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Real-time whole-body motion 
generation using torso posture regression 
and center of mass
Satoki Tsuichihara* , Yuya Hakamata, Gustavo Alfonso Garcia Ricardez, Jun Takamatsu and Tsukasa Ogasawara

Abstract 

For household humanoid robots, reaching as much workspace as possible with their hands is an important issue 
because the locations of target objects may range from the floor to above the robot’s head. At the same time, to 
adapt to the constantly-changing household environment, inverse kinematics for the whole body must be solved in 
real time. In this paper, to achieve real-time motion generation for a humanoid robot, we propose a method of sepa-
rating the inverse kinematics calculation into simpler problems. Using regression to estimate the torso orientation, we 
independently solve inverse kinematics for the lower body and both arms. First, using the target pose of both hands 
as input, we calculate the orientation of the torso and determine the target position of the center of mass considering 
the reachability of both arms. At each control step, we calculate the joint angles of the lower body from the position 
of the center of mass, feet poses, and torso orientation. Then, we calculate the joint angles of both arms. In experi-
ments, we apply the proposed method to a human-size humanoid robot for reaching low-height positions while 
hunkering down. The proposed inverse kinematics solver is ten times faster than the numerical solution using the 
Jacobian matrix. We also verify the applicability of the proposed method using a sequence of random target positions 
for the hands as input.
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Introduction
There are many research efforts aimed at enabling robots 
to perform household tasks such as cooking and serv-
ing food in daily-life environments  [1–5]. Reaching tar-
get objects is the beginning of many such household 
tasks. Since the inputs of the reaching motion are the 
hands poses, it is necessary to calculate the whole body 
configuration of the robot (i.e., inverse kinematics (IK)). 
Cognetti et al. proposed whole-body IK and generate tra-
jectories for a humanoid robot in a dynamics simulation 
environment [6]. They do not take care of the calculation 
time because they intend to use the proposed method in 
an offline manner.

For a robot to execute the sequences of reaching 
motions, these steps are repeated:

1. Determine the target configurations of the hands 
based on the current status of the environment,

2. Solve the whole body IK to satisfy these configura-
tions,

3. Move the robot following the IK solution.

Unlike well-controlled environments in factories, house-
hold environments continuously change. Thus, the whole 
body IK should be solved every time. Since the robot 
stops moving until finishing the IK calculation, the calcu-
lation time can not be ignored.

To accelerate the calculation of IK, a number of issues 
must be considered, including:

i. The large number of DOF of a humanoid robot, and
ii. The robot’s balance during execution.

Furthermore, the target positions to be reached can range 
from objects on the floor to those above the robot’s head. 
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As exemplified in Fig.   1, many household tasks require 
the robot to pick up objects at a very low height. Since it 
is very difficult to solve these issues in general, we concen-
trate on tasks where the robot keeps standing. Also, we 
ignore the collision avoidance issue (i.e., the robot moves 
around a large free space). We consider that the collision 
avoidance can be achieved by inputting appropriate tra-
jectories of hands using a path planning technique.

We propose a method to accelerate the whole-body IK 
calculation when inputting the target configurations of both 
hands. To achieve a large reaching volume, we consider 
height changes, such as hunkering down. To solve the first 
issue (i) regarding the number of DoF, we split the whole-
body IK problem into simpler IK subproblems. The idea is 
that if the torso posture is known, the remaining IK can be 
simplified by separately solving the IK for both arms and the 
lower body. To solve the second issue (ii) regarding the bal-
ance, we solve the IK considering the center of mass (CoM). 
Since the torso is almost fixed in our assumed tasks, we 
concentrate on tasks where the robot keeps standing and 
the motion is regarded as quasi-static. The meaning of the 
quasi-static is that COP position is similar to ZMP position.

In our method, first, we use regression to estimate the 
torso posture from the input position of the hands. Then, 

we solve the IK of the lower body to determine the torso 
posture and the target CoM. Finally, we solve the IK of 
each arm independently.

To prove the effectiveness of the proposed method, 
we perform experiments using a humanoid robot, the 
HRP-4  [7]. We verify that the proposed method calcu-
lates the IK ten times faster than the numerical solution, a 
Jacobian-based method, which is not satisfactory in calcu-
lating the IK for large DoF. In real-robot experiments, we 
verify that the proposed method generates whole-body 
motions to reach low-height positions while hunkering 
down and keeping balanced. Using our method, both the 
IK calculations and the robot’s movements take three s 
on average. In the dynamics simulation experiments, we 
also verify the applicability of the proposed method to a 
sequence of several random target positions of the hands. 
In these simulations, the humanoid is standing and con-
tinuously reaches the targets while keeping its balance.

In this paper, we add two contributions that extend our 
previous work [8]. First, we design a method to calculate 
the target CoM position. We actually show the workspace 
volume of the proposed method. Second, we verify the 
applicability of the proposed method when target posi-
tions are sequentially input. In practice, it is unrealistic 

Fig. 1 Human (left) and humanoid robot (right) perform a manipulation task that requires hunkering down to reach the lower shelf in a kitchen
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for a robot to move to the initial pose after reaching the 
target position every time. In the experiments, we apply 
the proposed method to a kitchen environment, where 
the robot needs to rotate the torso and squat.

The proposed method assumes that the humanoid 
robot meets the following conditions:

1. The robot changes the configuration of the waist by 
moving the legs.

2. The torso is connected to the waist by two chest 
joints (in the pitch and yaw directions).

3. Each arm has at least six DoF.

Most human-size humanoid robots satisfy these condi-
tions. To consider the singularities, it is better to solve 
the IK of the arms analytically.

The rest of this paper is organized as follows. In "Related 
research" section, we introduce related research. In "Esti-
mation of torso posture" section, we show how we calcu-
late the torso posture using regression for real-time motion 
generation. In "Target CoM position generation" section, we 
describe an algorithm to define the target CoM position. In 
"Inverse Kinematics for the lower body" section, we explain 
how to solve the balance issue using the numerical method 
of IK. In "Implementation" Section, we show the implemen-
tation to achieve real-time whole-body motion. In "Results 
and discussion" section, we show the results and considera-
tions of the whole-body motion generation. Finally, "Con-
clusions" section summarizes the contributions of this work.

Related research
Existing research efforts regarding motion generation [9, 10] 
can be roughly classified into two categories. The first cat-
egory includes methods to refine a pre-defined motion to 
satisfy the target configuration, while the second category 
includes methods to generate the motion from scratch.

In the first category, Vannoy  et al. proposed select-
ing one of multiple pre-defined motions considering the 
environment and a criterion of the motion quality  [11]. 
Park et al. presented the use of non-linear optimization 
to adjust the pre-defined motions [12]. Otte et al. refined 
and repaired the pre-defined motions using a search-
graph algorithm [13]. Since it is difficult for pre-defined 
motions to cover the whole range of target motions, the 
main purpose of these methods is real-time collision 
avoidance for sudden changes in the environment.

In the second category, Fok  et al. used a numerical 
method (i.e., Jacobian-based) to solve the IK of the whole 
body  [14]. Their main concern was implementing a mid-
dleware structure, not accelerating the calculation. Nishi-
waki  et al. proposed whole-body motion generation for 
reaching an object using one arm  [15]. They tested their 
method with a real robot grasping an object on the floor. 

Nevertheless, they did not show the applicability of their 
method to reaching objects using both arms. Yamane  et 
al. proposed a pin-and-drag interface for a human agent 
in a dynamics simulator  [16]. They controlled the human-
oid robot by pulling links in the dynamics simulation. Their 
method is suitable for computer graphics, where the anima-
tor controls the kinematics of the animated model. Ferrari et 
al. proposed a manipulation movement including locomo-
tion for the humanoid robot [17]. They plan the CoM trajec-
tory based on the distance to the target object and use the 
Jacobian-based whole-body IK to satisfy the planned CoM 
trajectory [18]. They tested their method in a dynamics sim-
ulation with a motion of reaching an object on a table. All 
these methods employ the standard Jacobian-based IK.

On the other hand, Khatib et al. proposed to use a potential 
field for real-time motion generation [19]. In this method, at 
every time step, the control input is decided from the deriva-
tives of the field. Zucker et al. proposed to use distance fields 
for the trajectory formulation by optimizing a function that 
trades off between a smoothness component and an obstacle 
avoidance component [20]. Yang et al. proposed to use deep 
learning to determine the control input from an observed 
image [21]. They applied their proposed method to folding 
a towel. Unfortunately, they did not prove the applicability of 
their method for whole-body motion generation of human-
oid robots. They applied their method to a 6-DoF manipula-
tor in [19] and upper-body dual-arm robot in [21].

Our proposed method belongs to the second category. 
All methods in the second category use a Jacobian-based 
numerical method. Unlike all the previous methods, the 
proposed method reduces the calculation time by solving 
the center of the whole body (e.g., the torso) for manag-
ing the redundancy of the whole body well with a machine 
learning technique. Also, the methods in the first category 
are complementary to the second category. It is possible to 
use methods from the second category to modify the pre-
defined motion. We expect that combining methods from 
the second category with the first category can enable the 
proposed method to deal with real-time collision avoidance.

Estimation of torso posture
For our proposed whole-body motion generation 
approach, we use regression to estimate the orientation of 
the torso. The inputs for this regression are the positions 
of both arms, i.e., (x1, y1, z1) and (x2, y2, z2). The outputs 
of this regression are the joint angles of the chest joint 
(qpitch , qyaw). If we assume that the orientation of the waist 
is the same as in the resting pose, we can obtain the torso 
orientation from the chest joint angles. We use the Sup-
port Vector Regression (SVR) [22] to calculate the orien-
tation of the torso. The training dataset generation and 
the learning process are done offline, while in the actual 
robot, the motion generator uses this regression online.
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We use Algorithm 1 to generate the dataset, which imple-
ments a numerical solution of the IK. We select the robot’s 
configurations that satisfy the positions of both arms, and 
then use only the chest joints’ angles for the dataset. Dur-
ing learning, the height of the torso is fixed and only the 
chest joints are learned. In this paper, we assume that the 
workspace is in front of the humanoid robot, and define the 
initial posture for the numerical IK, as shown in Fig. 2. As 
indicated by the yellow boxes in Fig. 2, the robot’s workspace 
has 0.45 m in the x (frontal) axis, 0.8 m in the y (lateral) axis, 
and 0.75 m in the z (vertical) axis from the initial posture.

Algorithm 1 Dataset generation
Input: q0,p

∗
left,R

∗
left,p

∗
right,R

∗
right

Output: p∗
left,p

∗
right, qchest

1: q ← q0
2: while isSolvable do
3: q, isSolvable

← BothArmsIK q,p∗
left,R

∗
left,p

∗
right,R

∗
right, ω

4: ω ← ω + 1.0
5: end while
6: qchest ← qchestpitch , qchestyaw ∈ q

Using the Levenberg–Marquardt (LM) method [23], 
the numerical method of the IK BothArmsIK (step 3 of 
Algorithm  1) with initial joint angles q0 solves the joint 
angles in the upper body for the target pose of both arms. 
In the LM method, ω represents the value of the diago-
nal matrix added to the diagonal elements of the Jacobian 
matrix. We improve the solvability of the IK near the 
singularity points of the end effector by increasing the ω 
value in an exploratory way. The boolean value isSolvable 
indicates whether this IK solution converges.

To test the learned regression, we apply several target 
positions. Figure 3 shows the postures of the humanoid 
obtain with the generated regression, and the purple 
spheres indicate the target positions of both hands as the 
inputs to the regression. Table 1 shows the three param-
eters we use for the regression algorithm.

Target CoM position generation
In a humanoid robot, changing the height of the body 
using their legs increases the manipulation area. To 
reduce the calculation cost, we select the target position 
of the CoM of the whole body from three candidates, 
considering the reachability of both arms. Figure 4 shows 
the three candidates and the overlapping workspaces of 
this approach.

We determine the reachability of humanoid robots 
using the position of both hands’ targets (p∗) and both 
shoulders (pshoulder) in the initial configuration of the 
robot. For reachability, the following condition should be 
satisfied:

The length Larm represents the length from the shoulder 
joint to the wrist of the robot. If neither arm can reach 
the target position in the current configuration, we set 
the target position of the CoM (p∗CoM) as

(1)
∣

∣p∗ − pshoulder
∣

∣ < Larm.

Fig. 2 The initial posture of the humanoid robot for the learning 
procedure, with yellow boxes indicating the humanoid’s workspace 
and purple spheres indicating the position of the end effectors

Fig. 3 Humanoid’s postures obtained from the SVR and the inverse kinematics of the arms
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Using this equation, a vector of the CoM position pCoMinit
 

is calculated from the initial configuration of the robot, 
where the vector b is a pre-defined displacement (0, 0, 0.1) 
in the coordinate system of the robot. If the target hand 
position is set to a location far from the shoulder, Eq. 2 
determines the necessary change in the CoM position 
(p∗CoM) to a higher or lower position. Note that the CoM 
trajectory is calculated by interpolating the initial and the 
target CoM positions.

Inverse Kinematics for the lower body
We use Algorithm  2 to calculate the joint angles of 
both legs. We control the CoM of the whole body, the 
torso’s orientation, and the poses of the legs. The CoM 
of the whole body is calculated by assuming the con-
figuration of the upper body (e.g., the configuration 
in the previous time step). We use the numerical IK 
to solve the joint angles of the lower body. Since the 
number of DoF of the lower body is a subset of the 
DoF of the whole body, this calculation is faster than 
the IK of the whole body.

(2)p∗CoM ←







pCoMinit
+ b

�

p∗z − pshoulderz > Larm
�

,

pCoMinit
− b

�

p∗z − pshoulderz < −Larm
�

,
pCoMinit

(otherwise).

Algorithm 2 Inverse Kinematics for both legs
Input: q0,p

∗
CoM,R∗

torso,p
∗
swing,R

∗
swing

Output: qlegs
1: qlegs, qupperBody ← q0
2: for i = 0 to N do
3: pCoM,Rtorso,pswing,Rswing,J

← FK qlegs, qupperBody

4: e ←





p∗
CoM − pCoM

LN RtorsoR
∗
torso

p∗
swing − pswing

LN RswingRswing





5: if |e| < tol then
6: break
7: end if
8: qlegs ← qlegs + αJ e

9: pCoM,Rtorso,pswing,Rswing,J

← FK qlegs, qupperBody

10: e ←




LN RtorsoR

∗
torso

p∗
swing − pswing

LN RswingRswing





11: qlegs ← qlegs + βJ e

12: end for

In Algorithm 2, we assume that the robot’s sole of the 
support leg is on the ground, and the coordinate system 
of the robot is based in sole of the support leg. If the robot 
stands on both legs, we simply choose one of the legs as 
the support leg, and define the other leg as the swing 
leg. In this algorithm, the vector qlegs =

(

qright, qleft

)

 
represents the lower-body joint angles, that is, the joint 
angles of the right and left legs. The vector qupperBody 
represents the upper-body joint angles, that is, the joint 
angles of both arms and the chest. The initial joint angles 
of the whole body are q0. The CoM position of the whole 
body is denoted by pCoM (see "Target CoM position 

Table 1 Parameters for the regression algorithm

Parameter Value

Kernel width 0.1

Constraint 1.0

Slack variable 0.0001

Fig. 4 Reachable areas (yellow boxes) of the proposed method in the three configurations of the CoM (Eq. 2)
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generation" section), while pswing and Rswing are the posi-
tion and the orientation of the foot sole in the swing leg, 
Rtorso is the orientation of the torso link, and J  is the Jac-
obian matrix of the lower body. The vector x∗ is the target 
value of x, and Y ♯ is the pseudo-inverse of the matrix Y
. FK is a forward kinematics function. The input of FK is 
the joint angles q and the outputs are the position p and 
orientation R of the CoM, torso and swing leg, and the 
Jacobian of the lower body J . The function LN converts 
the rotation matrix R to an angular vector [24]. The value 
N is the number of maximum iterations. The value tol is 
the tolerance for the norm of the error vector e. The error 
vector has 12 dimensions that consist of the CoM posi-
tions, the torso orientation, and the position and orienta-
tion of the swing leg. Using the Jacobians JCoM, J torso and 
J swing for the CoM, the torso and the sole of the swing 
leg, the Jacobian can be represented as

Implementation
The system consists of four major parts: the online locali-
zation, the posture estimator, the whole-body controller, 
and the robot controller, as shown in Fig. 5. In this figure, 
the arrows indicate the data flow. Object localization and 
recognition is out of the scope of this paper, so we use AR 
markers for simplification. We use the ARToolKit library 
[25] to estimate the position of the AR markers and their 
ID’s.

(3)J =
[

JCoM J torso J swing
]⊤

.

Figure 6 shows the data flow between the posture esti-
mator and elements of the whole-body controller. First, 
the target CoM generator determines the target CoM 
position corresponding to both hands at the target. After 
updating the value of the chest joint from the posture 
estimator, the lower-body controller calculates the joint 
angles in the chest and the legs’ joints. Finally, the dual-
arm controller calculates the joint angles of both arms.

Generating motion using inverse kinematics
To generate the motion, we calculate the intermediate 
hand configurations by linear interpolating the initial 
value and the target value. To interpolate the orienta-
tion, we multiply the initial rotation matrix and the rota-
tion matrix calculated from the Rodrigues equation using 
the vector of the angular velocity from the difference 
between the target value and the initial value.

Fig. 5 System overview. Arrows indicate the data flow. The system is formed by the online localization, the posture estimator, the whole-body 
controller, and the robot controller

Fig. 6 The data flow in both the posture estimator and the whole-
body controller (the target CoM generator, the posture estimator, the 
lower-body controller, and the dual-arm controller)
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Posture estimator
We select the Gaussian kernel as the kernel function of 
the SVR. In this research, we use the regression only once 
when inputting the target positions of the end effectors, 
and then we interpolate the results instead of calculating 
the regression at every control step. For the actual robot 
implementation, the robot’s CPU (Intel Pentium M Pro-
cessor 1.6 GHz) has a very low clock frequency, so it is 
slow to calculate the regression. Figure 7 shows the cal-
culation times for the regression, the numerical IK for 
the lower body, the analytical IK for both arms, and the 
total calculation time. The mean values of the calculation 
times over 100 samples are: SVR, 66.4 ms; lower body, 6.8 
ms; analytical inverse kinematics, 0.2 ms; and total, 75.5 
ms. It turns out that the most time-consuming process is 
the SVR calculation.

Measuring the 3D position of each object
To manipulate an object located by the ARToolKit, we 
determine the hand pose following these steps:

1. Estimate the position of each object in the coordinate 
system of the camera mounted on the robot, and

2. Translate from the coordinate system of the camera 
to that of the robot.

Figure 8 shows the three coordinate systems of the robot 
�R, the camera �C, and the marker �M. The matrices 
RTC, CTM, and MTO are homogeneous transformations 
from the coordinate system of the robot to the camera, 
from the camera to the marker, and from the marker to 
the object, respectively. The homogeneous transforma-
tion matrix from the coordinate system of the robot to 
the object is computed as

The matrix RTC is calculated using forward kinematics. 
We know MTO from the location of the marker on the 
object.

Results and discussion
Comparing the calculation times using a dynamics 
simulation
We show the effectiveness of the whole-body controller 
using the humanoid robot HRP-4 in the dynamics simu-
lator OpenHRP [26]. As a conventional method, we use 
the LM method for the numerical solution of IK [23], as 
described in "Estimation of torso posture" section. In the 
conventional method, the Jacobian matrix has 28 rows 
corresponding to the DoF and 24 columns corresponding 
to the position of both hands, the CoM, and the orienta-
tion of both hands, the torso, and the swing leg. As shown 
in Fig. 9, the target position of both hands is in front of a 
table. In the numerical calculation of both methods, we 
configured the tolerance (tol in Algorithm 2) to 1× 10−6 
m. Also, we set the maximum number of iterations to 100 
and the coefficients of the update function (α, β in Algo-
rithm 2) to 0.3.

Figure  9 shows the postures of the HRP-4: the initial 
posture (a), the interpolated posture (b), and the posture 
after the movement (c). We apply the proposed and con-
ventional methods for 200 interpolated points from the 
initial to the final configurations. In the setting of Fig. 9, 
the length between the initial configuration (a) and the 
final configuration (c) is 0.4 m, and the distance between 
each intermediate position is 1.9 mm. Assuming that the 
control cycle is 5 ms, the number of intermediate points 
is calculated for both the end effector and CoM with an 
acceptable speed of 0.38 m/s in the proposed and con-
ventional methods.

(4)RTO =
R TC

CTM
MTO.
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Fig. 7 The calculation time of SVR, lower-body IK and both arms IK. 
Most of the calculation time corresponds to the SVR calculation

Fig. 8 The relationships between each coordinate system
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Figure  10 shows the comparison of the calculation 
times. Using the proposed method, the mean of the cal-
culation times is 1.8 ms, and, using the conventional 
method, 38.8 ms. Since the target position of both hands 
is further from the singularities, the calculation time of 
the conventional method is smaller. We also verified that, 
in general, the calculation of the proposed method was 
faster than the conventional method. However, as shown 
in Fig.  10, from control step 10 to 30, the conventional 
method rapidly calculates the joint angles. As can be seen 
in Fig.  9, the postures (a) and (b) are very similar (near 
the initial pose), so the conventional controller takes a 
short time.

Figure 11 shows the Zero Moment Point (ZMP) using 
a moving average filter and the CoM position when 
moving to a hunkering-down posture using the pro-
posed method. The upper blue line shows the position 
of the toe, and the lower blue line represents the heel. 
The area between the two lines represents the support 
region of the HRP-4’s feet. The trajectory of the ZMP is 

always inside the support region during this movement. 
This result shows that the movement generated by our 
method is well-balanced. We also show the current and 
desired values of the CoM produced by the proposed 
method. The trajectories of the CoM are the same during 
this movement, so the proposed controller is accurate.

As shown in Fig.  12, we evaluate the accuracy of the 
proposed method with the error of the CoM position and 
the end effector. The error of the end effector position is 
less than 1× 10−15 m.

Evaluation of the proposed method
We evaluate the applicability of the proposed method for 
whole-body movement using a numerical method as the 
conventional method for comparison. As shown in Fig. 3, 
we test both methods with 729 (27 poses for each hand) 
random target poses in the workspace (Fig.  2). In both 
methods, we also use linear interpolation to evaluate 
these poses. Table 2 shows the results using both meth-
ods for all target poses. The error norm is the average 

Fig. 9 The posture of HRP-4 generated by the proposed method. HRP-4 completely reaches the target poses (three-colored axes) with the end 
effectors (a start movement, b interpolated posture, and c end movement)
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norm of the difference vector between the target pose 
and the current pose of both hands. The calculation time 
is the average time to calculate the whole-joint angles at 
each control step. The total time is the average time for 
moving the whole body in the dynamics simulator.

As can be seen in Table 2, the results of the error norm 
and the calculation time with the proposed method are 
better than with the conventional method. Using the 
conventional method, the error norm is large when the 
target positions are on the far side in the lateral direc-
tion. The conventional method can solve the whole-body 
joint angles including the chest joint, but it is difficult 
to reduce the error norm with the torso posture. The 
proposed method is faster in such cases because it uses 
the trained data for the calculation of the torso posture. 
Using the proposed method, the total time for movement 
is around 38% of the time using the conventional method.

Motion generation experiment using the real robot
We also verify the effectiveness of the proposed whole-
body controller using an actual HRP-4. In this experi-
ment, the target positions of both hands are obtained 
from the AR markers, which are observed by the camera 
mounted on the head of the HRP-4. Figure 13 shows the 
images captured from the HRP-4’s camera and processed 
by the ARToolKit.

Figure 14 shows the generated movement of the HRP-4 
from the initial posture (a), through the interpolated 

postures (b) and (c), and to the posture after the move-
ment (d). The HRP-4 reaches the two AR markers with 
both hands, while maintaining its balance. This move-
ment takes 3 s. A video with the humanoid reaching the 
AR markers is attached to this publication (Additional 
file 1).

Sequential whole‑body control
We apply the proposed method to the HRP-4 in the 
dynamics simulator for sequentially approaching several 
positions. Figure  15 shows the poses of the humanoid 
robot approaching ramdomly generated target positions. 
The three color arrows in Fig. 15 indicate the target posi-
tions input to the HRP-4. In this figure, the HRP-4 suc-
cessfully reaches three target positions using its whole 
body, while maintaining its balance. Figure  15a depicts 
the motion of the HRP-4 to reach target positions above 
its head. Figure 15b, c show cases where one of the hands 
is reaching a high position, while the other is reaching a 
low position. A video with the humanoid reaching these 
positions is attached to this publication (Additional 
file  2). These figures and videos demonstrate the appli-
cability of the proposed method to whole-body control 
with sequentially random inputs.

In Fig.  4, we can see the movable area using the pro-
posed method. Comparing both Figs.  4 and 15, a large 
workspace (0.45 m × 0.80 m × 1.25 m) and the applicabil-
ity of the proposed method is verified.

Application to a living environment
We also apply the proposed method to a human liv-
ing environment using a dynamics simulator. Figure  16 
shows the pose of the humanoid robot approaching two 
target positions on a table and a shelf. In this experi-
ment, we solve the collision avoidance issue by assigning 
waypoints to the hands’ trajectories. Figure  16a shows 
the initial pose of the HRP-4. Figure 16c and f show the 
HRP-4 approaching the objects with both hands. In 
Fig. 16d, the HRP-4 is moving to the next target position 
on the upper shelf.

It takes 3 s to approach the position on the table and 5 
s to approach the position on the upper shelf (Additional 
file 3). Because we set the waypoints for each target con-
figuration, it takes longer to approach the position than 
using the motion planning without a waypoint. Multiple 
movements including chest rotation and squatting are 
successfully generated using the proposed method, and 
the time of the movement is reasonable for users.

Our proposed method uses only the CoM for keeping 
the robot’s balance. Using our method, the robot can not 
reach an edge of the ZMP’s support polygon with a fast 
whole-body movement. However, when the robot’s bal-
ance is close to this edge, the robot should move slowly 
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Fig. 12 The error norm of the CoM position and the end effector 
during the whole-body movement

Table 2 Comparison of results in both methods

Error norm (mm) Calculation time 
(ms)

Total time (s)

Proposed 0.62 1.1 1.0

Conventional 9.99 46.4 2.6
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in the last part of the motion. In the case of our proposed 
method, we should add a threshold of a horizontal CoM 
to avoid falling down. After approaching this threshold, 
the robot should move slowly. Another option is includ-
ing a locomotion for approaching the whole body out of 
this threshold to our proposed method.

Conclusions
In this paper, we proposed a method for whole-body 
motion generation for humanoid robots in household 
environments to reach objects with their hands in real 
time. To reduce the calculation time of motion genera-
tion, we estimated the torso posture using SVR before 
calculating the joint angles. Using the estimated torso 
posture, we can separate the IK for the whole body into 

simpler, independent IK for the arms and the lower body. 
We solve the IK of both arms analytically and solve the 
IK of the lower body numerically. To sequentially reach 
multiple targets for the hands, we built a target position 
generator for the CoM considering the reachability of 
both arms.

In terms of calculation time, the proposed method is 
faster than the conventional Jacobian-based numerical 
method, while achieving better accuracy. To verify the 
effectiveness of the proposed method, we implemented 
it on a human-sized humanoid robot, the HRP-4. In 
experiments, we successfully generated reaching motions 
for lower positions, which included hunkering motion 
while keeping the balance. In these experiments, it took 
3 s to both generate and execute the target motion. We 

Fig. 13 Estimation of the marker position using the ARToolKit library (left: input image from the HRP-4’s camera, right: rendered blue cubes at the 
estimated positions)

Fig. 14 The proposed method generates whole-body motion to make the HRP-4 reach with both hands the target positions indicated with AR 
markers. By managing the CoM in the center of the foot’s soles, the robot can keep its balance while hunkering down (a initial state, b and c inter-
mediate states, and d final state)
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also showed the applicability of the proposed method 
to a step-by-step manipulation by sequentially input-
ting random targets. In experiments using a dynamics 
simulation, HRP-4 could approach the target positions 

smoothly. Finally, we also applied the proposed method 
to a kitchen environment, by generating a whole-body 
motion to approach a table and an upper shelf.

Fig. 15 The simulation result when approaching random target positions. These movements include whole-body motion in the vertical direction 
and the arms’ motion in the vertical and diagonal direction (a, b, and c show the movement with different target positions)

Fig. 16 Simulation results when approaching target positions with both hands in a living environment. There is a table and a shelf in the dynamics 
simulation environment. To avoid collisions, we set waypoints when approaching the target positions of each object (parts (b) and (e) in this figure). 
First, the HRP-4 approaches the target objects on the table. Then, the HRP-4 moves to the target objects on the shelf (a initial state, c and d interme-
diate states, and f final state)
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In this paper, we only generated motions when the 
humanoid’s feet were fixed. Since the proposed lower-
body controller manages the configuration of the swing 
leg, the proposed method has the potential to expand the 
reachable area by stepping. Further, in the posture esti-
mation, we employed SVR as the regression method to 
simplify implementation, but we could investigate using 
other regression methods such as random forest regres-
sion and neural networks.

Though we did not test our method with the iner-
tial changes present when grasping an object, we are 
planning to do it as future work. The proposed method 
should be able to adapt to these changes if the physical 
properties of the grasped object are known a priori.
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IK: inverse kinematics; DoF: degree(s) of freedom; CoM: center of mass; SVR: 
support vector regression; ZMP: zero moment point.
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