Cells 

From the aspect a colony, an overall impression of collective migration can be 

obtained. It’s more accuracy to analyze from a single-cell aspect. The single-cell 

property can detail the interaction in collective migration. Next, the trajectories of each 

cell were plotted by extracting the time-series data of the coordinates of the nuclei. The 

Figure 2.7 Changes in Cell Trajectories. (A1), (A2) and (B1)-(B4)  are the trajectories of TGF(+) and 

TGF(-) under different TGF(N). (C1) – (C4) are the trajectories of TGF(-) cells. (D1) – (D4) are the 

trajectories of TGF(+) cells. 
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starting point of all cell trajectories was reset to the origin (0,0), as shown in Figure 2.7. 

The cells migrated mainly along the fibers. TGF (−) cells showed greater migration 

compared to TGF (+) when N < 50 in the direction difference and area expended aspects. 

TGF (+) and TGF (−) cells belonging to the same colony show similar trajectories in 

the migration direction when N > 50. In TGF (0) cells (Figure 2.7A1), the trajectory did 

not spread, indicating limited cell migration. In TGF (20) (Figure 2.7B1), the cells 

migrated mainly along the fibers (y-axis direction). In TGF (40)–(80), the cells migrated 

along the direction of the fibers and spread in the x-axis direction (Figure 2.7B2–B4). 

The trajectories of TGF (+) and TGF (−) were separately plotted to investigate 

migration of these populations independently (Figure 2.7C and D). TGF (−) cells 

showed greater migration compared to that of TGF (0) cells under all conditions. In 

addition, TGF (+) and TGF (−) cells belonging to the same colony exhibited similar 

trajectories in the migration direction. These results suggest that TGF (+) and TGF (−) 

interact in the same colony and alter the migratory behavior of the entire colony. 

Interestingly, TGF (−) showed higher migration in TGF (20) and TGF (40) than in TGF 

(+) (Figure 2.7C1, C2, D1, and D2). This result suggests that the presence of a minority 

of TGF (+) cells in the colony enhances TGF (−) migration. The presence of TGF (+) 

cells of majority in a colony showing a limitation to TGF (−) cells migration. When N > 

50%, the mesenchymal cells would generate forces to epithelial cells in difference 

direction which made the epithelial cells lose the consistency of migration and result in 

a limitation a migration. 

2.3.3.2 Straightness of Cells 

The straightness was determined here as the ratio of the Euclidean distance of cell 

migration to the total migration distance. In TGF (0), the straightness was 0.55 ± 0.17 

μm but decreased with increasing N, reaching a minimum value of 0.16 ± 0.05 μm in 

TGF (100) (Figure 2.8A). For TGF (0), intercellular adhesion was strong, all cells move 

as a unity. They barely change their direction and almost no migration was observed. 
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With increasing N, intercellular adhesion loosened, possibly because of a large change 

in direction related to the increased migratory capacity of each cell. The minimum value 

of the average migration velocity of the cells was obtained under the TGF (0) condition 

(7.89 ± 2.33 µm/h). With increasing TGF (+) cells, intercellular adhesion decreased. 

Because the TGF (+) cells can make TGF (−) cells more active and affect their direction. 

Cell velocity were increasing before TGF (40) and decrease after TGF (60). When the 

TGF (+) cells are majority, the active of TGF (−) cells is getting weak. The maximum 

value was obtained under the TGF (60) condition (17.10 ± 2.31 µm/h) (Figure 2.8B). 

2.3.3.3 Directional Angle of Cells 

Straightness does not represent the directionality of cell migration. Therefore, the 

directional angle during cell migration was calculated and displayed as a rose plot 

(Figure 2.9). The directional angle is the angle between the direction of cell migration 

and direction perpendicular to the fiber. The mean value of TGF (0) was closest to 90°; 

as N increased, this value differed from 90°, indicating that when the ratio of TGF (+) 

is higher, fewer cells in the colony migrate along the fibers. Figure 2.10 shows a 

histogram of the direction angle for each condition; as N decreased, a clear peak was 

Figure 2.8 Changes in migration direction and velocity. (A) The straightness of all cells with different 

TGF(N). (B) The velocity of all cells with different TGF(N). Whiskers are the range of data. 
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formed at 90°. This decrease in variability clearly indicates that a change in the ratio of 

Figure 2.10 The frequency of different TGF(N) direction angle values after cubic Bezier curve 

smoothing. The calculation includes 92 cells. 

Figure 2.9 The rose plot of distribution of direction angles and median values with different TGF(N). 

The arcs under the median represent 75% of the data. 
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TGF (+) to TGF (−) alters the migration of the cell population. This indicating that when 

the ratio of TGF (+) is higher, less and less cells in the colony migrate along the fibers. 

Their migration become more active and non-directional. 

2.3.3.4 The Effect of TGF (+) Cells on the Migration 

The thesis examined how the presence of TGF (+) affects each cell in a mixed 

colony in different situations. In the first situation, N < 50. When N = 20, TGF (−) 

exhibited a trajectory along the fiber direction (Figure 2.7C1). When N = 40, the 

migration of TGF (−) was enhanced not only in the fiber direction, but also in other 

directions (Figure 2.7C2). This pattern was also observed for larger N, which 

corresponds to the results (Figure 2.7C3, C4). Similar effects were observed not only 

in the distance of migration, but also in velocity (Figure 2.8C). The velocity of TGF (−) 

increased with increasing N at N < 50. Under this condition, there was more TGF (−), 

and TGF (+) may have enhanced TGF (−) migration as N increased. This observation 

is similar to the relationship between leaders and their followers. In collective invasion, 

leader cells express basal epithelial genes such as cytokeratin-14 and p63 [27]. As the 

proportion of TGF (+) cells increased, cytokeratin-14 was enriched at the invasion 

boundary, and the highly migratory cell population became behaviorally and 

molecularly distinct from other cells, which is factor explaining the formation of leader-

follower relationships. Migration mechanisms involving the regulation of cytokeratin-

14 alter the physical and chemical properties of cells such as intercellular adhesion and 

mechanics. 

This enhancement does not continue to increase with N; therefore, the second 

situation was N > 50. Notably, the migration range of TGF (−) did not expand but rather 

shrank (Figure 2.7C3 and C4). Similarly, the migration velocity decreased. Enhanced 

migration of TGF (+) on TGF (−) is conditional: when the density of TGF (+) is too 

high, that is, when there are too many leaders, the migration enhancement of followers 

is inhibited. This causes TGF (−) to lose its centralized leadership, weakening migration 
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enhancement. 

The above two situations used N = 50 as the watershed, with the opposite pattern 

on both sides. A third situation was compared from another perspective to determine 

the properties that do not have a watershed. Results show that straightness decreased 

with increasing N (Figure 2.8A), whereas the migration direction moved further away 

from the fiber with increasing N (Figure 2.10). This result indicates that the presence of 

TGF (+) significantly enhanced the migration of TGF (−). Enhanced migration 

increases the total distance and thus decreases straightness. Multiple leaders lead to 

irregularities in the migration direction of their followers. 

The fiber direction can affect the migration of cells. Here, aligned PS fiber was 

used to mimic the ECM structures. When N < 50, most of the TGF (−) cells migrate 

along the fiber direction. Especially in Figure 2.7 C1, N = 20, the cells’ trajectories are 

expended in y axis which is the fiber direction. As TGF (+) cells number growth to N = 

40, the trajectories can still show an expended in y axis but not the same with N = 20. 

When N > 50, the trajectories show a result of random migration which is totally 

different with the fiber direction. The TGF (+) cells in a majority of the colony can 

result in the migration direction more randomly. 

EMT can be induced by various factors, including transcription factors, growth 

factors, and microenvironmental miRNAs. TGF-β as an induction factor for EMT in 

this thesis. TGF-β can induce EMT via signaling pathways such as Smad, RhoA, and 

MAPK. The results shown here provide insight into the effects of these processes on 

cell migration behavior. Cells before and after induction of EMT by TGF-β exhibited 

different migratory properties and showed interactions at different ratios. To further 

analyze this phenomenon of cellular interactions, The thesis proposed a method based 

on a combination of time-series clustering and dimensionality reduction to analyze cells 

with similar migration patterns in Chapter 3. Whether cell trajectories are related to 

migration patterns remains unclear. In the future, this approach will be applied to 

analyze cell lines with different proportions of phenotypes and has the potential to 
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provide an accurately analyzing of interactions based on cell migration trajectories. 

2.4 Conclusion 

This chapter established a method for observing the migration of cell colonies on 

fibers. Using this method, the migration of colonies was observed using different ratios 

of TGF (+) and TGF (−) to quantify the effect of TGF (+) on collective migration. 

Migration was assessed from two perspectives: that of the entire colony and that of each 

cell within the colony. When TGF (+) was present at low densities in the colony, the 

migration distance of individual cells and behavior of the colony were significantly 

enhanced. This enhancement decreased when the TGF (+) density exceeded a certain 

level. These collective behaviors were caused by a leader–follower-like structure. The 

individual cells during collective migration were analyzed. In the future, by precisely 

analyzing the interactions among individual cells, it will be possible to assess the 

migratory properties of collective migration more clearly. 
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CHAPTER 3 

TIME-SERIES CLUSTERING OF SINGLE-CELL TRAJECTORIES  

IN COLLECTIVE CELL MIGRATION 

Abstract 

In this chapter, a trajectory-based time-series clustering method is suggested for 

further study of cell-cell interactions. After collecting high-dimensional time-series data 

from time-lapse observations, these data was processed by dimension reduction and 

clustering algorithms to find similar migration patterns. 

3.1 Introduction 

The process of collective cell migration can be described to varying degrees using 

molecular mechanisms and mechanical models [1-3]. However, how these interactions 

integrate multiple factors that influence migration patterns requires further 

investigation [4]. This chapter used a simpler approach based on the clustering of 

single-cell trajectories to explore the migration patterns between cells. 

The study of cell migration patterns usually requires recording cell trajectories 

within observation windows comprising multiple sets of timeseries data. Timeseries 

data are characterized by high-dimensionality and large data volumes [5]. Clustering 

such com-plex objects can reveal interesting patterns. As an unsupervised learning 

technique, k-means clustering is a commonly used clustering method. The main idea 

behind this clustering method is to minimize the total distance (usually the Euclidean 

distance) be-tween all the objects in a cluster and their cluster centers. Cluster centers 

are defined as the average vectors of the objects in the cluster; however, time-series 
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clustering poses additional challenges. For cell trajectories, this increases the difficulty 

and computational effort of clustering based on the time dimension and poor clustering 

performance owing to the different locations of cell trajectories at each time record 

point, and similar problems have been observed in the phylogenetic analysis [6, 7]. 

One solution is dimensionality reduction of time-series data and subsequent 

clustering. Commonly used dimensionality reduction methods to maintain the two-by-

two distance structure of the dataset include PCA [8] and multi-dimensional scaling 

(MDS) techniques [9], and streamwise learning techniques such as t-distributed 

stochastic neighbor embedding (t-SNE), which can maintain the local structure of the 

data [10] and uniform manifold approximation and projection (UMAP) [11]. In 

particular, UMAP is efficient for processing large amounts of data in response to the 

global structure, providing higher-quality visualization. Clustering is often used in 

biological disciplines for the identification of functionally relevant genes and functional 

clustering of gene expression data [12, 13]; however, to my knowledge, this is the first 

re-port to analyze the range of influence of leader cells on collective migration by 

classifying the movement pattern with clustering analysis of individual cell tracking. 

This chapter attempted to identify similar migration patterns among cells. As an 

approach to quantitatively analyze cell–cell interactions, co-culture of EMT-induced 

mesenchymal cells by the addition of TGF-β (referred as TGF (+)) and EMT non-

induced cells (TGF (−)) was performed to imitate colony migration on aligned 

electrospun fibers mimicking the ECM fibrous architecture. Tracking of cell migration 

by time-lapse observation followed by dimensionality reduction and clustering was 

performed to find similar migration patterns, where they are not only related to location 

but also influenced by cell division. 



   CHAPTER 3 

47 

 

3.2 Materials and Methods 

3.2.1 Electrospinning 

This chapter used the same electrospinning method as Section 2.2.1. The aligned 

PS nanofiber was treated with O2 plasma and coated with FN to mimic the ECM. 

3.2.2 Cell Culture and Time-Lapse Observation 

The method of preparing the cell culture is the same as Section 2.2.2. To prepare 

cell aggregates, TGF (−) cells and EMT-induced TGF (+) were seeded on fibers. Time-

lapse microscopy was performed for 24 h at intervals of 15 min using Biostation and 

analyzed using ImageJ (ver. 1.53 e). The captured fluorescence images were binarized 

and the cells were tracked using a plug-in (TrackMate). The location of the center of 

the cell nucleus was determined by manual tracking which started from the last time 

slice to the first time slice backward. The cell was identified on the basis of the locations 

of the cell nucleus between two adjacent slices and assigned ID numbers to all cells. 

The slice when cell division occurred was determined by comparing the distance 

between neighboring cell marker points. 

3.2.3 Time-series clustering 

Figure 3.1 shows the schematic diagram of time-series clustering of cell 

trajectories. The Appendix 1 shows the flowchart. After collecting cell migration 

movies by time-lapse microscopy, cell trajectories were generated manually by period 

using ImageJ. Second, the trajectories of each period were normalized to convert their 

starting points to the origin (0,0). Third, the distance matrix is calculated from the 

Euclidean distance of each pair of trajectories. Fourth, the UMAP dimensionality 

reduction algorithm to visualize the data in two-dimensions. Fifth, the data are clustered 

by k-means, where the number of clusters is determined by the mean silhouette 
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coefficient (MSC). Finally, the clusters are combined with the original trajectories to 

analyze the similar migration patterns in collective cell migration 

3.2.3.1 Normalization Cell Trajectory Data 

Let 

𝑉i
(p)
≔ ⟨𝒗i,1

(p)
, … , 𝒗i,n

(p)
⟩ (3.1) 

be the 𝑖th cell’s trajectory of the 𝑝th time period, where 𝒗i,l
(p)
∈ ℝ2 is the cell 

position at 𝑙th time slice of the 𝑝th time period and 𝑛 is the number of time slices in 

a single time period. 

The cells were divided several times during the observation. After manually 

marking the positions of the cell nuclei and finding mother cells with daughter cells 

(Figure 3.2), the trajectories of two daughter cells were unified with the mother cell 

prior to division. To remove the effect of the initial cell positions from the cell trajectory 

clustering, The method first normalized the 𝑖 th cell’s trajectory of 𝑝 th time period 

𝑉i
(p)

 such that its initial position 𝒗i,l
(p)

 was located at the origin (0,0). The normalized 

trajectory is given by 

𝑍i
(p)
≔ ⟨𝒛i,1

(p)
, … , 𝒛i,n

(p)
⟩, (3.2) 

Figure 3.1 Schematic diagram of time-series clustering of cell trajectories in collective cell 

migration. 
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where 𝒛i,l
(p)
: = 𝒗i,l

(p)
− 𝒗i,1

(p)
= (𝑧i,l,1

(p)
, 𝑧i,l,2
(p)
)
⊤

, refer to the Appendix 2, Part 2. 

To evaluate the similarity of cell trajectories, the pairwise distance between two 

trajectories was defined as follows: the distance between two trajectories at the 𝑝th 

time period, 𝑍i
(p)

 and 𝑍j
(p)

, is defined by 

𝐷 (𝑍i
(p)
, 𝑍j

(p)
) ≔∑  

𝑛

𝑙=1

𝛿 (𝒛i,l
(p)
, 𝒛j,l
(p)
), (3.3) 

where 𝛿 (𝒛i,l
(p)
, 𝒛j,l
(p)
)  is the distance between two points, 𝒛i,l

(p)
  and 𝒛j,l

(p)
 , which 

are respectively 𝑖th and 𝑗th cell positions at 𝑙th time slice of 𝑝th time period. 

This study employed the Euclidean distance to define the distance function 

𝛿 (𝒛i,l
(p)
, 𝒛j,l
(p)
): 

𝛿 (𝒛i,l
(p)
, 𝒛j,l
(p)
) ≔ √(𝑧i,l,1

(p)
− 𝑧j,l,1

(p)
)
2

+ (𝑧i,l,2
(p)
− 𝑧j,l,2

(p)
)
2

. (3.4) 

Based on the pairwise distance between the two trajectories 𝐷(𝑍i, 𝑍j), the distance 

matrix is defined as follows: 

𝐷 ≔ [

𝐷1,1 ⋯ 𝐷1,N
⋮ ⋱ ⋮

𝐷N,1 ⋯ 𝐷N,N

], (3.5) 

where 𝐷i,j: = 𝐷(𝑍i, 𝑍j) and 𝑁 is the total number of cells and their trajectories. 

Figure 3.2 Schematic of manually mark the cells’ nuclei and the distance increase after cell 

division occurred. 
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3.2.3.2 Dimension Reduction and Clustering 

To visualize the similarity of the cell trajectories, each cell trajectory 𝑍i
(p)

 was 

embedded into a two-dimensional space based on the distance matrix 𝐷. The t-SNE 

[10, 14-16] and UMAP [11] were employed as the embedding methods using Python 

(scikit-learn 1.1.2; umap-learn 0.5.3). The dimensionality reduction algorithm includes 

distance calculation, but this thesis still performed the distance matrix calculation in 

advance. The purpose is to further investigate the relationship between the data. By 

applying these two methods, a set of cell trajectories in 𝑝th time period represented in 

a two-dimensional space was obtained : 

𝒟(p) ≔ {𝒙1
(p)
, … , 𝒙N

(p)
}, (3.6) 

where 𝒙i
(p)
∈ ℝ2  is the 𝑖 th cell trajectory of the 𝑝 th time period in two-

dimensional space. 

Next, the method classified cell trajectories based on their similarities. Here, the 

k-means clustering method [17] was employed for classification. Using k-means 

clustering, the 𝑁  samples of 𝒟(p)  were partitioned into 𝐾p(≤ 𝑁)  sets of the 𝑝 th 

time period 𝑀p = {𝑀1
(p)
, 𝑀2

(p)
, … ,𝑀Kp

(p)
} based on the similarities among the samples. 

Let 

ℳp = {𝝁1
(p)
, … , 𝝁Kp

(p)
} (3.7) 

be a set of the mean of points in each cluster at the 𝑝th time period, where 𝝁k
(p)

 

is the mean of points in the 𝑘 th cluster at the 𝑝 th time period. The method also 

introduced a variable that denotes whether a set 𝑀k
(p)

 contains 𝒙i
(p)

 or not: 

𝑞i,k
(p)
= {

1 (𝒙i
(p)
∈ 𝑀k

(p)
) ,

0 (𝒙i
(p)
∉ 𝑀k

(p)
) .

 (3.8) 

Using the variables, the objective function of k-means clustering, the within-

cluster sum of squares (WCSS), is defined as 
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𝐽 (𝑞i,k
(p)
, 𝝁k

(p)
) =∑  

𝑁

𝑖=1

∑ 

𝐾p

𝑘=1

𝑞i,k
(p)
∥∥𝒙i

(p)
− 𝝁k

(p)
∥∥
2
. (3.9) 

The optimal solution is a parameter that minimizes the objective function 

𝐽(𝑞i,k
(p)
, 𝝁k

(p)
). The method numerically solved the optimization problem using the k-

means algorithm. Notably, the solution of the k-means algorithm has an initial value 

dependency. Therefore, several initial values were tested and employed a clustering 

result that minimized the objective function. 

The number of clusters at the 𝑝th time period 𝐾p is a hyperparameter of k-means 

clustering. Therefore, the method optimized 𝐾p based on the silhouette analysis [18]. 

Silhouette analysis evaluates clustering results based on the degree of aggregation 

within clusters and the degree of separation between clusters. 

The silhouette coefficients of the samples were calculated at different 𝐾p values. 

This coefficient measures how similar an object is to its cluster compared with other 

clusters. After the samples were clustered into 𝐾p  clusters, the average distance of 

𝒙i
(p)

 from the other samples in the cluster was calculated for the sample 𝒙i
(p)

 in cluster 

𝑀I
(p)

 . Within-cluster dissimilarity, which measures how well 𝒙i
(p)

  is assigned to its 

cluster, is defined as follows: 

𝑎 (𝒙i
(p)
) =

1

|𝑀I

(p)
| − 1

∑  

𝑗∈𝑀I
(p)
,𝑗≠𝑖

𝛿 (𝒙i
(p)
, 𝒙j
(p)
), 

(3.10) 

where |𝑀I
(p)
| is the number of samples belonging to cluster I. The definition of 

the distance function is the same as that of the distance function in Equation (3.4). 

The between-cluster dissimilarity, the average distance between 𝒙i
(p)

  and all 

samples in the other cluster 𝑀J
(p)

, are defined as follows: 

𝑏 (𝒙i
(p)
) = min

𝐽≠𝐼
 
1

|𝑀J

(p)
|
∑  

𝑗∈𝑀J
(p)

𝛿 (𝒙i
(p)
, 𝒙j
(p)
). 

(3.11) 
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The silhouette coefficient of sample 𝒙i
(p)

 is defined as follows: 

𝑠 (𝒙i
(p)
) =

{
 
 
 
 

 
 
 
 
1 −

𝑎 (𝒙i
(p)
)

𝑏 (𝒙i
(p)
)
,  if 𝑎 (𝒙i

(p)
) < 𝑏 (𝒙i

(p)
)

0,  if 𝑎 (𝒙i
(p)
) = 𝑏 (𝒙i

(p)
)

𝑏 (𝒙i
(p)
)

𝑎 (𝒙i
(p)
)
− 1,  if 𝑎 (𝒙i

(p)
) > 𝑏 (𝒙i

(p)
)

 (3.12) 

The silhouette coefficient 𝑠 (𝒙i
(p)
) is a measure of how well the data are clustered 

over the entire dataset. A larger value indicates a more reasonable clustering of 𝒙i
(p)

. 

Based on the silhouette coefficients, the optimal number of clusters 𝐾p  was 

obtained: 

�̂�p = 𝑎𝑟𝑔𝑚𝑎𝑥
𝐾p

�̅�(𝐾p), (3.13) 

where �̅�(𝐾p) is the MSC, defined as 

�̅�(𝐾p) ≔
1

𝑁
∑  

𝑁

𝑖=1

𝑠 (𝒙𝑖
(𝑝)). (3.14) 

The above equation represents the mean 𝑠(𝒙i
(p)
) over all cell trajectories for a 

specific number of clusters 𝐾p. Cell–cell interactions can change during migration, and 

cell division also perturbs these interactions. Thus, the number of clusters 𝐾p may vary 

over time. Therefore, this process is repeated for each period 𝑝  and is used to 

determine the appropriate number of clusters �̂�p, refer to the Appendix 2, Part 3 . 

3.2.4 Validation of Robustness 

Our method depends on the accuracy of the cell tracking data, particularly the 

accuracy of the estimated positions of the cell nucleus center. In this study, the positions 

of the cell nucleus centers were detected manually from bright field images, which 

might have been affected by the observation noise. Thus, the robustness of our 
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clustering method was evaluated to the intensity of observation noise in the estimated 

cell nucleus positions. 

As shown in Equation (3.1) 𝑉i
(p)
= ⟨𝒗i,1

(p)
, … , 𝒗i,n

(p)
⟩ denotes the cell trajectories, 

where 𝒗i,l
(p)
∈ ℝ2 is the cell position at the lth time slice of the 𝑝th time period and 𝑛 

is the number of time slices in a single time period. 

The method assume that the observation noise of the cell nucleus center position 

is modeled as two-dimensional Gaussian noise as follows: 

{𝝃l} ∼
 i.i.d. 

𝒩2(𝟎, Σ). (3.15) 

Here, 𝝃𝑙 ∈ ℝ
2  and 𝒩2(0, Σ)  denote a two-dimensional Gaussian distribution, 

where the mean 0. Σ denotes the variance–covariance matrix, which is defined as 

Σ = [
𝜎 0
0 𝜎

]. (3.16) 

The true nucleus center 𝒗i,l
(p)

 is unknown, but the method assumed that 𝒗i,l
(p)

 is 

the true center. The method then generated the test dataset by adding Gaussian noise to 

the original single-cell trajectory dataset, as follows: 

𝑉i
′(p)

= ⟨𝒗i,1
(p)
+ 𝝃1, … , 𝒗i,n

(p)
+ 𝝃n⟩. (3.17) 

Next, the consistency of the clustering results obtained from the datasets was 

evaluated, original dataset, and generated test datasets. Let 𝑛(𝑀k
(p)
) be the number of 

elements in the 𝑘th cluster at the 𝑝th time period, and 𝒏(p) denote a vector whose 

element is 𝑛(𝑀k
(p)
) for 1 ≤ 𝑘 ≤ 𝐾p, which is defined as 

𝒏(p) ≔ (𝑛 (𝑀1
(p)
) , 𝑛 (𝑀2

(p)
) , … , 𝑛 (𝑀Kp

(p)
))

⊤

, (3.18) 

where 𝑛(𝑀k
(p)
) for 1 ≤ 𝑘 ≤ 𝐾𝑝 is sorted in descending order; thus, it satisfies 

𝑛(𝑀
k′
(p)
) ≥ 𝑛(𝑀

k′+1

(p)
). 

Let 𝒏u
(p)

  be 𝒏(p)  obtained from data 𝒟u
(p)

 , where 𝒟u
(p)

  denotes a set of cell 

trajectories in the 𝑝th time period represented in two-dimensional space (see Equation 
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(3.6)), 𝑢 ≥ 1. 𝑢 = 0 denotes the index of the original dataset, and 𝑢 ≥ 1 denotes that 

of the test dataset generated by adding Gaussian noise to the original dataset. The 

consistency of the clustering results obtained from the original and test datasets is 

defined by the Euclidean distance between the clustering results obtained from the two 

datasets. Before calculating the consistency, 𝒏u
(p)

 was normalized by the total number 

of cells in the 𝑝 th time slice 𝑁(p) . The normalized clustering result is defined as 

follows: 

𝒏u
′(p)

≔ (
𝑛u (𝑀1

(p)
)

𝑁(p)
, … ,

𝑛u (𝑀Kp

(p)
)

𝑁(p)
)

⊤

. (3.19) 

Then, the consistency between the original dataset and the test dataset is defined 

by the Euclidean distance between 𝒏0
′(p)

 and 𝒏u
′(p)
(𝑢 ≥ 1), which is 

𝛿 (𝒏0
′(p)
, 𝒏u≥1

′(p)
) = √∑  

𝐾p

𝑘=1

 (
𝑛0 (𝑀k

(p)
)

𝑁(p)
−
𝑛u≥1 (𝑀k

(p)
)

𝑁(p)
)

2

. (3.20) 

Several test datasets (𝑢 ≥ 1) were generated using Equation (3.17) and obtained 

a set of test dataset clustering results. 

ℛ(p) ≔ {𝒏1
(p)
, 𝒏2

(p)
, … , 𝒏h

(p)
}, (3.21) 

where h denotes the number of the test datasets. Finally, the difference score was 

defined as the mean value of 𝛿(𝒏0
′(p)
, 𝒏u≥1

′(p)
) for 𝑢 ≥ 1 as follows. A lower difference 

score indicates a better robustness. 

𝛿̅ℛ(p) ≔
1

ℎ
∑  

ℎ

𝑢=1

𝛿 (𝒏0
′(p)
, 𝒏u

′(p)
). (3.22) 
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3.3 Results and Discussion 

3.3.1 Cell Tracking 

The interaction between mesenchymal and epithelial cells is an important driving 

force for collective cell migration. Interactions promote the transmission of signals 

between cells, which guides the migration of follower cells. Thus, multiple cells follow 

the leader’s migration. Here, the influence of leader cells was investigated by observing 

the cell population in a model in which TGF (+) cells (red labeled) and TGF (−) cells 

coexist (Figure 3.3). Figure 3.3A,B indicate that the shape of the colony changed 

gradually from a circle to an ellipse, suggesting that the cell migration was not random 

but anisotropic due to the aligned electrospun fibers. The migration of each cell was 

one-directional toward the outside of the colony, which might be due to the local 

gradient of the soluble factors secreted by cells because the cell culture medium had no 

intentional mechanism to cause a chemotactic gradient; it is beyond the scope of this 

study but warrants further investigation. 

Figure 3.3 Manual markers of cell position at (A) time slice 1 and (B) time slice 96. The TGF (+) 

and TGF (-) cells are labelled by red and green, respectively.  
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Table 3.1 Example of manual tracked coordinates of a cell from slice from 1 to slice 96 (24 hours). 

Slice X Y Slice X Y Slice X Y 

1 792 315 33 790 248 65 789 101 

2 792 313 34 787 241 66 789 96 

3 791 309 35 789 240 67 788 96 

4 789 302 36 788 234 68 786 91 

5 791 297 37 786 226 69 791 92 

6 790 300 38 786 219 70 786 85 

7 789 293 39 786 213 71 787 83 

8 786 294 40 785 205 72 789 81 

9 788 289 41 785 207 73 790 81 

10 791 285 42 786 203 74 786 76 

11 793 281 43 787 199 75 788 73 

12 794 276 44 786 193 76 785 74 

13 791 275 45 784 187 77 787 79 

14 789 268 46 784 184 78 785 77 

15 790 277 47 787 184 79 786 70 

16 790 276 48 788 175 80 786 70 

17 792 273 49 787 170 81 787 63 

18 794 272 50 787 162 82 786 60 

19 793 264 51 787 154 83 785 55 

20 797 262 52 786 151 84 785 55 

21 795 259 53 786 144 85 784 55 

22 795 254 54 785 141 86 786 64 

23 795 256 55 785 133 87 788 75 

24 793 254 56 788 129 88 784 73 

25 795 254 57 788 131 89 783 72 

26 795 247 58 784 127 90 781 66 

27 788 241 59 786 123 91 782 56 

28 787 237 60 785 124 92 787 59 

29 787 231 61 787 121 93 789 59 

30 790 226 62 788 116 94 786 56 

31 790 220 63 790 112 95 790 51 

32 789 221 64 787 107 96 787 50 

         

At this time, TGF (+) cells were labeled with the red fluorescent protein DsRed to 

distinguish them from TGF (−). A population of 10–20 cells was observed because its 

size was the same as that of a colony in vivo. In the first time slice, there were 28 cells 

(Figure 3.3A). In the last time slice, 92 cells were identified (Figure 3.3B). Table 3.1 
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shows manual labeling coordinates of one cell. These data were used as the input data 

in the Python codes, refer to the Appendix 2, Part 1. Since the manual tracking started 

from the last time slice to the first time slice backward, 92 marker points of the cell 

nucleus were found in each time slice and assigned the ID number. In the cell division 

event, the cell before the division was defined as the mother and the two cells after 

division as daughter cells. 

Cell division occurs during cell migration. For analysis, it is crucial to identify the 

correspondence between mother and daughter cells and the time at which cell division 

occurs. For all the marker points in each time slice, the method calculated the Euclidean 

distance between each pair of marker points. A sudden change in the distance indicates 

that cell division had taken place (Figure 3.2). The time-lapse observation recorded the 

image slices every 15 min. The distance between the two adjacent slices is defined as 

the step size. For a representative cell, the step size distribution for all pairs of slices is 

shown in Figure 3.4A. The maximum step size was 6 μm. The distances between the 

four groups of daughter cells are shown in Figure 3.4B. The graph shows a clear 

“distance jump” in the curve, where the distance before the “jump” is always very short. 

The “distance jump” indicates the occurrence of cell division. After the “jump” a 

completely different distance curve appears. The Euclidean distance between the 

marker points was greater than 10 μm after cell division. The maximum moving step 

size of 6 μm is below the “jump distance” of 10 μm, which means that the accuracy is 

acceptable for identifying when cell division occurs. In combination with fluorescence 

images, the division relationship between cells can be determined. divisions were 

identified based on the calculation of the distance between the cell marker points and 

manually labeled cells. The marker points of the mother and two daughter cells were 

unified prior to cell division. 
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3.3.2 Dimension Reduction and Clustering 

After the cell tracking, the entire migration process was divided into multiple 

periods. The trajectories of TGF (+) (black) and TGF (−) (blue) cells during different 

periods are shown in Figure 3.5. Two groups of TGF (+) cells were observed from the 

initial position and marked separately. The cell trajectories within each period were 

normalized. The purpose of normalization is to eliminate the effect of location (Figure 

3.6), where “normalization” refers to translating all cell trajectories such that their 

starting points are located at the origin (0, 0), refer to the Appendix 2, Part 3. 

The normalized cell trajectories are used to calculate the distance matrix, which is 

a series of high-dimensional datasets for which the method need to reduce the 

Figure 3.4 (A) The distribution of average moving step size of each cell before division. (B) 

Euclidean distance between two daughter cells. 
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dimensionality for visualization. There are two reasons for reducing the dimension of 

the data before performing k-means clustering, in addition to visualization. The first 

reason is data summarization. This method aims to find a low-dimensional structure 

from high- dimensional cell-trajectory data. Reducing the dimensions before 

performing k-means clustering is beneficial for capturing the low-dimensional 

structures. The second reason is robustness. Dimension reduction can help reduce the 

noise included in high-dimensional data and improve the robustness of this method. 

Dimension reduction before performing downstream analysis, such as clustering, is also 

used in single-cell RNA-sequencing data analysis [19, 20]. This method chose two as 

the number of the dimensions to ensure consistency with the visualization which are 

Figure 3.6 The positions of TGF (+) (black) and TGF (-) (blue) cells after normalization, the initial 

position transferred to (0,0). 

Figure 3.5 The positions of TGF (+) (black) and TGF (-) (blue) cells in different observation 

windows. 
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discussed in Chapter 4. Based on this, the dimension reduction was conducted by the 

UMAP algorithm. It visualized the similarities in two-dimensions. At the same time, 

the global structures in high-dimension can be still retained in low-dimension. As the 

result, each point represents a trajectory. TGF (−) cells and TGF (+) cells were marked 

Figure 3.7 WCSS of all samples with the number of k-means clusters of UMAP dimensionality 

reduction results under different observation periods. 

Figure 3.8 MSC of all samples with the number of k-means clusters of UMAP dimensionality 

reduction results under different observation periods. The Kp value shown by the red arrows are the 

optimal numbers of clusters. 
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separately. Then all the points will be clusters by k-means algorithm. 

The clustering method used the k-means algorithm, k represents the number of 

clusters. Before conducted clustering process, the cluster number k value should be first 

defined. Here two methods were used to optimize the k value. The first is WCSS of 

distance, which result with different k is shown in Figure 3.7. The objective is to 

minimize the WCSS. The result show that the WCSS is decrease with the increase of k 

value, which is hard to select an optimal k. Then the Mean silhouette coefficient method, 

MSC, was combine to determine the appropriate number of clusters (Figure 3.8). MSC 

can check whether a point is suitable for its cluster. It will calculate the similarity within 

clusters and between clusters. MSC �̅�(𝑘) is in the range of (−1,1); therefore, the closer 

�̅�(𝑘) is to 1, the more reasonable the clustering is, at which point k is the appropriate 

number of clusters. After a series of calculation, the k value in each observation 

windows were obtained. 

3.3.3 Similarity of Migration Patterns 

Figure 3.9 shows the dimensionality reduction results for several periods with TGF 

(−) cells (green) and TGF (+) cells (red and blue). In each period in Figure 3.9, it is 

clear that TGF (+) cells of the same group were not always in the same cluster at the 

same time. TGF (+) and TGF (−) cells assigned to the same cluster showed high 

similarity and maintained the same migration pattern in terms of collective cell 

migration. TGF (+) cells with more active migratory behavior exert some influence on 

TGF (−) cells. TGF (+) cells with a leading role showed interactions with TGF (−) cells 

through signaling. Pathways such as PI3K-Rac signaling are involved in actin 

remodeling and mediation of collective migration. Through PI3K-dependent integrin 

adhesion and modulation of Rho-GTPase signaling, cadherin-induced regulation of 

actomyosin contractility at more distant sites in the cell affects global cellular 

mechanics [21, 22]. The present analysis found that cells around TGF (+) cells showed 
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the same migration pattern, and they might have been under the influence of the leader 

cell. The behaviors observed here may correspond to reports that the leader cell leads 

the movement of the cell population such that the surrounding follower cells are in tow. 

Therefore, the methodology suggested in the thesis could be used to detect leader cells 

within a cell population. This maintained them in the same overall migration direction 

and distance. 

In addition to clusters containing TGF (+) cells, some clusters contained only TGF 

(−) cells, illustrating that their migration pattern is different from that of TGF (+) cells. 

TGF (+) cells, as leaders of collective migration, affect nearby TGF (−) cells; however, 

the effect is relatively narrow. TGF (−) cells with fewer or no interactions migrated 

based on their migratory patterns. 

3.3.4 Positional Similarity 

It is expected that the influence of leader cells on follower cells decreases with 

distance and is stronger only within a certain range. Within the effective range, the 

interaction strengthened the connections between them. To verify these results, the 

clustering results were superimposed onto a cell location map. During the previous 

Figure 3.9 Visualization of cell tracks after dimensionality reduction. 2D visualization of TGF (+) 

(“X” mark) and TGF (-) cell (colored points) trajectories after dimensionality reduction by UMAP and 

clustering by k-means. Each mark and point represent a trajectory. Colors represent different clusters. 

The insets show the magnified images of TGF (+) cells when they overlap. 
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normalization process, the location information of the cell trajectories was reset and the 

similarity of the cell trajectories was determined from the clustering results. However, 

it is impossible to determine whether cell trajectories with similarities are close to each 

other in terms of their actual locations. Therefore, the clustering results and actual 

locations were combined, as shown in Figure 3.10. Notably, the clustering results in 

Figure 3.10 are the same as those in Figure 3.9; however, the color was adjusted for 

ease of comparison. The data points for TGF (+) cells in Figure 3.10 are marked in 

black, whereas the lines between the points remain colored. 

Interestingly, after combining the clustering results with actual locations, most 

cells from the same cluster showed positional similarities. This method reproduces 

positional similarity, even after normalization eliminates the location information. This 

worked for most cells, except for individual cells, such as the green cluster in Figure 

3.10 slice 37-48, which contained cells belonging to the other clusters. 

The aligned fiber was used to mimic the ECM in an in vitro model. This 

environment closely resembles the environment inside an organism. The migration 

direction of some cells may be influenced by fiber alignment; however, after 

normalization, the effect of position was eliminated. Normalization makes the method 

Figure 3.10 Cell trajectories’ positions combined with clustering results. Two groups of TGF (+) 

cells are marked black pointed by arrows. Colors represent different clusters. 
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reliable and the trajectory independent of the ECM. In addition, the calculation of this 

method treats all cells equally and does not distinguish between leader and follower 

cells, but the results show cells with similar migration patterns. After superimposing 

the clustering with the actual locations, the results show that in most cases, there were 

many TGF (−) cells around TGF (+) cells. From these results, clusters are not related 

to cells moving in a limited direction; they are related to the similarity of migration. 

TGF (+) cells were mostly not in the center of each cluster but at the edge of the cluster, 

which is consistent with the characteristics of the leader cells. 

3.3.5 Robustness 

Whether this method is effective in identifying cells with similar migration 

patterns requires further validation. During manual marking, the accuracy of the marked 

cell nucleus position determines the degree of error. The robustness of the clustering 

results was verified by adding noise to the cell trajectories. The test data were generated 

by adding Gaussian noise with a fixed mean and standard deviation, σ (Figure 3.11A). 

Figure 3.11B shows the original positions of the cell trajectories for time slices 49–60, 

Figure 3.11 The original trajectory of Cell ID 1 (red) and the trajectory with Gaussian noise of 

standard deviation σ = 2 (blue). (B) Cell tracks’ positions combined with clusters’ result under time 

slice 49-60. (C)-(D) All trajectories are with noise of standard deviations = 1, 2. 
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and Figure 3.11C, D show the clustering results with σ = 1 and 2, respectively. A change 

in σ causes the similar trajectories to become dissimilar. The boundaries between 

clusters became indistinct and k increased, rendering the clustering meaningless. The 

maximum value of k for the original clustering results was 5. Therefore, the maximum 

value of k = 5 was applied to noise-containing clustering analysis. The trajectory 

difference score of the clustering results with noise compared to those without noise is 

shown in Figure 3.12B. Notably, the cluster color order (cluster index) changed after 

each adjustment of the σ value. Therefore, the ID of each trajectory in each cluster was 

recorded and then adjusted the color order as a whole to ensure reasonableness (Figure 

3.11B). 

As shown in Figure 3.11B, C, D, the distribution of cluster positions did not differ 

Figure 3.12 Robustness of the method. (A) Histogram of average radius of cell nucleus (μm). (B) 

The difference scores of all clustering results under differ standard deviation (from the mean of 

three calculations in each σ). The sample sizes for each time period are 92 cells. 
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significantly and only the clusters of individual cells changed. The observation error is 

mainly due to the accuracy of manual labeling. The radius of the nucleus was below 9 

μm (Figure 3.12A). Considering the accuracy, the manual labeling of the center of the 

cell nucleus, σ = 2 was sufficiently large for the test. The clustering results with noise 

and without noise were comparable in consistency. This difference may be related to 

noise altering the original migration trajectory. This is because the change in trajectory 

affects the migration pattern, including speed and direction. The internal connections 

between cells that originally belonged to the same cluster are broken. When σ is greater, 

noise causes severe distortion of the trajectory. Nevertheless, there were no significant 

difference in the position of each cluster. Therefore, the method is robust to observation 

errors that may be contained in the cell trajectory data. 

3.4 Conclusion 

Based on trajectories, a method was proposed to make clustering. The method is 

combined with UMAP dimensionality reduction and k-means clustering algorithm of 

machine learning. And succeeded preform the positional similarity. TGF (+) and TGF 

(−) cells belonging to the same cluster showed similar migration patterns and, within a 

certain range, migration was consistent. the robustness of the method was validated, it 

showed stable results even with noise. 

Interactions between cells are essential for coordinated and directed collective 

movements. Although, collective cell migration has been extensively studied, this study 

focused on exploring the similarity of migration patterns based on migration trajectories. 

Using a combination of dimensionality reduction and clustering techniques, cells with 

similar migration patterns were observed to exhibit positional similarities. TGF (+) and 

TGF (−) cells belonging to the same cluster showed similar migration patterns and, 

within a certain range, migration was consistent. Validation by adding noise illustrated 

the robustness of the proposed method. This provides a new perspective for a deeper 
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understanding of collective cell migration. The method applies to collective cell 

migration on aligned fibers and models such as wound healing and migration on other 

substrates. It can also be extended to the cell migration model in a 3D hydrogel matrix 

if cells can be tracked, indicating its application in tissue engineering and organ 

development research. 
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CHAPTER 4 

OPTIMIZATION OF TIME-SERIES CLUSTERING 

PARAMETERS AND CONTROL OF CELL CONDITIONS 

Abstract 

This chapter shows the optimization process of the dimension reduction algorithm 

by changing their hyperparameters, the optimization of observation window. Based on 

the optimal parameters, the time-series clustering was conducted to different ratio of 

mesenchymal and epithelial cells.  

4.1 Introduction 

Machine learning has a wide range of applications, and there are opportunities for 

machine learning algorithms in both the biological and engineering fields [1-3]. The 

terms "data mining" and "data analysis" are often used in conjunction with each other 

and are considered to be interchangeable in many contexts. There are various 

definitions of data mining with different words but close meanings, such as "the non-

trivial process of identifying valid, novel, potentially useful, and ultimately 

understandable patterns in huge amounts of data". Both data analysis and data mining 

help people collect and analyze data, make it into information, and make judgments, so 

they can be referred to together as data analysis and mining [4-6].  

Sequence data will be inter-integrated with structural and functional data gene 

expression data, biochemical response pathway data phenotypic and clinical data, and 

a host of other data [7, 8]. Such a large amount of data presents an urgent need for the 

development of theoretical algorithms and software in the storage, acquisition, 
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processing, browsing, and visualization of biological information [9-11]. In addition, 

the complexity of genomic data itself also poses an urgent need for the development of 

theoretical algorithms and software. Machine learning methods such as neural networks, 

genetic algorithms, decision trees, and support vector machines are suitable for dealing 

with such a large amount of data, noise, and lack of unified theory [12-14]. PCA is one 

of the most widely used linear dimensionality reduction algorithms for data. the main 

idea of PCA is to map n-dimensional features to k (where k<n) dimensions, which are 

brand new orthogonal features also known as principal components, which are k-

dimensional features reconstructed on the basis of the original n-dimensional features, 

aiming to use the idea of dimensionality reduction to t-SNE is a machine learning 

algorithm for dimensionality reduction. t-SNE is a nonlinear dimensionality reduction 

algorithm, which is very suitable for visualizing high-dimensional data down to 2 or 3 

dimensions. UMAP [15] is a dimensionality reduction algorithm for high-dimensional 

data similar to t-SNE. UMAP has two main advantages over t-SNE, it can reflect the 

global structure, and it runs faster and takes less memory when computing large sample 

data. 

Unsupervised learning is a method of machine learning, as opposed to supervised 

learning. In practice, supervised learning requires that the true value of the predicted 

quantity be provided for each sample in training, i.e., labeling the training samples, 

which is difficult in some applications [16, 17]. For example, in medical diagnosis, to 

obtain a diagnostic model by supervised learning, a large number of cases and their 

medical images need to be accurately labeled, which is labor-intensive and inefficient. 

In this case unsupervised learning methods are usually used, i.e., learning is performed 

under the condition that no supervised information (the real value of the predicted 

quantity) is provided. 

In unsupervised learning, all data are unlabeled, but these data exhibit a cluster 

structure, where similar types of data are clustered together [18]. Dividing these 

unlabeled data into a combination is clustering. In the field of machine learning, 



   CHAPTER 4 

73 

 

dimensionality reduction refers to reducing the number of random variables under 

certain constraints [19-22]. Dimensionality reduction can be further subdivided into 

two major methods: variable selection and feature extraction [21, 22]. Variable selection 

refers to finding the main variables among the original variables when the data contains 

a large number of redundant or irrelevant variables, so as to simplify the model and 

make it easier to be learned by the machine. When the input information of an algorithm 

is too complex and the number of variables is too large, proper feature extraction is the 

key to construct an effective model for learning. Feature extraction is the process of 

constructing informative and non-redundant feature values from the original data, 

which can help in the subsequent learning process and generalization steps, where the 

initial data set is reduced to more manageable groups for learning, while maintaining 

the accuracy and completeness of the description of the original data [23, 24]. 

In the context of machine learning, hyperparameters are parameters whose values 

are set before starting the learning process, rather than the parameter data obtained 

through training [25-28]. Often, optimization of hyperparameters is required to select 

an optimal set of hyperparameters for the learning machine in order to improve the 

performance and effectiveness of learning [29]. Machine learning model tuning is an 

optimization problem. There are a set of hyperparameters and my goal is to find the 

right combination of their values, which can help the method find the minimum (e.g., 

loss) or maximum (e.g., accuracy) of the function.  

This chapter involving optimization aims to find the hyperparameters of algorithm 

and length of observation window that make the time-series clustering perform best. In 

the clustering algorithm for cell migration trajectories mentioned in Chapter 3, the ratio 

of TGF (+) cells to TGF (−) cells is fixed. This chapter optimized the algorithm by 

comparing the clustering results generated by the hyperparameters of the 

dimensionality reduction algorithm and apply them to different proportions of both cells 

to validate the algorithm in finding similar migration pattern. 
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4.2 Method 

4.2.1 Optimization of time-series clustering 

In the algorithm proposed in Chapter 3, dimensionality reduction is one of the 

most important steps. Through the high-dimensionalities of single image data, a single 

image is transformed into a collection of data in a high-dimensional space, and its non-

linear dimensionality is reduced to seek the low-dimensional representation vector of 

its high-dimensional data manifold structure, which is used as the feature expression 

vector of the image data. Thus, the problem of high-dimensional image recognition is 

transformed into the recognition problem of feature expression vector, which greatly 

reduces the complexity of calculation, reduces the recognition error caused by 

redundant information, and improves the recognition accuracy. The application of the 

nonlinear dimensionality reduction method to the image data recognition problem is 

feasible in practice, computationally simple, and can greatly improve the effectiveness 

of commonly used methods and obtain better recognition results. 

Visualization of high-dimensional data is very important, people can only 

understand two-dimensional three-dimensional data, so from the high-dimensional data 

by means of reducing the dimensionality to make people easy to understand. Commonly 

used dimensionality reduction methods such as UMAP and t-SNE both have the same 

idea that the relative information of high-dimensional data samples is reflected in the 

lower dimensionality [30-34]. The advantage of UMAP over t-SNE is its ability to 

reflect both local and global structures while maintaining relative global distances in a 

low-dimensional space. Each of the two-dimensionality reduction algorithms has its 

own characteristics, and their hyperparameters determine the effect of clustering. 

Therefore, the optimization uses different (''perplexity'' in t-SNE; ''n_neighbors'' in 

UMAP '' and ''min_dist'') parameter combinations to run the dimensionality reduction 

algorithm and compare the results. 
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4.2.2 Time-series clustering at different cell ratios 

In the clustering analysis in Chapter 3, the ratio of two types of cells was fixed and 

finally found that the clustering of cell trajectories could reflect the role of cells. To 

further validate the generalizability of the method in order to further reveal the 

interactions between leader and follower cells, the analysis using different data sets 

were performed. The cell colonies with different TGF (+)/TGF (−) ratios are described 

in Chapter 2. Cell migration images obtained by time-lapse microscopy at different 

scales were used in a time-series clustering algorithm. 

The migration process was divided into different time slices and each time slice 

recorded the position of the cells on the fiber. The observation window consists of 

several time slices, so the whole migration process can be divided into several 

observation windows. The setting of the length of the observation window is crucial, 

which determines the final clustering result. An appropriate observation window 

correctly reflects the cell-cell interactions and the current cell state. An inappropriate 

time window distribution may lead to difficulties in finding the correct migration 

pattern. Therefore, the results of different observation windows were compared and 

optimized them in combination with the algorithm parameters. 

4.3 Result and discussion 

4.3.1 Effect of parameters on clustering 

The clustering similarity measure is geometric distance, commonly used distances 

are Euclidean distance, Manhattan distance. The principle of partition-based clustering 

is that given a data set containing N points, the partitioning method will construct k 

groupings; each grouping represents a cluster, where each grouping contains at least 

one data point, and each data point belongs to one and only one grouping; for a given 

value of k, the algorithm first gives an initialized grouping method, and then changes 
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the groupings by iterative methods until the criterion function converges. The 

commonly used k-means clustering method is simple and intuitive, easy to implement 

and takes relatively little time to compute. k-means produces clusters that are relatively 

tight, reflecting the closeness of the samples within the cluster around the center of 

mass. However, it is difficult to predict the exact number of clusters and is sensitive to 

the initial value setting. k-means mainly finds circular or spherical clusters and does 

not work well for clusters of different shapes and densities. The method to optimize the 

k value of each observation window is important which was described in Chapter 3. 

The capabilities of dimension reduction allow me to obtain appropriate clustering 

results. The method calculated using the t-SNE for comparison (Figure 4.1). The results 

of t-SNE show no obvious regularity of the data points. When the hyperparameter 

"perplexity" is 5 or 7, the two-dimensional visualization results show more scattered 

data points and no obvious aggregation characteristics. When the "perplexity" is too 

large, the data points are too concentrated in one cluster and do not show the 

aggregation results of different clusters. Obvious clustering and more concentrated data 

within clusters are suitable results for dimensionality reduction. As a comparison, 

Figure 4.1 The dimensionality reduction of cell trajectories by t-SNE under different parameters 

and observation windows. 
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UMAP showed a more apparent aggregation of data points in the same cluster(Figure 

4.2). In addition, there were more apparent boundaries between the clusters. 

The optimal observation window was selected such that the distance between the 

clusters was larger in the first and last time periods and the data points within the 

clusters were closer together (Figure 4.3). An observation window of 12 time slices was 

selected. As shown in Figure 4.2, the parameters for UMAP were chosen, such that the 

distance between clusters was larger and the data points within the clusters were closer. 

Figure 4.2 The dimensionality reduction of cell trajectories under different UMAP parameters 

(observation window = 12, time slice 85-96). 
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4.3.2 Clustering of different cell ratios 

The cell trajectories in Chapter 3 were analyzed using a time-series clustering 

approach with a ratio of TGF (+) and TGF (−) cells of 1:4. Here, the cell migration 

experiment was repeated with different cell ratios of TGF (+) and TGF (−) cells of 1:4, 

2:3, 3:2, 4:1, and they are represented by TGF(20), TGF(40), TGF(60), and TGF(80) 

respectively. The previous conclusion showed that the clustering results of cells are 

influenced by the cell phenotype. TGF (+) cells as leader cells have a guiding effect on 

the migration of TGF (−) cells as follower cells. Cell migration trajectories were first 

normalized to eliminate the effect of position, and the starting point of all trajectories 

was set at the origin (0,0). The normalized data were then dimensionally reduced and 

clustered to obtain a two-dimensional visualization of the clustering results. Each data 

point represents a trajectory, and from the clustering results it can be found that data 

points with similar migration patterns are clustered together, which represents the 

existence of interactions between these cells. When the clustering results were 

Figure 4.3 Cell tracks after dimensionality reduction when select different observation windows. 

The first and last periods showed that window 12 has clear boundaries of clusters and TGF (+) cells 

in the same group tend to in the same cluster. 
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superimposed on the trajectory map before normalization, the trajectories of cells with 

similar migration patterns also had positional similarity.  

Here, a clustering analysis was performed using different ratios of cell migration 

data from Chapter 2. Figure 4.4A shows the cell migration trajectory of TGF(20), and 

B shows the results after clustering. TGF (+) cells belong to the green and blue clusters 

within the first and last observation window, respectively. Within the last window, the 

blue clusters are significantly larger in extent than the green clusters in the first window, 

indicating a gradual expansion of the influence of the leader cells. In the middle two 

windows, the extent of the following cells belonging to the same cluster as the TGF (+) 

Figure 4.4 Before and after cell clustering with TGF(20). (A1-A5) The positions of TGF (+) (black) 

and TGF (-) (blue) cells before normalization in different observation windows. (B1-B5) Cell 

trajectories’ positions combined with clustering results. 
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cells is not obvious, and only the cluster boundaries located in the lower right corner 

are very clear. The clearly bounded clusters of following cells indicate that their 

migration is not influenced by the leader cells, which is related to the distance between 

them and the cell state they are in. Figure 4.5 The TGF (+) cells increased to 40%. 

Compared to TGF (20), the cluster boundaries are more pronounced in the clustering 

results for TGF (40). The wide influence of leader cells in all observation windows, 

especially in the first two windows where leader cells are present in the green and blue 

clusters, indicates that all cells are more or less influenced by TGF (+) cells. In the third 

window the orange clusters maintained exclusive migration patterns and did not align 

with the leader cells, but in the last window these exclusive patterns disappeared. This 

Figure 4.5 Before and after cell clustering with TGF(40). (A1-A5) The positions of TGF (+) (black) 

and TGF (-) (blue) cells before normalization in different observation windows. (B1-B5) Cell 

trajectories’ positions combined with clustering results. 
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implies that the influence of TGF (+) cells may not be continuous and that the effect 

changes with the cellular environment and the cellular state, also in relation to the 

increase in the proportion of leader cells. Similar clustering results appear in TGF(60), 

as shown in Figure 4.6, where TGF (+) cells appear in almost all clusters, and since the 

number of leader cells already occupies the majority, the migration pattern of following 

cells will mostly be consistent with the leader cells. The more active migration pattern 

of mesenchymal cells drives the migration of epithelial cells. Such a result is more 

obvious in TGF(80), where the TGF (−) cells in Figure 4.7 are almost surrounded by 

TGF (+) cells, and the following cells almost lose their migratory characteristics, their 

migratory pattern being dominated by the leader cells, thus exhibiting a migratory 

pattern consistent with that of TGF (+) cells. 

Figure 4.6 Before and after cell clustering with TGF(60). (A1-A5) The positions of TGF (+) (black) 

and TGF (-) (blue) cells before normalization in different observation windows. (B1-B5) Cell 

trajectories’ positions combined with clustering results. 
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4.3.3 Correlation between cell division and clustering 

In the process of clustering, the choice of observation window, the environment 

around the cells, and the state of the cells can affect the results of clustering. Cell 

division is an important factor that affects the migration patterns. To further analyze the 

relationship between cell division and migration patterns, here, based on the results in 

Chapter 3, cell lineages was drawn. In Figure 4.8, there were two TGF (+) cells in the 

first generation that were distant from each other. Multiple daughter cells were observed 

after cell division. Until the last time slice, five TGF (+) cells were present. According 

to each division, TGF (+) was referred to as two groups, where Group 1 included TGF 

(+) Cell ID 4 and 5 and Group 2 included TGF (+) Cell ID 1 to 3 (refer to Figure 3.5). 

Figure 4.7 Before and after cell clustering with TGF(80). (A1-A5) The positions of TGF (+) (black) 

and TGF (-) (blue) cells before normalization in different observation windows. (B1-B5) Cell 

trajectories’ positions combined with clustering results. 
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Different clusters are represented by different colors, and it is easy to see that the 

color of the cluster’s changes for the most part before and after cell division. Also, the 

clusters of daughter cells and mother cells are mostly different. This indicates that the 

migration pattern of the cells starts to change before the division, and this change makes 

them different from the migration characteristics of the surrounding cells. This 

phenomenon continues until the end of cell division, which leads to changes in the cell's 

surroundings, which is also one of the factors affecting the migration pattern of the cells. 

Thus, the clustering of cell migration patterns is influenced by multiple factors, which 

are linked to each other, and their combined effect leads to a constant change in the 

migration characteristics of the cells, which makes the clustering more difficult. 

Figure 4.8 Cell lineage tree. Daughter cells are divided from mother cells at different time slice (red 

font). Colors represent the clusters. Cell ID 1-5 are TGF (+) cells (Group1: ID 4-5, Group2: ID 1-2), 

Cell ID 6-93 are TGF (-) cells.   
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4.4 Conclusion 

The UMAP and t-SNE dimension reduction algorithms in time-series clustering 

method were compared and optimized their hyperparameters. Different observation 

windows were also compared to find the reasonable clustering. In combination of the 

clustering results, the cell lineage tree was made. Most of the time, the cell division 

accompany with the change of clustering results. 

Cell migration is a process that involves multiple factors, and clustering of cell 

migration trajectories can identify cells with similar migration patterns. The interaction 

of multiple factors makes the optimization of clustering methods more difficult, but 

also improves the accuracy of clustering results during the optimization process. Cell 

migration is influenced not only by external factors such as the surrounding 

environment, but also by internal factors such as cell division. The ratio of different cell 

types can expand the scope of this influence and make it easier to observe. In terms of 

clustering methods, the choice of observation window is crucial for clustering, as a 

suitable window can accurately distinguish cells in different states; the parameters of 

the algorithm also affect the clustering results, and the optimal combination of 

parameters is a guarantee of reasonable clustering. These influencing factors together 

lead to the changing patterns of cell migration, but the optimized algorithm can further 

clarify the interactions between cells. 
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CHAPTER 5 

PROSPECTIVE OF CLUSTERING METHOD 

IN CELL MIGRATION 

Abstract 

This chapter elucidates the applications of time-series clustering algorithms, 

especially the combination of machine learning and bioinformatics. Clustering and 

prediction are not limited to cell migration, and with the customization of algorithms, 

which can be applied to a wide range of biological and medical fields. 

5.1 Bioinformatics and Machine Learning 

Machine learning provides important technological support for many 

interdisciplinary disciplines. Bioinformatics attempts to use information technology to 

study the phenomena and laws of life, such as the implementation of the genome project 

and the exciting prospect of genetic drugs. Bioinformatics research involves the entire 

process from 'life phenomena' to pattern discovery. This includes data acquisition, data 

management, data analysis, simulation, and experimentation. The "data analysis" is 

precisely the stage for machine learning techniques. Various machine learning 

techniques have already shone in this field. 

Increasingly, machine learning is seen in bioinformatics applications, such as 

finding usable patterns in data and then making predictions [1, 2]. Typically, these 

predictive models are used to operationalize processes to optimize the decision-making 

process, but at the same time, they can also provide key insights and information to 

report on strategic decisions [3, 4]. 
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The study of cell migration is an important part of biology. In recent years, 

researchers have conducted in-depth analysis and exploration of the mechanisms of cell 

migration. Cells produce movement after receiving migration signals or sensing some 

molecular concentration gradients. When migration occurs, the anterior part produces 

a pseudopod capable of extending forward, the rear part produces a contraction, and 

when the two behaviors alternate, the cells migrate forward. At the same time, new 

adhesion relationships are formed between the cells, and molecular signals are released 

that can coordinate multicellular migration. Collective migration based on physical and 

chemical signals has been extensively studied. Different migration models are able to 

match an increasing number of instances. However, model calculations in biology often 

involve large volumes of raw data, which require techniques and methods with relevant 

processing capabilities for deeper analysis [5]. The combination of multiple disciplines 

can be a good solution to this problem, and computational science can provide more 

arithmetic power and higher efficiency.  

5.2 Tracking and Clustering Methods in Cancer Analyze 

Genomic information is now widely used for the accurate treatment of cancer. 

Since individual types of histological data represent only a single viewpoint and are 

subject to data noise and bias, multiple types of histological data are required for 

accurate prediction. However, effective integration of multi-omics data is challenging 

due to the large number of redundant variables in multi-omics data but relatively small 

sample sizes. 

5.2.1 Tracking Targeted Markers in Cancer Cells 

For cancer patients, receiving treatment when cancer has not yet metastasized 

often leads to good treatment outcomes. However, once cancer has metastasized, the 

patient's treatment prospects are significantly reduced. According to statistics, 90% of 
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cancer patients die because of cancer metastasis. However, the process of cancer 

metastasis is not fully understood. Which of the thousands of in situ cancer cells are 

important causes of cancer metastasis? What changes have they produced during the 

metastasis process and to which tissues in the body have they metastasized? If each 

cancer cell could be given a unique "tag", it would be possible to track their evolution 

and metastasis, as well as that of their progeny.  

For example, genes expressing Cas9 enzyme and guidance RNA directing them to 

cut specific regions of cancer cell genome were introduced into cancer cells. With the 

continuous division and proliferation of cancer cells, Cas9 enzyme will continue to cut 

in these designated areas, and the DNA repair mechanism of cancer cells will continue 

to repair these gaps. During the repair process, various insertion sequences will be 

introduced. These inserted sequences will be passed down from generation to 

generation along with cell division and become unique "tags" carried by each cancer 

cell [6]. This provides a possibility for tracking the migration of cancer cells. Other 

anti-cancer technologies include encapsulating small molecules of anti-cancer drugs in 

nanoparticles and labeling them with ligands that target only cancer cell markers in 

order to focus high concentrations of the drug on tumor cell sites with no effect on 

healthy tissue. Targeting only one cancer marker is not sufficient, and mounting two 

ligands on liposomes, each targeting a surface protein of metastatic cancer cells, can 

detect those cancer cells that are "missed" by the single-ligand nanoparticles [7]. In 

addition, the recognition efficiency of the dual-ligand nanoparticles was also high. A 

similar approach has been taken with chaperonin to act as a marker in the blood to 

indicate cancer cells, thus revealing more clearly the spreading cancer. This new 

biomarker can detect more cancer cells in the blood [8]. Cancer cells require a large 

number of proteins to survive and circulate in the body, and the chaperonin complex 

allows proteins to fold into a functional three-dimensional shape without which 

important proteins needed by cancer cells cannot be formed, and all cells contain the 
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chaperonin complex, but cancer cells have higher levels. 

5.2.2 Computer Algorithms in Cancer Tracking 

In addition to the use of invasive biopsies or the use of contrast agents to track 

cancer, the approach through optical and computer algorithms is widely used. 

Multiphoton microscopy works by transmitting a laser into the tissue [9]. The short 

pulses maintain a small average power and do not damage the tissue. As the different 

tissue components interact with the laser, they emit signals that are then retrieved by 

the microscope to form an image. Automated image processing algorithms to reveal 

unique textural features and statistical model analysis are used to distinguish healthy 

from diseased tissue. Metastatic and clonal history integrative analysis allows 

researchers to infer past metastatic processes from the DNA sequence data obtained so 

far [10]. A clearer understanding of the history of cancer migration has been obtained. 

The addition of computational science provides new solutions for solving large-

volume and high-dimensional data. The clustering method used in this study is based 

on the dimensionality reduction algorithm and clustering algorithm in machine learning 

for collective cell migration. Time-lapse observation microscopy is a frequently used 

instrument in biology. For cell movement, wound healing, time-lapse observation gives 

me a time-series of data where cells exhibit different migratory properties at each 

moment. These time-dependent features make up high-dimensional raw data that are 

difficult to compare visually, so the advantages of dimensionality reduction algorithms 

are revealed. Representing high-dimensional data in two or three-dimensions enables 

visualization of unimaginable data, and then clustering can make the results more 

reliable. The downscaling and clustering algorithms are not only applicable to 

multidimensional time-series of migration trajectories, but also to other targets with 

multidimensional characteristics. For example, by sequencing mRNA for each cell to 

distinguish which genes are activated, a large amount of gene transcript data can be 
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more efficiently classified using dimensionality reduction clustering. Such applications 

can be extended to the identification and discovery of cancer cells to facilitate more 

precise treatment delivery. 

5.3 Customization of Machine Learning Algorithms 

A large number of biological experiments have accumulated tens of thousands of 

pieces of bioinformatic data. How to effectively collect, organize, retrieve, and analyze 

the data to extract the rules from them, and to translate them into theories, so as to read 

the bioinformatics to guide the research work, has posed a high demand on 

bioinformatics, and also posed a challenge to information theory and technology [11, 

12]. Data mining, an emerging technology based on digital databases, statistics, and 

artificial intelligence, provides biologists with unprecedented data analysis tools for the 

analysis and extraction of gene and protein information. 

The time-series clustering method introduced in Chapter 3 involves dimension 

reduction and clustering algorithms. The application of this method is not limited by 

UMAP and k-means algorithms. Besides these algorithms, the method can combine 

with other algorithms to process more datasets (Table 5.1). In the era of big data, 

researchers are often faced with hundreds of samples and tens of thousands of gene 

expression matrices. How to extract valuable information from this huge amount of 

data has become a priority.  

Methods of data dimensionality reduction can be divided into linear and non-linear 

dimensionality reduction. The PCA method is one of the most widely used algorithms 

for data dimensionality reduction [13-15]. It retains the main features of the data, at the 

observation point level, simplifying the complexity of the observed objects, and these 

smaller feature matrices are easier to visualize and analyze. At the same time, it can 

help to determine correlations between data points. LDA (Linear discriminant analysis) 

is a supervised learning technique for dimensionality reduction, which means that each 
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sample of the dataset has a class output, unlike PCA (unsupervised learning). The idea 

behind LDA is to maximize the between-class mean and minimize the within-class 

variance [16]. The data is projected in low-dimensions and the projection points are as 

close as possible to each other for the same class of data and as far away as possible 

from the centroids of the projection points for different classes of data. The MDS 

method assumes that the dataset lies on a smooth, low-dimensional non-linear manifold, 

and the distance-preserving method assumes that the manifold can be defined by the 

pairwise distances of its points [17]. A low-dimensional mapping can be found by 

keeping one or more features of the high-dimensional space and attempting to keep the 

two-by-two distances between points constant. MDS uses the dissimilarity matrix as 

the original input, rather than from the original data matrix, thus enabling a better study 

of differences within sets of preserved relational data. The algorithms require that the 

distances between samples in the original space are maintained in the low-dimensional 

space. For most clustering algorithms, distance is an important property for classifying 

samples into categories, so when the distance is kept constant after dimensionality 

reduction, then it is equivalent to keeping the relative spatial relationships of the 

sample’s constant.  

 

Table 5.1 The combination of clustering and dimension reduction algorithm. 

 

Clustering algorithm Dimension reduction algorithm 

k-means 

GMM 

DBSCAN 

Spectral clustering 

Hierarchical clustering 

PCA 

MDS 

t-SNE 

UMAP 
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Clustering is an unsupervised learning algorithm where the data does not need to 

be labelled. It is different from classification, which is a supervised learning of labelled 

data. Clustering is the partitioning of a data set into classes or clusters according to 

some metric (e.g., distance between samples) so that the similarity of elements within 

classes is as great as possible and the similarity of elements between classes is as small 

as possible, by which similar data are clustered to achieve the effect of clustering. This 

thesis conducted k-means algorithm, besides many other algorithms, can be selected. 

k-means is unable to cluster two classes with the same mean (same cluster centroid) 

and GMM (Gaussian mixture model) was proposed to address this shortcoming. GMM 

does this by maximizing the posterior probabilities of the selected components [18]. 

The posterior probability of each data point indicates the likelihood of belonging to 

each class, rather than determining that it belongs to a class exactly, hence the term soft 

clustering. It may be more appropriate than k-means clustering when the class sizes are 

different and there are correlations between the clusters. In data mining and statistics, 

hierarchical clustering is a method of cluster analysis that seeks to build a hierarchy of 

clusters. In multivariate statistics, spectral clustering techniques make use of the 

spectrum of the similarity matrix of the data to perform dimensionality reduction before 

clustering in fewer dimensions. The DBSCAN (Density-Based Spatial Clustering of 

Applications with Noise) algorithm is a density-based clustering algorithm that does 

not require a pre-specified number of clusters to be clustered and has an indeterminate 

number of clusters [19]. It defines a "cluster" as the largest set of densely connected 

points. It is able to find arbitrarily shaped classes, whereas k-means can only find 

convex shapes, and DBSCAN is also very noise-resistant, finding arbitrarily shaped 

clusters in noisy data. 

5.4 Prospects of Time-series Clustering Method 

Genomic information is now widely used for the accurate treatment of cancer. As 
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individual types of histological data represent only a single phenomenon and are subject 

to data noise and variation, multiple types of histological data are required to make 

accurate predictions. However, effective integration of multi-omics data is challenging 

due to the large number of redundant variables in multi-omics data but relatively small 

sample sizes. 

Machine learning is premised on algorithm training that provides specific input 

data that can predict output values within a certain probability interval [20]. Machine 

learning is inductive rather than inferential, which is related to probabilities not final 

conclusions [21]. These algorithms are constructed and predictive models are obtained. 

The model can be analyzed directly on the original data and applied to the new data to 

predict some desired information. The output of the model can be a classification, a 

hidden relationship, an attribute or an estimate, etc. Building machine learning models 

is an iterative process that requires labelling data and hands-on experimentation. With 

the development of deep learning techniques, integrating multi-omics data extracts 

representative features. However, the generated models are very poorly applied due to 

the influence of data noise. In addition, previous studies have typically focused on 

individual cancer types, without comprehensive testing of pan-cancers. 

The combination of bioinformatics and machine learning is an interdisciplinary 

component that quantifies information about organisms and studies their effects on their 

interactions [22]. Machine learning is now widely used in image recognition research, 

using known training sets to predict outcomes for the type of data, while deep learning 

models can predict and downscale analysis with greater power and flexibility. With the 

right training data, deep learning can automatically learn features and patterns with little 

human intervention. In the future, machine learning can also be used to improve the 

interpretability of biological data and to transform biological image information data 

into actionable clinical information through recognition and clustering (Figure 5.1), 

improving disease diagnosis protocols to minimize drug side effects and maximize 
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efficacy. Manual statistical analysis is slow due to the number of variables involved, 

and machine learning can help shorten the process. 

The clustering approach in this study was able to uncover the intrinsic effects of 

the intersection of multiple factors on migration. This differs from the previous 

molecular and physical perspectives that required measurement and analysis of proteins 

and forces. It provides a new perspective for studying collective cell migration, 

especially the interactions between multiple cells when they coexist. In the future, 

methods can combine more influencing factors and improve the precision of cellular 

localization to improve the efficiency of clustering. This provides a new selectivity for 

the study of cancer cell invasion. 

  

Figure 5.1 Future applications of time-series clustering method in combine with image recognition.  
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SUMMARY 

This thesis focused on the bioinformatics with machine learning to investigate the 

interaction in collective cell migration. Studies of the migratory behavior of cells are 

needed to investigate and control metastasis. Cell migration generates a huge amount 

of dataset which can be processed by machine learning more efferently. The time-series 

clustering method can reproduce the migration similarity in the presence of different 

ratios of cells. 

In Chapter 1, the recent progress of collective cell invasion and migration analysis 

was reviewed. EMT is one of the main mechanisms of cancer metastasis, in which 

epithelial cells acquire mesenchymal properties and the ability to leave the population 

to invade other regions of the body. In collective migration, highly migratory cells are 

found at the front of the cell population. Cells can interact with each other which can 

be detected by many equipment and methods. Most of the methods treat all cells 

together and get an overall impression, the more accurate aspect of single-cell is needed 

and can be achieved by clustering method. 

In Chapter 2, the migration properties of epithelial and mesenchymal cells were 

examined during collective migration at the single-cell level. Different mixed ratios of 

cell populations were compared. Collective migration was quantitatively analyzed from 

two perspectives: cell migration within the colony and migration of the entire colony. 

Analysis of the effect of the cell mixing ratio on migration behavior showed that a small 

number of highly migratory cells enhanced some of the migratory properties of other 

cells. The results provide useful insights into the cellular interactions in collective cell 

migration of cancer cell invasion. 

In Chapter 3, to fully comprehend metastasis, the methodology of analysis of 

individual cell migration in tissue should be well developed. Extracting and classifying 

cells with similar migratory characteristics in a colony would facilitate an 
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understanding of complex cell migration patterns. Here, electrospun fiber was used as 

the ECM for the in vitro modeling of collective cell migration, clustering of 

mesenchymal and epithelial cells based on trajectories, and analysis of collective 

migration patterns based on trajectory similarity. the trajectories were normalized to 

eliminate the effect of cell location on clustering and used UMAP to perform 

dimensionality reduction on the time-series data before clustering. When the clustering 

results were superimposed on the trajectories before normalization, the results still 

exhibited positional similarity, thereby demonstrating that this method can identify cells 

with similar migration patterns. The same cluster contained both mesenchymal and 

epithelial cells, and this result was related to cell location and cell division.  

In Chapter 4, the time-series clustering method was further optimized. The 

parameters of the algorithm can affect the results in a different level. UMAP dimension 

reduction was conducted, besides UMAP, t-SNE is another algorithm with good 

performance. The hyperparameters of UMAP and t-SNE were changed and prepared to 

find better visualization results. The length observation window was also based on the 

same principle to generate a more reasonable result. The clustering results with different 

ratios of cells showed the location similarity under optimal conditions of algorithm. 

In Chapter 5, the applications of bioinformatics were clarified with machine 

learning. The biology information usually includes a huge amount of dataset like 

proteins, cells and genes which made the processing low efficient. Machine learning 

can deal with huge  volumes of data efficiency and find the relationship between 

individuals, especially the hidden relationship. In the future, the tendency to be 

interdisciplinary and the combination of different subjects will solve many questions 

easily. Time-series clustering is an example to process biological questions with 

machine learning. It can be developed in combination with other algorithms and used 

in fields like prediction and diagnosis.  

The interactions between cells are further investigated in the single-cell trajectory 
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aspect in this thesis. The time-series clustering method can reproduce the locational 

similarity in the presence of different of ratios of epithelial and mesenchymal cells. In 

a specific range, the ratio of mesenchymal cells can affect the migration properties of 

epithelial cells. These data and methods highlight the reliability of time-series clustering 

in identifying consistent migration patterns during collective cell migration. It provides 

new insights into the epithelial–mesenchymal interactions that affect migration patterns. 

The method can combine with different algorithm to deeply generate more relationship 

in many fields. 
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APPENDIX 1 

The simplified flowchart of the time-series clustering algorithm.  
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Step 1, import the coordinates of all cells that were manually labeled. 

Step 2, the distances of the marked points are calculated to unify the cell positions 

before cell division. The observation process is cut into multiple observation windows. 

Each window is normalized to the trajectory. 

Step 3, UMAP dimensionality reduction is performed on the high-dimensional 

time-series data. After the optimal k-value is determined using MSC, k-means 

clustering is performed. 

Step 4, for each observation window the clustering results are combined with the 

original trajectories and used to analyze similar migration patterns. 
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APPENDIX 2 

The simplified Python code of the time-series clustering algorithm. 

------------------------------------------------------------------------------------------------------- 

Part 1: Import the manually marked cells’ coordinates.  

import pandas as pd 

df_TGF_both = pd.read_csv('/Original.csv')  

DM_manual = pd.read_csv(' /DM_manual.csv')  

pip install tslearn 

pip install umap-learn 

Part 2: Preprocess of cells’ coordinates. 

Part 2.1: The distance between marker points is calculated to identify 

the occurrence of cell division. 

classinformation = df_TGF_both['TGF'].unique() 

for temp in classinformation: 

   temp_data = df_TGF_both[df_TGF_both['TGF'].isin([temp])] 

   exec('df_TGF%s = temp_data'%temp) 

df_TGFp = df_TGFP 

df_TGFm = df_TGFN.reset_index(drop=True) 

import numpy as np 

import math 

df_TGFm1 = df_TGFm.set_index(['Track n','Slice n']) 

Track_h1 = [] 

Track_h2 = [] 

Slice_h1 = [] 

dis_p = [] 

for i in range(6,94): 

  for n in range(1,98): 

    x_dt1 = df_TGFm1.loc[(i,n),'X'] 

    y_dt1 = df_TGFm1.loc[(i,n),'Y'] 

    for a in range(6,94): 

      if a > i: 

        x_dt2 = df_TGFm1.loc[(a,n),'X'] 

        y_dt2 = df_TGFm1.loc[(a,n),'Y']        

        dis = math.sqrt((x_dt1-x_dt2)**2 + (y_dt1-y_dt2)**2) 

        if dis < 10: 
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          dis_p1 = [dis]  

          disx1 = pd.DataFrame([dis_p1]) 

          disx2 = disx1.apply(int, axis=1) 

          dis_p.append(disx2) 

          Track_h1.append([i]) 

          Slice_h1.append([n]) 

          Track_h2.append([a]) 

list_p = pd.DataFrame({'Track_h1': np.ravel(Track_h1),'Track_h2': np.ravel(Track_h2), 

             'Slice_h1': np.ravel(Slice_h1),'Distance': np.ravel(dis_p)}) 

list_p1 = list_p.sort_values(by = ['Track_h1','Track_h2'],ascending=True).reset_index(d

rop=True) 

df_TGFp1 = df_TGFp.set_index(['Track n','Slice n']) 

Track_k1 = [] 

Track_k2 = [] 

Slice_k1 = [] 

dis_pr = [] 

for i in range(1,6): 

  for n in range(1,98): 

    x_dt1r = df_TGFp1.loc[(i,n),'X'] 

    y_dt1r = df_TGFp1.loc[(i,n),'Y'] 

    for a in range(1,6): 

      if a > i: 

        x_dt2r = df_TGFp1.loc[(a,n),'X'] 

        y_dt2r = df_TGFp1.loc[(a,n),'Y']        

        disr = math.sqrt((x_dt1r-x_dt2r)**2 + (y_dt1r-y_dt2r)**2) 

        if disr < 10: 

          dis_p1r = [disr]  

          disx1r = pd.DataFrame([dis_p1r]) 

          disx2r = disx1r.apply(int, axis=1) 

          dis_pr.append(disx2r) 

          Track_k1.append([i]) 

          Slice_k1.append([n]) 

          Track_k2.append([a]) 

list_pr = pd.DataFrame({'Track_k1': np.ravel(Track_k1),'Track_k2': np.ravel(Track_k2), 

             'Slice_k1': np.ravel(Slice_k1),'Distance': np.ravel(dis_pr)}) 

list_p1r = list_pr.sort_values(by = ['Track_k1','Track_k2'],ascending=True).reset_index

(drop=True) 

Part 2.2: Uniform cell marker point trajectories prior to division. 

import copy  

df_TGFb1 = df_TGF_both.set_index(['Track n','Slice n'])  
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df_TGFb2 = copy.deepcopy(df_TGFb1) 

m = DM_manual['Track_mo'].values 

n = DM_manual['Track_dt'].values 

s = DM_manual['Slice'].values 

for m,n,s in zip(m,n,s):  

    for i in range(1,s+1): 

      X_mo = df_TGFb2.loc[(m,i),'X'] 

      Y_mo = df_TGFb2.loc[(m,i),'Y'] 

      df_TGFb2['X'].loc[(n,i)] = X_mo 

      df_TGFb2['Y'].loc[(n,i)] = Y_mo 

df_TGFb3 = df_TGFb2.reset_index() 

df_Bo_Uni = df_TGFb3.reset_index(drop=True)  

Part 2.3: Normalization. At each observation period, all cell 

trajectories are moved to let their starting points to the origin (0, 0) 

ob_win = 12  

cell_index_b1 = df_Bo_Uni['Track n'].unique() 

x_list_b1=[] 

y_list_b1=[] 

x_list_b2=[] 

y_list_b2=[] 

for name in df_Bo_Uni['Track n'].unique(): 

    X_list1 = df_Bo_Uni[df_Bo_Uni['Track n'] == name]["X"].values  

    Y_list1 = df_Bo_Uni[df_Bo_Uni['Track n'] == name]["Y"].values  

    for a in df_Bo_Uni['Slice n'].unique():  

      if a % ob_win == 0: 

        initial_X1 = X_list1[a-ob_win] 

        initial_Y1 = Y_list1[a-ob_win] 

        x_list_b1[a-ob_win:a] = X_list1[a-ob_win:a] - initial_X1 

        y_list_b1[a-ob_win:a] = Y_list1[a-ob_win:a] - initial_Y1 

        if a + ob_win > 97: 

          initial_X1 = X_list1[96] 

          initial_Y1 = Y_list1[96] 

          x_list_b1[a:97] = X_list1[a:97] - initial_X1 

          y_list_b1[a:97] = Y_list1[a:97] - initial_Y1 

          break 

    x_list_b2.extend(x_list_b1) 

    y_list_b2.extend(y_list_b1) 

df_relative1 = pd.DataFrame({'X relative': np.ravel(x_list_b2),'Y relative': np.ravel(y

_list_b2)}) 

df_Bo_Uni_Re = pd.concat([df_Bo_Uni, df_relative1], axis=1) 
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df_Bo_Uni_Re.to_csv('Both_Uni_Relative.csv') 

from matplotlib.pyplot import MultipleLocator 

import matplotlib.pyplot as plt 

def plotting(df_TGFm, df_TGFp, X_column, Y_column, cluster_pred): 

    cell_index_m = df_TGFm['Track n'].unique() 

    x_list_m = [[] for i in range(len(cell_index_m))] 

    y_list_m = [[] for i in range(len(cell_index_m))] 

    for i, name in enumerate(cell_index_m): 

        x_list_m[i] = df_TGFm[df_TGFm['Track n'] == name][X_column].values 

        y_list_m[i] = df_TGFm[df_TGFm['Track n'] == name][Y_column].values 

    if df_TGFp is not False: 

      cell_index_p = df_TGFp['Track n'].unique() 

      x_list_p = [[] for i in range(len(cell_index_p))] 

      y_list_p = [[] for i in range(len(cell_index_p))] 

      for i, name in enumerate(cell_index_p): 

        x_list_p[i] = df_TGFp[df_TGFp['Track n'] == name][X_column].values 

        y_list_p[i] = df_TGFp[df_TGFp['Track n'] == name][Y_column].values 

    if X_column=='X' and Y_column=='Y': 

      fig,ax = plt.subplots(figsize=(3.5,6)) 

    colors = ["dodgerblue","lawngreen","orangered","darkviolet","orange"] 

    if  cluster_pred is not False: 

      for i, color in enumerate(cluster_pred): 

        ax.scatter(x_list_m[i], y_list_m[i], color=colors[color], linestyle='solid') 

        ax.plot(x_list_m[i], y_list_m[i], color=colors[color], linestyle='solid') 

    if df_TGFp is not False: 

      for i in range(len(cell_index_p)): 

        ax.scatter(x_list_p[i], y_list_p[i], color='black', linestyle='solid',) 

    fig.tight_layout() 

    return 

Start_slice=[] 

End_slice=[] 

for start_slice, end_slice in zip(range(1,97,12),range(12,98,12)): 

    Bo_Uni_Re = copy.deepcopy(df_Bo_Uni_Re) 

    for i in range(1,start_slice):  

      Bo_Uni_Re = Bo_Uni_Re[(-Bo_Uni_Re['Slice n'].isin([i]))] 

    for a in range(end_slice+1, 98):  

      Bo_Uni_Re = Bo_Uni_Re[(-Bo_Uni_Re['Slice n'].isin([a]))] 

    for b in DM_manual['Slice'].values:  

      track_del1 = DM_manual.loc[DM_manual['Slice']==b]['Track_dt'].unique() 

      if end_slice <= b: 

        for n in track_del1: 
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          Bo_Uni_Re = Bo_Uni_Re[(-Bo_Uni_Re['Track n'].isin([n]))] 

    data_2=[] 

    data_3=[] 

    for num in Bo_Uni_Re['Track n'].unique(): 

      data_2 = np.array(Bo_Uni_Re[Bo_Uni_Re['Track n']==num][["X relative","Y relative

"]]) 

      data_3.append([token for st in data_2 for token in st])  

      Start_slice.extend([start_slice]) 

      End_slice.extend([end_slice]) 

    data_ori = np.array(data_3) 

    data_name = Bo_Uni_Re['Track n'].unique() 

    Uni_Re_2_P = Bo_Uni_Re[Bo_Uni_Re['TGF'].isin(['P'])] 

    Uni_Re_2_N = Bo_Uni_Re[Bo_Uni_Re['TGF'].isin(['N'])] 

    plotting(Bo_Uni_Re, Uni_Re_2_P, "X", "Y", cluster_pred) 

    plt.show() 

Part 3: Time-series clustering  

Part 3.1: The optimal number of clusters of each observation window. 

from sklearn.cluster import KMeans 

from sklearn.metrics import silhouette_score 

import matplotlib.colors 

import umap 

def WCSS(start_slice, end_slice):  

    Bo_Uni_Re = copy.deepcopy(df_Bo_Uni_Re)    

    for i in range(1,start_slice): 

      Bo_Uni_Re = Bo_Uni_Re[(-Bo_Uni_Re['Slice n'].isin([i]))] 

    for a in range(end_slice+1, 98): 

      Bo_Uni_Re = Bo_Uni_Re[(-Bo_Uni_Re['Slice n'].isin([a]))] 

    for b in DM_manual['Slice'].values: 

      track_del1 = DM_manual.loc[DM_manual['Slice']==b]['Track_dt'].unique() 

      if end_slice <= b: 

        for n in track_del1: 

          Bo_Uni_Re = Bo_Uni_Re[(-Bo_Uni_Re['Track n'].isin([n]))] 

    data_2=[] 

    data_3=[] 

    for num in Bo_Uni_Re['Track n'].unique(): 

        data_2 = np.array(Bo_Uni_Re[Bo_Uni_Re['Track n']==num][["X relative","Y relative

"]]) 

        data_3.append([token for st in data_2 for token in st])        

    data_ori = np.array(data_3) 

    data_name = Bo_Uni_Re['Track n'].unique()    
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    Bo_Uni_Re1 = copy.deepcopy(Bo_Uni_Re) 

    orig = Bo_Uni_Re1.set_index(['Track n','Slice n']) 

    eu_dis = []  

    for i,j in enumerate(Bo_Uni_Re1['Track n'].unique()):  

      if j == Bo_Uni_Re1['Track n'].unique()[-1]: 

        break 

      for d in range (1,j+1): 

        Bo_Uni_Re1 = Bo_Uni_Re1[(-Bo_Uni_Re1['Track n'].isin([d]))] 

      for m in Bo_Uni_Re1['Track n'].unique(): 

        euclid1 = 0 

        for n in range(start_slice,end_slice+1):  

          x_e1 = orig.loc[(j,n),'X relative'] 

          y_e1 = orig.loc[(j,n),'Y relative'] 

          x_e2 = orig.loc[(m,n),'X relative'] 

          y_e2 = orig.loc[(m,n),'Y relative'] 

          euclid = sqrt((x_e1-x_e2)**2+(y_e1-y_e2)**2) 

          euclid1 = euclid1 + euclid 

        eu_dis.append(euclid1) 

    k = len(eu_dis) 

    n_matrix = int((1+int((1+8*k)**0.5))/2) 

    half_matrix = np.zeros((n_matrix,n_matrix)) 

    start_index = 0 

    for row in range(n_matrix-1): 

      end_index = start_index+(n_matrix-1-row) 

      half_matrix[row,row+1:] = eu_dis[start_index:end_index] 

      start_index = end_index 

    symme_matrix = half_matrix + half_matrix.T    

    reducer = umap.UMAP(random_state=1, n_neighbors=5, min_dist=0.001) 

    embedding = reducer.fit_transform(symme_matrix)  

    WCSS = [] 

    Scores = [] 

    for k in range(2,9): 

      estimator = KMeans(n_clusters = k, random_state = 1).fit(embedding) 

      WCSS.append(estimator.inertia_) 

      Scores.append(silhouette_score(embedding,estimator.labels_,metric='euclidean')) 

    X = range(2,9) 

    WCSS_2f = [float('{:.1f}'.format(i)) for i in WCSS] 

    fig, ax1 = plt.subplots(1, 1, figsize=(5,4)) 

    ax2 = ax1.twinx() 

    ax1.plot(X, WCSS, 'o-', linewidth=3) 

    ax2.plot(X, Scores, 'o-', color='coral', linewidth=3) 
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    ax1.set_xlabel('Number of clusters (k)',fontsize=15) 

    ax1.set_ylabel('WCSS',fontsize=15) 

    ax2.set_ylabel('MSC', fontsize=15) 

    plt.show() 

for a, b in zip(range(1,97,12),range(12,98,12)): 

  WCSS(a,b) 

Part 3.2: UMAP dimension reduction and k-means clustering. 

def period(start_slice, end_slice, leader_number, cluster): 

    Bo_Uni_Re = copy.deepcopy(df_Bo_Uni_Re) 

    for i in range(1,start_slice): 

      Bo_Uni_Re = Bo_Uni_Re[(-Bo_Uni_Re['Slice n'].isin([i]))] 

    for a in range(end_slice+1, 98): 

      Bo_Uni_Re = Bo_Uni_Re[(-Bo_Uni_Re['Slice n'].isin([a]))] 

    for b in DM_manual['Slice'].values: 

      track_del1 = DM_manual.loc[DM_manual['Slice']==b]['Track_dt'].unique() 

      if end_slice <= b: 

        for n in track_del1: 

          Bo_Uni_Re = Bo_Uni_Re[(-Bo_Uni_Re['Track n'].isin([n]))] 

    data_2=[] 

    data_3=[] 

    for num in Bo_Uni_Re['Track n'].unique(): 

        data_2 = np.array(Bo_Uni_Re[Bo_Uni_Re['Track n']==num][["X relative","Y relative

"]]) 

        data_3.append([token for st in data_2 for token in st]) 

    data_ori = np.array(data_3) 

    data_name = Bo_Uni_Re['Track n'].unique() 

    Bo_Uni_Re1 = copy.deepcopy(Bo_Uni_Re) 

    orig = Bo_Uni_Re1.set_index(['Track n','Slice n']) 

    eu_dis = []  

    for i,j in enumerate(Bo_Uni_Re1['Track n'].unique()):  

      if j == Bo_Uni_Re1['Track n'].unique()[-1]: 

        break 

      for d in range (1,j+1): 

        Bo_Uni_Re1 = Bo_Uni_Re1[(-Bo_Uni_Re1['Track n'].isin([d]))] 

      for m in Bo_Uni_Re1['Track n'].unique(): 

        euclid1 = 0 

        for n in range(start_slice,end_slice+1): 

          x_e1 = orig.loc[(j,n),'X relative'] 

          y_e1 = orig.loc[(j,n),'Y relative'] 

          x_e2 = orig.loc[(m,n),'X relative'] 



APPENDIX 2 

 

113 

 

          y_e2 = orig.loc[(m,n),'Y relative'] 

          euclid = sqrt((x_e1-x_e2)**2+(y_e1-y_e2)**2) 

          euclid1 = euclid1 + euclid 

        eu_dis.append(euclid1) 

    k = len(eu_dis) 

    n_matrix = int((1+int((1+8*k)**0.5))/2) 

    half_matrix = np.zeros((n_matrix,n_matrix)) 

    start_index = 0 

    for row in range(n_matrix-1): 

      end_index = start_index+(n_matrix-1-row) 

      half_matrix[row,row+1:] = eu_dis[start_index:end_index] 

      start_index = end_index 

    symme_matrix = half_matrix + half_matrix.T    

    reducer = umap.UMAP(random_state=1, n_neighbors=5, min_dist=0.001) 

    embedding = reducer.fit_transform(symme_matrix)     

    cluster_pred = KMeans(n_clusters=cluster, random_state=1).fit_predict(embedding) 

    n=leader_number 

    plt.figure(figsize=(6,6)) 

    plt.scatter(embedding[n:94, 0], embedding[n:94, 1], c=cluster_pred[n:], cmap = matpl

otlib.colors.ListedColormap(["indianred","purple","cornflowerblue","limegreen","orange

"])) 

    plt.show() 

    print('Cell ID:',data_name) 

    print('Cluster ID:',cluster_pred) 

    return data_name 

for a,b,c,d in zip(range(1,97,12),range(12,98,12),(2,2,3,4,4,4,4,5),(3,4,5,4,4,5,4,3)): 

  period(a,b,c,d) 

Part 3.3: Clustering results combine with original trajectories to 

generate similar migration pattern. 

Cell_ID=[] 

Cluster_ID=[] 

Start_slice=[] 

End_slice=[] 

for start_slice, end_slice, cluster in zip(range(1,97,12),range(12,98,12),(3,4,5,4,4,5,

4,3)): 

    Bo_Uni_Re = copy.deepcopy(df_Bo_Uni_Re) 

    for i in range(1,start_slice):  

      Bo_Uni_Re = Bo_Uni_Re[(-Bo_Uni_Re['Slice n'].isin([i]))] 

    for a in range(end_slice+1, 98):  

      Bo_Uni_Re = Bo_Uni_Re[(-Bo_Uni_Re['Slice n'].isin([a]))] 
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    for b in DM_manual['Slice'].values:  

      track_del1 = DM_manual.loc[DM_manual['Slice']==b]['Track_dt'].unique() 

      if end_slice <= b: 

        for n in track_del1: 

          Bo_Uni_Re = Bo_Uni_Re[(-Bo_Uni_Re['Track n'].isin([n]))] 

    data_2=[] 

    data_3=[] 

    for num in Bo_Uni_Re['Track n'].unique(): 

      data_2 = np.array(Bo_Uni_Re[Bo_Uni_Re['Track n']==num][["X relative","Y relative

"]]) 

      data_3.append([token for st in data_2 for token in st])  

      Start_slice.extend([start_slice]) 

      End_slice.extend([end_slice]) 

    data_ori = np.array(data_3) 

    data_name = Bo_Uni_Re['Track n'].unique() 

    Bo_Uni_Re1 = copy.deepcopy(Bo_Uni_Re) 

    orig = Bo_Uni_Re1.set_index(['Track n','Slice n']) 

    eu_dis = []  

    for i,j in enumerate(Bo_Uni_Re1['Track n'].unique()):  

      if j == Bo_Uni_Re1['Track n'].unique()[-1]: 

        break 

      for d in range (1,j+1): 

        Bo_Uni_Re1 = Bo_Uni_Re1[(-Bo_Uni_Re1['Track n'].isin([d]))] 

      for m in Bo_Uni_Re1['Track n'].unique(): 

        euclid1 = 0 

        for n in range(start_slice,end_slice+1): 

          x_e1 = orig.loc[(j,n),'X relative'] 

          y_e1 = orig.loc[(j,n),'Y relative'] 

          x_e2 = orig.loc[(m,n),'X relative'] 

          y_e2 = orig.loc[(m,n),'Y relative'] 

          euclid = sqrt((x_e1-x_e2)**2+(y_e1-y_e2)**2) 

          euclid1 = euclid1 + euclid 

        eu_dis.append(euclid1) 

    k = len(eu_dis) 

    n_matrix = int((1+int((1+8*k)**0.5))/2) 

    half_matrix = np.zeros((n_matrix,n_matrix)) 

    start_index = 0 

    for row in range(n_matrix-1): 

      end_index = start_index+(n_matrix-1-row) 

      half_matrix[row,row+1:] = eu_dis[start_index:end_index] 

      start_index = end_index 
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    symme_matrix = half_matrix + half_matrix.T 

    reducer = umap.UMAP(random_state=10, n_neighbors=4, min_dist=0.001) 

    embedding = reducer.fit_transform(symme_matrix)    

    cluster_pred = KMeans(n_clusters=cluster, random_state=1).fit_predict(embedding) 

    Uni_Re_2_N = Bo_Uni_Re[Bo_Uni_Re['TGF'].isin(['N'])] 

    plotting(Bo_Uni_Re, Uni_Re_2_N, "X", "Y", cluster_pred) 

    plt.show() 

------------------------------------------------------------------------------------------------------- 
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