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Abstract: Recently, much attention have been paid to the methods for circuit analysis using
wavelet transform. In particular, we have proposed the method which can choose the resolution
of the wavelet adaptively. This method can fully bring out the orthogonal and the multireso-
lution properties of the wavelet, and the efficiency of the calculation can be improved. In this
paper, we propose the method to analyze the steady-state periodic solutions of the nonlinear
circuits driven by the periodic external input using Haar wavelet transform by applying the
appropriate boundary conditions, and prove the effectiveness of the proposed method.
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1. Introduction
The wavelet transform has been often used in signal processing because of its orthogonality and
multiresolution property [1, 2]. Recently, much attention has been paid to the method for circuit
analysis using wavelet transform [3–9]. The wavelets have the merit to be able to analyze the trajectory
near the singular points where the trajectory moves rapidly with high resolution because of the
orthogonality and localization property of the wavelet functions. As circuit analysis methods using
this merit, some methods were proposed to pick out the ranges automatically where the trajectory
moves rapidly near singular points. Thus we have proposed the method for transient circuit analysis
using wavelet transform with adaptive resolutions [6]. In this method, the result of the multiresolution
analysis is used to choose the range to be analyzed more precisely. It makes the adaptive choice of
the wavelet resolution possible, and as a result, the efficient calculation can be achieved.

Moreover, Barmada et al. have proposed the Fourier-like approach for the circuit analysis using the
wavelet transform [7]. In this method, the integral and differential operator matrices are introduced to
the analysis, and the differential and integral equations are transformed into the algebraic equations
like as using Fourier or Laplace transforms. Moreover, the method can treat time varying and nonlin-
ear circuits. Therefore, this method is useful for various circuit analyses. However, in that method,
the use of Daubechies wavelet makes the handling of the operator matrices complicated, especially,
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in the edges of the interval. Thus, we have proposed the circuit analysis method using Haar wavelet
transform [8]. The Haar wavelet is easy to handle itself, and the operator matrices using the Haar
wavelets are easily derived by introducing the block pulse functions [10, 11]. Moreover, the proposed
method can treat the nonlinear time varying circuits.

On the other hand, the steady state analysis of the nonlinear circuits is quite important problem
in circuit analysis. If we calculate such steady-state waveforms using time-marching methods as in
the conventional way, the calculation cost is wasted due to the calculation of the long-term transient
response with sufficiently small step size to approximate the discontinuous dynamics typically seen in
power electronic circuits. To overcome such disadvantage of the time-marching method, the wavelet
method to analyze the steady-state waveforms for power electronics circuits have proposed by Tam
et. al [9]. In [9], the Chebyshev polynomials are used as the basis functions for wavelet approach, and
the periodic solutions of periodically driven power electronics circuits have been calculated. However
it is considered that the calculation should be complicated and the Gibbs-phenomenon-like errors
have been seen when the switching is occurred because of the use of the Chebyshev polynomials. In
contrast, the Haar wavelet transform will make the calculation simpler, and also the discontinuity
of the Haar function will be suitable for the analyses of such discontinuous behavior of the power
electronics circuits. Moreover, for the field of controlling chaos [12], stabilization of the unstable
periodic orbits is the main problem. However, such unstable periodic solutions as control targets are
usually unknown, because it is difficult to find them by numerical calculations based on the time-
marching method. If we can obtain the unstable periodic orbits by numerical calculation, it will be
helpful for controlling chaos.

Therefore, in this paper, we propose the method to analyze the steady-state periodic solutions of
the nonlinear circuits driven by the periodic external input by applying the appropriate boundary
conditions. In the proposed method, the differential equations are transformed into the algebraic
equations by using the integral and the differential operator matrices such as s in Laplace transforms.
Then, by solving these algebraic equations, we can find not only the stable periodic solutions but also
the unstable ones because this method is not time-marching method in which the small errors will be
magnified due to instability of the unstable solutions. Moreover, the wavelet transform matrix and the
operator matrices are constant matrix whose elements depend only on the wavelet level. Therefore, we
can construct the wavelet-transformed differential equations by using the simple matrix operations.
We will show an algorithm for the approximation of the steady-state periodic solution and the better
performance for the accuracy using simple examples such as a simple boost converter and the ability
to find the unstable periodic solutions with a Duffing equation.

2. Haar wavelet matrix and integral and differential operator matrices

2.1 Haar wavelet matrix
Haar functions are defined on interval [0, 1) as follows,

h0 =
1√
m

, (1)

hi =
1√
m

×

⎧⎪⎨
⎪⎩

2
j
2 , k

2j ≤ t <
k+ 1

2
2j ,

−2
j
2 ,

k+ 1
2

2j ≤ t < k+1
2j ,

0, otherwise in [0, 1),

(2)

i = 0, 1, · · · ,m − 1,m = 2α,

where α is positive integer, and j and k are nonnegative integers which satisfy i = 2j + k, i.e.,
k = 0, 1, · · · , 2j − 1 for j = 0, 1, 2, · · · . Figure 1 shows the waveforms of the Haar functions for α = 2.

We define H which is m × m-dimensional Haar wavelet matrix as

H = [�hT
0 ,�hT

1 , · · · ,�hT
m−1]

T , (3)

where �hi is 1×m-dimensional Haar wavelet basis vector whose elements are the discretized expression
of hi(t). For example, when α = 2,
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Fig. 1. Haar wavelet functions for α = 2.

H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2

1
2

1
2

1
2

1
2

1
2

−1
2

−1
2

1√
2

− 1√
2

0 0

0 0
1√
2

− 1√
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Note that H is an orthonormal matrix. When we consider m× 1-dimensional vector x = [x1, x2, · · · ,

xm]T = [x(t1), x(t2), · · · , x(tm)]T as the discretized expression of x(t), Haar wavelet transform and
its inverse transform are described as follows, respectively,

X = Hx, (4)

x = HT X(= H−1X), (5)

where X is m × 1-dimensional wavelet coefficient vector.

2.2 Integral and differential operator matrices
The basic idea of the operator matrix has been firstly introduced by using Walsh function [10].
However, in logical way, the matrices introduced by block pulse function are more fundamental [10,
11]. The block pulse function is the set of m rectangular pulses which have 1/m width and are shifted
1/m each other.

The integral operator matrix of the block pulse function matrix B is defined as the following
equations Eqs. (6) and (7) (see Fig. 2).∫ t

0
B(τ)dτ ≡ QB · B(t), (6)

QB =
1
m

[
1
2
I(m×m) +

m−1∑
i=1

P i
(m×m)

]
, (7)

where I(m×m) is m-dimensional identity matrix, B(t) is m × m-dimensional matrix whose elements
are the discretized expression of the block pulse functions bi(t), i = 0, 1, · · · ,m − 1 and

P i
(m×m) =

[
0 I(m−i)×(m−i)

0(i×i) 0

]
,
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Fig. 2. Block pulse functions and their integrated functions for α = 2.

for i < m,
P i

(m×m) = 0(m×m),

for i ≥ m. And the inverse matrix Q−1
B(m×m) is calculated as follows [11]:

Q−1
B(m×m) = 4m

[
1
2
I(m×m) +

m−1∑
i=1

(−1)iP i
(m×m)

]
. (8)

By using matrix QB and vector x, the vector xI which is the time series of
∫ t

0
x(τ)dτ can be

expressed as
xI = x0 + QT

Bx, (9)

where x0 is the vector of the initial value of x(0) that is x0 = [x(0), x(0), · · · , x(0)]T . The wavelet
transform of xI is obtained from Eqs. (5) and (9)

HxI = HQT
Bx + Hx0 = HQT

BHT X + X0, (10)

where X0 = Hx0. When we define the integral operator matrix QH = HQT
BHT , the vector XI which

is the wavelet-domain expression of
∫ t

0
x(τ)dτ can be represented as

XI = QHX + X0. (11)

As the wavelet-domain expression of the derivative of x(t) should be considered as inverse mapping

of the integral form, the vector XD which is the wavelet-domain expression of
dx

dt
can be represented

by using the operator matrix Q−1
H as

XD = Q−1
H [X − X0] = H(QT

B)−1HT [X − X0]

= H(Q−1
B )T HT [X − X0]. (12)

Both integral operator matrix QH = HQT
BHT and differential operator matrix Q−1

H = H(Q−1
B )T HT

can be easily calculated from Eqs. (3), (7) and (8).
Note that the wavelet matrix H and the operator matrices QH and Q−1

H are the constant matrices
whose elements depend only on the wavelet resolution m. Therefore, simple calculations are achieved
in the following sections since we can construct the wavelet-transformed differential equations by using
the simple matrix operations.
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2.3 Wavelet domain expression of nonlinear functions
Next, we consider the wavelet domain expression of the nonlinear function f(x(t)). In this paper,
we assume the function has the form f(x(t)) = g(x(t)) · x(t). When we define m-dimensional vector
f = [f(x1), f(x2), · · · , f(xm)]T = [g(x1) · x1, g(x2) · x2, · · · , g(xm) · xm]T where xi = x(ti), f can be
rewritten as

f = diag[g(x1), g(x2), · · · , g(xm)] · x. (13)

The Haar wavelet transform of f can be written as

Hf = Hdiag[g(x1), g(x2), · · · , g(xm)] · x
= Hdiag[g(x1), g(x2), · · · , g(xm)]HT Hx

= Hdiag[g(x1), g(x2), · · · , g(xm)]HT X. (14)

The matrix F � Hdiag[g(x1), g(x2), · · · , g(xm)]HT can express the nonlinearity of the system in the
wavelet domain.

3. Method to find steady-state periodic solutions
Consider the following ordinary differential equation,

ẋ = f(x, t) � A(x, t)x + u(t), (15)

where x(t) = [x(1)(t), x(2)(t), · · · , x(n)(t)]T ∈ Rn×1 is an unknown state variable vector, A(x, t) ∈
Rn×n is a nonlinear time-varying parameter matrix, and u(t) = [u(1)(t), u(2)(t), · · · , u(n)(t)]T ∈ Rn×1

is an external force vector. We define the initial state vector x0 = [x(1)(0), x(2)(0), · · · , x(n)(0)]T ∈
Rn×1. The system is driven by the periodic external force with period T . Assume that we can find the
periodic solution xp(t) with period T , i.e. xp(t) = xp(t + T ) for all t. In order to find the steady-state
periodic solutions, we should find the solution for the interval [0, T ) under the appropriate boundary
conditions. For the wavelet expression of the differential equations, we define the discretized expres-
sion of x(i)(t) and u(i)(t) as x(i) = [x(i)

1 , x
(i)
2 , · · · , x

(i)
m ]T = [x(i)(t1), x(i)(t2), · · · , x(i)(tm)]T ∈ Rm×1

and u(i) = [u(i)
1 , u

(i)
2 , · · · , u

(i)
m ]T = [u(i)(t1), u(i)(t2), · · · , u(i)(tm)]T ∈ Rm×1 for i = 1, 2, · · · ,m, respec-

tively. Moreover, the initial states x
(i)
0 = [x(i)(0), x(i)(0), · · · , x(i)(0)]T ∈ Rm×1 for i = 1, 2, · · · , n.

Applying the relationship shown in Eq. (12), the wavelet transformed expression of Eq. (15) can be
derived as

Q−1
m [X − X0] = AHX + U, (16)

where X = [X(1)T , X(2)T , · · · , X(n)T ]T = [(Hx(1))T , (Hx(2))T , · · · , (Hx(n))T ]T ∈ Rmn×1 is an un-
known wavelet coefficients vector, X0 = [X(1)T

0 , X
(2)T
0 , · · · , X

(n)T
0 ]T = [(Hx

(1)
0 )T , (Hx

(2)
0 )T , · · · ,

(Hx
(n)
0 )T ]T ∈ Rmn×1 and U = [U (1)T , U (2)T , · · · , U (n)T ]T = [(Hu(1))T , (Hu(2))T , · · · , (Hu(n))T ]T ∈

Rmn×1. Note that X
(i)
0 are also unknown for this case. Moreover,

Q−1
m =

⎡
⎢⎢⎢⎢⎣

Q−1
H 0 · · · 0
0 Q−1

H 0
...

. . .
...

0 0 · · · Q−1
H

⎤
⎥⎥⎥⎥⎦ ∈ Rmn×mn, (17)

and AH ∈ Rmn×mn is the wavelet region expression of A derived from Sect. 2.3 using the matrix F .
At this moment, as both X and X0 are unknown, we have to take into account the property

xp(t) = xp(t + T ) of the periodic solutions as the boundary condition for Eq. (15). To determine the
boundary condition, we define the interval as shown in Fig. 3. Due to the periodicity, the relationship
x(i)(t1) = x(i)(tm), i.e., x

(i)
1 = x

(i)
m for all i = 1, 2, · · · , n is selected as the boundary condition. From

Eq. (5),

x
(i)
1 = [h11, h21, · · · , hm1]X(i), (18)

x(i)
m = [h1m, h2m, · · · , hmm]X(i), (19)
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Fig. 3. Definition of the analyzed interval and the time step.

where hij is an element of Haar wavelet matrix H. Then the relationship x
(i)
1 = x

(i)
m is rewritten as

follows,
[h11, h21, · · · , hm1]X(i) = [h1m, h2m, · · · , hmm]X(i), (20)

and also
[h11 − h1m, h21 − h2m, · · · , hm1 − hmm]X(i) = 0, (21)

Setting hb � [h11 − h1m, h21 − h2m, · · · , hm1 − hmm] ∈ R1×m and

Hb �

⎡
⎢⎢⎢⎢⎣

hb 0 · · · 0
0 hb 0
...

. . .
...

0 0 · · · hb

⎤
⎥⎥⎥⎥⎦ ∈ Rn×mn,

we obtain the relationship
HbX = 0. (22)

To derive the unknown vector x0, we consider the relationship between X and X0. In Eq. (16), we
consider the matrix Q−1

H X
(i)
0 from Q−1

m X0 which is the term related to the initial states. From the
relationship X

(i)
0 = Hx

(i)
0 ,

Q−1
H X

(i)
0 = Q−1

H Hx
(i)
0 . (23)

If we set a matrix [qij ] � Q−1
H H ∈ Rm×m,

Q−1
H Hxi0 = Q−1

H H

⎡
⎢⎢⎢⎢⎣

x(i)(0)
x(i)(0)

...
x(i)(0)

⎤
⎥⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎢⎣

q11 + q12 + · · · + q1m

q21 + q22 + · · · + q2m

...
qm1 + qm2 + · · · + qmm

⎤
⎥⎥⎥⎥⎦ x(i)(0). (24)

When we define q0 � [q11 + q12 + · · · + q1m, q21 + q22 + · · · + q2m, · · · , qm1 + qm2 + · · · + qmm]T and

Q0 �

⎡
⎢⎢⎢⎢⎣

q0 0 · · · 0
0 q0 0
...

. . .
...

0 0 · · · q0

⎤
⎥⎥⎥⎥⎦ ∈ Rmn×n,

Equation (16) is rewritten as
(Q−1

m − AH)X − Q0x0 = U. (25)

From Eqs. (22) and (25), we can derive n(m + 1)-dimensional algebraic equations as follows,
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Fig. 4. Simple boost converter.

Table I. Parameter values for boost converter.

Parameter Value
Inductance L 0.2mH
Capacitance C 0.2mF
Load resistance R 12.5Ω
Input voltage E 16V
Diode forward drop Vf 0.8V
Switching period T 100μs
On-time TD 45μs
Switch on-resistance Rs 0.001Ω
Diode on-resistance RD 0.001Ω

[
Q−1

m − AH −Q0

Hb 0

] [
X

x0

]
=

[
U

0

]
. (26)

In this equation, the number of the unknown variables coincides with the dimension of the equation.
Therefore, we can derive all the unknown variables X and x0 by solving it. If the system is nonlinear,
Eq. (26) becomes a nonlinear algebraic equation and should be solved by the recursive methods such
as Newton-Raphson method. Finally, we derive the approximated solution x of Eq. (15) from Eq. (5).
In this method, the differential equations are transformed into the algebraic equations by using the
integral and the differential operator matrices such as s in Laplace transforms. Then, by solving these
algebraic equations, we can find not only the stable periodic solutions but also the unstable ones
because this method is not a time-marching method in which the small errors will be magnified due
to instability of the unstable solutions.

4. Examples

4.1 Simple boost converter
In this section, we show the simple example to confirm the effectiveness of the proposed method. The
simple boost converter circuit shown in Fig. 4 is analyzed in this example. The circuit parameter is
set as the same as shown in Table I. The circuit equations are written as follows,

[
i̇L
v̇C

]
=

⎡
⎢⎣ −Rs(1 − s(t)) + RDs(t)

L
−s(t)

L
s(t)
C

− 1
RC

⎤
⎥⎦

[
iL
vC

]
+

⎡
⎣ E − s(t)Vf

L
0

⎤
⎦ , (27)

where

s(t) =

⎧⎪⎨
⎪⎩

0, for 0 ≤ t ≤ TD

1, for TD ≤ t ≤ T

s(t − T ) for all t > T.

(28)

Equation (27) can be transformed in wavelet-domain as follows,
[

Q−1
H 0
0 Q−1

H

] [
IL − IL0

VC − VC0

]
=

⎡
⎣ F11 F12

F21 − 1
RC

I(m×m)

⎤
⎦

[
IL

VC

]
+

[
U

0

]
, (29)

where
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Fig. 5. Numerical results of iL and vc for the proposed method for α =
4, 5, 6, 7, 8.

Table II. Comparison of MREs for approximation in boost converter.

α MRE for iL ([9]) MRE for vC ([9]) MRE for iL (proposed) MRE for vC (proposed)
4 0.025789 0.025714 0.078896 0.032298
5 0.025745 0.025704 0.011233 0.003098
6 0.025736 0.025703 0.019376 0.010234
7 0.025734 0.025702 0.003816 0.002181
8 0.031353 0.028476 0.004065 0.001844

F11 = Hdiag[Rs, · · · , Rs, RD, · · · , RD]HT , (30)

F12 = Hdiag
[
0, · · · , 0,− 1

L
, · · · ,− 1

L

]
HT , (31)

F21 = Hdiag
[
0, · · · , 0,

1
C

, · · · ,
1
C

]
HT . (32)

An example of the calculated results for the proposed method are shown in Fig. 5. From these
figures, we can see good approximation is achieved compared with the exact solutions. To evaluate
the accuracy of the proposed method, we calculate mean relative error (MRE) given by

MRE =
1

m + 1

m∑
j=0

∣∣∣∣∣x
(i)
j − x̂(i)(tj)

x̂(i)(tj)

∣∣∣∣∣ , (33)

where x̂ means the exact solutions. Table II shows the MRE for iL and vC compare with the errors
shown in [9]. From this results, the proposed method can achieve the better approximation than the
method shown in [9] except the case of α = 4, which is low-resolution case. Hence, we can construct
the simple and accurate method to calculate the steady-state periodic solution by using Haar wavelet
transform. It is considered that the proposed method can play important roles to analyze the behavior
of the various kinds of circuits such as the power electronic circuits and hybrid dynamical systems.

4.2 Duffing equation
In this paper, as an example, we use Duffing equation as shown in Eq. (34), which is one of the
best-known continuous-time chaotic systems,{

ẋ1 = x2

ẋ2 = −εx2 − βx1 − b2x3
1 + u cos ωt.

(34)

We can apply the Haar wavelet transform to the state equations as follows.
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Fig. 6. Examples of the periodic solutions for parameter set (ε, β, b, u, ω).
(a) (0.25, 0, 1, 8.2, 1), (b) (0.25, 0, 1, 9, 1).

[
Q−1

H 0
0 Q−1

H

] [
X1 − X10

X2 − X20

]
=

[
0 I(m×m)

F −εI(m×m)

] [
X1

X2

]
+

[
0
U

]
, (35)

where F = Hdiag[−β − b2x2
1,−β − b2x2

2, · · · ,−β − b2x2
m]HT . By applying Eq. (35) to Eq. (25) and

solving this algebraic equation, we can find the periodic solution in the system.
Figure 6 shows some examples of the periodic solution with the parameters with which the chaotic

oscillations are stably excited. In these results, thin solid curves describe the chaotic attractors calcu-
lated by 4-th order Runge-Kutta method, and red curves show the periodic solutions obtained by the
proposed Haar wavelet method. From these results, unstable periodic solutions in chaotic parameter
regions can be numerically obtained by proposed methods. From these results, the proposed method
seems to have the ability to find various kinds of periodic solutions embedded in chaotic dynamical
systems. However, we cannot verify those solutions are correct because they are unstable and cannot
be analyzed by the time-marching methods such as Runge-Kutta method. The verifications of the
solutions are our future problems.

5. Conclusions
In this paper, we have proposed the method to analyze the steady-state periodic solutions of the
nonlinear circuits driven by the periodic external input such as a simple boost converter and Duffing
equation by applying the boundary conditions that xp(t) = xp(t + T ). From the calculation results,
we have obtained the accurate and appropriate solutions by the proposed method. The Haar wavelets
make the algorithm simpler and the better accuracy has been achieved compared with the methods
previously shown. Therefore, it is considered that the proposed method can play important roles to
analyze the power electronic circuits and hybrid dynamical systems. In addition, it will be a helpful
tool for finding the unstable periodic orbits in the field of chaos control. The application of the
proposed method to the autonomous systems seems to be the future works.
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