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Abstract 

Department of Advanced Interdisciplinary Science and 

Technology Doctor of Engineering 

The femur plays an important role in the human body. Due to its specific location 

and shape, the femur is susceptible to injury when subjected to external energy 

impact. For reasons such as reduced bone density, femoral fractures are highly 

prevalent in the elderly population and are associated with high mortality and 

disability rates. With the increasing trend of the ageing population worldwide, the 

diagnosis, treatment and postoperative evaluation of femoral fractures have become 

urgent public health issues. 

Due to its minimally invasive nature, internal fixation is widely used as a 

treatment option to stabilize femoral neck fractures. The effectiveness and stability 

of fixation of the implant critical to the healing and functional recovery of femoral 

neck fractures and is an essential guide for the surgeon in selecting an internal 

fixation system. However, there is no long-term reliable assessment method to 

quantify the effectiveness of implant fixation without affecting patient behaviour 

and to synthesize long-term treatment data. The common evaluation method used 

by surgeons is to manually label and measure displacement data using computed 

tomography (CT) images of patients at different times, which requires an 

experienced surgeon and is very time consuming, and the measurements are 

susceptible to subjective images by the surgeon.  

In this study, two solutions were proposed to solve the above problems. One is 

based on the analysis of Hansen's pin, we proposed a measurement method based 
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on 3D point cloud matching, in which the injured femur and implant were 

reconstructed in 3D and converted into point cloud data. Due to the properties of 

the femur, whose shape does not change significantly during the patient's recovery, 

we cropped the uninjured portion of the femur and performed rigid registration of 

the femur after surgery and after the one-year recovery period. That is, no projection 

transformation was performed during the registration process. The obtained point 

cloud alignment matrix was applied to the 3D point cloud of Hansson pins to 

transform the point cloud data of different periods into the same spatial coordinate 

system. The endpoint coordinate information of the pins was obtained by locating 

their axes and outer enclosing frames to analyze the migration of the implants. 

In the second method, we constructed a CT image alignment framework with 

negative mutual information as the similarity function. In order to optimize the 

alignment speed, a multi-resolution pyramid framework is introduced to transform 

the alignment process into a hierarchical alignment process with different 

resolutions, which improves the alignment speed. To guarantee registration 

accuracy, we divide the registration into two stages: coarse registration and fine 

registration. In the process of fine registration, considering the symmetrical 

structure of the femur, we used 3D convolutional networks for biomedical image 

segmentation (3D-UNet), segmented the injured femur as a mask, and then 

converted the 3D point cloud to measure the displacement. 

In the experimental part of the measurement of femoral internal fixation implant 

displacement, we used CT image data from 10 patients, including two CT images 

scanned within a one-year postoperative interval. The implant displacements 

obtained by manual measurement were used as comparison data for both 

measurement methods. Based on the 3D point cloud alignment method, the 

percentage of overlapping points was greater than 80% in all ten data sets after the 

alignment was completed. The final result of the measurement is smaller and faster 

than the measurement error of the traditional method. In the experiments to validate 

the multi-resolution framework-based method, the best metric was 0.9547 and 

0.9450, respectively, during the training of the left femur and right femur 

segmentation models. By comparing the lengths of Hansson pins calculated by the 

femur-based registration method with the traditional method, we found that the 

method has good measurement stability. In addition, the experimental results show 
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that the error fluctuation of the traditional method is higher, and the measurement 

is unstable. More importantly, the proposed method in this paper is much less time 

consuming than the manual measurement and obtains similar measurement results. 

In addition, both methods achieve 3D display of femur and implant displacements. 

The degree of displacement can be visualized along with the quantification of 

displacement data. 

In conclusion, we have developed a method for evaluating the stability of 

internal fixation implants for femoral neck injuries that can provide a basis for the 

surgeon's decision to select an internal fixation system. In addition, the proposed 

method of postoperative evaluation of femoral internal fixation allows for the most 

comprehensive evaluation of implant stability without mirroring the patient's 

normal life. Both evaluation methods not only quantify the amount of implant 

displacement but also visualize the displacement and provide input to the surgeon's 

decision making. The measurement results are stable and reliable, avoiding the 

subjective influence in the process of manual displacement measurement. The 

method proposed in this study is mainly used for fracture and postoperative implant 

stability evaluation and has a wide range of applications. 
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Chapter 1  

Introduction 

The femur and pelvis are essential components of the human body and are 

connected to the trunk and lower extremities, as shown in Figure 1.1. Due to their 

particular position, the pelvis and femur are susceptible to fracture under external 

forces. The elderly are at a high risk of fracturing due to the decline in reflective 

function and osteoporosis. With the increasing population ageing population, the 

diagnosis, treatment, and postoperative evaluation of femoral fractures have become 

urgent public health issues. 

 

Figure 1.1 Structure of pelvic and femur.  

Femoral neck fracture is a typical clinical traumatic fracture that occurs from the 

subtrochanter to the base of the femoral neck and accounts for approximately 3.61 % 

of systemic fractures [1] and nearly half of hip fractures [2]. The majority of patients 

are between the ages of 50 and 70, and studies have shown that the incidence in 

countries such as the United States and Japan is rising year by year [3]. In the next 

decade, along with the world's growing aging, the number of the elderly would be 

worrying. According to statistics, the number of people over the age of 65 will rise 

from 37.1 million to 77.2 million by 2040, and the incidence of hip fracture in the 
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elderly will rise as well, with 6.3 million patients worldwide predicted by 2050. The 

global hip fracture incidence is that at a rate of about 1.6 million per year [4]. The 

female population is twice as high as the male population of these patients [5]. 

Currently, for treating Garden I and Garden II stable femoral neck fractures, the 

use of internal fixation has become a consensus among orthopedic surgeons [6]-[8]. 

With internal fixation, the risk of infection, dislocation, femoral fracture, and laxity 

is lower than with total hip arthroplasty (THA) [9]. Additionally, internal fixation 

surgery provides minimal invasiveness and significantly reduces postoperative 

hospitalization time [10]. Various op-tons are currently available for stabilizing the 

internal fixation of femoral neck fractures, including cannulated screws, dynamic hip 

screws, proximal femoral locking plates, and other implants. The published literature 

suggests that implant failure is one of the main reasons for reoperation after internal 

femoral fixation [11]. Consequently, selecting the appropriate internal fixation 

solution for the patient to ensure postoperative implant stability with a minimum of 

movement is critical to the success of the procedure. 

The current approach to studying the stability of internal fixation solutions is 

mainly biomechanical simulation. Researchers have used stress testers to simulate 

human gait behavior by applying pressure to synthetic bones or cadaveric femora 

with internal fixation and calculating the implant displacement as a stability criterion 

[12]–[15]. The use of finite element models is also one of the standard methods to 

simulate implants’ mechanical properties such as stress, strain, the load to failure, 

and displacement [16]–[18]. The majority of the published literature evaluating 

internal fixation solutions utilizes simulation models created with a limited number 

of parameters. These models, therefore, only simulate the forces and displacements 

of the femur and implant in a particular situation. Nevertheless, during the patient’s 

postoperative recovery, the femur is subjected to a complex combination of forces 

that vary with the movement’s posture. Conventional biome-chemical simulation 

results, accordingly, do not provide a comprehensive evaluation of the implant.  

Besides, femoral neck fractures require a lengthy recovery period after surgery, 

especially in the elderly, who have slow bone healing. Computerized tomography 

(CT) medical images are simple to obtain and can be acquired at all postoperative 

time points. It can provide the most direct information about the implant’s 
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displacement under realistic postoperative motion conditions of the patient, which is 

not easy to achieve with traditional mechanical simulation and finite element methods. 

To obtain the displacement data of the target object inside the patient, the plastic 

surgeon primarily selects rigid references in the radiographic images and measures 

the target object’s position relative to the reference object in different image 

sequences, respectively. The position coordinates are used to calculate the 

displacement of the target object in the different image sequences. Such a method is 

complicated to operate and vulnerable to the subjective factors of the surgeon. 

1.1 Objectives 

 In this research, the femur and Hansson pins are used as objects to evaluate the 

stability of internal fixation implants used for femoral neck fractures. The aim to 

propose a method to segment the human left femur and right femur by trained image 

segmentation models such as 3D-UNet respectively. The method is able to generate 

masks of femur parts, which will be used as constraints for the next step of femur 

fine alignment. 

  Furthermore, the approach for fine alignment of rigid references to the fracture site 

using point cloud information from 3D reconstruction and multi-resolution pyramidal 

models is proposed using Hansson pins as internal fitting implants for femoral neck 

wounds. It is necessary and unique that the thesis examines the limitations of 

conventional approaches such as the restriction of biomechanical simulation in 

simulating the actions of patients and the inability to measure displacement quickly 

and accurately in the course of diagnostics using CT medical images. The 

experimental results show that these methods simplify manual displacement 

measurements dramatically and minimize the measuring time without reducing 

measurement accuracy compared to conventional manual displacement measurement 

methods. 

1.2 Thesis Structure 

This paper provides a brief description of the progress of research on femoral neck 

fractures using the current mainstream image segmentation techniques for 
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segmenting the proximal femur. The segmented information is used to analyze 

fracture detection methods further and evaluate postoperative stability. 

The article is structured as follows. 

Chapter 1 outlines a description of the main research background of the thesis and 

the relevant advances and standard methods for clinical treatment of femoral neck 

fractures. The purpose of this thesis and the significance of the study are described. 

Chapter 2 introduces the biological anatomy of the femur, the trauma 

classifications, radiographs and CT scan techniques to provide theoretical support for 

further studies. 

Chapter 3, a method using 3D point cloud matching of the femur, is proposed to 

evaluate internal fixation methods used for femoral neck injuries. 

Chapter 4, using a multi-resolution pyramid-based method, CT images from 

different periods are aligned with the femur as the reference. The PCA algorithm is 

used to evaluate the implant's stability. 

Chapter 5, summary and outlook, summarizes the main research contents and 

related results of this paper, analyzes the experiments and proposes better solutions 

for further work. 
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Chapter 2  

Background study 

2.1 Biological anatomy of the femur and injury 

classification 

Figure 2.1 shows the anatomy of the femur. A femoral neck fracture is a fracture 

that occurs within the joint capsule between the articular surface of the femoral head 

and the rotor of the femur. The incidence of femoral neck fractures presents two poles 

in different age groups. It is common in older people who are prone to falls, and in a 

small number of younger people due to high-energy collisions such as vehicle 

collisions and falls from heights. Fractures of the femoral neck account for 

approximately 5% of all fractures. 

 

Figure 2.1 The anatomy of the femur.  
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The pattern of blood supply is unique to the femoral neck: approximately 1/5 of 

the proximal femoral head is supplied by a small concave artery within the femoral 

ligament, and this artery is usually not damaged in femoral neck fractures, but its 

supply area is too small. Most of the femoral head is supplied by branches of blood 

vessels entering from the base of the femoral neck at the attachment of the joint 

capsule, which enter the femoral head proximally within the cancellous bone of the 

femoral neck, but all these vessels are damaged and broken when the femoral neck is 

fractured, especially in intracapsular fractures. 

Intra-articular hemorrhage following a femoral neck fracture leads to an increase 

in intracapsular pressure, when greater than that of the lesser concave artery, 

terminates the blood supply to that artery the other remaining undamaged arteries, 

thus exacerbating ischemia. The increased intracapsular pressure also impedes 

venous blood return, causing an increase in intramural pressure in the bone marrow 

cavity, which also exacerbates ischemia. 

For stable femoral neck fractures, internal fixation is a widely accepted treatment 

modality by orthopaedic surgeons. A detailed evaluation of the patient's overall 

condition, including the type of fracture injury and the placement of pins for internal 

fixation, is required prior to performing internal fixation surgery. The implantation 

position cannot be accurately determined by x-rays alone. 3D reconstruction through 

CT images can provide a clear picture of the damage in the patient's body and 

formulate a treatment plan. The evaluation of the stability of the internal fixation is 

also crucial, as implant relaxation and displacement are the main causes of surgical 

failure and reoperation. Using CT images, it is possible to observe the displacement 

of the implant in the patient after surgery and provide a basis for the surgeon's 

postoperative evaluation. 

Garden's typing divides intracapsular fractures into four types based on the degree 

of fracture displacement, and the schematic diagram of each type is shown in Figure 

2.2 [19]. 

(1) Type I is an incomplete fracture.  

(2) Type II is a complete fracture without displacement.  
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(3) Type III is a complete fracture with partial displacement and partial insertion 

of the fracture end, abduction of the femoral head, and mild external rotation and 

superior displacement of the femoral neck segment.  

(4) Type IV is a completely displaced fracture with significant external rotation 

and upward displacement of the femoral neck segment. The articular capsule and 

synovial membrane are severely damaged. 

  

(a) Garden I (b) Garden II 

  

(c) Garden III (d) Garden IV 

Figure 2.2 Garden classification. 

Type I and II are stable fractures because the fracture ends are not displaced or are 

less displaced and the degree of fracture damage is less. 

Pauwels analysis is divided according to the angle of view between the fracture 

line and the perpendicular line of the femoral technique: Type I, Pauwel angle <30°; 

Type II, Pauwel angle between 30° and 50°, and Type III, Pauwel angle > 50° [20]. 

The greater the slope of the fracture line, the more unstable it is. Below 30°, the 

fracture surface is embedded between each other, the site is stable and easy to heal; 
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above 50°, it bears a great shear ground stress, the site is unstable, and the prognosis 

is poor. However, the precise measurement of this angle of view should be made only 

after placing the fracture distally in the internal rotation position and clearing the 

anteversion angle. 

A number of factors affect the treatment of femoral neck fractures, including age, 

fracture type, and psychological factors, among others. Internal fixation, 

hemiarthroplasty, or complete hip replacement are the most common treatments for 

femoral neck fractures. Patients usually choose internal fixation to return the femoral 

head to health, and arthroplasty is the final cure for femoral neck fractures. Internal 

fixation is preferred for patients younger than 60 years old if there are no obvious 

symptoms of femoral head ischemia, according to conventional wisdom. Hip 

arthroplasty is preferred for patients over 80 years old with displaced fractures; for 

patients between 60 and 80 years old, treatment is determined by the patient's injury, 

fracture type, mental factors, and whether other systemic diseases are present [21].  

2.2 Radiological assessment of traumatic injuries 

2.2.1 Plain x-rays 

X-ray is a typical orthopaedic trauma examination method. In X-ray imaging, the 

bones and the surrounding associated soft tissues can significantly contrast, so the 

bones are clearly imaged. X-ray plain film is easy to operate. It requires relatively 

low equipment and environment and does not require additional post-processing, so 

it is very suitable for the initial diagnosis of trauma and is very helpful for the 

judgment of injury and the guidance of subsequent treatment. 

For pelvic trauma, an x-ray can accurately determine the severe instability of the 

pelvic ring and provide the basis for preliminary fracture typing. Anteroposterior (AP) 

films of the patient's pelvic ring can provide a great deal of information about pelvic 

injury. Anteroposterior radiographs are taken with the patient in a lying position. And 

the pelvic rim at an angle of 45° to 60° to the longitudinal axis of the trunk. 

Using the left-right symmetry of the pelvic ring in the AP plain film, it is possible 

to determine whether the pelvic ring is significantly displaced. In addition, the 

integrity of the pubic symphysis can be clearly observed in the AP plain film. The 
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conditions for determining the occurrence of separation of the pubic symphysis and 

the damage to the pelvic ring anteriorly by a fracture of the pubic branch. The 

sacroiliac joint is usually accompanied by a crescentic fracture, which is one of the 

information that AP plain films can provide. 

2.2.2 Computerized tomography scan 

Computerized tomography (CT) scan is a method of generating cross-sectional 

images of the body based on the difference in the absorption of X-rays by various 

tissues of the body and reconstructing images in the coronal and sagittal planes on 

this basis. Compared to conventional X-ray films, CT scan images provide a higher 

resolution view of human tissue. Unlike X-ray films, CT images record three-

dimensional image information and do not cause image overlap, which makes CT 

images play an irreplaceable role in femur injury diagnosis, treatment of internal 

fixation and postoperative evaluation. 
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Chapter 3  

3D point cloud registration-based 

evaluation method for internal 

fixation implants 

3.1 Introduction 

Proximal femoral fractures are a skeletal trauma that occurs worldwide and is 

highly prevalent in the elderly [26]. These fractures account for nearly half of all hip 

fractures, and their incidence is increasing every year. There is a study that predicts 

a doubling of the number of proximal femur fractures in 2025 compared to 1990 [27]. 

Statistics available show that the ratio of male patients to female patients is 1: 2 [28]. 

The commonly used treatments for femur fractures are internal fixation, hemi-

arthroplasty and total hip arthroplasty (THA)[29]. For the best functional result and 

early recovery allowing tolerable weight-bearing, pin fixation is one of the internal 

fixations widely used in treating femoral neck fractures [30]. 

Despite pin fixation is a frequent operation in clinical treatment for bone fractures, 

there are some severe complications following the insertion of implants, which are 

well introduced in the literature. Among them, loosening of screw or pin is one of the 

most common problems, representing 3% to 10% of all cases [31]. Besides, migration 

is another problem rarely mentioned in the literature but with high morbidity and 

mortality [32]. 

According to the quantitative analysis of medical images in eight clinical cases, 

Weil et al. classified medical migration types. They built biomechanical models for 

five different implants to explore the factors affecting migration. They argued that 

due to insufficient support for the pin’s proximal end, instability of the medial cortex, 

and fixed friction sources within the femoral and neck, the pin’s position would shift 

during the continuous alternating loading and unloading process [33]. In some 

published literature, bone density varying in different locations due to osteoporosis 
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is also one reason for pins’ migration. Cavalcante et al. reported a case in which a 70-

year-old female patient suffered the inter-trochanteric fracture due to a fall and was 

treated with cephalomedully osteosynthesis fixed. In the postoperative evaluation, it 

was found that the medial migration of the cephalic screw to the inner side of the 

pelvis resulted in slow fracture healing and pain to the patient. According to the 

analysis of the patient’s health, it may be related to osteoporosis [34].  

From the operative technique’s perspective, the fracture varus malreduction 

occurred at the fracture site and was not reduced before the pins were inserted will 

lead to the movement of pins or lag screw [35]. Moreover, in the insertion of pins, 

there are operating technical errors that will also cause migration [36]. Lucke et al. 

presented a case that an old male patient with the inner fixation using Gamma3 nail 

and complained of pain on day 19 after the operation. Based on the result of 

radiographs, the lag screw migrates 5 cm into the pelvis, and it was believed that the 

unsuitability of implant design during nail in-sertion should be blamed [37]. 

In the literature review, the complication of migration resulting in significant risk 

for morbidity and mortality. First of all, avascular necrosis and nonunions are serious 

solae of femoral neck fractures. In [38], 69 cases of femoral neck fractures were 

treated with internal fixation, with nonunion and avascular necrosis up to 23.2% of 

the patients. Then, periprosthetic fractures are also severe complications that account 

for 5% to 8% [39]. Even in early cases, fractures were extending from the distal to 

the tip of the implant [40]. These will cause the penetration of the surrounding bones 

and the destruction of the joints and may compress or damage the internal tissues and 

organs inside the pelvis [41]. Thein et al. described the case of a 69-year-old woman 

who was performed with an internal fixation using a short gamma 3 nail due to a 

reverse interactive femur structure caused by a fall. At weeks after surgery, the 

radiological assessment shows the migration of the lag screw into the pelvis and 

compressing a branch of the left internal iliac artery causes embolism. Finally, the 

head and neck of the femur are removed [42]. 

Computerized tomography (CT) scan is a commonly used method to measure 

fracture displacement or implant displacement in patients with no trauma to the body. 

However, current CT-based medical 3D reconstruction techniques are mostly used to 

directly perform fracture displacement measurements on the reconstructed models. 
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Kaur, J., & Chopra, R. Kaur, J., & Chopra, R. performed CT scans and 3D 

reconstruction of the facial skeleton in one hundred patients with midface fractures 

and used the reconstructed 3D models to visualize the extent of major fractures and 

displacement of fragments [43]. In the literature [44], the authors used reconstructed 

3D models to classify mandibular fractures and measure fracture displacement 

according to a reference. No method of fusing CT medical image information from 

multiple time points has been proposed to measure the movement of targets within 

the patient. 

This chapter presents a method to measure implant displacement in the treatment 

of proximal femur fractures by overlapping multiple time points of CT image 

information, using the internal fixation implant Hansson pins as the object of study. 

The core of this method is to align the fractured femur using a 3D point cloud and 

convert the Hansson pins point cloud to the same coordinate system to measure the 

displacement. 

3.2 Materials and Methods 

3.2.1 Patients and CT images 

Hyogo Prefectural Awaji Medical Center provided CT image data for 10 patients 

with proximal femur fractures from March 2012 to January 2015. All of these patients 

were treated with Hansson pins for internal fixation. These patients underwent CT 

scans preoperatively, postoperatively, and after a one-year recovery period. We 

selected two sets of CT sequences from each patient postoperatively and after the 

one-year recovery period as the study data for information extraction and fusion. 

Figure 3.1 presents the CT images preoperatively, postoperatively as well as a review 

of the patient one year later. 
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(a) (b) 

  
(c) (d) 

  
(e) (f) 

Figure 3.1 Intracapsular fracture occurring due to low energy falls in the elderly: (a) 
Preoperative CT diagnostic image; (b) Preoperative 3D reconstruction model; (c) 
Postoperative 3D reconstruction model; (d) Postoperative 3D reconstruction model; (e) A 
year later 3D reconstruction model; (f) A year later 3D reconstruction model. 

Hansson pins are unthreaded nails with a diameter of 6.5 mm and a length of 70 

mm to 120 mm and were used as internal fixation implants in all cases. This internal 

fixation system was designed by Prof. Lars Ingvar Hansson of Lund University, 

Sweden [45]. Each pin consists of the outer sleeve and the inner movable hook pin. 

When the pins are implanted in the femur, the inner hook pin can be screwed out and 

engages in the subchondral bone, which provides the Hansson pins with a solid anti-
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rotational force. As shoen in Figure 3.2, parallel positioning enables fracture 

dynamization, maintaining constant contact with bone during resorption. 

Physiological compression at the fracture site is permitted. 

 

 

(a) (b) 

Figure 3.2 Hansson pin fixation of femoral neck fractures: (a) Anteroposterior-
posteroanterior X-ray (AP X-ray) of intracapsular fracture fixation with two Hansson pins; 
(b) Hansson pin location in the femur's anatomy. 

3.2.2 Conventional methods of displacement measurement based 

on CT images 

The traditional method of measuring implant movement is similar to measuring 

fracture displacement after a fracture. The surgeon estimates the fracture location or 

the target object's position based on a 3D reconstructed model. The reference and 

target object positions are positioned in the axial plane, coronal plane, and sagittal 

plane of the CT image, respectively, and a new coordinate system is created based on 

the characteristics of the reference. The criterion for reference selection is usually 

that the shape and anatomical position of the reference remains relatively constant 

over the CT sequences obtained from multiple time scans. Generally, the surgeon 

uses the greater trochanter, lesser trochanter, gluteal tuberosity, and other 

protuberance-containing regions as reference points. 

CT images are usually shown as a two-dimensional image on a monitor that can 

be interpreted as an image created by three-dimensional spatial perspective 

projections. The information in the figure is subject to angular errors. In the majority 

of instances, a three-dimensional coordinate scheme must be rebuilt. Euclidean 

distances are calculated by finding the pins' endpoint coordinates in various CT image 

sequences. The equation is 
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d = √(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2  . (3.1) 

where (x1, y1, z1) and (x2, y2, z2) denote the coordinates of the same point in the two 

measurements, respectively. 

3.2.3 3D reconstruction of CT images 

Starting from the top left corner and creating 3D arrays/tensors of points and cells, 

the medical image is similar to the 2D natural image. The i axis grows to the right 

(width), the j axis grows to the bottom (height), and the k axis grows backward. 

Unlike two-dimensional natural images, the basic units that make up a CT image are 

voxels, and voxel (i, j, k) represents the intensity value of the voxel as (i, j, k). 

To better describe the anatomical position of humans, doctors and radiologists 

usually use anatomical coordinate system. Figure 3.3 depicts the anatomical image 

coordinate system, which is made up of three planes that describe the standard 

anatomical position of a human: the axial plane, the sagittal plane, and the coronal 

plane. The green plane is the axial plane, which runs parallel to the ground and 

divides the body into above and below; the red plane is the sagittal plane, which runs 

perpendicular to the ground and divides the body into left and right; and the blue 

plane is the coronal plane, which runs perpendicular to the ground and divides the 

body into front and back. 

 

Figure 3.3 Anatomical coordinate system. 
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Commonly used anatomical coordinate systems are LPS (Left, Posterior, Superior) 

and RAS (Right, Anterior, Superior) coordinate systems. In this chapter we use the 

RAS coordinate system. 

The process of 3D reconstruction using software can be regarded as the process 

of image conversion from Image coordinate system to anatomical coordinate system. 

The conversion process needs to consider the position of the image origin in the 

anatomical coordinate system and the distance between voxels. 

Organs in different CT sequences have different coordinates in the same 

coordinate system. This is because different models of equipment have different 

parameters when performing CT scans, such as the layer spacing of the CT slice. In 

addition, the patient's body posture and position relative to the scanning device 

change with each CT scan. Image coordinate system is created with the scanning 

device as the reference, which causes the same target objects to not overlap 

completely in anatomical coordinate system as shown in Figure 3.4. The green and 

red models were created by 3D reconstructing different periods of CT images from 

the same patient. Both models use the RAS coordinate system, but both have different 

coordinates in space. At this point, the displacement results of the pins measured are 

the vector sum of the relative displacement of the implant and the displacement of 

the patient's femur in space. 

 

Figure 3.4 Models generated from different series of CT images are placed in the same 

coordinate system. 
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In order to accurately measure the displacement of pins, the 3D models of pins in 

both sequences need to be transformed into a coordinate system established with the 

same reference. In this chapter, we selected the proximal femur, which does not 

change significantly in morphology during the one-year recovery process, as the 

reference. The pin and femur were reconstructed and converted into 3D point clouds 

according to the postoperative CT images and the CT images after one year of 

recovery, respectively. To boost alignment accuracy and shorten matching time, 

various model reconstruction techniques are used in this article. For example, only 

the femur section without the femoral head and the pins were used as guides, as seen 

in Figure 3.5, since the femoral neck fracture will alter the femoral head location, and 

pin position will affect the matching accuracy. In addition, we remove the 

discontinuous, femur-independent interference points generated during the 3D 

reconstruction, and only retain the body of the proximal femur. 

 

Figure 3.5 Selected a partial femur model containing the greater trochanter, intertrochanteric 

crest and filled the interior to use it as a reference. 

Furthermore, partial femur data decreases the number of points in the model and 

the time it takes to convert coordinates. Moreover, we filled the model's interior 

during the model reconstruction process to minimize point cloud noise during the 

alignment process. The measurement method is depicted in Figure 3.6.  

During model reconstruction, another technique has been to roughly position the 

axis of the femoral component used for orientation in the z-direction of space. As a 

consequence, the obtained model can be fine aligned directly. The implant shift can 

be calculated after applying the rotation matrix obtained from the alignment on the 

pins. 
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Figure 3.6 The process of 3D matching of femur and pins’ coordinate transformation. 

3.2.4 3D data format and conversion 

In this section, we use two 3D model data formats, STL and PLY. The STL format 

was proposed by 3D Systems in 1987 and was originally used in stereolithography 

computer-aided design software. Currently, the STL file format is used as a common 

format for 3D modeling software, mainly for 3D printing and data conversion 

between different 3D modeling software. STL files are available in two 

representations: text and binary. 

PLY files were introduced in 1994 and are mainly used to store the values obtained 

from 3D scans. This file format is mainly used to describe 3D objects in the form of 

polygon sets and is characterized by a simple method and comprehensive information 

storage. Unlike STL, this file format can store the color, transparency, material 

coordinates and data confidence of 3D objects, and can set different properties.  

We can export the 3D model of femur and Hansson pin in STL format after 3D 

reconstruction of CT images using 3D slice software. For point cloud alignment, an 

STL file is converted to PLY point cloud data and down sampled. 

3.2.5 Point cloud registration and key technologies 

The registration of common 3D point clouds can be divided into two stages: coarse 

and fine registration. 
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Coarse registration refers to the initial alignment of the point cloud when the 

relative position of the point cloud is completely unknown. This step does not require 

the corresponding points in the two point clouds to achieve high precision 

coincidence, which just involves finding a rotation translation transformation matrix 

that allows the two point clouds to be relatively similar, and then converting the point 

cloud data to be aligned into a unified coordinate system, which can provide a good 

initial value for fine registration. Common coarse alignment algorithms: 

Point Feature Histogram (PFH)-based alignment algorithms such as Sample 

Consensus Initial Alignment (SAC-IA). Alignment algorithms based on exhaustive 

search, such as 4-Point Congruent Set. The fine registration further realizes the 

transformation of the point clouds with the minimum variance of the corresponding 

point positions based on the effects of the coarse registration. It then obtains a more 

precise rotation-translation transformation matrix as a result. The algorithm's speed 

of operation and convergence to global optimization are heavily reliant on the initial 

transformation estimates and the establishment of correspondences during the 

iterative process. Consequently, the initial locations of the two point clouds are 

crucial to the outcome of fine recordings, and the correct collection of matching 

points cannot collapse into local extremes during the Iteration process, and the 

convergence and final recording accuracy of the algorithm are determined. Iterative 

Cloest Point (ICP). is one of the most widely used fine alignment algorithms.  

In this section, we used the RAS coordinate system mentioned above for the initial 

coordinate system of the 3D model during the reconstruction of the femur and 

Hansson. Due to the specificity of CT medical images, the pose of the human skeleton 

is basically the same in the RAS coordinate system. Therefore, we can directly 

perform fine alignment on the femur and reduce the alignment time. 

3.2.6 Iterative Closest Point 

The Iterative Closest Point (ICP) algorithm is an iterative optimization approach 

that uses least squares to solve rigid transformations for optimal alignment of two 

sets of point clouds [46]. The aim of this algorithm is to use unique geometric features 

to find the rotation and translation parameters between the point cloud to be matched 

and the reference point cloud. The matched point cloud data is transformed using 

these parameters. The iterations will then be repeated until the transformed results 
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meet the convergence accuracy criteria. Figure 3.7 depicts the ICP algorithm 

execution procedure in this article. 

 

Figure 3.7 Alignment process using the ICP algorithm. 

The basic algorithm of the ICP is as follows: 𝐑n is defined as the rotation matrix 

after the Nth matching, and t is the translation vector. 

Step 1: Take the two sets of point clouds 𝐏 and 𝐐 as the initial point set of fine 

registration, where 𝐏 is the point cloud to be matched and 𝐐 is the reference point 

cloud. 𝐏’s center is flattened to coincide with the center of 𝐐, and the translation 

vector is 𝐭𝟎. 

Step 2: For each point 𝐩𝐢 in 𝐏, we search for the corresponding point 𝐪𝐢 in 𝐐, from 

the corresponding points pairs, and then use the direction vector threshold to 

eliminate the wrong corresponding point pair. The product function is defined as 
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E(𝐑, 𝐭) = min
1

n
∑ ∥ 𝐪i − 𝐑 ⋅ 𝐩i ∥

2

n

i=1

 (3.2) 

Then we compute the rotation matrix that minimizes the mean square of the 

distance. 

Step 3: Point cloud 𝐏 rotates according to the optimal solution in Equation (3.2), 

as follows. 

The rotation matrix 𝐑 can be solved by analyzing the covariance matrix between 

the corresponding point clouds. 

Step 4: Determine whether the error E(𝐑, 𝐭) is less than the preset value. If it is 

true, the iterations are stopped and failing, in which case Steps 2 and 3 are repeated 

until the iterations are completed. Then, the result can be expressed as 

𝐑 =∏𝐑i

n

i=1

 (3.4) 

t = 𝐑 ⋅ t0 (3.5) 

𝐏n = 𝐑 ⋅ 𝐏 + t0 (3.6)  

The ICP algorithm based on neighborhood features is widely used. Compared with 

the traditional algorithm, it can improve the point search rate and improve the 

matching points’ accuracy. The time cost of point cloud matching using the ICP 

algorithm depends on the femur part’s points number. It also depends on the 

computing power of the CPU. In this chapter, the hardware information we used is 

shown in Table 3.1. 

Table 3.1 Hardware information. 

3.3 Experiment 

𝐏𝐧 = 𝐑𝐧−𝟏 ⋅ 𝐏𝐧−𝟏, (n >= 2) (3.3) 

Hardware Configuration 

CPU Core i7-2700k 3.50GHz 

Memory 16GB 

Operating system Windows10 
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3.3.1 Data Preprocessing and Registration of Models 

In this stage, we used a 3D Slicer [47] to reconstruct the 3D model. The 3D Slicer 

is a free open-source software for medical image analysis, visualization, and image-

guided therapy research, which can be used on a variety of operating systems. 

We adopted the threshold tool and build-in Otsu algorithm to generate 3D models 

of the femur and the Hansson pin, respectively. Otsu is an algorithm to calculate the 

binarization segmentation threshold of an image proposed by Japanese scholar Otsu 

in 1979 [48]. Among the 3D models, the skeleton model’s minimum threshold range 

was 150, and the minimum threshold range of the pins were 1400. We applied these 

parameters, and the 3D models were reconstructed. Figure 3.8 lists the models used 

in the next stage. Figure 3.8 a,b presents how the pins and femur models were 

constructed, respectively, and that they share the same coordinate system. With the 

processing of 10 sets data, we obtained 10 sets of models. Then, fine registration was 

performed using the ICP method. 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 3.8 Using 3D Slicer to reconstruct 3D model of bone with the same initial direction: 
(a) The pins model reconstructed using CT images. (b) A part model of the femur. (c) 
Assembling the pins and femur from the same group of CT images in the same coordinate 
system. (d) Comparison of pins from different sets of dates. (e) The green model comes from 
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postoperative data, and the blue model comes from CT images after a one-year recovery 
period. (f) All the models use the same initial direction. 

According to the different iterations’ registration results listed in Table 3.2, the 

registration accuracy remained stable when the iteration exceeded 125. The 

improvement in registration accuracy is less than 0.1% for an increase of 25 iterations. 

After the alignment was completed, we used the obtained rotation matrix and 

translation vectors to calculate the pin and femur positions. 

Table 3.2 Result of accuracy comparison with different iterations. 

Iterations 
Points Whose Distance Is Less Than 0.5 mm 

Case 1 Case 2 Case 3 

25 22.83% 5.77% 31.63% 

50 42.22% 10.87% 57.82% 

75 37.75% 21.31% 57.27% 

100 37.50% 50.17% 57.18% 

125 37.50% 49.12% 57.19% 

150 37.50% 49.08% 57.19% 

175 37.50% 49.09% 57.20% 

200 37.50% 49.08% 57.20% 

225 37.51% 49.08% 57.22% 

250 37.51% 49.08% 57.24% 

 

3.3.2 Measurement Based on 3D Coordinate System of CT Images 

3.3.2.1 Manually Measure the Displacement Reference Value 

To verify the effectiveness and accuracy of the method proposed in this chapter, 

we manually aligned the femur and pins models and measured the displacement of 

the pin endpoints. By repeating the operation three times, as we mentioned above, 

and calculating the average value, we obtained the reference values of actual pin 

migration used to verify the traditional method’s accuracy and the accuracy of the 

method proposed in this chapter. Figure 3.9 explains that we imported two groups of 

3D reconstruction models before and after a one-year recovery period into the 

Rhinoceros software [49], matched the two models artificially, and measured the 

displacement data of the corresponding point of the pins. 
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Figure 3.9 Manually matched and measured displacement of pins. 

3.3.2.2 Measurement by the Traditional Method 

The first step in creating a coordinate system is to locate the centerline of the 

medullary cavity, which hardly changes its relative position without significant 

damage to the corpus femoris. In the software RadiAnt [50], we performed 

multiplanar reconstruction to CT images to obtain three mutually perpendicular 

planes. By moving two of the planes, we found the medullary cavity’s projection, 

and located the centerline of the medullary cavity, line 𝐋, according to the position 

information in two mutually perpendicular planes. The process of locating line 𝐋 is 

shown in Figure 3.10. The midline of the medullary cavity was defined as the z-axis, 

with its positive direction pointing to the greater trochanter. 
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(a) (b) (c) 

Figure 3.10 According to the projection of the medullary cavity centerline in plane 1 (red line) and 

plane 2 (blue line), we located the position of: (a) plane 1, (b) plane 2, and (c) the centerline in the 

3D model. 

Figure 3.11a shows the process of creating the x-axis in the left femur. We located 

the farthest point A from the z-axis in the lesser trochanter region. The line that goes 

through point A and vertical to the z-axis is the x-axis, with the positive direction 

pointing to point A. Additionally, the intersection point O of the x-axis and z-axis is 

the coordinate origin. We defined the line passing through the origin and 

perpendicular to the x-axis and z-axis as the y-axis. The positive direction of the y-

axis is the direction of the cross product of the z-axis and the x-axis. Similarly, the 

coordinate system in the right femoral model, as shown in Figure 3.11c, was 

established. 

   
(a) (b) (c) 

Figure 3.11 Establishing the right and left femoral coordinate system: (a) reference point A 

in the lesser trochanter region. (b) left femoral coordinate system, and (c) comparison of the 

left and right femoral coordinate systems. 

Figure 3.12 presents the established coordinate system, the process of measuring 

the proximal pin’s coordinates, and the distal pin’s endpoints. 
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Figure 3.12 Using software RadiAnt to measure the position of the Hansson pin. 

3.3.2.3 Calculation of Pin Displacement Based on Point Cloud Matching 

Figure 3.13 exposes the position of the pins and femur after registration with 125 

iterations. The white point cloud is the data measured after the surgery, and the green 

one is the point cloud to be matched based on the data after a one-year recovery. Then 

the green point cloud transforms into the red part using position transformation. 

 

Figure 3.13 Performing position transformation on the pins and femur after registration 

with 125 iterations. 

We eliminated the femur part and quantitatively calculated the pins’ movement in 

the three-dimensional space. As shown in Figure 3.14, the principal component 

analysis was used to calculate the direction vector for obtaining relative angles, 

drawing the bounding box for the pins, and obtaining the endpoint coordinates. 

Meanwhile, the actual length of pins listed in Table 3.3 was used to calibrate the 

length scale of the point cloud data. 
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Table 3.3 The length of pins and information of patients in each case. 

 

Figure 3.14 Visualization of pins’ movement and calculation of moving distance and rotation 

angle. 

After femur registration, each femur model’s alignment effect was evaluated on 

the basis of the distance from each point in the converted femur point cloud to the 

nearest point in the benchmark point cloud. This subsection used the maximum value, 

the average value, the proportion of points whose distance was less than 2 mm, and 

the proportion of points whose distance was less than 0.5 mm as evaluation criteria.  

Additionally, for a more precise analysis of the Hansson pin’s movement in the 

femur, we transformed the aligned model into a new coordinate system. Figure 3.15 

describes the new coordinate system of the proximal pin and the distal pin after 

transformation. The red pin depicts the point cloud of the Hansson pin 

postoperatively, and the green pin depicts the point cloud of the Hansson pin one year 

after surgery. 

Case No. 
Length of Pins 

Gender Age 
Proximal Distal 

1 80 90 female 79 

2 85 95 female 76 

3 80 95 female 81 

4 90 100 female 65 

5 80 90 female 78 

6 75 90 female 85 

7 85 100 female 79 

8 85 90 female 77 

9 80 90 female 73 

10 80 90 female 67 
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(a) (b) 

Figure 3.15 Converting the aligned point cloud data to the new coordinate system: (a) 
the coordinate system of the proximal pin; (b) the coordinate system of the distal pin. 

According to the 3D point cloud of the postoperative proximal pin in Figure 3.15a, 

we fit its central axis, the blue axis, as the z-axis of the new coordinate system, 

pointing to the top of the Hansson pin as the positive direction. The center of the point 

cloud of the pin served as the origin of the coordinate system. Passing the origin, the 

y-axis was established parallel to the hook pin, and the positive direction was defined 

as the direction of the pin elongation. Furthermore, the y-axis vector and z-axis 

vector’s cross product was used as the vector of the red x-axis. Moreover, the 

direction was determined by the result of the cross product. Similarly, a new 

coordinate system for the distal pin in Figure 3.15b was built. 

3.4 Results 

3.4.1 Result of Registration 

Table 3.2 describes the result of registration with different iterations. From the 

proportion of points whose distance to the corresponding point was less than 0.5 mm, 

when the iterations reached 125, the optimal result could be obtained. 

Table 3.4 shows the time used when the iterations were set to 125 for the 3 cases 

in the table that were randomly selected from the 10 cases. The time increased by 

five milliseconds for each additional point. 

Table 3.4 Time consumed for different size point cloud registrations. 

Case No 
Number of Points in the 

Model 
The Time Spent (min) 
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1 47,354 3.80 

2 17,878 1.69 

3 26,357 1.75 

Figure 3.16 presents the data preprocessing results, and the 10 groups of models 

based on the CT images. The models’ main directions in each group were the same 

and could be used directly for fine registration. 
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(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

 

Figure 3.16 3D point clouds preprocessing. (a) to (j) are the point clouds of the 10 cases without performing alignment, respectively. The white point 

cloud is generated based on postoperative CT images, and the green point cloud is generated based on CT images scanned after the one-year recovery 

period. 

Figure 3.17 displays the results after the position transformation using the matrix obtained from the registration. The red model can 

be regarded that the green model in Figure 3.16 transformed their coordinate systems to the coordinate systems of white models. 
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(a) (b) (c) (d) (e) 

     
(f) (g) (h) (i) (j) 

Figure 3.17 Transformation using the matrix obtained from the registration. (a) to (j) are the point clouds after fine registration for each of the 10 

cases. The white point cloud is generated based on the postoperative CT images. The red point cloud is transformed 

As shown in Figure 3.18, the pins and the bounding boxes of each group were transformed into the same coordination system. The 

green lines in the image represent the distance traveled by the top vertexes of the pins, and the blue lines describe the moving distance 

of the lower vertexes of the pins. What is more, the movement of each pin can be perceived from various perspectives. The data we 

obtained are listed in Table 3.5, and all data are retained with two significant digits.
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(a) (b) (c) 

  
(d) (e) 
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(f) (g) 

   
(h) (i) (j) 



Chapter 3 3D point cloud registration-based evaluation method for internal fixation implants 

34 

 

Figure 3.18 The results of the calculation of the pins’ migration. (a) to (j) are the point clouds of pins transformed to the same coordinate system for 

each of the 10 cases, respectively. The white point cloud is generated based on the postoperative CT images. The red point cloud is transformed form 

the point cloud generated based on the CT images scanned after one year. 

Table 3.5 Result of relative angles and movement of the pins. 

Case 

No. 

Proximal Pin Distal Pin 

Relative Angle 

(°) 

Top Movement 

(mm) 

Bottom Movement 

(mm) 

Relative Angle 

(°) 

Top Movement 

(mm) 
Bottom Movement (mm) 

1 0.93 3.90 5.80 1.69 5.27 5.22 

2 1.19 8.48 6.31 0.94 8.35 7.48 

3 1.08 1.13 0.89 1.38 1.85 1.04 

4 1.85 12.57 9.57 1.96 10.72 11.10 

5 11.26 21.39 17.39 3.19 19.07 16.96 

6 3.02 2.58 2.21 2.51 3.01 3.10 

7 9.00 13.05 9.78 7.58 12.58 9.94 

8 2.79 3.79 2.98 2.16 3.37 1.38 

9 2.61 4.36 4.42 4.39 7.32 4.67 

10 5.17 5.52 3.32 5.45 7.29 4.08 

Table 3.6 shows the displacement of the Hansson pin in each direction in the new coordinate system that is discussed in Section 2.5.3. 

Table 3.6 Displacement of the Hansson pins. 

Case No. Endpoint 
Movement of Proximal Pin (mm) Movement of Distal Pin (mm) 

x-Axis y-Axis z-Axis x-Axis y-Axis z-Axis 

1 top 2.07 0.20 −3.39 0.03 −2.68 −4.61 

 bottom 0.73 0.33 −5.85 −0.40 −0.02 −5.27 

2 top 0.02 0.57 −8.67 0.58 −1.07 −8.47 

 bottom 1.02 −0.91 −6.32 −0.39 0.19 −7.64 
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3.4.2 Results of Evaluation 

In this chapter, we defined the corresponding points in the post-alignment point cloud and the reference point cloud with distances 

less than 0.5 mm as coincident points, indicated by blue dots in Figure 3.17. The average and maximum distances of the corresponding 

points in all experimental cases are listed in Table 3.7. Besides, the proportion of corresponding points at a distance of less than 2 mm 

and the percentage of overlapping points were used to evaluate the degree of overlap between the two point clouds. 

Table 3.7 Evaluation results. 

Case No. Iteration (s) 
The Average 

Distance (mm) 

The Max Distance 

(mm) 

Points Whose Distance Is Less 

Than 0.5 mm 

Points Whose Distance Is Less 

Than 2 mm 

1 125 0.91 11.87 44.30% 93.77% 

2 125 0.92 11.54 49.12% 90.33% 

3 top −0.02 −1.10 −0.31 1.67 −0.03 −0.85 

 bottom −0.56 0.33 −0.62 −0.61 0.40 −0.75 

4 top −2.66 −0.98 −12.63 −2.15 −0.68 −10.89 

 bottom 0.03 0.23 −9.85 1.37 −1.18 −11.37 

5 top 8.55 −6.27 −19.36 −1.35 −3.43 −18.95 

 bottom −4.08 3.57 −17.12 0.69 1.15 −17.12 

6 top 1.18 2.27 −0.59 −2.44 0.27 −1.84 

 bottom −1.45 −0.8 −1.52 1.46 −0.8 −2.69 

7 top −6.15 −6.38 −9.76 7.15 −4.76 −9.26 

 bottom 1.11 4.9 −8.51 −5.43 −0.61 −8.35 

8 top 1.23 1.76 −3.18 −1.96 1.37 −2.46 

 bottom −1.86 −1.02 −2.15 0.33 −1.16 −0.71 

9 top −0.93 −1.66 −4.03 5.06 −1.89 −5.16 

 bottom −0.44 2.04 −4.01 −1.72 −0.12 −4.45 

10 top −0.71 4.73 −2.96 −5.82 −0.11 −4.45 

 bottom −0.63 −2.59 −2.08 2.72 −0.12 −3.07 
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3 125 0.57 4.16 57.19% 97.44% 

4 125 1.15 7.79 28.71% 85.33% 

5 125 1.02 7.68 37.45% 87.64% 

6 125 0.86 4.14 33.45% 94.19% 

7 125 1.44 8.01 20.15% 81.17% 

8 125 1.02 7.18 38.33% 88.36% 

9 125 1.10 5.87 31.82% 85.71% 

10 125 0.96 5.67 33.39% 90.80% 

Table 3.8 shows that in the first case, the coordinates of the Hansson pins’ endpoints and the pins’ length calculated using these 

coordinates were measured for the same patient at two different times using the conventional method. The results show that the length 

of pins computed using this method had an error between 0.6 mm and 1 mm, which proves that the error of the method proposed in this 

chapter is limited. 

Table 3.8 Results measured by traditional methods. 

Pin 
 Coordinates After the Operation Coordinates After One-Year Recovery 

 x y z Length (mm) x y z Length (mm) 

Proximal 
top point 21.4 −26.7 58 

80.04 
21.1 −19.5 57.5 

81.34 
endpoint −16.2 17.6 2.96 −18.3 19.5 −2.02 

Distal 
top point 30.1 −36.7 47.7 

90.03 
30.1 −30.3 46.5 

91.98 
end point −14.3 12.1 −14 −15.9 16.3 −18.1 

Table 3.9 compares the results obtained using the conventional method, the method proposed in this chapter, and the manual 

measurement in the first case. Compared with the traditional method, our method has a clear advantage and improvement in the 

measurement results’ accuracy. 

Table 3.9 Comparison results. 

Pin Endpoint Traditional Method Our Method 
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Manual Measurement 

(mm) 

Displacement 

(mm) 
Relative Error 

Displacement 

(mm) 
Relative Error 

Proximal 
top point 3.30 7.22 118.79% 3.90 18.21% 

bottom point 4.56 5.73 25.66% 5.80 27.11% 

Distal 
top point 4.92 6.51 32.32% 5.27 7.09% 

bottom point 4.48 6.08 35.71% 5.22 16.62% 
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Figure 3.19 illustrates the comparison of the results’ absolute error values using 

the conventional method and our method. Where Figure 3.19 a,b shows the 

displacement of the top and bottom endpoints of the proximal pin, and Figure 3.19c,d 

shows a comparison of the distal pin measurements. 

  
(a) (b) 

  
(c) (d) 

Figure 3.19 Comparison of the absolute value of the absolute error of the results obtained 

using the traditional method and the method proposed in this chapter: (a) Comparison of top 

endpoint displacement results on the proximal pin. (b) Comparison of bottom endpoint 

displacement results on the proximal pin. (c) Comparison of top endpoint displacement 

results on the distal pin. (d) Comparison of bottom endpoint displacement results on the distal 

pin. 

3.5 Discussion 

The incidence of proximal femoral fractures has increased significantly with the 

population’s aging, which has occurred far more among women than men [24]. The 

preferred treatment for stable femoral neck fractures is internal fixation, where pins 

or screws are the main components use for internal fixation [25]. Implant stability is 

critical to the success of internal fixation procedures and femoral healing. Traditional 

methods of evaluating implant stability mainly use biological simulation and finite 

element analysis, which have limitations and cannot comprehensively evaluate the 

stability of implants. CT medical images can provide displacement data of the 
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implant inside the patient’s body and can most directly evaluate the stability of the 

implant under real force conditions. However, the current clinical practice mainly 

relies on the manual measurement of displacement data by surgeons, which imposes 

a significant workload on surgeons, and the accuracy of the measurement results is 

highly dependent on the experience of surveyors. In this research, we propose a 

method to measure implants’ movement after internal fixation for patients suffering 

proximal femur fractures, and this method is based on 3D point cloud registration. 

In Reference [22], Schopper, Clemens, et al. evaluated two internal fixation 

systems by simulating the pelvis’s pressure on the femur during human gait and 

measured the force and displacement of the implants in the frontal and sagittal planes. 

In another study, the authors used finite element models to implement biomechanical 

simulations of five different configurations of internal fixation implants [23]. In both 

studies, only the pelvis’s pressure on the femur was simulated during the standing 

phase of the patient’s gait, ignoring the interaction forces of the muscles and other 

organs. More critically, they did not study the internal fixation implants in the fixation 

effect throughout the patient’s postoperative recovery. In daily life, patients spend 

most of their time sleeping and sitting, which can have a cumulative effect on the 

implant position and its stability. The method proposed in this chapter directly utilizes 

authentic postoperative CT medical images of the patient as the basis for the study. 

The results in Table 3.6 show the displacement of the pins after the patient has 

experienced one year postoperatively. This method addresses the limitations of 

traditional biomechanical simulation methods in simulating the complex 

environment. 

We found that the ICP algorithm can provide high precision in fine alignments. 

However, with the number of points increasing in the point cloud, the time consumed 

per iteration also grows. To solve a problem that requires a long time, we downsized 

the point cloud or removed parts of the 3D model with less feature quantity. In our 

experiment, we used a part of the femur for registration, and satisfactory results were 

obtained. According to the outcomes listed in Table 3.4, when the number of 

iterations was set to 125, the time used for registration increased by five milliseconds 

for each additional point. Therefore, we can reduce the registration time by reducing 

the number of model points while still meeting the registration accuracy requirements. 

In this study, we also found that a portion of the corresponding points in the aligned 
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model had a distance greater than 2 mm, and this fraction ranged from 3% to 19%. 

The possible reason for is that, in the process of 3D reconstruction, some non-femoral 

regions are identified as the femur as the threshold value is the same as the femur, 

resulting in some irregular points existing in the generated femur. Since these points 

do not belong to the femur, the corresponding points cannot be found, but the nearest 

points are matched, which affects the experimental results. The extraction of 

boundary information from point clouds and the development of point cloud filtering 

methods are expected to improve the experimental results. 

The results in Table 3.9 demonstrate that, in the current study, the newly proposed 

method showed a significant improvement in the error of the measurement results 

compared to the method in which the surgeon establishes a coordinate system in the 

CT images for measurement. The conventional measurement method relies strongly 

on the expert’s experience in establishing the coordinate system and selecting the 

target location, which is susceptible to subjective factors. 

Another important finding based on the results listed in Table 3.6 was that the 

Hansson pin moved gradually downward in the femur, whose coordinate system was 

built and is described in Section 2.5.3. In 10 cases, all pins moved along the Hansson 

pin’s central axis, toward the lateral aspect of the femur. For seven of the cases, the 

distal pins were displaced to varying degrees in the opposite direction of the hook pin 

extension, and the displacements of the top ends were greater than the displacements 

of the bottom ends, indicating that the pins also rotated to the opposite direction of 

the hook pin elongation during the displacement process.  

In Figure 3.8e, the smoothness of the two femoral models’ outer surface without 

the femoral head is not consistent; this is because the two 3D femoral models 

originated from different CT image sequences. These two sequences were scanned 

one year apart and used different scanning equipment and scanning parameters. The 

green model was derived from CT medical images after an internal fixation surgery 

with an image layer spacing of 3 mm. The blue model was derived from CT images 

after a one-year recovery period with an image layer spacing of 1.5 mm. While 

cutting the 3D model, the images with a large layer spacing produced significant 

faults at the incision, which did not affect the reference registration. 
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The major limitation of this study is that we used the built-in threshold tool of a 

3D Slicer to implement the automatic 3D reconstruction of CT medical images. The 

reconstructed 3D model contained the whole femur and the connected part of the 

pelvis, which needed to be artificially segmented in order to obtain the alignment 

object, as shown in Figure 3.4. In addition, it was necessary to manually remove the 

interfering points generated during the 3D reconstruction process to avoid the 

influence of these interfering points on the registration results. The average time 

required to manually remove the interference points and segment the alignment 

object was 120 s. The time required to measure the implant displacement depended 

on the number of sampling points of the alignment object and can be controlled to be 

less than 200 s. The total time required to complete an implant displacement was 

approximately 270 s. Since the preprocessing of the 3D point cloud data in this study 

was independent of the displacement calculation stage, the automatic segmentation 

of the reference part could also be achieved by other methods in future studies to 

reduce the time consumption. In addition, the purpose of this study was to verify the 

effectiveness of the proposed method, therefore there was no optimization in our 

study for the registration time. The main time of the displacement calculation stage 

was spent on the alignment of the reference 3D point cloud, and we could reduce the 

time consumption by decreasing the number of sampling points. 

3.6 Conclusions 

In this investigation, the aim was to present a method based on point cloud 

matching for evaluating the stability of internal fixation implants in femur fractures 

during patient recovery. This method was based on the Hansson pins analysis and is 

widely applicable to the analysis of other implants used for fixation. We 

reconstructed the femur and implant using CT images of patients at different times 

after internal fixation surgery. A portion of the femur with no femoral head was 

selected as a reference, and the pin-point clouds from different periods were 

converted to the same coordinate system to calculate the endpoint displacement of 

the corresponding pin. Meanwhile, a new coordinate system based on the pin axis 

and extension direction of the hook pin was used to evaluate the Hansson pin as a 

feature. 
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Since the same initial orientation was chosen for the same set of data in the 3D 

reconstruction model, the femur’s rough alignment was avoided, which reduced the 

alignment time and improved the accuracy. Furthermore, the measurement error in 

our study was limited, and the method yielded satisfactory results. 

 



Chapter 4 Implant evaluation method based on femur intelligent segmentation 

43 

 

Chapter 4  

Implant evaluation method based on 

femur intelligent segmentation and 

multi-resolution frame registration 

4.1 Introduction 

Femoral neck fractures (FNFs) constitute a common surgical trauma worldwide, 

with a patient population of 1.6 million per year and growing annually [51]. Aging 

people have a high incidence of femoral neck fractures due to their tendency to low-

energy fall and high prevalence of osteoporosis prevalence [52]. Previous 

epidemiological studies have indicated that the incidence is approximately twice as 

high in females as in males [53]. Particularly with the aging of the population in all 

countries, the prevalence of femoral neck fractures increases over the years, 

accompanied by high mortality and disability rates [54]. It is expected that by 2050, 

the number of patients with FNFs will exceed 6 million worldwide [55], which will 

account for a significant proportion of orthopedic work and constitute a health care 

burden significant in terms of socio-economic impact. 

Plastic surgery literature now agrees that cannulated screws and the dynamic hip 

screw (DHS) are the most commonly used treatment modalities for stable fractures 

classified as Garden I or II [56]. The internal fixation is minimally invasive compared 

to total hip arthroplasty (THA) and can significantly reduce the postoperative hospital 

stay [57] –[58]. Nevertheless, the use of internal fixation hip implants is associated 

with medium to long-term surgical complications such as chondrolysis, osteonecrosis, 

avascular necrosis, and mechanical failure of the implant, accompanied by a high rate 

of rehospitalization and reoperation [59]–[61]. 

Much literature has been presented to analyze and study internal fixation results 

with hip implants. Marco Bigoni et al. analyzed postoperative patient mortality, 

complications, and reoperation rates statistically by following 244 elderly patients 
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who underwent internal fixation with implants over 10 years from January 2008 to 

December 2018 [62]. The results indicate that internal fixation effectively stabilizes 

femoral neck fractures, and the patient’s postoperative mortality and complication 

rates are only associated with individual patient comorbidities. Ref. [63] has 

conducted mechanical simulations of implants for the treatment of stable femoral 

neck fractures using synthetic bones. That study evaluated hip implants’ ability with 

different configurations by limiting relative motion at the fracture site using a manual 

hydraulic press to simulate hip compression, i.e., to measure the amount of resistance 

of the pins. In the experimental part, the femur’s stability was compared between two 

internal fixation systems by simulating force by the spine to the femur, with one of 

the internal fixation systems using two parallel cannulated screws and the other 

framework using three cannulated screws forming a pyramidal shape. In [64], the 

authors modeled the fracture with segmented human cadaveric femora. Using the 

servo-hydraulic device to simulate the force components in the frontal and sagittal 

planes in human gait motion, they measured the displacement of both internal fixation 

systems at different loads. Moreover, Jiantao Li et al. proposed a method analyzing 

five different implant configurations using a finite element approach [65]. They 

evaluated the mechanical properties such as stress and strain in different 

postoperative weight-bearing states of patients by computer simulation. In contrast, 

ref. [66] analyzed the stresses applied to the femur and related tissues under different 

fracture types after internal fixation of femoral neck fractures from a biomechanical 

perspective. It assessed the mechanical stability of mainstream fixation techniques 

such as cannulated screws, hip screw systems, proximal femur plates, and 

cephallomedullary nails. 

Among these evaluation methods, the use of statistics to evaluate treatment 

effectiveness cannot provide specific reasons for pins’ failure and requires a large 

number of experimental samples as a basis for analysis. Mechanical simulations 

using synthetic bones, cadaveric femora, and finite element-based 3D models all use 

a simulated stress environment. Obviously, the simulated environment is different 

from the patient’s real behavioral movement after surgery and can only use a limited 

number of parameters and simulated stresses in a single scenario. What is more, it 

takes months or years of data collection to assess the effectiveness of internal fixation 

on patients accurately, which is very difficult for mechanical simulation experiments. 



Chapter 4 Implant evaluation method based on femur intelligent segmentation 

45 

 

Computed tomography scans provide realistic information about the displacement 

of implants in the patient’s body after surgery. The acquisition of computerized 

tomography (CT) scan does not place an additional load on the patient’s daily 

movements. Traditionally, however, the measurement of fracture displacement or 

implant displacement in the body is mainly performed by the surgeon in CT medical 

images, selecting a reference, measuring the target object’s distance relative to the 

reference in different CT sequences, and calculating the displacement. In [67], the 

authors acquired two sets of chest computed tomography scans, CT1 and CT2, at an 

interval of 84 days. The distance of the rib’s outer cortex was measured in three 

planes, using the site of the rib fracture as a reference point to verify that rib fractures 

become more displaced over time. A similar approach was used by Bugaev and 

Nikolay et al. to measure axial displacement, sagittal displacement, and coronal 

displacement, and then they calculated the (Euclidean) distance using the 

Pythagorean formula [68]. In the literature [69], digital calipers and a protractor were 

used to measure foot fractures within the CT images’ coronal plane. This manual 

method of measuring implant displacement is complex and time-consuming to 

perform, and the accuracy of the measurement results is susceptible to subjective 

influence by the surgeon. 

This chapter presents a method for evaluating internal fixation implants based on 

CT medical image analysis. The Hansson pins system is used as the study object to 

quantify the implant’s movement after surgery and to analyze the effectiveness of the 

internal fixation system. Our method allows us to analyze the movement of the 

implant in a specific direction with low impact on the patient, based on real patient 

data. 

4.2 Materials and Methods 

4.2.1 Creation of Data Sets 

In this chapter, we constructed Dataset A and B for training the segmentation 

models of the left and right femur, respectively, and Dataset C for femur registration 

and displacement measurement of the implant. In the segmentation femur stage, this 

chapter uses 3D-UNet, a semantic segmentation framework, which differs from the 

instance segmentation framework; 3D-UNet can only classify pixels in an image. In 



Chapter 4 Implant evaluation method based on femur intelligent segmentation 

46 

 

our study, if the dataset used for training does not partition anatomically left and right, 

the trained model will also label the healthy femur that is symmetrical with the 

injured femur as the target object. While in Section 2.2, the mask required for fine 

registration is only the femur that is fixed with the implant. To avoid registration 

failure, we construct the left femur and right femur datasets separately and train two 

segmentation models for the left and right femurs. 

4.2.1.1 Dataset A and B 

High-quality medical image collection is challenging due to the need to protect 

patient privacy and data security. Additionally, the annotation of images requires a 

large number of experienced surgeons; therefore, it is quite costly to integrate high-

quality annotated data, limiting the development of medical image segmentation 

algorithms, which has become an accepted fact in the field of medical image research 

[70]. Consequently, no publicly available medical image datasets specifically for 

femoral fractures are available. However, some of the images in the dataset that are 

currently publicly available for other research purposes contain the femur we need. 

In these raw CT images, in addition to containing the entire left and right femur, 

adjacent tissues and organs such as the pelvis, spine, and ribs are also included. 

Which can considerably increase the GPU’s memory usage, making it necessary for 

us to extract regions of interest (ROIs), i.e., image information that contains only 

femur parts. Furthermore, we need to label the femur information as ground truth for 

training manually. 

We used Pelvic Reference Data, a free dataset used for commercial, scientific, and 

educational purposes, as the original data [71] –[72]. This dataset was created to serve 

as a reference for the rigid registration of clinical images. The process of removing 

irrelevant information from CT images is shown in Figure 4.1. 

Figure 4.2 displays the coronal images viewed from the anterior side. The 

complete image (b) is shared between the two datasets, and as a complement, each of 

the two datasets also contains unique left femur (a) and right femur (c). In this way, 

we can simply expand the dataset and accurately distinguish between left and right 

femur when segmenting CT images that contain a complete structure. By removing 

the data with poor image quality, in Dataset A, we ended up with 112 images of the 

left femur, of which 84 images were used for training, and 28 images formed the 



Chapter 4 Implant evaluation method based on femur intelligent segmentation 

47 

 

validation set. Similarly, 113 images were collected in Dataset B. A total of 85 images 

were used for training, and 28 images were used for validation. Subsequently, manual 

annotation of the femur for the constructed dataset. 

  

(a) (b) 

Figure 4.1 Cropping of CT images: (a) raw CT data in Pelvic Reference Data, including 

symmetrical femur, pelvis, spine, etcetera; (b) cropped CT images. 

   
(a) (b) (c) 

Figure 4.2 Coronal images viewed from the anterior side: (a) left femur; (b) images shared 

by both datasets; (c) right femur. 

4.2.1.2 Dataset C 

In Dataset C, we collected 10 cases from March 2012 to January 2015 provided 

by Hyogo Prefectural Awaji Medical Center. Each case underwent two CT scans 

after internal fixation surgery and one year later. 

All cases associated with intracapsular fractures and the patient’s age ranged from 

69 to 65 years. These cases all used the Hansson Pin System (Hansson Pins, Swemac, 

Linköping, Sweden) [73]. Hansson pin is a 6.5-diameter unthreaded nail with various 

specifications and the length ranging from 75 to 150 mm. The implant has an 
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integrated hook on each pin’s tip that deploys to provide rotational stability of the 

femoral head following insertion. Typically, using two pins for fixing and screwing 

out the hook pins when fixing (Figure 4.3). Table 4.1 lists information such as the 

patient’s age and the pins used. 

Table 4.1 The length of pins and information of patients in each case. 

Case No. 
Length of Pins (mm) 

Sex Age Location of Fracture 
Proximal Distal 

1 80 90 Female 78 Left femur 

2 80 90 Female 79 Left femur 

3 70 85 Female 90 Left femur 

4 80 90 Female 65 Left femur 

5 85 95 Female 76 Left femur 

6 90 100 Female 64 Right femur 

7 80 95 Female 81 Right femur 

8 80 90 Female 80 Right femur 

9 80 90 Female 67 Right femur 

10 75 90 Female 85 Right femur 

 

Figure 4.3 The position of Hansson pins in the anatomy of the femur. 

Figure 4.4 illustrates the different situations during a CT scan. Generally, in the 

examination during the recovery period from surgery, the CT data is cropped and 

transformed to provide a clearer and faster diagnosis, that is, a localized CT image of 

the left or right femur. In contrast, the complete femur and pelvis are sometimes 

retained in the CT image to visualize information around the fracture site. To obtain 

high robustness of the trained femur segmentation model and avoid the femur 

segmentation failure in the next step, we convert all images to the right, anterior, 

superior (RAS) anatomical coordinate system and use empty images to supplement 

the missing parts. 
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(a) (b) 

Figure 4.4 The partial CT image versus the complete CT images: (a) partial CT images 

containing a single femur; (b) CT images containing the complete femur structure. 

4.2.2 Registration of the Femur 

For measuring the postoperative displacement of the Hansson pins, it is necessary 

to select a reference with rigid morphological properties. Depending on the setting in 

which the Hansson pin is used, the shape and X-ray absorptivity of the proximal 

femur does not change unless structural damage occurs, which satisfies the 

requirements for use as a reference. Femur image registration is the transfer of images 

containing femur and implants from the same patient at different times, different 

scanning devices, different scenes, and others to the same spatial coordinate system 

and strict alignment with femur as the reference. After this transformation, it is 

possible to measure the position information of Hansson pins at different times. 

Typically for CT image alignment, at least two sets of images containing the same 

target information are required. The matching criterion is to achieve maximum 

similarity between the fixed and floating images, a combination of feature space 

matching algorithm, spatial search algorithm, optimization algorithm, and similarity 

measure. Commonly used rigid medical image registration algorithms include point 

set matching based, a genetic algorithm-based, and mutual information-based 3D 

image registration. The alignment of the femur image in this chapter is rigid, i.e., no 

affine transformation of the graph is required, which requires high alignment 

accuracy. 

We choose a multi-resolution framework, which uses negative mutual information 

as the similarity metric function. The framework contains four parts: spatial 
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transformation module, similarity metric module, interpolator, and optimizer, as 

shown in Figure 4.5. 

 

Figure 4.5 Pyramid multi-resolution framework. 

This framework is widely used in medical image registration due to its high 

accuracy, robustness, and fast alignment speed. Its core idea is to input the images in 

the fixed image pyramid and floating image pyramid into the framework layer by 

layer. An optimizer is used to drive the alignment process, and an interpolator is used 

to map the floating images into the new coordinate system [74]-[75]. 

The method of negative mutual information in the similarity measurement module 

was proposed by Mattes et al. in 2003. Mutual information forms a continuous 

histogram estimate of the underlying grayscale image using the Parzen window 

virtually eliminates the effect on the similarity calculation due to interpolation 

quantization and binary data discretization during the image space transformation. 

Image registration can be seen essentially as the process of minimizing the negative 

similarity function. When we define the set of discrete grayscales for a fixed image 

as SF  and the set of discrete grayscales for a floating image as SR , the negative 

similarity function model can be expressed as 

S(μ) = −∑ ∑
p(l,κ;μ) log2(p(l,κ;μ))

pF(l;μ)pR(κ)κ∈SRl∈SF

. (4.1) 

where p(l, κ; μ) is the joint distribution function, which can be calculated from the 

values of the Parzen window cubic spline and zero-order B-splines. l, κ  are the 

grayscale values in SF and SR, respectively. pF is the floating image edge probability 
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distribution and pR is the fixed image edge probability distribution. μ is the image 

transformation parameter. 

Mattes mutual information function has continuously differentiable characteristics. 

The optimizer needs to meet the conditions of high speed, low resource consumption, 

and high robustness to obtain the optimal spatial transformation parameters. 

Therefore, we choose a multi-resolution algorithm as the optimization search strategy. 

In this section, we select the patient’s CT images before the one-year recovery period 

as fixed images and the CT data after the one-year recovery period as floating images 

to construct the Gaussian pyramid. Gaussian pyramids are constructed using 

Gaussian smoothing and downsampling to create a series of images of varying sizes. 

These images form a pyramid model from large to small and from bottom to top, as 

the fixed image and floating image modules present in Figure 4.5. 

We take the original fixed image and floating image as the bottom level 0 of the 

pyramid, and after the discrete low-pass filter calculation, an upper level 1 of the 

upper pyramid is obtained, and the iterative process is repeated. For getting the 

Gaussian pyramid layer Gi, it is necessary to perform Gaussian low-pass filtering on 

its previous level image and then downsample it by inter-row and inter-column, 

usually for removing pixels in even rows and even columns of the image. The 

mathematical expression is 

Gl(i, j) = ∑ ∑ ω(m, n)Gl−1(2i + m, 2j + n)
2
n=−2

2

m=−2

(1 ≤ l ≤ N, 0 ≤ i ≤ Rl, 0 ≤ j ≤ Cl)
. (4.2) 

where N is the number of Gaussian pyramid layers, Rl and Cl are the number of rows 

and columns of the image of the ith layer of the Gaussian pyramid, respectively; 

ω(m, n) is a two-dimensional 5 × 5 window function with the expression as 

ω =
1

256

(

 
 

1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1)

 
 

. (4.3) 

When two 3D images containing femur are input to the framework, the registration 

range defaults to the whole image, and the optimal spatial transformation parameters 

obtained after iteration corresponds to the global search space. In other words, 
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although the spatially transformed floating image matches the fixed image, the 

purpose of our study is to align the femur. The tissues or organs around the pelvis, 

such as the pelvic bone, will significantly affect the similarity calculation. In this case, 

the spatial transformation mostly matches the pelvis’s position rather than the 

proximal femur. Therefore, we use the above framework to perform coarse alignment 

on the images containing the femur. After that, we use the femur’s mask and perform 

fine registration on the region containing the only femur. 

4.2.3 3D-UNet Framework 

To extract the region of interest, we segmented the proximal femur without the 

femoral head in the patient’s CT images using a model trained by the 3D-UNet 

framework. 

3D-UNet is an end-to-end training model proposed by Özgün Çiçek et al., which 

is mainly used for semantic segmentation of medical images [76]. The model inherits 

the features of the 2D-UNet network by using encoder and decoder structures to 

extract features and recover the semantic feature maps into volumetric images with 

the same resolution as the original images. Compared with the 2D-UNet network, 

3D-UNet uses the image interlayer information to ensure the continuity of mask 

changes in adjacent images. Moreover, different from the fully convolutional 

network, which only deconvolutes the feature map, 3D-UNet achieves the multi-scale 

feature recognition of image features by the symmetric structure of four 

downsampling and four upsampling, and the skip connection method, i.e., it fuses the 

shallow features of the same scale in the encoder and the in-depth features from the 

upsampling to avoid the loss of edge information. The downsampled low-resolution 

information provides contextual information to the target, and the upsampled high-

resolution features improve the network’s ability to recognize edge information such 

as gradients. Figure 4.6 illustrates the 3D UNet network framework used in this 

chapter. In the encoder structure, we set the network structure to 5 layers, and the 

number of channels in each layer is 16, 32, 64, 128, and 256, respectively. 
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Figure 4.6 The framework of a symmetrical structure of a five-layer network with 1 

channel for both input and output and a volume of 80 × 80 × 80. 

This study uses dice loss as the loss function, which is widely used in neural 

networks for medical image segmentation. Dice score coefficient (DSC) is used to 

evaluate the degree of overlap of two samples, and in binary semantic segmentation, 

the segmentation effect is evaluated based on ground truth [77]. Hence, we can 

maximize the overlap of two samples using 1 − DSC. Dice loss was first proposed 

and used in the VNet framework by Milletari et al. and is defined as 

Ldice = 1 −
2∑ pigi

N
i=1

∑ pi
2N

i
+∑ gi

2N

i=1

 
(4.4) 

where pi  and gi  represent the predicted label and ground truth of each voxel, 

respectively, during the training process. N is the number of voxels in the input image. 

CT images vary depending on patient condition and scanner model. The output 

segmented femur is often accompanied by segmentation noise, as shown in Figure 

4.7. The noise appears as small, separated coherent voxels. The model outputs 

segmented images in which the femur has the largest number of coherent voxels. To 

correct this problem of non-femur parts being incorrectly identified, we retain only 

the largest coherent components in the post-processing of the model output. The 

mathematical model can be expressed as 

Vopt = argmax(F(v)). 
(4.5) 

where F(v) is a function to calculate the maximum number of contiguous adjacent 
voxels. 
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(a) (b) (c) 

Figure 4.7 In post-processing, remove noise from the image: (a) input images; (b) output 

image with noise; (c) output image with maximum coherence preserved. 

4.2.4 Principal Component Analysis (PCA) 

Based on the aligned CT images, the Hansson pins were reconstructed as a 3D 

model. We use the point cloud data to calculate the displacement distance after 

locating the endpoints of the pins. In this subsection, we apply the principal 

component analysis method to fit the pins’ axes, as shown in Figure 4.8. The point 

cloud size and the obtained axes are used to draw the outer envelope of the pins, and 

the point intersecting the envelope in the direction of the axes is the endpoint of the 

pins. 

 

Figure 4.8 The pin’s axis and the outer bounding box of the pin intersect are the two 

endpoints of the implant. 
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The principal component analysis is a multivariate statistical method commonly 

used for dimensionality reduction of multidimensional data [78]. The main principle 

is that the m-dimensional feature vector is mapped to the n-dimensional vector using 

the orthogonal transformation. This n-dimensional vector is an orthogonal vector 

constructed based on the original features, where the first vector is the direction with 

the most considerable variance in the original data. 

The algorithm is: 

Input: 

• M-dimensional sample set D = (x(1), x(2), . . . , x(m)); 
• The number of dimensions n to be dimensioned down to. 

Output: reduced-dimensional sample set D′. 

Steps: 

1. Standardize all variables. 

x(i) = x(i) −
1

m
∑x(j)
m

j=1

 
(4.6) 

2. Calculation of covariance matrix. 
3. Computes the eigenvectors and eigenvalues of the covariance matrix. 
4. Select the largest n vectors normalized to form a new matrix W. 
5. Transform the original matrix. 

z(i) = WTx(i). (4.7) 

6. Output sample set D′ = (z(1), z(2), . . . , xz(m)). 

We define a single point in the point cloud as Pi = < xi, y, zi >. The point cloud 

can be represented as a sample set D = (P1, P2, … , Pn), by inputting D into the PCA 

algorithm above, we solve the feature vectors (ε1, ε2, ε3) and form the orthogonal 

matrix W = [ε1
′ , ε2

′ , ε3
′ ] after standard orthogonalization of each feature vector. ε1

′ , ε2
′ , 

and, ε3
′  are the main directions of the input point cloud, and the center of mass of the 

point cloud is taken as the origin of the new coordinate system. Using the point 

cloud’s center of mass as the origin of the coordinate system, ε1
′ , ε2

′ , and ε3
′  as the 

axes to form the coordinate system shown in Figure 4.8, where ε1
′  is the blue axis, ε2

′ , 

is the green axis, and ε3
′  is the blue axis. The original point cloud data is converted to 

the new coordinate system using Equation (4.7). Subsequently, the red enclosing box 

is constructed according to the point cloud’s maximum and minimum values in the 

three directions of X, Y, and Z. 

4.3 Experiment 
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4.3.1 Input of Images and Training of Segmentation Models 

In general, CT images are obtained by data transformation of scanning devices 

according to the different X-ray beam absorption coefficients of human organs or 

tissues. The coordinate system origin and voxel spacing of the generated CT images 

vary depending on the scanning device. The 3D-UNet framework cannot extract 

voxel spacing as feature information, so we resample the data in Dataset A and B to 

the same voxel spacing, which is called the specified spacing. To minimize the loss 

of image detail due to the decrease in slices caused by increasing the specified 

spacing, we resampled the voxel spacing to 1.5 × 1.5 × 1.5 mm. 

The images’ orientation may vary from case to case when the training data is input 

to the neural network. Here, we use the RAS coordinate system to ensure the input 

data orientation’s consistency. In addition, to simplify the feature extraction process 

of the 3D-UNet network and reduce the impact of femoral edge blur on the 

segmentation, we remove the information beyond 20HU-220HU from the CT images 

and convert the intensity range of the remaining information to (0,1). The processed 

images and labels are illustrated in Figure 4.9. 

  
(a) (b) 

Figure 4.9 The processed images and labels. 

In this chapter, the 3D-UNet network is set to five layers, so the size of each input 

image size should be a multiple of 16. Considering the image’s size after specified 

spacing resampling, we use cropping to augmentation the dataset in this section, and 

the cropped image size is (80, 80, 80). 3D-UNet has the features of requiring less 

training data and good results for medical image segmentation. Published literature 

indicates that the 3D-UNet network can still achieve good segmentation results when 
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a small number of datasets are used for learning [76]. Thus, we did not use methods 

other than random crops for data augmentation. 

The datasets A and B separately input into the 3D-UNet framework of the previous 

session for training. In this section, we implement the framework using MONAI, an 

open-source framework based on PyTorch [79]. The training yields the left femur 

segmentation model and the right femur segmentation model, respectively. The 

images in Dataset C were segmented using each of the two trained models according 

to the femur’s left and right positions with internal fixation using Hansson pins. The 

segmentation information of the injured femur was collected as mask data for the 

next step. 

4.3.2 Registration of References 

The CT data acquired postoperatively as fixed images, and the CT data scanned 

one year later as floating images were simultaneously inputted into the mutual 

information registration framework in the previous section for coarse alignment. The 

coarse alignment result is used as input, and the femur segmentation data from the 

previous step is used as masks for fine alignment of the images. To avoid the 

influence of mask edge information on the alignment, we use a kernel of size (27 × 

27 × 27) to perform morphological collision processing on the mask. 

To verify that segmenting femur by the model can provide an accurate mask for 

fine alignment, we add an experiment to manually labeled femur as the mask for fine 

alignment and compare the effect of both masks on fine registration. 

The fixed image and floating image after fine registration are shown in Figure 

4.10. In the two CT images after alignment, the proximal femur parts without the 

femoral head are overlapped and served as the reference. Observed in 3D space, the 

proximal pin and distal pin are in the same spatial coordinate system, and after 3D 

reconstruction, the voxel data of pins in CT are transformed into point cloud data, as 

shown in Figure 4.11. 
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(a) (b) (c) 

Figure 4.10 CT images after registration: (a) fixed images; (b) fine-aligned floating images; 

(c) the two images in the coordinate system with the overlapping femur as the reference. 

 

Figure 4.11 3D point clouds of proximal pins and distal pins in the same spatial coordinate 

system for both previous and posterior CT images. The purple point cloud is part of the 

proximal femur and pelvis. The green and blue point clouds represent the proximal and distal 

pins obtained from the first postoperative CT scan. Gold and red point clouds represent the 

proximal and distal pins from the second CT image after the previous CT scan, respectively. 

4.3.3 Calculation of Implant Displacement 

Using principal component analysis, we built the pins’ outer bounding box, 

obtained the coordinates of the endpoints of the four pins in Figure 4.11 separately, 

and calculated the displacement of the corresponding points. To analyze the 

displacement of Hansson pins more comprehensively, we take the axis of pins as the 

z axis, the direction of hook extension as y axis, and the direction of the cross product 

of y and z as x axis to establish a new coordinate system, as shown in Figure 4.12 a,b 

are the proximal pin and distal pin coordinate systems, respectively. In the new 
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coordinate system, the proximal pin and distal pin’s displacements in different 

directions are calculated. 

  
(a) (b) 

Figure 4.12 Calculate the displacement of the proximal pin and the distal pin in the specified 

direction in the newly established spatial coordinate system: (a) establish the coordinate 

system based on the proximal pin; (b) establish the coordinate system based on the distal pin. 

4.3.4 Measurement of Implant Displacement Based on 

Conventional Methods 

In this subsection, to verify our proposed measurement of implant displacement’s 

validity, we used the reference point-based distance measurement method described 

in [68]. We define the point on the outer surface of the Lesser trochanter farthest from 

the centerline of the medullary cavity as reference point A. As shown in Figure 

4.13a–c, all steps to locate point A were performed entirely using the three planes in 

the CT images, and no 3D femur model was used to assist in localization. Figure 

4.13d is used to assist in showing the position of the reference point in the CT image. 

  
(a) (b) 
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(c) (d) 

Figure 4.13 Locating reference point A in the CT image: (a) reference point located in the 

axial plane; (b) reference point located in the sagittal plane; (c) reference point located in 

coronal plane; (d) display reference point in the 3D model. 

Point A is used as the origin, and a new coordinate system is formed with the 

intersecting lines of the planes, axial plane (green), coronal plane (blue), and sagittal 

plane (red), as shown in Figure 4.14. The coordinates of the target object are 

measured in the new coordinate system, and the Euclidean distance is calculated 

using the formula 

d = √(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2  . (4.8) 

where (x1, y1, z1) and (x2, y2, z2) represent the coordinates of the same point in the 

two CT image sequences, respectively. 
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Figure 4.14 Create coordinate system for measurement. 

To reduce the measurement error, we measure the coordinates of each point three 

times and take the average value to plug into Equation (4.8). 

4.4 Results 

4.4.1 Training Loss, Mean Dice, and Evaluation 

Datasets A and B are used to train the left femur segmentation model, and the right 

femur segmentation model is derived from the same data source with the same image 

quality. The proportions of the images used for training and validation are also the 

same. The results of loss and the change of mean dice during the two models’ training 

are shown in Figures 4.15 and 4.16, respectively. 

  
(a) (b) 
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Figure 4.15 The average loss calculated in training: (a) left femoral segmentation model; (b) right 

femoral segmentation model. 

  
(a) (b) 

Figure 4.16 Mean dice of the model: (a) left femoral segmentation model; (b) right femoral 

segmentation model. 

The best metric was 0.9547 when the left femur segmentation model was trained 

with peoch of 580, and another model obtained a metric of 0.9450 when the peoch 

reached 552. When the images in Dataset C are segmented according to the injury 

site using the two models that were trained, the left segmentation model’s evaluation 

metric is 0.85, and the evaluation metric of the right segmentation model is 0.81, 

using the manual labeling information as the ground truth. Figure 4.17 shows a 

comparison of the 3D images of the manually segmented proximal femur and the 

segmented femur using the model. 

4.4.2 Registration Evaluation 

A multi-resolution framework using negative mutual information as the image 

similarity metric function is used to perform coarse registration of the images in each 

case, and their metric values are listed in Table 4.2. 

Table 4.2 Coarse registration metrics. 

Left femur 
Case no. 1 2 3 4 5 

Metric value −0.271 −0.039 −0.285 −0.322 −0.467 

Right femur 
Case no. 6 7 8 9 10 

Metric value −0.367 −0.259 −0.178 −0.097 −0.331 
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(a) (b) 

Figure 4.17 Comparison of femoral segmentation results: (a) manual segmentation; (b) 

segmentation using model. 

Figure 4.18 plots the coarse-aligned image with the 3D schematic of the femur. 

The yellow model presents the skeletal part of the fixed image, and the purple is the 

floating image. In the femur part, the two images do not entirely overlap; instead, 

some of the pelvic bones overlap. 

 

Figure 4.18 Spatial location of femur after coarse alignment. 

In the experiments, the label obtained using the segmentation model and the 

manual annotation is used as the mask to fine align the images, respectively, and the 

mutual information from the two methods is presented in Table 4.3. For the images 

in the same case, there is no significant difference in the precision-aligned metric 

value obtained when different masks are selected.
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Table 4.3 Results comparison of fine alignment using different masks. 

Left femur 

Case No. 1 2 3 4 5 

Metric value 

Segmentation model −0.306 −0.065 −0.364 −0.346 −0.308 

Manual labeling −0.289 −0.046 −0.357 −0.370 −0.312 

Right femur 

Case No. 6 7 8 9 10 

Metric value 

Segmentation model −0.337 −0.180 −0.256 −0.270 −0.339 

Manual labeling −0.360 −0.240 −0.231 −0.259 −0.342 

 

Figure 4.19 shows the 3D schematic diagram of the floating image obtained from the two experiments, where the yellow model is the 

bone in the fixed image, the green model is the result of alignment with the label generated by the segmentation model as the mask, and 

the red model is the result of manual labeling as the mask. 
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Figure 4.19 Comparison of the results using different labeling as a fine-aligned mask. 

The fine-aligned CT images were transformed by 3D reconstruction to obtain the point cloud data, as in Figure 4.20. 

4.4.3 Displacement measurement 

To ensure that the 3D point cloud data can represent the actual size and accurate displacement calculation of Hansson pins, we 

compared the pins’ actual length with the measured length of the point cloud data, and the results are reported in Table 4.4. Each case 
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contains two sets of CT images, fixed images, and floating images; all the results are presented. The error between the length of the pins 

calculated by the point cloud and the actual length is within 2 mm. 

Table 4.4 Comparison of the actual length of Hansson pins with the point cloud data. 

Fracture Site Case No. Proximal Pin (mm) Distal Pin (mm) 

  Actual Length Fixed Images Floating Images Actual Length Fixed Images Floating Images 

Left femur 

1 80 80.38 82.19 90 90.38 90.39 

2 80 80.28 80.46 90 90.31 90.14 

3 70 70.07 69.49 85 86.96 85.75 

4 80 81.07 81.32 90 90.98 90.10 

5 85 86.77 84.93 95 96.36 96.46 

Right femur 

6 90 90.24 91.98 100 101.29 101.32 

7 80 79.84 79.89 95 95.29 95.00 

8 80 80.43 79.31 90 90.51 89.86 

9 80 80.61 79.38 90 90.82 89.27 

10 75 75.46 75.44 90 90.80 90.94 

Table 4.5 shows the displacement distances of the two endpoints of pins calculated using the point cloud data. Additionally, as 

discussed in Section 3.3, a new spatial coordinate system was established with the fixed image pins as the reference. We converted the 

displacements to the new coordinate system for calculating Hansson pins’ displacement in a specific direction. The displacements of the 

pin’s endpoints in the three directions in space are listed in Table 4.6. 



Chapter 4 Implant evaluation method based on femur intelligent segmentation 

67 

 

   

(a) (b) (c) 

  

(d) (e) 
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Figure 4.20 Hansson pins point clouds: from (a–e) is the Hansson pins point clouds used for the left femur; from (f–j) is the Hansson pins point 

clouds used for the right femur. 

 

Table 4.5 Hansson pins displacement measurement based on 3D point clouds. 

Fracture Site Case No. Proximal Pin (mm) Distal Pin (mm) 

  Actual Length Top Movement Bottom Movement Actual Length Top Movement Bottom Movement 

Left femur 

1 80 19.49 17.44 90 16.51 16.11 

2 80 3.18 3.36 90 4.04 3.83 

3 70 0.49 0.26 85 0.55 0.88 

4 80 4.55 4.06 90 4.93 2.47 

5 85 7.62 4.78 95 7.47 7.58 

Right femur 

6 90 8.41 8.99 100 8.87 10.59 

7 80 0.68 0.90 95 1.06 0.78 

8 80 1.98 0.93 90 1.25 0.82 

9 80 1.46 0.46 90 2.11 0.78 

10 75 0.36 0.39 90 1.96 2.09 

Table 4.6 The displacement of Hansson pins’ endpoints in each direction after coordinate transformation. 

Fracture Site Case No. Proximal Pin Displacement (mm) Distal Pin Displacement (mm) 

  Top Endpoint Bottom Endpoint Top Endpoint Bottom Endpoint 
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  x axis y axis z axis x axis y axis z axis x axis y axis z axis x axis y axis z axis 

Left femur 

1 7.76 −7.11 −16.39 −5.54 3.10 −16.34 −1.59 −3.19 −16.22 −0.06 2.78 −15.98 

2 0.23 −0.16 −3.18 −0.26 0.01 −3.36 0.00 −0.79 −3.97 −0.44 0.40 −3.79 

3 −0.06 −0.06 −0.47 0.14 0.06 0.11 −0.22 −0.28 −0.39 0.14 −0.29 0.82 

4 2.78 0.88 −3.50 −1.79 −0.73 −3.60 −0.66 −3.32 −3.42 0.37 0.27 −2.45 

5 0.83 0.43 −7.71 −0.22 −0.43 −4.85 0.33 −1.38 −7.46 −0.30 1.73 −7.49 

Right femur 

6 −1.81 −3.41 −7.28 1.19 2.02 −8.73 1.07 −1.78 −8.74 −0.06 0.94 −10.72 

7 0.45 0.08 −0.49 −0.57 −0.40 −0.53 −0.23 0.05 −1.03 0.19 −0.16 −0.73 

8 0.37 0.58 −1.84 −0.23 −0.50 −0.72 −0.15 0.10 −1.24 0.54 0.05 −0.58 

9 −0.29 −0.30 −1.38 0.30 −0.26 −0.14 −0.51 −0.32 −2.01 0.09 0.60 −0.44 

10 −0.05 0.31 −0.17 −0.30 −0.19 −0.15 −0.18 −0.34 −1.94 0.10 0.38 −2.07 

 

We compared the manual measurement of implant displacement obtained in Section 3.4 with the femur registration-based 

measurements proposed in this chapter. The difference between the two experimental results is shown in Table 4.7. The measurement 

error is within 3 mm, except in Case 3, where the measurement error is −3.57 mm. 

Table 4.7 The difference between the implant displacement results obtained by the conventional method and femur registration-based 
method. 

Fracture Site Case No. Proximal Pin (mm) Distal Pin (mm) 

  Actual Length Top Movement Bottom Movement Actual Length Top Movement Bottom Movement 

Left femur 1 80 −0.77 0.54 90 −0.84 −0.18 
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2 80 −0.08 −0.36 90 −0.81 −0.31 

3 70 −3.57 −1.89 85 −0.16 −0.34 

4 80 −1.87 −0.62 90 −1.67 −0.88 

5 85 0.55 0.57 95 1.04 2.26 

Right femur 

6 90 −1.84 −1.68 100 −2.47 1.77 

7 80 1.37 1.91 95 1.61 1.53 

8 80 2.07 2.09 90 0.69 2.86 

9 80 1.98 1.25 90 2.68 2.64 

10 75 0.11 2.46 90 0.21 2.37 
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Figures 4.21 and 4.22 depict the errors of the lengths of Hansson pins obtained by 

the method based on femur registration and conventional method from the actual 

values, respectively. It is used to evaluate the stability line and accuracy of the 

measurement method. 

 

Figure 4.21 Length error of proximal Hansson pins calculated based on femoral registration 

method and traditional method. 

 

Figure 4.22 Length error of distal Hansson pins calculated based on femoral registration 

method and traditional method. 

4.5 Discussion 

Internal fixation using implants is the standard management option for the 

treatment of stable femoral neck fractures. No evaluation method of the internal 
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fixation system has been proposed that can use long-term postoperative examination 

data and measure pins displacement based on the postoperative patient’s realistic 

daily movement. In this chapter, we use the Hansson pins system as the object of 

study. A neural network with a symmetrical structure was used to segment the injured 

femur automatically, and the segmented label was used as a mask to register the 

patient’s postoperative CT images at different time points. We calculated the 

displacement by obtaining the coordinate information of the hip implant from the 3D 

point cloud generated by the aligned CT images. 

This study’s focus is to quantify and visualize the movement of the patient’s 

implanted pins after surgery and to evaluate the internal fixation system based on the 

effect of the patient’s regular behavioral habits on the migration of the implant. 

Generally, the pins’ axial displacement is a fundamental criterion, and the quantified 

displacement of the pins is the most visual data that can be read in radiographs, 

reflecting the pins’ ability to resist axial force. In many postoperative evaluations of 

orthopedic internal fixation procedures, the degree of implant movement is used as 

an indicator of the need for reoperation, the mechanical failure of the pins, or the 

internal fixation device’s reliability [80]–[82]. For example, in [83], the migration of 

screw and K-wire was used as one indicator to analyze the outcome after internal 

fixation of proximal humeral fractures. Due to the nature of radiographic images, 

surgeons judge implant failure based on experience only if significant implant 

displacement occurs. The pins displacement measurement method proposed in this 

study can quantify the implant’s displacement value in any specified direction in 3D 

space by transforming the coordinate system and visualizing it by 3D reconstruction. 

Furthermore, we use the segmented femur obtained from a neural network with 

symmetric properties as the mask for alignment and use the multi-resolution 

framework as the core for automatic alignment of CT images, which reduces human 

intervention and dramatically reduces time consumption. Therefore, it can reduce the 

workload of surgeons and their reliance on experience. 

In this chapter’s experiments, two sets of CT images for measurement with a one-

year interval between scans. In contrast to many literature pieces that use hydraulic 

devices or finite element simulations to simulate a single motion scenario of the 

patient, the evaluation method proposed in this chapter is based on the analysis of the 

pins data presented after the real behavior. Furthermore, we can fuse the patient’s CT 
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data at multiple time points and combine the patient-specific health information for 

the evaluation of the internal fixation system, avoiding the simulation results that do 

not match with the real data due to simplified parameters. More importantly, the CT 

images we use can provide three-dimensional coordinate data with higher accuracy 

of results compared to two-dimensional radiological images. 

We used negative mutual information for the experiments with the coarse and fine 

alignment of CT images as the evaluation function of image overlap. The metric 

values of fine registration in some cases listed in Table 4.3 are smaller than those of 

coarse registration. The fine alignment and the coarse alignment have different ranges 

of effect in the similarity function. In the coarse alignment, the mutual information is 

calculated with the whole input image as the range, while the fine alignment has a 

different range due to the mask’s use. The metric values in Table 4.3 are to verify 

whether there is a difference between the registration using manual annotation and 

the registration using the mask generated by 3D-UNet and are not correlated with the 

results shown in Table 4.2. 

Another interesting finding in this chapter is that in the 10 cases where Hansson 

pins were used as the internal fixation system, both proximal and distal pins shifted 

to varying degrees along the axis of the pins, away from the femoral head, and to a 

small degree in other directions compared to axial migration. Biomechanical analysis 

is that since the upper body’s major weight within the frontal and sagittal planes 

produce different components on the femur during normal walking [84]. In Case 2, 

the displacement in both axial and hook directions was significantly greater than in 

the other cases and may be related to the severity of the patient’s osteoporosis, which 

will continue to be discussed in future studies. 

By comparing the lengths of Hansson pins calculated by the femur-based 

registration method with the traditional method in Figures 4.21 and 4.22, we found 

that the measurement stability and accuracy of the proposed method are higher than 

the traditional method. Only in cases 4 and 6, the traditional method’s absolute errors 

are minor compard to the method proposed in this chapter. Moreover, the traditional 

method’s error fluctuation is large, which indicates that the measurement effect is not 

stable. More importantly, according to Table 4.7, the method proposed in this chapter 
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consumes much less time than the manual measurement and obtains similar 

measurement results. 

The cases in dataset C were obtained from Hyogo Prefectural Awaji Medical 

Center. We only collected records of intracapsular fractures in female patients during 

the four years from March 2012 to January 2015. This data supports the previous 

literature’s statistical findings that femoral fracture incidence is significantly higher 

in women than in men [53]. Since male and female femurs have the same symmetrical 

structure, with no significant differences in morphology and stress environment, it 

will not affect the experimental results’ applicability. Moreover, we will continue to 

focus on the treatment of intracapsular femur fractures, and in future studies, we will 

add medical image data from male patients for experimental comparisons. 

In this chapter, we use Hansson pins as the object of study, and Table 4.6 

demonstrates the displacement of the pins along the axial and the hook pointing 

direction. The crucial step of the method is the registration of the rigid reference. 

Thus, the method is widely applicable to evaluating internal fixation implants in other 

fracture sites, and only different segmentation models need to be trained depending 

on the rigid reference. 

A limitation of the current study is that the pins’ calculated displacement values 

are obtained without ground truth for comparison. For this reason, we use mutual 

information as the evaluation function in the process of registration of CT images and 

set the convergence minimum to 1e-6 to ensure the maximum overlap of the 

registered images. The error is limited to an acceptable range by the intuitive 

evaluation of the 3D images of the two data sets after alignment. Moreover, to ensure 

the pins’ displacement values’ validity, we use the actual length of Hansson pins as 

the parameter criterion for 3D reconstruction in generating 3D point clouds, and the 

length error is less than 2 mm. Despite the limitations, the results obtained by this 

method of measurement can accurately reflect the motion trend of the pins. For 

overcoming the limitations of this study, more biomechanical experiments are needed 

as a comparison of the results. 
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4.6 Conclusions 

This study refers to address the problems of traditional internal fixation evaluation 

methods used for intracapsular fractures, which have low applicability, do not fully 

reflect the actual postoperative condition of patients, time-consuming, and low 

accuracy. We proposed a rapid evaluation method for internal fixation systems used 

for femoral neck fractures in the elderly. The method uses a 3D-UNet neural network 

to segment the injured femur and uses it as a mask to registers CT images scanned at 

different times. Further, the registered CT images are converted to point cloud data 

to quantify the implant’s displacement in a specific direction. This method does not 

affect the patient’s postoperative recovery and allows the fusion of long-term data for 

the evaluation of the internal fixation system. 

Encouraging experimental results demonstrate that this method gives more 

reliable results than the traditional manual measurement of pins displacement. 

Although the evaluation given in this chapter is preliminary, it is widely applicable 

to implants’ displacement after internal fixation procedures at other sites. A wide 

range of research prospects is available. 
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Chapter 5  

Conclusions 

In this study, our main objective is to propose intelligent evaluation methods to 

measure the stability evaluation of femoral neck internal fixation protocols. We 

propose an evaluation method for internal femoral fixation based on 3D point cloud 

alignment and multi-resolution pyramidal frame alignment. Both evaluation methods 

are based on two sets of CT medical images of patients with femoral neck fractures 

after internal fixation and after a one-year recovery period, with no additional 

detection burden on the patients. Most importantly, the CT medical images record 

information about the displacement of the implant in the patient's real-life 

environment, avoiding displacement measurement errors caused by simulated data. 

Based on the 3D point cloud matching method, the 3D reconstructed femur and 

implant models are converted into point cloud data. The ICP algorithm is used to 

align the two sets of point clouds with the femur as the reference for the postoperative 

period and the interval of one year. The pins point clouds are converted into the same 

coordinate system to achieve the measurement of implant displacement information. 

Based on the evaluation method of multi-resolution pyramidal alignment, the 3D 

UNet framework is used to train the femur segmentation model, and the CT images 

are directly used as the original data set for coarse alignment, after which the 

segmented femur is used as the mask and refined alignment is performed again. The 

aligned images can be regarded as two sets of CT images transformed into the same 

coordinate system. The 3D reconstruction of the aligned CT images is performed, 

and the implant displacement is calculated. 

The major difference between these two methods for evaluating the stability of 

internal fixation is that the 3D point cloud-based alignment method performs 3D 

reconstruction and alignment first, followed by displacement measurement. In 

contrast, in the multi-resolution pyramidal framework-based alignment method, the 

process is the opposite of the first method, in which the original CT images are 

aligned. Then 3D reconstruction is performed, and displacement is measured. The 

experimental results show that the measurement results of both methods are 
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satisfactory, but the multi-resolution pyramid frame-based alignment method 

requires fewer considered operations and consumes less time than the first method. 

5.1 Limitations 

We have used rigorous experimental comparisons in our study in order to verify 

the accuracy of the proposed method, but there are still some limitations of this paper. 

In the method of measuring implant displacement based on 3D point cloud 

matching, we used the traditional manual measurement method to compare with the 

method proposed in this paper, and although the experimental results showed that the 

correctness of our measurement method with the manual measurement method was 

within the error tolerance, we did not have the accurate real displacement of the 

implant as the ground truth of the experiment. and, in the experimental data 

preparation stage, the Manual assistance is still required for the three reconstructions 

of the proximal femur and Hansson pins. 

In the multi-resolution pyramid model-based implant displacement measurement 

method, we trained two segmentation models, one for the left femur and one for the 

right femur, according to the anatomical location of the patient's injury, limited by 

the characteristics of the 3D U-net network. The segmentation models for alignment 

needed to be manually selected before performing femoral alignment, and full 

automatic operation was not achieved. Despite these limitations, the results obtained 

by this measurement method can still accurately reflect the motion trend of the pin. 

5.2 Further work 

The application prospects of these methods can be further extended by improving 

the methods that have been proposed. Specific improvements include. 

1. Perform migration training on other neural network models applied to natural 

image segmentation to compare the applicability of different networks for x-ray 

images. 

2. Add biomechanical experiments to the implant displacement measurement 

experiments for comparison and use real pins displacement data as the ground truth 
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of the experiments to adjust the county official parameters of the 3D reconstruction 

process. 
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