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a b s t r a c t 

Due to the recent prevalence of IoT (Internet of Things) technologies, various IoT devices 

connect to the Internet and continuously send their generated data to remote process- 

ing computers such as video data or sensor data. The transaction rate is one of the main 

factors to improve the performance of some IoT applications. For instance, in surveillance 

systems, the probability to catch a thief increases as the processing computer analyzes 

the video with a higher transaction rate. To improve the transaction rate, some methods 

reduce the transaction time between a processing computer and stream data sources un- 

der a static transaction interval. However, the transaction rate can be further improved by 

changing the transaction interval dynamically depending on the transaction time. In this 

paper, we propose a method to improve the transaction rate by changing the transaction 

interval dynamically. In our proposed method, a processing computer sometimes changes 

the transaction interval to be the same length as the average transaction time. Moreover, 

our proposed method adopts a progressive quality improvement (PQI) approach to reduce 

the transaction time. We measured the transaction rate of our proposed method by both 

a simulator and an implemented system. We confirmed that our proposed method can 

improve the transaction rate by 4.4 times and the transaction time by 21% at least com- 

pared with the conventional method. Moreover, we confirmed that the average frame rate 

increases 22% compared with a simple method in a real situation. 

© 2020 Elsevier B.V. All rights reserved. 

 

 

 

 

 

 

1. Introduction 

Nowadays, various IoT devices such as cameras or sensors connect to the Internet. They are generally small size and their

processing powers are also low. Therefore, in most IoT applications, stream data generated by these devices are transmitted

to remote processing computers. The processing computers process stream data continuously and get various useful results.

For example, in surveillance systems, a processing computer receives video data continuously from surveillance cameras and

analyzes image data of each video frame to identify recorded people. 

In IoT applications, a higher stream transaction rate leads a more frequent data analyses and enables performance im-

provements. In the above example, the number of the people identified increases as the transaction rate increases since they
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are moving and the probabilities to record them in the video increase. Here, a transaction includes the data collection and

the analysis. Generally, the transaction rate is determined so as not to overlap transactions because a transaction time (from

the start of a data collection to the finish of the analysis) lengthens when the transaction overlaps with the previous or

the next transaction. Therefore, to improve the transaction rate, some methods reduce the transaction time [1–4] . A shorter

transaction time enables a shorter transaction interval of stream data and thus the stream transaction rate increases. They

target periodic transactions and assume static transaction interval. 

However, the transaction time dynamically changes depending on the communication time and the processing time of

each transaction. Indeed, these times differ for each transaction in some existing methods [5–7] . Although a shorter transac-

tion time enables a shorter transaction interval, the conventional methods assume static interval. Therefore, the transaction

rate can be further improved by changing the transaction interval dynamically depending on these times. It is very difficult

to determine the transaction interval so as to further improve the transaction rate because these times depend on the con-

tents of the stream data. As explained above, the transaction rate decreases in cases that the transaction interval is too short

and the transactions overlap. On the other hand, a longer transaction interval also decreases the transaction rate because

the frequency that the data sources transmit the stream data decreases. It is required to determine the transaction interval

to efficiently improve the transaction rate. 

In this paper, we propose a method to improve the transaction rate by changing the transaction interval dynamically.

In our proposed method, a processing computer sometimes changes the transaction interval to be the same length as the

average transaction time. Frequent changes of transaction interval cause the inconsistency of the times to get data. To keep

the consistency as possible, in our proposed method, the processing computer changes the interval every a fixed number of

transactions. Moreover, our proposed method adopts a progressive quality improvement (PQI) approach to reduce the trans-

action time. In the approach, the data amount of transmitted data is reduced by transmitting the data that have necessary

quality. 

The main contributions of this paper are summarized as follows: 

• A dynamic interval method to improve the transaction rate under the PQI approach. 

• An adoption of the PQI approach. 

• A performance evaluation of our proposed method by a simulator and a real situation. 

Edge computing, Fog computing, and MEC Servers get attractions to realize the real time processing of IoT streams. Our

proposed method in this paper achieves a faster stream transaction compared with a previously proposed methods and can

contribute to realize low latency, fast round trip time systems under these paradigms. 

The remainder of this paper is organized as follows. In Section 2 , we introduce some related work. In Section 3 , we will

explain our assumed system environments. Our proposed method is explained in Section 4 , Our implementation is explained

in Section 5 and the performance evaluation results are shown in Section 6 . Finally, we will conclude the paper in Section 7 .

2. Related Work 

Some methods to improve the transaction rate for IoT applications have been proposed. 

To reduce the communication time, many schemes have been proposed ( [8–11] ). These schemes degrade qualities of data

such as resolutions for image data, to reduce data to be collected and achieve a shorter transaction time. These methods

result in performance degradations of IoT applications. In our proposed method, applications can improve their performances

by changing the transaction interval dynamically. 

A method to reduce communication time by controlling the number of the data packets for transactions was proposed

in [12] . A method to control communication buffer to keep the transaction rate was proposed in [13] . These methods are

similar with our proposed method that data is divided into some parts, but our method progressively collects the divided

data considering their necessities. 

A method to reduce communication traffic between a video stream data source and a processing computer was proposed

in [14] . A method to reduce communication traffic by compressing data was proposed in [15] . Different from these methods,

in our proposed method, the transaction rate is improved while the qualities of stream data progressively improve. 

A model to reduce the delay for starting data processing were proposed in [16] . In the model, the processing computer

prepares separated data queues for each process and selects the data to process so as to reduce the processing delays. In

our proposed method, we can adopt this method in the processing computer. Our proposed method is different from this

in the point that we improve the transaction rate by managing how to process data. 

Some methods to control data generation timings to reduce communication traffic were proposed. The method proposed

in [17] considers communication distance between the data sources and the processing computer. The method proposed in

[18] considers the communication channels such as wireless or wired. 

In [19] , a method to improve the transaction rate has been proposed. In this method, the processing computer dynam-

ically changes the transaction interval depending on the transaction time. The results showed that the transaction rate can

improve under this method. However, the performance in practical situations is not investigated and the overheads caused

by actual systems are unclear. In this paper, we further investigate the experimental results in a real situation. 
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Fig. 1. Our assumed system architecture. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3. Assumed System 

3.1. System Architecture 

Fig. 1 shows our assumed system architecture. Some IoT devices such as surveillance cameras continuously get data

about their observations such as video data and act as stream data sources. They can generate some data items which have

qualities from their observed data. These IoT devices connect to a computer network such as the Internet and communicate

with a processing computer. The processing computer executes designated processes every data reception from the stream

data sources. Such a type of processes is called stream processing. The users designate the processes for the stream data to

a processing computer. The processing computer has a buffer for storing received data and executes processes for the data. 

The data sources and the processing computer can communicate with each other via the computer network. The data

sources divide their generated stream data into some parts and store them to their buffer tem porarily. When the process-

ing computer requests data to stream data sources, the requested data sources return it to the processing computer. The

processing computer receives the requested data in its own buffer and performs processing. 

3.2. Application Scenario 

Suppose an area in that some surveillance cameras are deployed and a processing computer gathers their recorded video

data. They connect to a designated computer network and communicate with each other similar to our assumed system

architecture. 

As an example application scenario, we assume a person identification system by a face recognition. For this, the appli-

cation designates the process that notifies to the user when the processing computer identifies person face and determines

whether the person is registered or not in the video data got from surveillance cameras. To detect faces, the user submits

the face images of registered persons to the processing computer beforehand. The processing computer continuously ana-

lyzes image data got from surveillance cameras and identifies faces in received image data. When the processing computer

finds faces in an image data, it checks whether the found faces are those of registered persons or not. If the processing

computer detects the faces that are not registered, it sends a notification to the user by e-mail or other messaging services.

3.3. Research Objective 

In the scenario introduced in Section 3.2 , a main application performance is the probability to catch thieves. This can

increase by analyzing video data with a higher transaction rate. It is better to give a consistency to data transaction interval

for transactions. For example, in the above scenario, a higher and consistent transaction rate, i.e., a more frequent and pe-

riodic data gathering from the cameras, increases the chance to identify people since they are moving and the probabilities

to record them in the video increase. 

Conventional methods improve the transaction rate by reducing communication time between a processing computer and

stream data sources. They target periodic stream processing and assume static transaction interval. However, the transaction

time dynamically change depending on the amount of transmitted data and the number of data sources. The transaction

rate can be further improved by changing the transaction interval dynamically depending on transactions time. Therefore,

our research objective is improving the transaction rate by changing the transaction interval dynamically and implement a

real system using our proposed method. 
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Fig. 2. Stream data collection of the conventional method and of the PQI-CDI method. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4. Difficulty of the Problem 

A short transaction interval can give a higher transaction rate for real-time IoT applications. However, an excessively short

transaction interval causes higher loads on both communication and processing since the processing computers receive the

next transaction before finished processing the current transaction. Thus, the transaction rate decrease. In other hand, a

transaction interval is longer than transaction time has a possibility to further improve the transaction rate. Therefore, in

this paper, we proposed a method to change the transaction interval dynamically depending on the transaction time. 

4. Proposed Method 

In this section, we explain our proposed method. It called the PQI-CDI (Progressive Quality Improvement approach with

Cycle-based Dynamic Interval) method. In this method, the system changes the transaction interval dynamically and adopts

the PQI approach to reduce the transaction time. 

4.1. PQI approach 

Generally, data have some qualities, e.g., resolution of image data. Data analyses can be applied for each quality and data

with the highest quality often gives the best performance for analyses. If processing computers analyze data sequentially in

the order of quality from the lowest to the highest, they can stop data analyses when the subsequent analyses for higher

quality data are meaningless. For example, in the above scenario, the processing computer first receives the lowest quality

image data of a frame and analyzes the difference from the previous frame. In case that the difference are small, the pro-

cessing computer skips the analyses of higher quality image data since new humans do not appear in the frame because

of small difference. In cases that the probability to proceed to higher quality data analyses is small, the total amount of

received data is reduced, compared with the case that all quality data are received. Therefore, the data amount to be re-

ceived is reduced when the probability is small compared with the processing computer receives the highest quality data

without consideration of data qualities. Thus, the transaction time is reduced keeping the application performance. We call

this approach progressive quality improvement approach. 

Fig. 2 shows a timing chart for stream processing under the conventional method and the PQI-CDI method. In the PQI-

CDI method, the data D d,a ( t ) ( d = 1 , 2 , t = 1 , · · · ) is divided into some qualities. Each transaction includes some processes

for each divided data. In the figure, the number of the qualities is 2 and the transaction consists of two processes for the

divided data D d ,1 ( t ) and D d ,2( t ) . d is the stream number, t is the cycles for data collections, and q is the quality. In the cycle 1,

the transaction finishes at the first quality in both streams. In the cycle 2, the processing computer requires D 1,2 (2) when it

finishes the process for D 1,1 (2). The camera 1 transmits the required D 1,2 (2) and the processing computer starts the process

for D 1,2 (2). In this case, the transaction finishes when the processing computer finishes the process for D 1,2 (2) since the

number of the qualities are 2. The transaction time in this case is reduced compared with that under the conventional

approach as shown in the figure. 
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Fig. 3. Flow chart of data sources. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.2. Cycle-based Dynamic Interval 

For changing the intervals, the PQI-CDI method determines when and how long the processing computer changes the

transaction interval. 

4.2.1. Timings to Change Intervals 

A more frequent change of intervals causes a less consistency. On the other hand, a less change of intervals cannot im-

prove the transaction rate further since it takes a longer time to change intervals based on the communication time and the

processing time. However, it is difficult to find the appropriate timing to change intervals depending on the communication

time and processing time since these times change dynamically. 

One of the solution for such a dynamic situation is fixed period. Therefore, in the PQI-CDI method, the processing com-

puter changes the intervals of each stream every finishing C n transactions with the data source n . 

4.2.2. How to Determine Intervals 

A longer interval causes a less transaction rate. On the other hand, a shorter interval than a transaction time causes

a longer transaction time because the processing computer receives the next data before it finishes the current process.

Therefore, the interval that is the same length as the transaction time is the most appropriate value. However, it is difficult

to grasp the transaction time since it depends on the communication time and the transaction time. 

The PQI-CDI method has a cycle to change intervals C n . Therefore, we adopt the average transaction time for the previous

cycle as the new interval. 

4.2.3. Algorithms 

Fig. 3 shows the flow chart of data sources. When the t th cycle starts, each data source n gets D n,a ( t ) from their sensors

and stores it to their storages temporary. Here, D n,a ( t ) is the observed original data of the data source n at the cycle t.

D n,q ( t ) ( q = 1 , · · · , Q) is the generated data from D n,a ( t ) of that quality is q . First, they generate D n ,1 ( t ) from D n,a ( t ) and send

D n ,1 ( t ) to the processing computer. When the data source n receives the request of D n,q ( t ), it generates D n,q ( t ) from stored

D n,a ( t ) and sends D n,q ( t ) to the processing computer. When the data source n receives the request of changing interval to i ,

it changes its interval to i and rearranges the start of the next cycle. 

Fig. 4 shows the flow chart of the processing computer. When the processing computer receives D n,q ( t ), it processes

D n,q ( t ). When q = Q and D n,q ( t ) is the final quality data, the process of t th cycle finishes. Otherwise, the processing com-

puter judges the necessity of D n,q +1 (t) . In case that D n,q +1 (t) is needed for the process execution, the processing computer

requests D n,q ( t ) to the data source n , otherwise, the process finishes. When the process finishes, in the PQI-CDI method,

the processing computer checks whether c n reaches C n or not. c n is the variable to count the number of transactions for

the data source n . Here, again, C n is the interval of transactions to change the transaction interval of the data source n . In

case that c n reaches to C n , the processing computer calculates the new interval using the average transaction time for the

previous cycles. That is: 

A v eT T n (t) = 

C n ∑ 

τ= t−C n +1 

T T n (τ ) (1)

Then it sends the request for changing the interval to the data source n . Then, initialize c n . Here, TT n ( t ) is the transaction

time of the t th cycle of the data source n , i.e., the time to get the original data at the data source n to the time to finish

the process of the data at the processing computer. 
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Fig. 4. Flow chart of processing computer. 

Fig. 5. System architecture of our implemented system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The complexity (in terms of number of operations needed for convergence) of the proposed algorithm cannot be ana-

lyzed mathematically because the transaction time fluctuates according to the quality levels that the processing computer

processes and it is not controllable by the system. Therefore, the transaction time does not converge and the transaction

interval does not converge. Accordingly, our proposed method changes the transaction interval cyclically. In the case that

the transaction time is happen to be constant, the transaction interval converges in only one cycle. 

5. Implementation 

In this section, we explain our implementation of the PQI-CDI method. 

5.1. System Architecture 

Fig. 5 shows the system architecture of our implemented system. The data sources are the cameras connected to the

Raspberry Pi 3 a Laptop computer working as a processing computer via 100BASE-TX/1000BASE-T network (Allied Telesis

CentreCOM GS908GT switch). We used the Python programming language to implement the human detection software.

Each camera gets image data with 640 × 480 resolution and encodes into progressive JPG format, which contains 10

different qualities (called scans in progressive JPEG). Example images are show in the Fig. 6 . These generated qualities are

temporarily stored in the memory. At the time to start a transaction, each data source first sends the lowest quality data

to the processing computer. When the processing computer receives the data, it tries to detect humans in the received

image. If the processing computer detects human bodies in the firstly received scan, the processing computer requests to

the cameras to get the remaining scans (the higher quality image data) and progressively collects them. Otherwise, the

processing computer skips collecting the higher scans. Table 1 shows the specifications of our implemented system. 

5.2. Communication Flow 

Fig. 7 shows the communication flow of our implemented system. We use two channels for the communications. The

communication channel is used for requesting higher quality data from the processing computer and for sending them to
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Fig. 6. Images with different qualities. 

Table 1 

Specifications of our implemented system. 

Items Details 

Recording computer Raspberry Pi 3 Model B (1.2GHz quad-core ARM Cortex-A53, 

1GB memory, 100BASE-TX, Raspbian Ver 10. Sep. 2019) 

Camera device Raspberry Pi Camera Module V2 

Processing computer (Windows 10 Pro 64bit) Dell Latitude E7240 (2.10GHz dual-core Intel Core i7-4600U, 

8GB memory, Intel HD Graphs 4600, 1000BASE-T 

Network Allied Telesis CentreCOM GS908GT (100BASE-TX/1000BASE-T), 

CAT5e cables 

Cables CAT5e, 1m length 

Num. of recording computers 3 

Num. of processing computers 1 

Num. of qualities in prog. JPEG 10 

Comparison methods The PQI-CDI method and the PQI method 

Evaluation items Average Frame Rate [FPS] 

Fig. 7. The communication diagram for our implemented system. 

 

 

 

 

 

it. For this, we use TCP/IP protocol. The data transfer channel is used for transferring the first quality data from the data

sources to the processing computer. We use RTP for the data transfer channel. In our system, the processing computer first

connects to the data sources via the communication channel. The data sources make connections to the processing computer

in the second step. If the connection complete, the processing computer opens an RTP channel and waits for receiving RTP

packets in the third step. If the connection confirmation is established, the processing computer requests the start of stream



8 C. Yukonhiatou, T. Yoshihisa and T. Kawakami et al. / Internet of Things 11 (2020) 100182 

Fig. 8. The communication diagram how to generate and request higher quality data. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

data transactions in the fourth step. When the data sources receive the requests for starting transactions, they get image

frames from their camera’s sensor and generates them into 10 qualities (10 scans) for frame. The data sources encode the

lowest quality (first scan) data into RTP packets and send them to the processing computer via the data channel in the

step sixth. Finally, the processing computer receives RTP packet and decodes the image data for analysis. In the case that a

higher quality image data is needed, the processing computer sends the requests to the data sources via the communication

channel. 

5.3. How to Generate and Request Higher quality data 

In this section, we explain how to generate different qualities data and requesting the higher quality data for each frame.

Fig. 8 shows how to generate some qualities data for each frame and requesting them. First, the data source gets a

raw image data from its camera’s sensor. Second, the data source encodes the data into progressive JPG format with 10

qualities (called scans in progressive JPG) using OpenCV (a popular programming library for the computer vision field) and

temporarily stores them in its buffer. Third, the data source sends the first scan (first quality) to the processing computer.

Fourth, when the processing computer receives the first scan, it checks whether a human is detected or not in the image

data. Fifth, in the case that a human is detected in the first scan, the processing computer requests to the data source in

order to get the remaining qualities and progressively collect them in the step sixth and seventh, respectively. Finally, the

processing computer combines the remaining scans with the first scan in order to get the improve quality image. In case

there is not a human detected in the first scan in step fifth, the processing computer waits for receiving for the next frame

(the first scan of the next image data). 

6. Evaluation 

In this section, we first show the simulation results to confirm the effectiveness of our proposed system. After that, we

show the performance overheads in our developed real system. We show the simulation results in this subsection. 

6.1. Results by Simulator 

6.1.1. Evaluation Parameters 

In this evaluation, we assume the application explained in Subsection 3.2 and use the parameters shown in Table 2 . 

Input Bandwidth is the input communication bandwidth for the processing computer. When the processing computer

communicates with some data sources, the input bandwidth is fairly shared among data sources. Output Bandwidth is

the output communication bandwidth of each data source. Total data amount is the data amount of D n,a ( t ) ( n = 1 , · · · , N,

t = 1 , · · · , T ). To make the evaluation results easily understandable, we set the same data amount for all data items. Pro-

cessing Time Ratio is the value of the transaction time divided by the amount of the data item for the process. We set
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Table 2 

Simulation settings. 

Input Bandwidth 10 [Mbps] 

Output Bandwidth 10 [Mbps] 

Total Data Amount 12.5 [Kbytes] 

Processing Time Ratio 10 −6 

Fig. 9. Average transaction rates under different final probabilities. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

these parameters considering practical situations. We use the same values for PProb n,p ( t ) ( p = 1 , · · · , Q − 1 ). PProb n,p ( t ) is the

probability to the next quality from the quality p . For this, we set the final probability FProb for processes to proceed to the

final quality. P P rob n,p (t) = F P rob 1 /N . We simulate the stream processing system for 60 seconds. 

6.1.2. Evaluation Items 

The main evaluation item is the transaction rate. The transaction rates are the number of the transactions that the

processing computer finishes in a second. One of the other performance for stream processing is the transaction time.

We calculate the average values since we confirmed that the transaction time converge. One of the demerits of dynamic

interval is the inconsistency of the intervals. To investigate this, we calculate the fairnesses of the intervals. We adopt the

Jain’s coefficient for the fairness. A smaller fairness indicates a more inconsistent interval. 

6.1.3. Influence of Number of Streams 

We measure the performances changing the number of the streams. In this experiment, the number of the transactions

that the processing computer changes the interval C n (n = 1 , · · · , N) is 2 since this value gives a higher transaction rate and

a higher fairness as shown in the next subsection. N is the number of the streams. We set the number of the qualities to 5

as an example value. The initial interval is 100 [msec.]. 

Fig. 9 shows the average transaction rate. The horizontal axis is the number of the streams and the vertical axis is the

average transaction rate. Our proposed PQI-CDI method gives a higher average transaction rate than that for the case of

static interval (100 [msec.]) when the number of the streams is less than 9. This is because the network and the processing

computer have an extra capacity to improve the transaction rate compared when the intervals are 100 [msec.] and the PQI-

CDI method exploits this extra capacity by changing the interval dynamically. The average transaction rate increases as the

final probability increases since the average amount of the data to be transmitted from the data sources decreases as the

final probability decreases and the extra capacity increases. The line for the static interval stops at the point that the number

of the streams is 8 since the transaction time diverge in the cases where the number of the streams is larger than 8. For

example, when the number of streams is 1, the average transaction rate in the case that the final probability is 1.0 under our

PQI-CDI method is 44 [num/sec.] although this under the static interval is 10 [num/sec.]. Therefore, our proposed method

can improve the average transaction rate by 4.4 times even in the case that the final probability is 1.0. This is because the

PQI-CDI method changes the transaction interval dynamically. 
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Fig. 10. Average transaction time under different final probabilities. 

Fig. 11. Fairness of intervals under different final probabilities. 

 

 

 

 

 

 

 

 

Fig. 10 shows the average transaction time. The horizontal axis is the number of the streams and the vertical axis is the

average transaction time. Our proposed PQI-CDI method gives a shorter average transaction time than that for the case of

static interval (100 [msec.]). This is because the network and the processing computer have an extra capacity to improve

the transaction time compared when the intervals are 100 [msec.] as the same reason as the average transaction rate. For

example, when the number of streams is 8, the average transaction time in the case that the final probability is 1.0 under

our PQI-CDI method is 110 [msec.] although this under the static interval is 138 [msec.]. Therefore, our proposed method

can improve the average transaction rate by 21% even in the case that the final probability is 1.0. 

Fig. 11 shows the fairness of the intervals. Our proposed PQI-CDI method gives a lower fairness than that for the case of

static interval (100 [msec.]) since the intervals dynamically change under the PQI-CDI method and the intervals have various
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Fig. 12. Average transaction rates under different final probabilities changing cycle length. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

values. The fairness decreases slightly as the number of the streams increases since the range of the intervals increases as

the number of the streams increases. 

6.1.4. Influence of Cycles 

In our PQI-CDI method, the cycles for changing intervals influence the performances. We investigate the influence chang-

ing the cycle length C n (n = 1 , · · · , N) under different final probabilities. The cycle lengths for all streams are the same. The

final probabilities are 0.1, 0.3, 0.5, 0.7, 1.0. The initial interval is 100 [msec.] and the number of the qualities is 5 as an

example value. 

Fig. 12 shows the average transaction rate. The horizontal axis is the number of the cycle length and the vertical axis

is the average transaction rate. We can see that a shorter cycle length causes a higher average transaction rate since the

interval is adjusted to the transaction time frequently by changing the interval. Therefore, the processing computer can

collection more data by changing the transaction interval dynamically under the PQI-CDI method than that under the con-

ventional method. 

Fig. 13 shows the average transaction time. The horizontal axis is the number of the cycle length and the vertical axis

is the average transaction time. In the PQI-CDI method, the average transaction time for a higher final probability gives a

longer average transaction time since a higher final probability enables more transactions to proceed to the final quality. We

can see some average transaction time with a lower final probability gives a shorter average transaction time. 

Fig. 14 shows the fairness of the intervals. The horizontal axis is the number of cycle length and the vertical axis is the

fairness of intervals values. The fairness decreases as the cycle length increases. This is because under our proposed method

the intervals dynamically change. 

6.2. Results by Real System 

We show the results of our developed real system explained in Section 5 by using parameters shown in Table 3 

6.2.1. Frame Rate 

the transaction rate can be actually calculated by the frame rate and transaction time. influence the transaction rate.

Therefore, we measure them using our developed system. In this section, we call the method of that transaction interval is

static under the PQI approach, the PQI method. 

Fig. 15 shows the average frame rate. The horizontal axis is the number of cameras with different methods (PQI and

PQI-CDI) and the vertical axis is the average frame rate. We can see that the average frame rate under the PQI-CDI method

gives a higher average frame rate than the PQI method since the PQI-CDI method can change the transaction interval to a

shorter transaction interval than the static interval. In this experiment, the communication bandwidth and the processing

power of the processing computer are sufficient and the average frame rate does not decrease even when the number of
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Fig. 13. Average transaction time under different final probabilities changing cycle length. 

Fig. 14. Fairness of intervals under different final probabilities changing cycle length. 

 

 

 

 

the cameras is 3. It is obvious that the average frame rate decreases when the number of the cameras further increases. For

example, when the number of cameras is 3, the average frame rate under our PQI-CDI method is 10.8 [fps] although this

under the original PQI method is 8.86 [fps]. Therefore, our proposed method can improve the frame rate by 22%. 

6.2.2. Transaction Time 

Fig. 16 shows the transaction time of the PQI and the PQI-CDI methods under 1 camera. The horizontal axis is the

transaction IDs and the vertical axis is the transaction time. We can see that the transaction time are almost constant at
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Table 3 

Parameter values for the implemented system. 

Communication Bandwidth Approx.100 [Mbps] 

Communication Protocol RTP over UDP 

3 Raspberry Pi devices live camera 

Laptop 1 

Image Resolution 640 × 480 

Progressive JPG 10 scans 

Initial Interval 0.03 

Cycle length 20 

Image Analysis upper human body detection (HAAR) 

Fig. 15. Average frame rate. 

Fig. 16. Transaction time (1 camera). 
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Fig. 17. Transaction time (3 cameras). 

Fig. 18. Overheads. 

 

 

 

 

 

 

 

0.05[sec.] for both the PQI and the PQI-CDI methods when the processing computer does not request the high quality data

since the transmitted data amount is small. In the both methods, the transaction time increases in the case when the high

quality data is needed. For example, the transaction time for the transaction ID 7 is longer than the transaction time for

transaction ID 6. This is because it takes time to communicate the high quality data. 

Fig. 17 shows the transaction time under 3 cameras compared with the case of 1 camera, the transaction time for getting

high quality data is slightly longer. This is because the number of transmitted data amounts influence the communication

bandwidth and processing computer’s capacities. Hence, the transaction time gets longer. 

6.2.3. Difference from Simulator 

Our developed simulator does not consider the frame generation time and the request handling time. In the PQI method,

each camera takes some times to generate the data with some different qualities and handle the requests as explained in

Section 5.3 . Hence, we check the overhead. 
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Fig. 18 shows the overhead in the cameras. The horizontal axis are the frame generation time on the camera side and the

request handling time for the PQI and the PQI-CDI methods. The vertical axis is the average time for them per transaction.

We can see that the frame generation time under the PQI-CDI and the PQI methods are almost the same. This is because the

number qualities data generated are the same. The request handling time is the time to receive the requests of processing

computer to the time starting frame generation. We can see that the request handling time under the PQI-CDI method is

larger than the PQI method since the request handling time of the PQI-CDI method includes both the requests for the high

quality data and also them for changing the intervals. 

7. Conclusion 

Stream transaction rate is one of the main factors to improve the performance of some IoT applications. In this paper,

we proposed the PQI-CDI method in order to improve the transaction rate. In the PQI-CDI method, the processing computer

changes the transaction interval to be the same length as the average transaction time every a fixed number of transactions.

Moreover, the PQI-CDI method adopts the PQI approach to reduce the transaction time. Our evaluation results revealed

that the PQI-CDI method can achieve a higher stream transaction rate than a conventional method with the PQI approach.

Moreover, we compared the results by the simulation with that of our developed real system and found that the PQI-CDI

method encounters some overheads for frame generation and request handling in each data source. 

In the future, we plan to introduce machine learning technique to predict appropriate transaction interval and to inves-

tigate the effectiveness for real-time IoT applications. 
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