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ABSTRACT 

I 

ABSTRACT 
With the increasing awareness of environmental pollution and the extensive 

consideration of mankind health, there has been an increased demand for natural fibers 

in textile materials recently. As a typical natural fiber, ramie is an increasingly popular 

because of its excellent properties including a high tensile strength, excellent thermal 

conductivity, coolness, ventilation function, moisture absorption, and antibacterial 

function. However, ramie fiber and ramie fabric have some disadvantages such as poor 

elasticity, low wrinkle recovery, low resilience, itchiness, harsh handle, which decreases 

the competitiveness of ramie fabric in the high-grade garment-fabric market. It is 

necessary to use the advanced technologies in the dyeing and finishing for enhancing 

the competitiveness of ramie fabric. This study is aimed to study the natural dyeing and 

functional finishing of ramie fabric.    

 

At present, ramie fabrics are mostly dyed with synthetic colorants which can give rise 

to serious environmental pollution and potential harm to mankind health. Thus the 

natural and healthy features of ramie fabric are greatly weakened. In this study, ramie 

fabrics were dyed with the several natural extracts. But heavy metal ions, which lead to 

environmental pollution, are usually used as mordant in natural dyeing. In this study, the 

eco-friendly rare earth was used as mordant in natural dyeing of ramie fabrics. The 

influences of dyeing conditions were studied. The ramie fabrics dyed using rare earth as 

mordant exhibited higher color shade stability against pH variation. Using rare earth as 

mordant in natural dyeing apparently enhanced the color fastness to washing, rubbing 

and light of the ramie fabrics. As compared with Fe2+ and Cr6+, rare earth was more 

efficient, resulting in decrease of mordant concentration in natural dyeing. Thus rare 

earth was effective mordant in the natural dyeing of ramie fabrics.  

 

One of the shortcomings of ramie fabric is its lower wrinkle recovery. The typical 

wrinkle resistant finishing via cross-linking usually decreases strength of cellulose 

fabrics. In this study, ramie fabrics were pretreated with liquid ammonia (NH3) prior to 

wrinkle resistant finishing. Meanwhile, a kind of thermally reactive polyurethane (PU) 

emulsion was used as strength protector. The liquid NH3 pretreatment was proved to 
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decrease crystallinity of ramie fiber and bring about apparent swelling effect. As a result, 

the accessibility of the ramie fabrics treated by liquid NH3 was elevated. The liquid NH3 

pretreatment prior to resin finishing gave rise to better wrinkle resistant effect and less 

strength loss. The thermally reactive PU emulsion was proved to decrease strength loss 

of ramie fabric without influencing wrinkle resistant effect. Using liquid NH3 

pretreatment and employing reactive PU as protector in the wrinkle resistant finishing 

of ramie fabric can raise strength retention up to 80%. After 10 laundry cycles, the flat 

appearance and the crease retention of these ramie fabrics were over grade 3.0.  

 
Developing electromagnetic shielding textiles has drawn increasing attention recently 

since electromagnetic pollution is harmful to mankind health. In this study, super critical 

carbon dioxide (scCO2) fluid technology was used to develop electromagnetic shielding 

ramie fabric. The scCO2 treatment could remove the impurities of the ramie fibers 

prominently. The scCO2 fluid could result in the swelling of ramie fiber and thus 

increase the absorbency of ramie fiber to additives. Using scCO2 fluid, the Palladium 

(II)-hexafluoroacetylacetonate could be impregnated into the ramie fiber under 

appropriate conditions. After thermal decomposition at high temperature, the Palladium 

film formed on ramie fibers. The ramie fabrics bearing Palladium catalyst were plated 

with a cooper film via electroless cooper plating. The cooper coated ramie fabrics 

exhibited good shielding effect. This study presented a new way for developing 

electromagnetic shielding fabric.  

 

Nanoparticles have been extensively used for the functional finishing of textiles. But 

the nano finishing of ramie fabrics has less been studied. In this study, the 

multifunctional ramie fabrics coated by TiO2 nanoparticle were developed. The optimal 

dispersion conditions of TiO2 nanoparticles in aqueous suspension were studied in 

details. A kind of hydrophilic silica aerogel product was proved to be suitable for 

serving as dispersant for dispersion of TiO2. Using the TiO2 suspension prepared in 

optimal conditions, ramie fabrics were coated with TiO2 via a dip-pad-dry process. In 

order to enhance the finishing durability the ramie fabric were pretreated by citric acid 

prior to nano finishing. The ramie fabric finished with working bath containing 0.8g/L 

TiO2 was proved exhibited excellent UV protection and antibacterial property, and high 
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capability for decomposing formaldehyde. Treating fabric with citric acid before coating 

could improve the washing durability of the resultant TiO2 loaded ramie fabrics.  

 

This study explored several ways for developing healthy and highly functional ramie 

fabrics with high added value. The resultant ramie fabrics exhibited high quality. The 

newly developed dyeing and finishing processes are supposed to be helpful for raising 

the competitiveness of ramie and expanding its application.     
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CHAPTER 1                    

INTRODUCTION 

1.1 Research background 

As a classic fiber, ramie has been used in many countries since time immemorial. 

Ramie has been grown in the Far East for centuries and its fiber was used for textiles 

and cloth even before the introduction of cotton. Nowadays, ramie is mainly grown in 

China, Brazil, South Korea, the Philippines, Taiwan, Thailand, India and a few other 

countries. Ramie fibers are stripped from stem bast of a hardy perennial herbaceous 

plant of the Urticaceae family which is also called China grass. The ramie fabrics are 

used in the textile industry for manufacturing various types of high quality clothing 

materials. Ramie is used frequently in blends with other textile fibers such as cotton, 

viscose, polyester, wool, hemp, jute, etc. A great variety of textile products such as 

canvas, towels, twines, sewing threads, knitted cloths and garments can be produced 

from ramie fibers. Recent fashion trends have an increased demand for ramie fibers 

because of its outstanding performance and aesthetic properties.  

 

Ramie has excellent properties such as high tensile strength when they are used as 

textile materials. It is reported that ramie has a tensile strength eight times that of cotton 

and seven times greater than silk. It possesses excellent thermal conductivity, coolness, 

ventilation function, moisture absorption function and therefore is comfortable to wear, 

especially during warm weather. Ramie also shows prominent resistance to bacteria, 

mildew, alkalis, light and insect attack. Ramie fabric has natural stain resisting ability 

with ease of stain removal and is better than cotton fabric thereby. It also gives a high 

luster.  

 

However, ramie fibers are suffered from low elasticity, poor wrinkle recovery, low 

abrasion resistance, harsh handle and itching when worn next to the skin. The dyeing 
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property of ramie is not as good as that of cotton. Because of its high molecular 

crystallinity, ramie lacks resiliency and is low in elongation potential. Spinning the 

ramie fibers is difficult by their brittle quality and low elasticity; and weaving is 

complicated by the hairy surface of the yarn, resulting from lack of cohesion between 

the fibers. Ramie fabrics tend to show wrinkle appearance easily because of the higher 

stiffness of ramie fiber. In addition, ramie fiber is high cost which reduces its 

competitiveness against other textile fibers. The shortcomings decrease the 

competitiveness of ramie fabric in the high-grade garment-fabric market. Natural dyeing 

and functional finishing bring about high added value to ramie fabric and thus can 

enhance its competiveness against other textile materials.  

 

At present, ramie fabrics are mostly dyed with synthetic colorants which can give rise 

to serious environmental pollution and potential harm to mankind health. Thus the 

natural and healthy features of ramie fabric are greatly weakened. Replacing the 

synthetic dyes with natural extract colorants in the dyeing of ramie fabric can not only 

reduce environmental pollution but also retain the natural and healthy features of ramie 

fabric and thus is favorable for increasing its competitiveness. However, heavy metal 

ions are usually used as mordant in the natural dyeing of cellulose fabrics, resulting in 

environmental pollution and potential harm to human being. Rare earth elements can be 

used as mordant in natural dyeing due to their higher capability for forming complexion. 

Using rare earth as mordant in the natural dyeing of ramie fabric is supposed to develop 

high-quality healthy textile material, which has never been reported.  

 

Poor wrinkle recovery is a major disadvantage of ramie fabric. Carrying out wrinkle 

resistant finishing on ramie fabric is significant for upgrading the performance of ramie. 

It is well documented, the typical wrinkle resistant finishing of cellulose fabrics using 

the cross-linking agents such as dimethyloldihydroxyethyleneurea (DMDHEU) and 

1,2,3,4-butanetetracarboxylic acid (BTCA) can result in significant strength loss. Liquid 

NH3 treatment prior to resin finishing has been proved to reduce strength loss for cotton 

fabrics. The application of the combination of liquid NH3 pretreatment and resin 

finishing for ramie fabrics has not been studied systematically.  
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With the development of science and technology, electromagnetic (EM) pollution 

increases as well, resulting in the rising attention to electromagnetic shielding (EMS) 

fabrics. Most of investigations on the EMS fabrics are based on synthetic fibers. Fewer 

attempts have been made on the development of EMS fabrics with natural fibers. 

Developing EMS fabrics with ramie fabric is essential for expanding the application of 

ramie fabric. Electroless copper (Cu) plating is a simple and effective method for 

developing EMS fabrics. But ramie fabric has to be pretreated prior to Cu plating for 

increasing the absorbency of ramie fibers to Palladium catalyst. As an environmentally 

benign process, scCO2 fluid technique has been proved to result in the swelling of 

cellulose fibers and thus raise their accessibility. Using scCO2 fluid technique for the 

impregnation of Palladium catalyst in the development of EMS fabrics has never been 

studied.  

 

With the advent of nanoscience and technology, a new area has developed in the area 

of textile finishing called "Nano finishing". Growing awareness of health and hygiene 

has increased the demand for bioactive or antimicrobial and UV-protecting textiles. 

Coating the surface of textiles and clothing with nanoparticles can produce high 

functional textiles having UV protective, antibacterial, water repellant and self-cleaning 

characteristics which greatly enhance added values and competiveness of fabrics. 

However, most of the nano finishing investigations were conducted on cotton or 

polyester fabric. As compared with case of cotton and polyester, few attempts have been 

made on the nano finishing of ramie fabric.  

 

1.2 Objectives of the study 

This study is mainly concerning with the application of new techniques for the dyeing 

and finishing of ramie fabrics in order to overcome some major difficult problems in the 

processing of ramie fabrics and develop high-value-added ramie textile materials. The 

primary objectives of this thesis are summarized as follows:  

 

(1) To study the natural dyeing of ramie fabrics using rare earth as mordant. 
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(2) To study the wrinkle resistant finishing of ramie fabric using liquid ammonia 

technology  

(3) To investigate the application of super critical carbon dioxide technique for the 

electromagnetic shielding finishing of ramie fabric.  

(4) To develop multifunctional ramie fabrics through finishing with TiO2 nanoparticles. 

 

1.3 Methodology     

In order to achieve the above objectives, the following methods were adopted in this 

study.  

 

(1) A literature review was conducted in order to get the background knowledge, 

especially the comprehensive understanding of the unique structure of ramie fibers 

so that the appropriate investigating routes can be adopted.  

(2) According to the structural feature, i.e. high crystallinity, and the dyeing and 

finishing properties of ramie fibers, the new technologies including liquid 

ammonia (NH3) and super critical carbon dioxide (scCO2) processes were 

employed to treat ramie fabric prior to wrinkle resistant finishing and 

electromagnetic shielding treatment. On one hand the two kinds of technologies 

can greatly reduce crystallinity and result in swelling of ramie fiber. On the other 

hand, the two kinds of technologies are eco-friendly. The eco-friendly 

pretreatments can avoid or reduce chemical residual and match the natural feature 

of ramie fabric.  

(3) Owing to its natural feature, this study conducted the study on the natural dyeing 

of ramie fabric. Moreover, the eco-friendly light rare earth chlorides were used to 

replace heavy metal as mordant, which is aimed to further reduce harmful 

chemical residual of ramie fabric and decrease environmental pollution in dyeing. 

(4)  The poor wrinkle resistance is a major shortcoming of ramie fabric. This study 

used the combination of liquid NH3 and chemical cross-linking to perform the 

wrinkle resistant finishing. In order to reduce the strength damage, a thermally 

reactive polyurethane emulsion was utilized as protector.  
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(5) The combination of pretreatment by scCO2 and precursor impregnation by scCO2 

was used for electroless cooper plating. This can promote the swelling of ramie 

fiber and reduce pollution.  

(6) In the study of nano finishing of ramie fabric, the hydrophilic silica aerogel was 

used as dispersant of TiO2 nanoparticles. The chemical cross-linking pretreatment 

on ramie fabric was used to improve the finishing durability. In addition, the 

influencing factors on dispersion of TiO2 were studied, which favors the 

production of stable TiO2 suspension.  

(7) The techniques including scanning electron microscopy (SEM), X ray diffraction 

(XRD), thermogravimetric analysis (TGA), X-ray photoelectron spectroscopy 

(XPS) were used to study structural change. In addition, the CIELAB colorimetric 

values of dyed fabric were measured by Datacolor SF600 Computer Color 

Matching System. The UV protection of fabric specimens was measured using 

UV-visible spectrophotometer. 

 

1.4 Outline of the thesis 

(1) Chapter 1 introduces the research background and proposes the study contents and 

objectives. In addition, the main study methods employed in the study were 

explained. At last, the outline of the thesis was given.  

(2) Chapter 2 presents a short overview on the documents of the relevant investigations. 

In particular, the structural characteristics of ramie fibers were stressed. Because the 

structural characteristics of ramie fiber was the basis of its dyeing and finishing. The 

new developments of finishing were also simply introduced.  

(3) Chapter 3 shows the study results of natural dyeing of ramie fabric. The mordant 

function of rare earth in natural dyeing was verified. The advantage of rare earth 

over heavy metals for serving as mordant was manifested.  

(4) Chapter 4 presents the findings in the wrinkle resistant finishing of ramie fabric 

using liquid NH3 pretreatment. It was found that the liquid NH3 pretreatment could 

improve wrinkle resistant effect and reduce strength damage. Using thermally 

reactive PU emulsion as protector could further decrease strength damage with 
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influencing wrinkle resistant effect.  

(5) Chapter 5 reports the experimental results achieved from the study of 

electromagnetic shielding finishing using scCO2 technique. It can be drawn from 

this part that the scCO2 could result in the swelling of ramie fiber which is favorable 

for the impregnation of Palladium catalyst. The electroless plated ramie fabrics were 

proved to show good electromagnetic shielding effect.  

(6) Chapter 6 introduces the achievements attained from the study on the 

multifunctional finishing of ramie fabric using titanium dioxide (TiO2) nanoparticles. 

It was found that TiO2 coated ramie fabrics exhibited excellent UV protection and 

antibacterial property, and high capability of decomposing formaldehyde. In 

addition, the pretreatment of ramie fabric with citric acid could greatly enhance the 

finishing durability in multiple launderings.  

(7) Chapter 7 summarizes the conclusions obtained in all the investigations of my PhD 

study.         
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CHAPTER 2                   

LITERATURE REVIEW 

2.1 Ramie fiber 

Ramie is one of the oldest vegetable fibers and has been used for thousands of years. 

It was used for Chinese burial shrouds over 2,000 years ago, long before cotton was 

introduced in the Far East [1-3]. Ramie is classified chemically as a cellulosic fiber, just 

like cotton, linen and rayon. Leading producers of ramie are China, Taiwan, Korea, 

Philippines and Brazil. However, the research studies conducted on ramie fiber began 

much later than on cotton. The comfort quality of ramie involves its cool nature and 

ability to absorb perspiration, both are related to the structure of the fiber bundle. Since 

it is a good conductor of heat, thus ramie goods are especially suitable for North 

American and European countries where quick weather changes, i.e. cool in the 

morning but mild or hot in the afternoon. The high perspiration absorption rate of ramie 

coupled with improved dyeing techniques enables it to be used for making basic 

garments with a classic look. Ramie fabrics are easily laundered without suffering any 

strength loss, and are therefore ideal for making bed sheets, tablecloths and towels [4]. 

Ramie has also been used to produce seat covers due to its excellent thermal 

conductivity, and reinforced composites due to its high tenacity [5].  
 

2.1.1 Fiber pretreatment 

Decortication 

The ramie fibers are removed from the stalks by the process of decortication. This is 

always carried out by hand; the process consists of peeling or beating the bark and bast 

material from the stalk soon after harvesting. The fibers are freed by soaking the bark in 

water and scraping with knives made from shells, bamboo, bronze or iron. The long 

strands of ramie fiber are then dried and bleached in the sun.  
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The decortication process varies in detail in different regions [1]. Sometimes the stalks 

are beaten against rocks before being peeled; the bark is battered with wooden mallets to 

free the fiber from adhering woody matter. In Indonesia the stalks are scraped in such a 

way as to leave the bast fibers clinging to the woody cores. These are then washed and 

the fibers are peeled away in the form of long ribbon-like strands. During the 1930s, 

great interest was aroused in the large-scaled commercial possibilities of ramie as a 

textile fiber. However, development of ramie production was held up by the primitive 

methods used in decortication, and attempts were made to devise machinery that could 

strip the fibers from the stalk. Several machines are now in commercial use, and 

decortication has been mechanised. 

 

Degumming 

In their natural state, ramie fibers are present in the plants’ stems in the form of fiber 

bundles, consisting of individual ultimate fibers that are cemented to each other by 

waxes and pectins. As these bundles are too thick and too long to be used for textile 

purposes the fibers within the bundles need to be separated by removing the waxes and 

pectins. This process is called degumming and produces ‘technical’ fibers which can be 

spun into yarns [1-3, 6-9]. Usually, degumming is done in spinning mills prior to 

spinning. The process involves soaking in alkali baths for the prescribed periods of time 

at prescribed temperatures. The most common chemical used is caustic soda; others 

which can be used alone or in combination with caustic soda are sodium 

tripolyphosphate, sodium sulphate, sodium carbonate, sodium pyrophosphate, sodium 

silicate and sodium citrate. However, such a process requires high energy input and 

produces hazardous waste. 

 

Degumming of bast fibers has also been carried out with the help of microorganisms. 

Pectinolytic enzymes produced by microorganisms, which are generally part of the 

micro-flora residing on the stalk, have gained most attention [1-3, 6, 8, 9]. These 

enzymes degrade the pectin of the middle lamella and primary cell wall, leading to 

separation of the cellulosic fibers. Combined chemical-biochemical processes have been 

proposed for degumming ramie bast fibers, but no reports are available on the 

successful introduction of a bio-technical degumming process at industrial scale. 
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However, the search for new microorganisms and enzymes for such an application is 

still a challenging task.  

 

Bleaching 

Bleaching of ramie fiber is strongly affected by the high percentage of their non-

cellulosic components [1, 4]. The hemicelluloses, which are the main constituent of the 

middle lamella, are of a low degree of polymerisation and are highly soluble in alkali. 

The loss in weight of up to 25% may be obtained in alkaline bleaching treatment. The 

major objective of bleaching bast fibers is to remove the lignin with which most of the 

colouring matters are associated. The removal of woody matter remaining in the fibers 

after the mechanical processing stages, if any, is also essential. A two-stage 

combination bleaching is often applied, usually with sodium chlorite followed by 

hydrogen peroxide. The more severe the conditions used in bleaching, the higher the 

degree of whiteness obtained and the greater the loss in weight will be. The bleaching 

processes used for bast fibers are usually milder, with longer treatment times than those 

used for cotton, in order to preserve the strand structure as much as possible.  
 

2.1.2 Fiber structure 

When defining the structure of a polymeric substrate such as ramie fiber, one has to  

distinguish three structure levels:  

 
(1) The molecular level, i.e., the chemical composition, steric conformation, molecular 

mass, molecular mass distribution, the presence of functional sites and the existence 

of intra-molecular interactions. 

(2) The supermolecular level, i.e., the aggregation of the chain molecules to elementary 

crystals and fibrils, the degree of order within and around these fibrils, and the 

perfection of their orientation with respect to the fiber axis.  

(3) The morphological level, i.e., the spatial position of the fibrillar aggregations in the 

"cross-morphology" of the fiber, the existence of distinct cell wall layers in native 

cellulosic fibers or of skin-core structures in man-made cellulosic fibers, and the 

presence of voids or interfibrillar interstices.  
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Molecular Structure 

Bast fibers including ramie are natural vegetable fibers based on cellulose. They are 

derived from the vascular bundles of plant stems which are used for food and water 

conduction in the living plant. The fibers are constructed of long thick-walled cells 

overlapping and cementing together by non-cellulosic materials to form continuous 

strands that may run the entire length of plant stem. The process of retting or 

degumming can release the strands of bast fibers from the cellular and woody tissue of 

plant stem.  

 
Table 2.1 Chemical composition of ramie fiber.  
 

Chemical components Content (%) 

Cellulose 68.6 - 76.2 

Hemi-cellulose 13.1 - 16.7 

Pectin 1.9 

Lignin 0.6 - 0.7 

Water solubles 5.5 

Wax 0.3 

Moisture 8.0-10.0 

 

The natural and chemical composition of ramie fiber may vary widely. The main 

factors are the generic characteristics of the plant, conditions of growth, type of soil, age, 

part of the plant from which the sample originates, mode of cultivation, and the 

atmospheric conditions to which the fibers are directly exposed. To some extent the 

divergence in values may also be due to different methods employed for the 

determination. Table 2.1 shows the chemical composition of a typical ramie fiber [1, 4, 

10].  
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Cellulose is a linear macromolecule formed by b-d anhydroglucose units (AGU), 

linked together by 1,4-glucosidic bonds. Each of the AGUs possesses hydroxyl groups 

at C-2, C-3 and C-6 position, capable of undergoing typical reactions known for 

primary and secondary alcohols. The hydroxyl groups at both ends of cellulose chain 

show different behaviour. The C-1 end has reducing properties, while the glucose end 

group with a free C-4 hydroxyl group is non-reducing. The bridging and chain show 

different behaviour. The C-1 end has reducing properties, while the glucose end group 

with a free C-4 hydroxyl group is non-reducing. The bridging and the ring oxygen atom 

are predominately involved in intra- and inter-molecular interactions, mainly hydrogen 

bonds. The molecular size of cellulose can be defined by its average degree of 

polymerisation (DP). Among all the natural cellulosic fibers, ramie has the highest DP 

around 2150-3300 [4]. 

 

 
                 

 Figure 2.1 Chemical structure of cellulose 
 

 

Supramolecular Structure  

The order of the macromolecules in a cellulosic fiber is not uniform throughout 

the whole structure, and so amorphous regions as well as cyrstalline regions 

coexist [10, 11]. Marchessaault R. H. et al proposed the model of a continuous 

order spectrum of solid state cellulose [12]. This model, however, is abandoned 

today as obvious regions of medium order play a minor role only, and the 

experimental evidence available today is adequately interpreted by a two-phase 

model assuming amorphous and crystalline regions, and neglecting the rather 
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small amount of matter with an intermediate state of order. 

 

In a simplified two-phase model, the supramolecular structure of a polymer is 

considered as a system of crystalline and amorphous phases. Based on this 

two-phase model, a considerable work has been done to estimate the crystallinity 

of cellulosic fibers including ramie using the X-ray diffraction technique over the 

last several decades. These methods of measuring crystallinity are based on the 

assumption that it is possible to separate the X-ray diffraction diagram of polymer 

into "sharp reflections" and "diffuse scatter" and assign these respectively to 

crystalline and amorphous components. Based on this two-phase method, most of 

the results obtained showed that the crystallinity of ramie fiber was around 80% 

which was higher than that of cotton (~70%). However, various results were 

obtained by different researchers. The divergences in data could be attributed to 

the differences in the morphological structures of the ramie varieties tested and the 

differences in testing condition. 

 

Over the past years, considerable experimental works had shown that the 

two-phase model was oversimplified and some experimental phenomena of ramie 

fiber could not be fully explained by the traditional two-phase model. Knight, J. A., 

et al used deuterated water (D2O) to treat ramie and cotton fiber [13]. The 

hydrogen (H) of the hydroxyl of the cellulose molecule in the D2O accessible 

region was substituted by deuterium (D). It was found that the amount of H 

substituted by D in ramie was more than that in cotton. Ray P. K et al treated 

ramie fiber with 24% NaOH at both high and room temperature for 30 minutes, 

and then the samples were investigated by X-ray diffraction [14]. The result 

showed that the cellulose I of ramie fiber was transferred completely to cellulose 

II, while the cotton fiber only had partial transformation. In addition, some 

researchers studied the lowest concentration of NaOH that could cause the change 

of X-ray diagram of the cellulosic fibers. The concentrations used for cotton and 

ramie were 17% and 12% respectively. All the above results showed that the 

accessibility of ramie fiber to some chemicals was more than that of cotton, and 

the crystalline structure of ramie was easier to be destructed than cotton. Hence it 
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was considered that there were some defects in the crystallite of ramie fiber and 

the three-phase model containing crystalline, para-crystalline and amorphous 

regions was advanced by scientists. 

 

A lot of work has been devoted to get a much deeper understanding of the 

supramolecular structure in ramie fiber. Nishimura, H. et al studied the mechanism of 

mercerization and crystallite sizes using ramie substrate [15]. They suggested that the 

overall morphology of ramie fiber could be divided into three regions namely the highly 

oriented amorphous one, another one consisting of small and distorted crystalline region, 

and the third one consisting of a well-ordered crystalline region. The difference between 

the former two regions was not distinct. Sao, K. P. et al measured various structure 

parameters of ramie such as crystallinity and disorder parameters using the Ruland and 

Vonk method [16]. They found that the simple two-phase model of completely ordered 

and disordered phases had little validity for ramie fiber. The existence of intermediate 

ordered regions had to be considered for a satisfactory explanation of the 

phenomenon of swelling. They suggested a model of ramie cellulose structure 

consisting of crystalline, oriented amorphous, highly distorted crystalline, and 

amorphous regions respectively.  

 
Morphological Structure  

Unlike cotton, ramie fiber is a multiple cellular system [4, 10]. It is found as bundles 

(aggregates) of multiple cells also called ultimate cells. The ultimate cells in the 

aggregate bundle are bound together by natural polymers, variously called resins, gums, 

cementing materials, encrusting materials and middle lamella. The morphological 

structure of the multi-cellular fibers makes them analogous to the modern-day fiber 

reinforced, rigid-matrix composites.  

 

According to this picture, the middle lamella in bast fibers plays the role of the matrix. 

It is, however, a complex role. First, the middle lamella holds the ultimate cells together 

in the fiber bundle or strands. This is termed the "inner middle lamella". Owing to its 

close packing and possible penetration into the fiber walls, as well as the possibility of 

being chemically linked to the cellulose of the cell wall, it is relatively stable to 
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chemical and microorganism attack. A second function of the middle lamella is to glue 

together the fiber bundles in the bast layer and this layer to the other layers of the stem. 

This is termed the "outer middle lamella." It is less closely packed than is the inner 

middle lamella, and it is probably less chemically linked to the other layers. The 

possibility of selective attack on the outer middle lamella by microorganisms had been 

recognized by the ancients and was used in practice to this day in the retting and 

degumming operations.  

 
Microscopic examination reveals that ramie fiber is a bundle of ultimate cells. The 

cells are rounded polygons with a thin, well-defined lumen, both are of irregular shapes. 

The cells also have a tendency to develop radial cracks. More recent SEM of the fiber's 

ultimates reveal kidney-shaped, ribbon-like and multi-lobal cross sections with or 

without lumens; the lumens in the ribbon-like cross sections appear like cracks oriented 

in the longer direction of the cross section. The longitudinal view of the ultimates shows 

cross-striations. Detailed examination of these striations reveals that they are not cracks 

or fissures; but the dislocation-folds or constructions in the straight continuity of fibrils 

in the secondary wall. Evidence has been presented to suggest that cross-markings on 

the fiber surface are developed due to the presence of contiguous cross-walls of adjacent 

parenchyma cells during the period when fiber is a functioning member of the plant 

stem. It has been suggested that such striations are indeed the location of the paths 

through which nutrients are supplied to the fiber by the parenchyma cells. It was further 

demonstrated that, through swelling treatment with the Krais- Viertel reagent and lateral 

compression, the cross-markings can be made to disappear. Under lateral compression, 

the fiber is shown to be composed of a series of well-defined, parallel bundle of fibrils, 

nearly parallel to the fiber axis. 

 

It has been shown that the outside layer of ramie has Z spiral followed by an S spiral 

layer and a core intermediate is almost in parallel orientation. Native ramie fiber has 

lower cellulose but higher hemi-cellulose and lignin content than cotton.  
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2.2 Ramie fiber modification  

The wearing properties of fabric are determined mostly by the properties of the textile 

fiber. As for ramie, it has much higher initial modulus than cotton. Hence, the ramie 

fiber is very rigid, and the breaking elongation and elastic recovery are very poor. As a 

result, the ramie fabric suffers from harsh handle and poor wrinkle recovery, imparting a 

feeling of itchiness when used in garments worn next to the skin. In the recent 30 years, 

a considerable work has been done to ameliorate these undesirable properties by 

modifying the chemical structure and surface properties of ramie. The usual 

modification of ramie fiber can be grouped into the following three kinds of methods: (1) 

alternating the structure of cellulose molecules of ramie fiber to change the degree of 

fiber orientation and crystallinity such as alkali modification. (2) grafting of the reactive 

cellulose hydroxyl group with the other functional groups such as sulphonation, 

acetylation and alkylation, so as to create a new modified cellulose; (3) chemical 

cross-linking of cellulose molecular chains which is a common method used to improve 

the crease-resistance of the cellulosic fabric.  

 

2.2.1 Alakli modification  

Alkali treatment is one of the most important methods used to modify the ramie fiber. 

The swelling of ramie cellulose in aqueous solutions of sodium hydroxide has been 

observed already 70 years ago and has since been the topic of a large number of 

experimental investigations and theoretical considerations. Several studies have focused 

on the effect of sodium hydroxide on the fine structure of ramie. X-ray studies have 

shown that mercerisation of ramie will result in a complete conversion from cellulose I 

to cellulose II and a decrease in the degree of crystallinity to 50%. 

 

Sao, K. P. et al found that the transition of ramie cellulose from cellulose I to 

cellulose II lattice took place in 12-15% NaOH at room temperature through the 

infrared spectra studies, and X-ray diffraction patterns further confirmed the result [17]. 

Liu, Q. H. et al also studied the fine structure of ramie fiber which was treated with 

various concentrations of NaOH solution at 20oC for 5 minutes [18]. It was found that 
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when the concentration of NaOH was below 12%, the crystallinity, orientation, density 

and absorption of the treated ramie fiber were changed unremarkably. However, when 

the concentration of NaOH reached 12% or higher, these parameters would decrease 

markedly; and all the fine structures had the maximum change at 16% NaOH.  

 

The swelling process of ramie fiber in NaOH solution has also' been thoroughly 

investigated. Okano, T. et al studied the alkali-cellulose structures as intermediates 

during the conversion of cellulose I to cellulose II when ramie cellulose was mercerized 

[19]. Five unique alkali celluloses were identified in their research. In the later research, 

they studied the crystal of three of the intermediates and provided with the information 

on the interactions between cellulose and sodium ions, as well as the formation of these 

structures and the probable conversion mechanism. 

 

It is difficult to generalize the changes in the mechanical properties of ramie induced 

by alkali treatment since the data in literature vary considerably. The overall results 

were qualitatively coincident such that the slack mercerization of ramie would bring 

about considerable losses in yam strength, greatly increased breaking elongation and 

very greatly decreased initial modulus, resulting in improved elasticity and soft handle. 

Tension mercerization would bring about increased strength, slight decrease in breaking 

elongation and increased initial modulus, resulting in a much more rigid handle [18, 20]. 

The reduction of the strength in slack mercerized ramie fiber has been attributed to the 

decrease in crystalline orientation as a function of the unrestrained lateral swelling of 

the fibrils. Under tension mercerization, the lateral movement of the polymer chains in 

ramie is limited, thus strength loss does not occur as in the slack treatment. The increase 

in cotton strength under both slack and tension swelling is well documented and has 

been attributed to the restraining primary wall and S1 layer oriented transverse to the 

axis.  

 

After alkali modification, the accessibility of the ramie fiber increased which resulted 

in increased dye absorption. Cheek, L. gave a comparison of mercerized ramie, flax and 

cotton [20, 21]. It was found that the dye up-take and color yield of ramie fiber was 

lower than that of cotton but higher than flax before mercerization. However, dyed 
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ramie exhibited a higher apparent depth of shade than cotton and flax with lower dye 

content. Only when the difference in dye content was considerably higher did flax 

appear darker than ramie. Slack mercerization produced much greater gain in the rate of 

dye sorption, quantity of dye exhausted at the end of the dyeing cycle, and depth of 

shade produced than that of tension mercerization for all three fibers.  
 

2.2.2 Chemical grafting 

To improve the physical properties of ramie fiber, especially elastic recovery, many 

efforts besides alkali modification have also been taken since 1960s'. Sulphonation is 

one of the earliest methods applied to modify ramie fiber. The mechanism includes 

using carbon disulphide (CS2) to react with the hydroxyl group of cellulose under alkali 

condition. The process is very complicated and has tremendous pollution to the 

environment. The modified fiber has a serious strength loss while its rigidity is much 

less than the untreated one. Alkylating is another method applied to ramie fiber. The 

mechanism includes using alkylate agent such as alcohol and halo-hydrocarbon to react 

with the ramie cellulose under the swelling and catalysation of alkali. The process 

causes little pollution and many properties including handle, elastic recovery and 

dyeability have been improved after modification. Acylation is also an important 

modifying method for ramie; the process is similar to that of alkylation. 

 

In recent years, apart from the above grafting methods, some other functional groups 

or monomers were also studied. Zhao, W. B. used acrylonitrile to graft ramie fiber and 

produced cyanoethylated ramie [22]. The supramolecular structures of the modified 

ramie such as crystallinity, fiber orientation and crystallite dimension were decreased. 

This resulted in an improvement of both physical and chemical properties such as 

increased elasticity and breaking energy, decreased initial modulus, improved loop 

strength, dyeability and rot resistance. Another grafting method involves using vinyl and 

related monomers for graft copolymerization of ramie and other bast fibers such as jute, 

flax and hemp. The modified ramie fiber has an improved elasticity but at the expense 

of much strength loss. Using cationic grafting to improve the dyeability has also been 

investigated for a long time. The results showed that the modified ramie fiber had 
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higher dye absorption and deeper shade. The modified ramie fiber could even be dyed 

by acid dyestuff with a very high colour fastness.  

 

2.2.3 Liquid NH3 treatment 

Several workers have shown that intra-crystalline swelling takes place when native 

cellulosic fibers are immersed in liquid NH3 [23-38]. Liquid NH3 interacts with 

cellulose to form a hydrogen-bonded complex. The nitrogen atom in the NH3 molecule, 

with its unshared pair of electrons, replaces OH—O hydrogen bonds by OH－N bonds 

to form a swelling complex. This complex is unstable and decomposes when the liquid 

NH3 is either evaporated or washed out with water. Depending on the experimental 

conditions, destruction of the ammonia-cellulose complex can be accompanied by a 

partial or full lattice transformation from the cellulose I to III form. The use of liquid 

NH3 in the cotton textile finishing industry has increased over the past several years. It 

has been used as a treatment for sheeting, work-wear, denim and bottom-weight fabrics. 

It is also applied prior to cross-linking treatments in 100% cotton shirting fabrics.  

 

The swelling behavior of ramie fiber in liquid NH3 has some difference with that of 

cotton due to its special morphology and fine structure. It was found that liquid NH3 

treatment could improve the wearing properties of ramie fabric such as shrink-proof, 

fabric handle and especially abrasion resistance property. More interesting is that liquid 

NH3 treatment can improve the wrinkle recovery angle of ramie fabric even without 

cross-linking treatment. It is possible to cut down the use of cross-linking agent to 

obtain similar or better end-use and easy-care property.  

 

Although a number of investigation have been made on the liquid NH3 treatment of 

cotton and polyester fabrics, the researches of liquid NH3 treatment of ramie fabric were 

less reported yet [26, 27].   
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2.2.4 Cellulase treatment 

Using cellulase treatment to improve the fabric handle and surface properties of 

cotton-based fabric has been investigated for many years [1]. The mechanism of 

enzymatic hydrolysis of cellulosic materials is complicated and not yet fully 

understood.  

 

Ramie fabric suffers from a harsh handle and itchiness when used in garments worn 

next to the skin due to its high crystallinity and high lignin content. Hence, it is much 

more interesting to use cellulase to treat the ramie fabric so as to improve the 

wearability of the ramie goods. It has higher crystallinity and the pitch of the spiral 

structure is less than that in cotton. Significant differences in their pore structure and 

crystallite sizes have also been found. There are some differences when they are 

subjected to the same cellulase hydrolysis. Buschle-Diller, G, et al. studied the 

enzymatic hydrolysis of cotton, linen, ramie and viscose rayon fabrics [39]. It was 

found that enzymatic hydrolysis employed to decrease stiffness, ease stretch-ability, and 

generally loosen the structure of fabrics was applicable to all cellulosic fabrics. Since 

the crystallinity of samples does not change after the enzymatic hydrolysis, nor does 

accessibility to moisture, this suggests that the ratio of crystalline to less ordered regions 

does not change upon enzymatic degradation. 

 

Ishikawa, A. reported that the tensile strength of ramie fiber decreased drastically by 

a cellulase treatment causing a small weight loss of the fiber [40]. Scanning electron 

microscopic observations showed no significant morphological changes. However, 

confocal laser scanning microscopy of the enzyme-treated samples stained with 

cellobiose dehydrogenase showed the formation of characteristic node-like structures at 

every 30-50 μ m along the fiber axis. Fracture planes of the enzyme treated ramie fiber 

tended to run vertical to the fiber axis, whereas that of the untreated fiber tended to be 

more irregular and oblique. Prolonged enzyme treatment would bring about 

spontaneous disintegration of the fiber into short fragments with vertically cut ends. 

These observations suggested that enzymatic attacks on ramie fiber would result in the 

formation of node-like defects with a periodicity of 30-50 μ m along the fiber, which in 
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turn caused significant deterioration in tensile strength.  
 

2.3 Natural dyeing 

With the appearance of synthetic dyes the use of natural dyes for textile dyeing 

almost disappeared. The wide range of colors available with good fastness properties at 

moderate costs was the main reason for the replacement of natural dyes by their 

synthetic counterparts. Nowadays, the application of natural dyes in textile dyeing is 

increasing required because of the increasing attention on environmental protection and 

consideration on mankind health [41-43]. Besides ecofriendliness, natural dyes have 

many more technical advantages, including their uncommon and soothing shades. A 

good number of investigations have been carried out to elucidate the fundamental 

aspects of natural dyes as well as to enhance their fastness properties, especially 

washing and light fastness, and so on [41-64]. However, little attention has been given 

to the environmental pollution cause by mordants used in natural dyeing. Dyeing fabrics 

with natural dyes often leads to problems such as lower color fastness to washing or 

light of the dyed textiles [44, 55, 58]. Most attempts for overcoming these problems 

involved the use of metallic salts (e.g., aluminum potassium sulfate, potassium 

dichromate, stannous chloride, ferrous sulfate and copper sulfate) as mordants [42, 49, 

51, 56, 57, 64, 65]. The metal ions can act as electron donor to form coordination bonds 

with the dye molecules. The wastewater containing heavy metal ions from these 

mordants have significant impact on the environment and public health [66]. The 

content of heavy-metal ions in textile is limited. Therefore, nowadays selecting new 

mordant to replace traditional heavy metal ions has been an important part in the 

development of natural dyeing of textiles.  

 

2.4 Wrinkle-resistance treatment of cellulose fabric 

Cellulosic fabrics such as cotton, rayon, flax and ramie have a tendency to 

wrinkle badly and have poor smooth drying properties after home laundering. 

Under distortion and moist conditions, the hydrogen bonds that hold the cellulose 
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chains together are ruptured, and then the chains slide to minimise the stress within 

the fibers. This phenomenon causes the hydrogen bonds to reform in a new position 

after the removal of the distorting force. The rupture and reformation of hydrogen 

bonds cause wrinkle problems on cellulosic fabrics [67-69]. To improve the 

performance properties, cotton or cotton-blend fabrics are often given a chemical 

treatment called wrinkle- resistant finishing [67-70]. This treatment involves the use of 

cross-linking agents which can covalently cross-link with the adjacent cellulose chains 

within cotton fibers. This treatment involves the use of cross-linking agents which can 

covalently cross-link with the adjacent cellulose chains within cotton fibbers. The new 

cross-linking bonds formed in the wrinkle-resistant finishing process are stronger than 

the former hydrogen bonds. The new cross-links pull the cellulose chains back into 

position after the removal of a distorting force when the fabric is under distortion and 

moist conditions, so that the fabric can resist wrinkling. On the other hand, if one of the 

long-chain molecules is pulled to one side by creasing forces prior to the condensation 

of small molecules and displaced, these same spring-like forces will tend to return the 

cellulose molecule to its displaced position. In other words, the fabric has been given a 

permanent crease.  

 
Cross-linking agents in common use are generally water soluble, di- or multi- 

functional agents capable of reaction with cellulose under relatively mild, acidic 

conditions. The cross-linking agents adopted by textile industries recently are mainly 

made of formaldehyde adducts of ureas, melamine or carbamates, in which 

1,3-dimethylol-4,5-dihydroxyethelyeneurea (DMDHEU) and modified DMDHEU with 

lower formaldehyde levels are the dominant Cross-linking agents. The cross-linking 

reaction of DMDHEU with cellulose molecules is shown in Scheme 2.1.   
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Scheme 2.1 Cross-linking reaction between DMDHEU and cellulose.  

 

The formaldehyde reactants are the most commonly used cross-linking agents for 

wrinkle resistance due to their efficient and inexpensive features. But they have two 

serious disadvantages [67-76]. Firstly, they release formaldehyde vapors during 

finishing process, storage and consumer use. Secondly, formaldehyde treated fabrics 

suffer a major loss of such mechanical properties as tensile strength, tearing strength 

and abrasion resistance due to two key contributing factors. One factor is the fiber 

degradation caused by the acid catalysts at elevated temperatures. The other is the 

restriction of stress distribution within the fibers due to the cross-linked sites.  

 

Largely due to the concern of formaldehyde hazards to workers in the textile industry 

and also to consumers, formaldehyde-free cross-linking agents for producing 

wrinkle-resistant properties are of interest to replace DMDHEU, the conventional 

finishing agent for wrinkle-resistant finishes. The low cost, ready availability, high 

functionality and high solubility in water of glyoxal make it of considerable interest as a 

formaldehyde-free cellulose cross-linking agent. When glyoxal is heated with cotton in 

the presence of an acid catalyst such as boric acid or ammonium chloride, the resultant 

product contains monoacetals and diacetals of glyoxal with cellulose. The reaction of 

glyoxal with cellulose is presented in Scheme 2.2. 
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Scheme 2.2 Cross-linking reaction between glyoxal and cellulose. 
 
 

Polycarboxylic acids (PCA), which are non-formaldehyde reactants, are the possible 

replacements for the conventional finishing reactant. The main advantages of PCA are 

that they are formaldehyde-free, do not have a bad odor, and produce a very soft fabric 

handle. Scheme 2.3 illustrates, a polycarboxylic acid esterifies cellulose through the 

formation of a five-membered cyclic anhydride intermediate by the dehydration of two 

carboxyl groups. Fabric treatment with a solution containing 

1,2,3,4-butanetetracarboxylic acid (BTCA) and sodium hypophosphite has shown good 

results in wrinkle recovery angle and DP rate. However, the tensile strength and tearing 

strength of the finished fabrics are almost 50 percentages lower than those of the 

untreated fabrics.  
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Scheme 2.3 Cross-linking reaction between glyoxal and cellulose. 
 

Using cross-linking treatment to improve the wrinkle resistance of the ramie fabric 

has been researched for several years. The cross-linking agents used are nearly all the 

conventional wrinkle-resistant agents usually applied in cotton industry such as 

DMDHEU and modified DMDHEU. The results showed that the wrinkle recovery 

angle had been improved to a satisfactory degree, while the tensile and tearing strengths 

of the treated fabric were much reduced. Another problem is caused by the high degree 

of crystalline orientation of the ramie fiber, which prevented the cross-linking agents 

from evenly and deeply diffusing into the fiber, leading to localisation of cross-linking. 

To diminish the mechanical strength loss of the cross-linked fabrics and to get an 

optimum balance between the wrinkle recovery and mechanical properties, the most 

important task is to seek an optimum finishing condition such as recipe formulation, 
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curing temperature and curing time. Some additives are also recommended and there is 

a large quantity of works in this field. More recently, the liquid NH3 treatment before 

cross-lining was successfully used in the wrinkle resistant finishing of cotton [24, 29, 30, 

34, 36, 37]. But few investigations on ramie fabric have been reported [26].  

 

2.5 Application of scCO2 in textile 

Gases and liquids could become supercritical fluids (SCFs) when they are 

compressed and heated above their critical pressure and temperature. In this state it can 

show properties intermediate between those of typical gas and liquid [77-81]. The phase 

diagram of carbon dioxide is shown in Figure 2.1 in which the critical point is indicated. 

The temperature and pressure corresponding to the critical point refer to the critical 

temperature (Tc) and the critical pressure (Pc), respectively, above which the substance 

will behave as a SCF. The critical point for carbon dioxide occurs at a pressure of 73.8 

bar and a temperature of 31.1oC. Although a number of substances can be used as SCFs, 

carbon dioxide has been studied widely. Carbon dioxide is appealing for use as a SCF 

because it is inexpensive, non-toxic, non-flammable, environmentally friendly, 

recoverable and chemically inert under many conditions [77-82] . 

 

SCFs exhibit gas-like viscosities and diffusivities and liquid like densities. Compared 

with liquids, density and viscosity of SCFs are less and diffusion is greater. Hence 

supercritical fluids are widely used in chemical extraction, polymerization of polymers, 

chromatography and impregnation of desired additives into the matrices [83-85]. The 

technology is now employed in many fields of chemical processing (pharmaceuticals, 

chemicals, foodstuffs, plastics, coatings, papermaking, rubber, cosmetics, paint and 

pigments) [82]. Since the mid-1980s, applications of supercritical fluids have received 

significant attention in polymer processing and polymer synthesis. Supercritical fluid 

polymer impregnation is one of the prospective applications of polymer processing. As 

an application of polymer impregnation in supercritical fluids, supercritical fluid dyeing 

has been investigated since the early 1990s. 
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Figure 2.1 Phase diagram of carbon dioxide 
 
 

The use of SCFs as solvents in the dyeing process has attracted considerable attention 

in recent years [77-81, 83-102]. In current industrial textile dyeing processes, large 

amounts of wastewater are produced. This is an environmental burden and, due to the 

ever more stringent regulations on water pollution, also an economical problem. The use 

of scCO2 as dyeing medium solves this problem: the CO2 and the residual dye 

remaining in the dye bath after the process can easily be separated so both can be 

recycled. Additional advantages are the high diffusivity and low viscosity of scCO2, 

which make the dyeing process faster than in water. The low surface tension allows the 

scCO2 to penetrate small pores easier than water. Furthermore, SFDs process is also 

energy efficient since it does not involve the washing/drying steps that are normally 

required in conventional dyeing. 

 

The use of scCO2 as a solvent is an attractive alternative to traditional extraction 

techniques, offering the potential to avoid or minimize the use of organic solvents. 

Supercritical CO2 fluids have been applied in the extraction of wool wax and grease 

[103, 104]. Studies have focused on the extraction of wool wax from raw wool with 
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scCO2.  

 

Supercritical technology has also been adopted in the research of surface plating, and 

several studies have been conducted in this field. Zhao et al employing scCO2 to 

conduct electroless copper plated on aramid fibers [105]. Gittard et al developed silver 

deposited cotton fabrics via scCO2 process [106]. Employing the high diffusion of 

scCO2, Ma et al impregnated nonwoven fibrous polyethylene material with a nonionic 

surfactant [107].  

 

Although a lot of studied were conducted on the applications of scCO2 for textile, few 

investigations on the application of scCO2 for the dyeing and finishing of ramie were 

presented at present.  
 

2.6 Nanotechnology for textile finishing 

Nanotechnology creates structures that have excellent properties by controlling atoms 

and molecules, functional materials, devices and systems on the nanometer scale by 

involving precise placement of individual atoms of the size around 0.1-100 nm. The 

unique and new properties of nanomaterials have attracted scientists and researchers of 

the textile industry also and hence the research interest for the use of nanotechnology in 

the textile industry has increased rapidly. Coating the surface of fabrics with 

nanoparticles is an approach to impart their UV blocking, antibacterial, flame retardant, 

water repellant and self-cleaning properties to textiles and clothing [108, 109]. A good 

number of studies have been made on the application of nanoparticles to textile 

materials in order to develop fabrics with UV protective, self-cleaning, antibacterial, 

flame retardant, water repellant properties [110-122]. In the following section, the 

application of the properties of nanoparticles including photocatalytic, antibacterial and 

UV protective for textiles are briefly depicted.   

 

2.6.1 Photocatalytic self cleaning finishing 

The mechanism of photocatalytic oxidation processes has been discussed extensively 
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in the literature [123-131]. Briefly, when a semiconductor such as TiO2 absorbs a 

photon of energy equal to or greater than its band gap width (e.g. λ< 390 nm), an 

electron may be promoted from the valence band to the conduction band (ecb
-) leaving 

behind an electron vacancy or ‘‘hole’’ in the valence band (hvb
-). If charge separation is 

maintained, the electron and hole may migrate to the catalyst surface where they 

participate in react with absorbed species. Specially, hvb
- may react with surface bound 

H2O or OH- to produce the hydroxyl radical (OH·) and ecb
- is picked up by oxygen to 

generate superoxide radical anion (O·
2

-), as indicated in Eqs. (2-1)-(2-3).  

 

TiO2 + h�       ecb
-
  +  hvb

-
                                                         (2-1) 

O2 +  ecb
-       O·

2
-
                                                                 (2-2) 

H2O + hvb
-
          

·OH-
  +  H+

                                                       (2-3) 

 

It has been suggested that the hydroxyl radicals (·OH-) and superoxide radical anions 

(O·
2

-) are the primary oxidizing species in the photocatalytic oxidation processes. Since 

both are unstable chemical substances, when the organic compound falls on the surface 

of the photocatalyst it will combine with O·
2

- and ·OH- respectively, and turn into carbon 

dioxide (CO2) and water (H2O). They oxidate and degrade noxious organic substances 

such as formaldehyde and methylamine, pollutant stench and bacteria and so on to 

innoxious substances such as CO2 and H2O.  

 

As a popular photocatalyst, nano TiO2 has been widely used because of its various 

merits, such as optical and electronic properties, low cost, high photocatalytic activity, 

chemical stability and nontoxicity [113, 120, 121, 130-135]. Nano TiO2 usually exists in 

nature with three crystal types such as anatase, rutile and brookite, especially anatase 

and rutile [130, 135]. As for TiO2 as photocatalyst, photocatalysis activity of anatase is 

bigger than one of rutile. The cause is that more defects and dislocation exist in crystal 

lattice of anatase. Accordingly, anatase can produce more oxygenic empty location to 

capture electron, however, rutile is the most steady structure in three crystal types, so 

rutile has good crystallization and small defects. Cavity and electron produced is easy to 

complex, therefore, photocatalysis activity of rutile is affected. In addition, specific area 

of ratile is small and ability of adsorption oxygen is low, furthermore, simple complex 
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that is produced by cavity and electron is too fast. Consequently, the efficiency of 

photocatalysis is low. The literature shows that photocatalysis activity of single anatase 

is low. Mixed crystal system that a small quantity of ratile is mixed into anatase has 

higher photocatalysis activity [130, 135].  

 

The photocatalytic property of nano TiO2 has been employed in the development of 

self cleaning textiles via nano finishing. Bozzi et al employed nano TiO2 to modify 

polyester and wool-polyamide textiles [113]. It was found that the red wine stained on 

the modified fabrics was degraded after exposure in sunset for 24 h. Yuranova et al 

finished cotton fabric with TiO2–SiO2 nanoparticles and proved that the wine stained on 

the coated fabrics disappeared after subjected to irradiation by solar light [112]. In 

addition, the fabrics loaded with TiO2 nanoparticles were proved to decomposed 

harmful gaseous substances such as ammonia and formaldehyde in air through 

photocatalytic decomposition reaction [136, 137]. Most of the studies on the 

photocatalytic finishing fabrics were conducted on cotton or polyester. The application 

of photocatalytic finishing by nanoparticles on ramie fabric has less bee reported.      

 

2.6.2 Antibacterial finishing 

Neither natural nor synthetic textile fibers are resistant to bacterial or pathogenic 

fungi. The nanoparticles of silver (Ag), TiO2 and zinc oxide (ZnO) exhibit high 

antibacterial activity [108-110, 114]. Nano-silver particles have an extremely large 

relative surface area, thus increasing their contact with bacteria or fungi, and vastly 

improving their bactericidal and fungicidal effectiveness. Nano-silver is very reactive 

with proteins. When contacting bacteria and fungus, it will adversely affect cellular 

metabolism and inhibit cell growth. It also suppresses respiration, the basal metabolism 

of the electron transfer system, and the transport of the substrate into the microbial cell 

membrane. Furthermore, it inhibits the multiplication and growth of those bacteria and 

fungi which cause infection, odour, itchiness and sores. Hence, nano-silver particles are 

widely applied to socks in order to prohibit the growth of bacteria. In addition, 

nano-silver can be applied to a range of other healthcare products such as dressings for 
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burns, scald, skin donor and recipient sites [108, 109]. 

 

Because of photocatalytic feature, nano TiO2 are proved to show antibacterial 

property. Several papers have reported the use of the photocatalytic property of TiO2 for 

developing antibacterial textiles [114, 132]. On the other hand, zinc oxide is also a 

photocatalyst, and the photocatalysis mechanism is similar to that of titanium dioxide; 

only the band gap  is different from nano TiO2. Nano ZnO provides effective 

photocatalytic properties once it is illuminated by light, and so it was employed to 

impart antibacterial properties to textiles [138]. 

 

2.6.3 UV protective finishing 

Previously organic UV absorbers were coated on the textile material they prevent UV 

radiation effectively but they are less durable. Inorganic UV blockers are usually certain 

semiconductor oxides such as TiO2, ZnO, SiO2 and Al2O3. Among these semiconductor 

oxides, TiO2 and ZnO are commonly used. It was determined that nano-sized TiO2 and 

ZnO were more efficient at absorbing and scattering UV radiation than the conventional 

size, and were thus better able to block UV [139, 140]. This is due to the fact that 

nano-particles have a larger surface area per unit mass and volume than the 

conventional materials, leading to the increase of the effectiveness of blocking UV 

radiation. For small particles, light scattering predominates at approximately one-tenth 

of the wavelength of the scattered light. Rayleigh’s scattering theory stated that the 

scattering was strongly dependent upon the wavelength, where the scattering was 

inversely proportional to the wavelength to the fourth power. This theory predicts that in 

order to scatter UV radiation between 200 and 400 nm, the optimum particle size will be 

between 20 and 40 nm 
 

UV-blocking treatment with nanoparticles for fabrics have been extensively reported 

[108-110, 117, 122, 132, 139, 141]. Mihailovic et al finished polyester fabrics with nano 

TiO2 colloid suspension. The treated fabrics showed that the excellent UV blocking. 

Paul et al used nano ZnO to finish cotton fabrics and yarn via  a sol-gel process [122]. 

The fabrics loaded with nano ZnO demonstrated an excellent UV protective factor (UPF) 
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rating. Although many studies have verified that nano finishing can brought excellent 

UV protective properties on cotton and polyester fabrics, the successful application on 

ramie fabric has less been reported.   

 

2.7 Summary 

Ramie fibers have their unique molecular and morphological structure. Although all 

the cellulosic fibers are of identical chemical composition, there some major differences 

in the supramolecular structure and morphology of these fibers which will largely 

determine the course of modification. The high crystallinity and orientation of ramie 

fiber leads to some undesirable properties of ramie fabric such as low elasticity, poor 

wrinkle recovery and harsh handle. The advanced finishing techniques such as liquid 

NH3 treatment, scCO2 fluid processing and nano finishing have been successfully 

employed in the modification of cotton fabric. Since ramie fabric is not as extensively 

applied as cotton, few investigations have been made on natural dying and finishing 

ramie fabrics using the new technologies. 
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CHAPTER 3                      

NATURAL DYEING OF RAMIE FABRIC WITH RARE 

EARTH AS THE MORDANT IN THE  

 

3.1 Introduction 

Nowadays, the colorants used in commercial textile dyeing are almost exclusively 

synthetic. However, the synthetic dyes not only are harmful to the mankind health and 

but also result in a great deal of environmental pollution [41, 43, 47, 52, 54, 142]. As a 

result, natural dyeing in textiles is now attracting more and more attention from both 

academia and industry due to its environmentally friendly attributes [41-44, 46-48, 

50-52, 54, 56, 59, 61, 62]. Natural dyes can exhibit better biodegradability and generally 

have a higher compatibility with the environment [47, 60, 142-144].  

 

Dyeing fabrics with natural dyes often leads to problems such as lower color fastness 

to washing or light of the dyed textiles [44, 55, 58]. Most attempts for overcoming these 

problems involved the use of metallic salts (e.g., aluminum potassium sulfate, 

potassium dichromate, stannous chloride, ferrous sulfate and copper sulfate) as 

mordants [42, 49, 51, 56, 57, 64, 65]. The metal ions can act as electron donor to form 

coordination bonds with the dye molecules. The wastewater containing heavy metal 

ions from these mordants have significant impact on the environment and public health 

[66]. The content of heavy-metal ions in textile is limited. Therefore, nowadays 

selecting new mordant to replace traditional heavy-metal ions has been an important 

part in the development of natural dyeing of textiles.  

 

Rare earth is ecofriendly and compatible with the environment. In general, the 

coordination number of rare earth can be as large as 8, 9 and even 12 [63, 145]. 

Additionally, the rare earth elements have large atom radius, which enable a good 
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number of ligands surrounding them [63, 145]. Hence the rare earth ions exhibit high 

capability for forming coordination compounds with natural dye molecules. As the 

central ions, the rare earth ions can form coordination bonds with the amino, hydroxyl 

or carboxyl groups, i.e., the ligands, of the natural dye molecules. When forming 

coordination compounds with natural dye molecules, the rare earth ions tend to exhibit 

electrolyte-like effect and thus quickly lower the Zeta electric potential on the surface of 

fibers. Therefore they are easily absorbed on the surface of fiber by static electric force. 

Using rare earth products as mordants can promote the formation of coordination 

compounds of natural dyes, rare earth and fibers and thus enhance the color fastness of 

the fabrics dyed with natural extracts.  

 

This work is aimed to study the application of rare earth products as mordant for 

natural dyeing. The lanthanum-rich rare earth chloride was used as the mordant in the 

natural dyeing of ramie fabrics. The dyeing conditions including mordanting method, 

dyeing temperature and time, pH value of dyeing bath and concentration of mordant on 

the dyeing effect were investigated systematically. The color shade stability of the dyed 

ramie fabrics with rare earth as mordant was examined in the solutions having different 

pH values. The effects of using rare earth as mordant on the color fastness to washing, 

rubbing and light of the ramie fabrics dyed with natural dyes were studied. As compared 

with conventional metallic mordant Ferrous Sulfate (FeSO4) and Potassium dichromate 

(K2Cr2O7),  

 

3.2 Experimental 

Materials 

Ramie plain fabrics (21×21s) were used in this study. The fabrics were treated with a 

solution containing 5g/l non-ionic detergent (Hostapal CV, Clariant) at 50oC for 30 

minutes prior to using. Then the fabrics were thoroughly washed with water and air 

dried at room temperature for usage. Caesalpinia sappan, Rhizoma coptidis, Garednia 

and Areca catechu were provided by the Chongqing 3533 Printing Dyeing and Clothing 

Co. Ltd. The lanthanum-rich rare earth chloride (RECl3⋅6H2O) (REO≥50%, 
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La2O3/REO=43%, CeO2/REO=40%, Pr6O11/REO =5.0%, Nd2O3/REO=18%, 

Sm2O3/REO=1.5%, Eu2O3/REO=0.2%, Tb4O7/REO=0.05%, Non-RE 

Impurities/REO=2.69%) and Neodymium Chloride (NdCl3⋅6H2O) (REO≥50%, 

Nd2O3/REO≥99%, Non-RE Impurities/REO≤1%) were purchased from the Inner 

Mongolia Baotou Steel Rare-earth (Group) Hi-Tech Co., Ltd. Ferrous Sulfate 

(FeSO4⋅7H2O)( Analytical Reagent grade, Chengdu Best Reagent Co., Ltd.) and 

Potassium dichromate (K2Cr2O7) (Analytical Reagent grade, Chengdu Best Reagent Co., 

Ltd.) were used as received. Sodium hydroxide, acetic acid and lemon acid of chemical 

pure grade were purchased as from Sinopharm Chemical Reagent Co., Ltd. 

 

Extraction of natural dyes 

At first, 150g of a selected plant was precisely weighed with the analytical balance 

(TE1502S, Sartorius Co., Germany). After being mashed it was put into a big beaker 

containing 800ml of water and kept for 24 hours. Afterwards, the mixture was heated to 

boiling state where it was maintained till up to only 100 ml liquid being left via 

evaporation. Then the dissolving and evaporating processes were repeated twice. After 

filtration, the collected colorant liquid was distilled and condensed to 50ml. The 

concentrated solution containing the plant extracts was the crude natural dye liquid. The 

ultraviolet-visible (UV-vis) spectra of the aqueous solutions containing the natural dyes 

were obtained from U-3310 UV-vis spectrophotometer. As indicated in Table 3.1, the 

maximum absorption wave length values of the solutions containing natural dyes range 

from 410 nm to 460 nm, which are dependent on the different component compositions 

of the natural dyes. According to the maximum absorption wave length values, it is 

judged that the major colorant ingredients of the different natural extracts are brazilin of 

caesalpinia sappan, berberine of rhizoma coptidis, crocin and crocetin of gardenia, and 

catechin of areca catechu. Figure 3.1 shows the chemical structure of the major colorant 

ingredients of the different natural extracts.  
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Table 3.1 The maximum absorption wave lengths of the solutions containing natural 

dyes 

 

 

                       
            

               Brazilin                              Berberine 

 

   
 

Crocin     

                                                               

 Caesalpinia 

sappan 

Rhizoma 

coptidis 
Gardenia Areca catechu

Maximum absorption 

wave length (nm) 
412 452 458 458 



CHAPTER 3 

36 

    
 

Crocetin                                Catechin 

 

   Figure 3.1 Chemical structure of the colorant ingredients of different natural extracts  

 
Dyeing  

In the dyeing process, a concentrated plant extract liquid was diluted by 10 times and 

the resultant solution was used as dyeing bath. The aqueous extracts were used as a 

direct dye or with the addition of a mordant. The direct dyeing was carried out by 

shaking the ramie fabrics with a natural dye solution in a conical flask at 90oC in a 

thermostat shaker bath operated at 100 strokes/min. A material to liquid ratio of 1:25 

was used in the dyeing experiment. The ramie fabric was then rapidly withdrawn after 

particular immersion times. After dyeing, the ramie fabric was rinsed with deionized 

water to remove the unfixed dye and then air dried. The dyeing effect of simultaneous 

mordanting, pre-mordanting and post-mordanting were compared. Figure 3.2 

demonstrates the three mordanting methods at the dyeing temperature of 90oC.  

 

In the simultaneous mordanting process, the fabrics were immersed in a dyeing bath 

containing mordant, lemon acid and natural dye at 30oC. They the dyeing bath was 

heated to 90oC where it was maintained for a particular time (20-80 minutes). The 

fabrics were then rinsed with clean water at ambient temperature followed by being 

squeezed and dried. In the pre-mordanting method, the wet fabrics were first immersed 

in a solution of the mordant and heated up to 70oC where they were kept for 30 minutes. 

After being added with the natural dyes the bath was heated up to 90oC where the 

fabrics were treated for a particular time (20-80 minutes). Then the dyed samples were 

rinsed with clean water and dried via the similar processes mentioned above. In the 

post-mordanting method, the ramie fabrics were first dyed in the aqueous solution 

containing a natural dye at 90oC for 30 minutes followed by being cooled down to 70oC 
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where the mordant was added. Then the fabrics were kept at 70oC for another 30 

minutes. Subsequently, the dyeing bath was heated  

 

 
 

 

Figure 3.2 Different mordanting methods in the natural dyeing 

 

up to 90oC again where the fabrics were dyed for a time in the range of 20-80 min. At 

last, the fabrics were rinsed and dried. The effects of dyeing temperature and time on the 

dyeing effect of ramie fabrics with the natural dyes were studied.   

 

Measurements 

The dye uptake in the dyeing of ramie fabrics was obtained through the measurement 

of the light absorbances at the wavelength of maximum absorption, of the dye bath 

before and after dyeing with a U-3310 ultraviolet-visible (UV-vis) spectrophotometer. 

The dye uptake was calculated with the following equation:  
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Dye uptake = %100
0

0 ×
−
A

AA t                                          (1-1) 

where A0 and At refer to the absorbances of the dye solutions at the beginning and the 

end of dyeing, respectively.  

 

The CIELAB colorimetric values including ΔE, L*, a*, b*, C*, and the color strength 

K/S of the dyed fabrics were measured by Datacolor SF600 Computer Color Matching 

System (Data Color International) using illuminant D65 and 10o standard observer. K/S 

was calculated from the reflectance values using the Kubelka-Munk equation as 

follows:  

 

( )
R
RSK

2
1 2−

=                                                      (1-2) 

 

Where R represents the reflectance of the dyed fabric and K/S stands for the ratio of the 

absorption coefficient (K) to scattering coefficient (S). The higher K/S value the greater 

the color strength.  

 

The color fastness to washing of the ramie fabrics was determined according to the 

standard ISO 105-C03. The measurement was carried out with both sample and 

standard ramie fabrics that were sewn together and tested under the same conditions. 

The sewn fabric was washed at 42oC for 30 minutes in a standard soap solution with a 

material to liquid ratio of 1:50. Both fabrics were then separated and rinsed and dried. 

The color fastness to washing levels, observed against a grey scale, were classified as 

numbers ranging from 1 and 5, which corresponds to poor to excellent fastness, 

respectively. Color fastness to dry and wet rubbing of the dyed fabrics was tested 

according to ISO 105-X12 method. Color fastness to light was tested according to ISO 

105-BO2 method. To examine the influence of pH change on the color shade, the 

fabrics dyed in presence of rare earth as mordant were immersed in the water bathes 

with different pH from 3, 7 to 11 at ambient temperature for 30 minutes. Then the wet 

fabrics were rinsed and dried for further measurement.   
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3.3 Results and Discussion 

3.3.1 Influences of mordanting method  

The effect of different mordant dyeing methods is shown in Table 3.2. It was 

observed that the post-mordanting gave rise to the highest color strength and dye uptake 

in comparison with simultaneous mordanting and pre-mordanting. In simultaneous 

mordanting, the colorant molecules and rare earth ions could form insoluble 

coordination compounds and thus precipitated from dyeing bath, resulting in the 

decrease of effective dye uptake and K/S value, i.e. color strength. In the case of 

pre-mordanting, the mordant ions absorbed on the fibers could desorb from the fibers 

and form insoluble coordination compounds with natural dye molecules. Likewise the 

pre-mordanting resulted in lower color strength. Therefore, the post-mordanting 

technique was employed in this study.  

 

3.3.2 Influences of temperature and time on dye uptake 

Figure 3.3 presents the influence of dyeing temperature and time on dye uptake. 

When the dyeing temperature was 40oC, the dye uptakes of the four kinds of natural 

dyes increased almost monotonically as the dyeing time rose from 10 to 80 minutes. 

When the dyeing temperature was 70oC the dye uptakes of the natural dyes increased 

rapidly at the beginning. With the extension of dyeing time the increasing tendency of 

dye uptake decreased gradually. The dye uptakes of the nature dyes were apparently 

enhanced as the dyeing temperature increased from 70oC to 90 oC. The increase of dye 

uptake arises from both the increasing solubility of natural dyes and the expansion of 

ramie fibers with the increasing temperature. In contrast, the dye uptake of the nature 

colorants was slightly decreased when the dyeing temperature increased from 90oC to 

105oC. This is caused by the different temperature dependence of absorption and 

diffusion of dye molecules. Dyeing takes place in three steps: absorption on the surface 

of fibers, diffusion to the interior of fibers and desorption from fibers into the dyeing 

bath [52]. On the one hand, a lower dyeing temperature is favorable to absorption of the  
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Table 3.2 Influence of different mordanting methods 

Caesalpinia 

sappan 

Rhizoma 

coptidis 
Gardenia Areca catechu 

Mordanting 

method 

K/S Dye 

uptake 

K/S Dye 

uptake

K/S Dye 

uptake

K/S Dye 

uptake 

Simultaneous 

mordanting 
5.25 47.8 6.01 54.6 3.88 39.8 4.98 42.3 

Pre-mordanting 5.86 52.2 6.58 60.1 4.23 43.5 5.45 49.8 

Post-mordanting 6.12 58.0 7.29 64.1 5.07 48.4 5.96 54.6 

 

dye molecules on fibers, but makes their diffusion inside fibers difficult. On the other 

hand, a high temperature leads to expansion of fibers and easy diffusion of natural dyes 

in fibers accordingly. However a high temperature can also intensify molecular 

movement resulting in desorption of more dye molecules from fibers. In a word, either 

excessively low or excessively high temperatures cannot give a desirable dyeing effect. 

The results show that 90oC is a suitable temperature for dyeing ramie fabrics with the 

four kinds of natural dyes. As indicated by figure 3, the dye uptake rose gradually with 

the increase of dyeing time for all the four kinds of natural dyes. When the dyeing time 

increased to a certain time the dye uptake of a natural dye tent to a constant value, 

indicating the dye uptake equilibrium was attained [52]. It takes 70, 60, 70 and 50 

minutes for the extracts of caesalpinia sappan, rhizoma coptidis, gardenia and areca 

catechu, respectively, to attain the dye uptake equilibrium, which relies on the molecular 

size and polarity of the four kinds of natural dyes.      

 

3.3.3 Influence of pH value on dye-uptake 

Figure 3.4 shows the influence of pH of dyeing bath on the dye uptake in the dyeing 

with the natural extracts. The figure indicates that the pH change could significantly 

influence the dye uptake in the dyeing with caesalpinia sappan and areca catechu. When 

pH value was about 2 the dye uptake of the two kinds of colorants were pretty low. With  
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Figure 3.3 Influence of dyeing temperature and time on dye uptake: (a) Caesalpinia 

sappan L; (b) Rhizoma coptidis; (c) Gardenia; (d) Areca catechu. In each plot the 

symbols refer to different dyeing temperatures. (■) 40oC; (●) 70oC; (▲) 90 oC; (★) 

105oC.  

 

the increase of pH, the dye uptakes of them rose gradually. When pH value increased 

the maximum dye uptakes of the extracts of caesalpinia sappan and areca catechu were 

attained at pH=7 and pH=8, respectively. Afterwards, the dye uptake of them decreased 

with the further increase of pH value. The effect of pH on dye uptake can be attributed 

to the interaction between the natural dyes and the ramie fabric. A certain number of 

OH and COOH groups exist in the cellulose structure. Brazilin and catechin contain 

polyphenols in their molecules as illustrated in Figure 3.1. Increase of pH could 

promote the ionization of phenolic OH groups resulting in the increase of solubility of 

the natural dyes in dyeing bath. Hence the dye uptakes of the two natural dyes rose with 

the increase of pH value. At higher pH, the hydroxyl-ion content increased, and 
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phenolic OH groups in the natural dye molecules and COOH groups in the cellulose 

fibers were transformed to phenolic oxygen anions and carboxyl anions, respectively. 

Phenolic oxygen anions had a repulsive interaction with OH groups and carboxyl anions 

which prevented the natural dye molecules being absorbed onto ramie fibers and thus 

reduced the dye uptakes of the two natural dyes [52]. As one of the major colorant 

ingredients of gardenia, crocetin contains COOH groups in its molecules. As indicated 

by Figure 3.4, with the increase of pH the dye uptake of the natural extract of gardenia 

increased resulting from the increasing solubility of the natural dyes in dye bath due to 

the ionization of COOH groups in crocetin. Likewise, the dye uptakes of the natural 

extract of gardenia decreased when pH was above 7 because of the increasing repulsion 

between the carboxyl anions on natural dye molecules and the carboxyl anions and OH 

groups on ramie fibers. In comparison with those of caesalpinia sappan and areca 

catechu, the extract of gardenia exhibited less dye uptake variation with the change of 

pH because of the relatively low content of COOH groups in the molecules of its major 

colorant ingredients. With the increase of pH the dye uptake of the extract rose 

gradually as shown in Figure 3.4. As the major colorant ingredient of rhizoma coptidis, 

berberine is a water soluble dye containing cationic quaternary ammonium salt [48], it 

would interact ionically with the carboxyl groups of cellulous fibers at higher pH via 

ion exchange reaction. The number of available anionic sites on ramie fibers in alkaline 

conditions is relatively larger than that in acidic conditions, and thus the dye uptake of 

berberine was increased with the dye bath pH.  
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Figure 4. The influence of pH value on dye-uptake. (■) Caesalpinia sappan L.; (▲) 

Rhizoma coptidis; (◆) Gardenia; (●) Areca catechu. 

 

3.3.4 Influence of the amount of rare earth on dye uptake 

The electron configuration of the outer shells of rare earth ions enables them to form 

complex compounds with the natural dyes and ramie fibers. The influence of mordant 

amount on the dye uptake is shown in Figure 3.5. It can be seen that the dye uptake 

increased with the increase of the concentration of rare earth. However when the 

concentration of rare earth increased to a certain level the dye uptake tent to a constant 

value because the coordination among natural dye, rare earth and fiber reached to 

saturation state. The dye uptake of the gardenia extract was the lowest among all the 

four kinds of natural dyes. This should be due to the low affinity of the crocin and 

crocetin components in gardenia for ramie fibers. In contrast, the dye uptake of the 

extract of rhizoma coptidis is the highest, which can be ascribed to the ionic interaction 

between the cationic dyes and carboxyl anions in ramie fibers. The influence of rare 

earth concentration on dye uptake of the different natural colorants is determined by 

their complex formation from rare earth ions and natural dye molecules.    
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Figure 3.5 The influence of the concentration of rare earth on dye-uptake. (■) 

Caesalpinia sappan; (▲) Rhizoma coptidis; (◆) Gardenia; (●) Areca catechu. 

 

3.3.5 Influence of pH on color shade of the dyed fabrics  

It was found that the fabrics dyed with the natural dyes in presence of rare earth as 

mordant could resist the pH impact and thus change less color shade in washing. To 

quantify the influence of pH on color shade, the color measurements were performed on 

the fabrics dyed with the four kinds of natural dyes. L* represents lightness value in the 

CIELAB colorimetric system. Higher lightness value means lower dye uptake [45, 48, 

64]. a* and b* denote the red/green value and the yellow/blue value, respectively [45, 

48, 64]. The positive values of a* and b* represent redder and yellower while negative 

shows greener and bluer tones. C* stands for chroma or purity of colour [45, 47, 48]. 

ΔE refers to color difference [45, 47, 48]. As shown in table 3, the colorimetric data 

including ΔE, L*, a*, b*, and C* of the dyed fabrics did not change much when pH of 

the bath changed from 3 to 7 and 11. This is ascribed to the formation of stable 

complexes among rare earth ions, natural dye molecules,  
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Table 3.3 Influence of pH on the colorimetric data of the dyed fabrics 

 ΔE L* a* b* C* 

Caesalpinia sappan (pH=3) 49.89 61.64 3.93 56.98 57.11 

Caesalpinia sappan (pH=7) 50.15 60.15 4.26 56.78 56.94 

Caesalpinia sappan (pH=11) 51.68 61.38 3.89 55.89 52.03 

Rhizoma coptidis (pH=3) 58.98 50.89 5.98 48.61 48.97 

Rhizoma coptidis (pH=7) 60.65 50.48 7.03 46.18 46.71 

Rhizoma coptidis (pH=11) 59.08 50.90 6.45 49.06 49.48 

Gardenia (pH=3) 48.89 82.89 5.58 30.34 30.34 

Gardenia (pH=7) 50.15 79.15 5.83 30.86 30.34 

Gardenia (pH=11) 54.68 83.68 5.21 32.78 32.78 

Areca catechu (pH=3) 38.58 68.08 10.93 41.78 43.19 

Areca catechu (pH=7) 40.63 66.65 11.56 40.89 42.49 

Areca catechu (pH=11) 39.28 66.98 12.89 40.23 42.24 

 

ramie fibers. The formation of the coordination bonds is irreversible. The resultant 

coordination compounds are highly stable in acidic, neutral and alkaline baths. In 

addition, the multiple complexes formed by rare earth ions and natural dyes can interact 

with each other, which can result in the dissociation of the electron pairs on the both 

sides of the complex conjugating system. The dissociated electrons can drift among the 

complexes and thus generate the so called ultrasensitive transition effect which changes 

the characteristic absorption spectrum. Thus the dyed fabrics can resist the pH 

fluctuation and maintain stable color shade in either acidic or alkaline bath. This is a 

significant advantage of for using rare earth as mordant in natural dyeing.   

 

3.3.6 Color fastness of the dyed fabrics 

Table 3.4 shows the color fastnesses ratings to washing, rubbing and light of the 

fabrics dyed with the four kinds of natural dyes in presence and in absence of rare earth 
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as mordant. In comparison with the fabrics colored via direct dyeing, the fabrics dyed 

having rare earth as mordant exhibited much better color fastness to washing and 

rubbing. The ratings of color fastness to washing and rubbing of all the dyed fabrics 

having rare earth as mordant were found to be grade 4-5. The fastness to washing and 

fastness to rubbing of the fabrics dyed with the natural extracts depend on the type of 

mordants, mordanting method and mordant concentrations as well as molecular size and 

chemical structure of the dye, the dye-fiber or dye-fiber-mordant interaction or bonds 

[44]. The most important factor for determining the color fastness to washing and 

rubbing is the dye-fiber-mordant interaction, which relies on the formation of stable 

coordination bonds among rare earth ions and natural dyes and fibers. The ratings of 

color fastness to light of the dyed fabrics using rare earth as mordant were in the range 

3-4 grade. However, the ratings of fastness to light of the dyed fabrics without 

mordanting were found to be grade 1-2. The color fastness to light of a natural dye is 

influenced by: the chemical structure of dye, physicochemical interaction between 

natural dye and fiber, physical state of the dye inside the fiber, dye concentration, 

chemical structure and physical characteristics of the fiber itself, types of mordant, 

mordant concentrations and mordanting method used[44, 56, 57]. Generally, it is well 

known that the color fastness to light of natural dyes was poor [44, 56, 57]. In this sense, 

the light fastness of dyed fabrics with rare earth as mordant is considerably good. The 

formation of stable coordination bonds between rare earth ions and dye molecules and 

ramie fibers accounts for the improvement of fastness to light of the dyed fabrics.  

 

3.3.7 Comparison of different metallic mordants 

As mentioned above, the lanthanum-rich rare earth chloride was proved to greatly 

improve the color fastness, color strength and dye uptake. Hence it is possible to replace 

the commonly used heavy metallic salts with the rare earth chloride as the ecofriendly 

mordant. The authors compared the rare earth mordants with the conventional metallic  
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Table 3.4 Ratings of color fastness of the ramie fabrics dyed with rare earth as mordant 

Washing Wet rubbing Dry rubbing 

 

Fade Strain Fade Strain Fade Strain 
Light

Caesalpinia sappan  

(mordanted) 

5 4 3-4 3-4 4-5 4 3-4 

Caesalpinia sappan (direct) 3 2-3 2-3 2 3 3 2 

Rhizoma coptidis  

(mordante) 

4 4 3-4 4 4 4 3 

Rhizoma coptidis (direct) 3 3 2 2 2-3 3 1-2 

Gardenia (mordanted) 4-5 4-5 4 3-4 4 5 3-4 

Gardenia (direct) 2 2-3 2 2 3 3 2 

Areca catechu (mordanted) 4 4-5 4 3-4 4 4-5 3 

Areca catechu (direct) 2 3 3 2 3 3 2 

 

mordants FeSO4 and K2Cr2O7. The efficiency of the different mordants was explored by 

using RECl3⋅6H2O, NdCl3⋅6H2O, FeSO4⋅7H2O and K2Cr2O7, respectively, as mordants 

in the natural dyeing of ramie fabrics with Caesalpinia Sappan colorant. Figure 3.6 

shows the influence of mordant concentration on dye uptake and K/S values in presence 

of the different mordants. As expected, with the increase of mordant concentration the 

dye uptake and color strength increased dramatically at lower concentrations, 

suggesting that all of the mordants can enhance dyeing effect significantly. After a 

certain mordant concentration level, both the color strength and dye uptake tend to a 

constant level for all the tests. Combining the dyeing effect together with the 

consideration of using less metallic mordant, the optimal concentration of RECl3⋅6H2O, 

NdCl3⋅6H2O, FeSO4⋅7H2O and K2Cr2O7 was determined as 0.6g/L, 0.6 g/L, 4.0g/L and 

1.6g/L, respectively. As a result, the ionic concentration employed for deriving optimal 

dyeing effect was [Nd3+]=0.24mg/L, [Fe2+]=0.81mg/L and [Cr6+]=0.57mg/L. The total 

rare earth ionic concentration [RE3+] in the RECl3 solution should be close to [Nd3+]. 

Apparently, employing rare earth mordent can greatly reduce the ionic concentration 
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employed in natural dyeing. The coordination number of rare earth elements is larger 

that that of the Fe2+ and Cr6+. The coordination number of d-block transition metals is 

usually 4 or 6. In contrast, the most common coordination number of rare earth ions is 8 

or 9 because when a rare earth ion is coordinated to ligands its 6s, 6p and 5d orbits 

usually participate in the formation of coordination bonds [63, 145]. In addition, the 

larger ionic radius of lanthanide elements accounts of the larger coordination number of 

rare earth complex. Hence using rare earth chlorides as mordants in natural dyeing can 

avoid heavy metal pollution. In addition, the presence of metallic mordant usually 

changes the color shade of dyed fabrics in natural dyeing. For example, Fe2+ usually 

results in the darkening of the dyed fabrics. Using rare earth as mordants can also 

enlarge the design flexibility in the dyeing process to derive the desired color shade.    
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Figure 3.6 Influence of mordant concentration of dye uptake and K/S values of the 

different mordants in the dyeing with Caesalpinia Sappan colorant. (A) RECl3⋅6H2O; (B) 

NdCl3⋅6H2O; (C) FeSO4⋅7H2O; (D) K2Cr2O7.  
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3.4 Conclusion 

In this study, the rare earth was employed as mordant for the dyeing of ramie fabrics 

with the natural extracts of caesalpinia sappan, rhizoma coptidis, gardenia and areca 

catechu. The effect of pre-mordanting, simultaneous mordanting, and post-mordanting 

on the dyeing effect were compared. The dyeing temperature of 90oC was determined 

as the best dyeing temperature while the optimal dyeing time for the four kinds of 

natural dyes was in the range 50-70 minutes. It was found that the highest dye uptake 

was obtained when the dyeing bath pH was 7 or 8. The fabrics dyed in presence of rare 

earth as mordant exhibited higher color shade stability. On one hand, this is owing to the 

stable coordination bonds among the rare earth, natural dye and fiber. On the other hand, 

it is ascribed to the interaction of the multiple complexes formed by rare earth ions and 

natural dyes which enable the dyed fabrics to resist pH impact maintaining the constant 

color shade. It was proved that using rare earth as mordant apparently enhanced the 

color fastness to washing, rubbing and light of the fabrics dyed with the natural extracts. 

As compared with the mordants containing Fe2+ and Cr6+, the rare earth mordants can 

greatly reduce the ionic concentration employed in natural dyeing. This study proved 

that rare earth is promising in the application for mordant in the dyeing with natural 

colorants.
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CHAPTER 4                             

WRINKLE RESISTANT TREATMENT OF RAMIE 

FABRIC USING LIQUID AMMONIA TECHNOLOGY  

4.1 Introduction 

Advantages and disadvantages of ramie fibers 

As a class of natural textile material, ramie fabric is popular due to their several 

advantageous features like excellent tensile properties, high tenacity, “cool-handle” 

attribute, good comfort and appearance [1, 10]. However, the crystallinity of ramie 

fiber is much higher than that of cotton fiber [11, 72, 74, 75, 146]. Moreover the 

cellulose molecules of ramie fibers are highly oriented. As a result, ramie fabrics 

are characterized by a low degree of wrinkle recovery, poor abrasion resistance, 

dimensional stability, harsh hand and low resilience, which prevent their extensive 

applications [71-75, 147]. A major challenge for the industry is to improve the wrinkle 

resistance of ramie fabrics, particularly when ramie fabrics are used in apparel and in 

household textiles. 

 

A variety of finishing techniques have been investigated over the past decades to 

achieve the wrinkle-free appearance in cotton fabrics [73, 76, 148, 149]. Resin treatment 

is generally employed to give wrinkle resistant feature, but this method has the 

drawback of making cotton fiber weak and hard [71-73, 147]. However, using liquid 

NH3 treatment makes cotton strong and soft prior to resin treatment and will offset this 

drawback. Liquid NH3 treatment is known to improve the soft hand of cotton fabrics 

[23-25, 30-32, 34, 36-38]. The surface tension and viscosity of liquid NH3 is lower than 

water [26-29, 31-35, 38, 150, 151]. Therefore, when soaked in liquid NH3, cotton fiber 

instantaneously swells, forms a circular shape and becomes twist-free. As a result, 

cotton fabrics become harder to shrink and wrinkle. The cotton fabrics exhibit increased 

resilience become soft and strong. Moreover, the changes in crystallinity, accessibility 

and surface properties were followed [25, 31, 34, 37]. The commercial liquid ammonia 
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treatment is generally applied to cotton products and the advantages of liquid ammonia 

on the strength, abrasion resistance, dye absorption and color yield of cotton fabric have 

been well documented [23-25, 30-32, 34, 36-38]. But only a few investigations have 

been made on the liquid NH3 treatment of ramie fabrics [26, 27]. 

 

In this study, the liquid NH3 technique was employed for the wrinkle resistant 

treatment of ramie fabrics. The influences of liquid NH3 treatment on the structure 

of ramie fibers were studied by scanning electron microscopy (SEM) and x-ray 

diffraction (XRD). The swelling effect and decrease of crystallinity of the ramie fibers 

caused by the liquid NH3 treatment were observed. The liquid NH3 pretreatment prior to 

resin finishing were proved to reduce strength loss without sacrificing wrinkle resistant 

effect. In addition to the liquid NH3 pretreatment, a kind of reactive polyurethane (PU) 

emulsion was also employed as strength protector in the wrinkle resistant finishing, 

which have never reported. The influences on the treatment conditions including curing 

temperature, curing time, resin content and reactive PU emulsion content on the wrinkle 

resistant effect and mechanical properties were investigated systematically and the 

optimal treatment conditions were achieved thereof. It was proved that application of 

liquid NH3 pretreatment as well as reactive PU emulsion is rather favorable for the 

wrinkle resistant treatment of ramie fabrics.        

 

4.2 Experimental 

Materials 

The ramie fabric (21×21s) was desized, scoured and bleached prior to using. The 

cross-linking agent Arkofix NETM which was modified from the typical cross-linking 

agent Dimethyloldihydroxyethyleneurea (DMDHEU) resin was provided by the 

Clariant Chemical Co., Ltd. C. I. Direct Red 23 was supplied by Dalian Dyechem 

International Co. The thermally reactive polyurethane (PU) emulsion DM-3911 (solid 

content 33%) was purchased from the DYMATIC Chemicals Inc. (Foshan, Guangdong, 

China). Silicon softener AV-910 was produced by Advanced Chem. & Fabrics Inc. The 

chemicals including magnesium chloride (MgCl2.6H2O), Ammonium Chloride (NH4Cl), 
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Sodium Chloride (NaCl) and Barium Chloride (BaCl2) were purchased from Aldrich 

Co.    
 
Liquid NH3 treatment 

The ramie fabrics were treated in patented (patent number ZL02289238. 9) batch-type 

liquid NH3 equipment as illustrated in Figure 4.1. The equipment comprises the liquid 

NH3 reaction tank, circulation bump, NH3 compressor, laundry system, safety 

controlling system and liquid NH3 recycling system. The ramie fabrics were warp into 

hollow rollers and placed into the liquid NH3 reaction tank. Afterwards, the liquid NH3 

reaction tank was sealed by tank cover and was then filled with liquid NH3 via opening 

the valve attached to the tank. The ramie fabrics were treated for another 5 min in the 

liquid NH3 after the tank was fulfilled totally with liquid NH3 indicated by the pressure. 

At the end of the treatment, the liquid NH3 transferred into the balance tank and the 

residual NH3 was removed via the NH3 compressor. Then the fabrics were washed with 

diluted sulfuric acid (1-2g/L) in the tank and were rinsed with water till to pH=7. Then 

the treated fabrics were dried for use. 
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  Figure 4.1 The illustration of the batch-type liquid ammonia treatment equipment.  

1 Tank cover pressure holder; 2 Pressure gauge; 3 Thermometer; 4 Safety valve; 5 Tank 

cover; 6 Liquid level indicator; 7 NH3 inlet; 8 Warp beam; 9 Fabric; 10 Liquid ammonia 

reaction tank; 11 Warp beam connector; 12 NH3 outlet; 13 Water; 14 Diluted acid; 15 

Waste water treatment unit; 16 Circulation bump; 17 Liquid ammonia preservation tank; 

18 Emergency outlet; 19 Oil remover; 20 Condenser; 21 Water; 22, NH3 compressor; 23 

Oil remover; 24vacuum bump; 25 Air.  

 

Dyeing  

Untreated and liquid NH3 treated ramie fabrics were dyed with an acid dye C. I. 

Direct Red 23 and the apparent dyeing rate and equilibrium dye uptake were measured. 

The dyeing bath was adjusted to an initial dye concentration of 2% (owf) while the 
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concentration of NaCl was 4g/L. The dyeing was carried out for at 70°C and the liquor 

ratio of 30:1 with the dyeing time varying from 5 min, 10 min, 20 min, 40 min, 60 min, 

80 min to 100 min.  

 
Wrinkle resistant treatment 

The wrinkle resistant treatment was performed via the conventional dip-pad-dry-cure 

process with the Rapid 354 padding machine, WernerMathis AG drying machine, Maag 

& Schenk Ironing Machine and Mathis Lab dryer. The ramie fabrics treated by liquid 

NH3 were treated with varying content of Arkofix NETM, catalyst and softener in order 

to find out the optimal conditions combination to attain the best comprehensive wrinkle 

resistant treatment effect and strength. To ensure that the fabrics absorb the treatment 

liquid fully and evenly, the liquid pick up was controlled in the range 60-70% after the 

padding process which the padding pressure was set at 0.25MPa. The drying 

temperature was 80oC and drying time was 3 min. The curing of the treated fabrics was 

conducted at 150oC for 2min. After twice padding-drying-curing treatments, the treated 

ramie fabric samples and the untreated ramie fabric samples were washed different 

times in a domestic electric washing machine according to the AATCC-135 test method. 

Each kind of fabric was tested with 5 pieces of fabric samples for averaging. After 

drying, the wrinkle resistant effect and strength of the ramie fabric sample were 

evaluated.  

 

Measurements 

To view the swelling effect of liquid ammonia on the ramie fibers, fiber samples were 

were embedded in cured epoxy resin and were cut with a microtome in advance. Then 

the cross sectional morphology of the fiber sample was observed by the Hitachi 

S-2600HS scanning electron microscope (SEM).  

 

The crystallinity of cotton fabric untreated and treated with liquid ammonia was 

measured using a powder reflection method with CuKα monochromatic x-ray on a 

Rigaku x-ray diffractometer, model 111-DMAX. The degree of crystallinity (Cx) was 

obtained by: 
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100×
+

=
ca

c
x II

I
C                                                  (4-1) 

where Ic refers to the integrated diffraction intensity of the crystalline region, and Ia 

stands for the integrated diffraction intensity of the amorphous region based on 20 = 

18°.  
 

Ramie fabric was immersed in water for 24 hours and then centrifuged for 20 minutes 

at 3000 rpm (w1), kept 48 hours at 65% RH (w2), and finally dried for 3 hours at 105°C 

(w0). Moisture regain and water absorbency were calculated by 48 hours at 65% RH 

(w2), and finally dried for 3 hours at 105°C (w0). Moisture regain and water absorbency 

were calculated by: 

Moisture regain 100
0

02 ×
−

=
w

ww
                                        (4-2) 

Water absorbency 100
0

01 ×
−

=
w

ww
                                       (4-3) 

 

The average degree of polymerization ( DP ) of ramie fibers was determined by the 

method of viscosity using copper diethyleneamine (Cuene) as the cellulose solvent 

according to the following equation: 

( )sp

sp

c
DP

η
η
×+×

×
=

29.01
156

                                          (4-4) 

where c is the concentration of the cellulose Cuene solution equal to 0.1 g/100 ml, and 

spη  is the specific viscosity of the cellulose Cuene solution calculated according to: 

0

0

t
tt

sp
−

=η                                                       (4-5) 

where t is the fluid time of the cellulose solution, and to is the fluid time of the solvent. 

All the results were the average of three measurements. The viscosity was determined 

using an Ostwald viscosimeter at 20°C. 

 

The capillary effect of the ramie fabrics was measured on the LY-MX Capillary Effect 
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Tester (Dongguan Lili Test Equipment Co., Ltd.) according the standard FZ/T01071.  

 

The barium activity number of untreated and treated by liquid NH3 ramie fabrics was 

measured according to AATCC 89-1998 test method. The mercerized and 

un-mercerized cotton fabrics were cut into small lengths, weighing 1 g were treated with 

30 mL of 0.25 N barium hydroxide solutions in 100 mL flasks. After 2 h, 10 mL of the 

solution was titrated with 0.1 N hydrochloric acid. A blank was also run in without any 

fabric sample. If A, B and C are the titration reading for the blank, mercerized sample 

and unmercerized sample respectively, then the barium activity number is given by:  

Barium activity number 100×
−
−

=
CA
BA                                     (4-6) 

 

The dye uptake in the dyeing of ramie fabrics was obtained through the measurement 

of the light absorbances at the wavelength of maximum absorption, of the dye bath 

before and after dyeing with a U-3310 ultraviolet-visible (UV-vis) spectrophotometer. 

The dye uptake was calculated with the following equation:  

Dye uptake = %100
0

0 ×
−
A

AA t                                          (4-6) 

where A0 and At refer to the absorbances of the dye solutions at the beginning and the 

end of dyeing, respectively. The color strength K/S of the ramie fabrics were measured 

by DatacolorSF600 Computer Color Matching System (Data Color International) using 

illuminant D65 and 10o standard observer. K/S was calculated from the reflectance 

values using the Kubelka-Munk equation as follows:  

( )
R
RSK

2
1 2−

=                                                       (4-7) 

Where R represents the reflectance of the dyed fabric and K/S stands for the ratio of the 

absorption coefficient (K) to scattering coefficient (S). The higher K/S value the greater 

the color strength.  

 

The tensile strength and elongation at break of the ramie fabrics were tested by an 

Instron 4411 according the standard ASTM D 5034-1995. The tearing strength of the 

ramie fabrics was measured by an Elmendorf tearing tester according the standard 
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ASTM D 1424-1996. The flat appearance and the crease retention of the ramie fabrics 

were evaluated in accordance with the method AATCC 124-2001 and AATCC 

88C-2003, respectively. For a given untreated or treated fabric, all the mechanical 

property and wrinkle resistant evaluation tests were performed on 5 samples for 

averaging.    
 

4.3 Results and Discussion 

4.3.1 Influences of liquid NH3 on structure of ramie fibers 

Scanning electron microscopy has proved to be very useful for studying the 

surface characteristics of textile materials and establishing the mechanism of 

failure in fibers, yarns, and fabrics. Figure 4.1 presents the cross sectional SEM 

images of the ramie fibers untreated and treated by liquid NH3. The shape of 

untreated ramie fiber’s cross section is usually ellipse with some crevices on it (as 

shown in Figure 4.2 (a)), while the shape of that treated by liquid NH3 became rounder 

and thicker with much less crevices (see Figure 4.2 (b)). In addition, the lumen 

decreased with increasing cell wall area. This indicates that the liquid NH3 treatment 

resulted in apparent fiber swelling indeed.  

 

The crystallinities of ramie fibers untreated and treated by liquid ammonia were 

determined by XRD, and the results are shown in Figure 4.3 and Table 4.1. It was found 

that not only the crystallinity but also the crystalline form changed greatly. In Figure 4.3, 

the untreated ramie fibers exhibited these three peaks at 2θ= 14.6°, 16.1°and 22.2°, 

which means the crystalline form of the untreated ramie fibers was cellulose I type. 

While for treated ramie fabric, there were another two peaks besides these three ones, 

which corresponded to 2θ=12.1° and 20.9°. Those two peaks belong to the characteristic 

peaks of cellulose III. Therefore, it can be drawn that liquid ammonia treatment resulted 

in some crystals of ramie fiber changing from cellulose I to cellulose III. In comparison 

with those of untreated fabric, the diffraction peaks of the XRD profile of ramie fiber 

were broader in width and lower in intensity, suggesting that the liquid ammonia 

treatment resulted in the increase of the amount of amorphous region and the decrease 
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of crystalline region. Table 4.1 showed that the liquid NH3 treatment gave rise to the 

crystallinity decrease of 13.8%. It is also noted that the diffraction of 2θ=22.2° slightly 

shift to lower angle, indicating the cellulose I type crystallites in the ramie fibers treated 

by liquid NH3 were less perfect as compared with those of the untreated fibers.   

 

   

                  (a)                               (b) 

 

   

(c) (d) 

 

Figure 4.2 The cross sectional SEM images of the ramie fibers: (a) untreated 

fibers with a magnification of ×2000 times; (b) untreated fibers with a 

magnification of ×5000 times; (c) fibers treated by liquid NH3 with a 

magnification of ×2000 times; (d) fibers treated by liquid NH3 with a 

magnification of ×5000 times.  
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Figure 4.3 XRD profiles of the ramie fibers untreated and treated with liquid NH3. 

 

Table 4.1 Crystallinity and crystal type of untreated and liquid NH3 treated ramie fibers.  

Ramie fabrics Crystallinity (%) Crystal type 

Untreated 78.4 Cellulose I 

Treated by liquid NH3 59.6 Cellulose I and Cellulose 

III 

 

Table 4.2 Influence of liquid NH3 treatment on the degree of polymerization and 

characteristic viscosity of ramie fibers. 

Fabrics 
Degree of 

polymerization

Characteristic

viscosity 

Untreated 1645 10.5 

Treated by 

liquid NH3 
1603 10.32 

 

Table 4.2 presents the influence of liquid NH3 treatment on degree of 

polymerization and characteristic viscosity of ramie fibers. As shown in Table 4.2, 

the degree of polymerization and characteristic viscosity of the ramie fibers 
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treated by liquid NH3 were almost similar to those of the untreated fibers. This 

suggests that the cellulose macromolecule in the ramie fibers did not degrade 

after the liquid NH3 treatment. 

 

Moisture regain is a property related to the accessible internal surface in the 

conditioned fiber, which increase with decreasing crystallinity of the cellulose structure. 

As indicated by Table 4.3, the moisture regain of fabric treated by liquid NH3 was 

higher than that of untreated fabric due to the decrease of crystallinity caused by the 

liquid NH3 treatment. In contrast, the water absorbency of the fabric treated by liquid 

NH3 was lower than that of untreated fabric regardless the remarkable decrease in 

crystallinity. Capillary effect is a sensitive indicator of the degree of water affinity and 

accessibility of fabrics. Table 4.3 shows that the capillary effect values of the liquid 

NH3 treated ramie fabric were higher than those of the untreated ramie fabric. It was 

reported that cotton or linen fabrics also showed increased accessibility after ammonia 

treatment. The barium activity number is widely used to express the degree of 

mercerization. The higher the barium activity number, the better the mercerization effect. 

The barium activity number of mercerized fabrics is inversely proportional to the 

crystallinity of fabrics. Table 4.3 reveals that the barium activity number was raised 

after liquid NH3 treatment.  

 

Table 4.3 Effect of liquid NH3 treatments on some physical properties of untreated and 

liquid NH3 treated ramie fabrics. 

Capillary effect
Fabrics 

Moisture regain 

(%) 

Water 

absorbency 

(%) W F 

Barium 

activity 

number 

Untreated 6.18 24.8 7.1 6.8 114 

Treated by 

liquid NH3 
7.05 20.7 8.3 7.5 123 

 

All the property changes of the ramie fabrics after liquid NH3 treatment were caused 

by the internal structural changes of the ramie fibers. The NH3 treatment is known to 

change the internal structure of the cellulose fibers and leads to the crystalline phase 
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from cellulose I to cellulose III. Also, the orientation of the amorphous region is higher 

than that of the untreated fiber, despite a considerable decrease in crystallinity. That is 

to say, the arrangement of cellulose molecular chains in amorphous region got more 

regular. In addition, it was proved that liquid ammonia treatment had significant effect 

on the pore structure of cellulose fibers. A significant decrease in total pore volume was 

observed as a consequence of the loss of large pores and the increase in small pores [16]. 

As a result, after liquid ammonia treatment, the size distribution of micropores became 

narrow and the micropores distribution became more uniform. In addition, some 

accessible micropores have appeared in the places where no micropores ever existed. 
 

4.3.2 Influences of liquid NH3 on dyeing properties of ramie fabrics 

Table 4.4 shows the influences liquid NH3 treatment on the dyeing properties of 

ramie fabrics. It can be seen that after the liquid NH3 treatment both the half time of 

dyeing of and equilibrium dye uptake of ramie fabric were raised. This is due the 

internal structural changes occurred to the ramie fibers after liquid NH3 treatment. 

Although the amount of amorphous region increased with the liquid NH3 treatment, the 

orientation of the cellulose molecular chain in amorphous region was enhanced and the 

cellulose molecules in amorphous region were packed more tightly. Moreover, a great 

fraction of larger pores disappeared while the fraction of small pores rose due to the 

swelling effect brought but liquid NH3 treatment. The larger direct dye molecules have 

difficulty penetrating into the fiber because of the high orientation of the cellulose 

molecular chain in the amorphous region. However because the total crystallinity of the 

ramie fibers decreased greatly after all, the affinity and accessibility of the ramie fibers 

were proved to rise as mentioned above. Therefore, the equilibrium dye uptake of ramie 

fabric was raised in long dyeing time. Accordingly, the color strength K/S of the ramie 

fabric pretreated by liquid NH3 was higher than that of the untreated fabric when the 

equilibrium dye uptake was attained.  

 

4.3.3 Influences of liquid NH3 on wrinkle resistant and mechanical properties  

In this study, the mixture of MgCl2·6H2O and NH4Cl (in weight ratio of 15:1) was  



CHAPTER 4 

62 

 
Table 4.4 Dyeing properties of ramie fabrics untreated and treated by liquid NH3. 
 

 Equilibrium dye 

uptake (%) 

Half time of dyeing 

t1/2 (min) 
K/S 

Untreated 73.56 36.04 7.79 

Pretreated by liquid NH3 82.84 76.00 9.0 

 
 

used as the cooperative catalyst in the wrinkle resistant treatment. The ion Mg²+ and H+ 

generated in the cross-linking reaction have catalytic activity for the cross-linking 

reaction between –CH2OH group of Arkofix NETM resin and the –OH on cellulose 

molecules. The chemical NH4Cl is the potential acid catalyst and can release acid and 

NH3 which can react with the free formaldehyde to form hexamethylenetetramine and 

H+, and thus can reduce the free formaldehyde. However NH4Cl can result in the 

depression of mechanical properties of the fabrics due to the presence of Cl-. Hence the 

fraction of NH4Cl in the mixed catalyst should be controlled and small. In addition, the 

content of the mixed catalyst should also be selected carefully. Lower content of catalyst 

can efficiently catalyze the cross-linking reaction of ramie fibers. On the contrary, 

higher content of catalyst can lead to decomposition of cellulose fibers and destroy of 

cross-linking resin. In this study, the content mixed catalyst was set as 11g/L.  

 

To examine the influences of liquid NH3 treatment on the wrinkle resistant and 

mechanical properties, the ramie fabric pretreated by liquid NH3 and the fabric 

untreated were used to carry out wrinkle resistant treatment via the same conditions, i.e., 

Arkofix NETM resin content of 80g/L, curing temperature of 140oC and curing time of 

2 min. As well known, the wrinkle resistant treatment of cellulose fabrics can result in 

significant depression of mechanical strength of fabrics. In this study, a kind of 

polyurethane emulsion bearing blocked isocyanate groups was employed as the strength 

protector. The wrinkle resistant treatment was also performed on the ramie fabric 

pretreated by liquid NH3 with both the Arkofix NETM resin with content of 80g/L and 

the PU emulsion with the content of 80g/L. In the identical conditions, the wrinkle 

resistant effect tests including flat appearance and crease retention and the tensile and 
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tearing tests were performed on the original ramie fabric experienced not any treatment, 

the ramie fabric pretreated by liquid NH3, the original ramie fabric finished by Arkofix 

NETM resin, the ramie fabric pretreated by liquid NH3 and subsequently treated by 

Arkofix NETM resin as well as the ramie fabric pretreated by liquid NH3 and 

subsequently finished by both Arkofix NETM resin and PU emulsion. For convenience, 

the five kinds of fabric samples were designated as “Untreated”, NH3, “Resin”, 

“NH3+Resin” and “NH3+Resin+PU”, respectively.  

 

Figure 4.4 presents the comparisons of the flat appearance and crease recovery of the 

five kind ramie fabric samples after 1 washing. As expected, the “Untreated” ramie 

fabric exhibit only 1 grade of flat appearance and crease recovery, namely, the original 

ramie fabric experienced not any treatment did not exhibit any wrinkle resistant effect. 

The flat appearance and the crease recovery of “NH3” sample were all over grade 2. 

This is because the liquid NH3 treatment resulted in the swelling ramie fibers and gave 

rise to the increase of elasticity and strength of the fibers. As a consequence, the wrinkle 

resistant of the ramie fabric pretreated by liquid NH3 rose somehow. The flat 

appearance and the crease recovery of “Resin” sample were all over grade 3 due to 

increase of elasticity caused by the cross-linking of the cellulose molecules. The 

“NH3+Resin” and “NH3+Resin+PU” samples exhibited highest flat appearance and 

crease recovery, suggesting NH3 pretreatment was favorable for the improvement of 

wrinkle resistant effect in resin finishing since the swelling effect brought by the NH3 

treatment could not only raise the elasticity of ramie fibers but also enhance the 

accessibility for the cross-linking resin molecules in the wrinkle resistant treatment. In 

addition, the presence of PU emulsion in the resin finishing basically did not affect the 

wrinkle resistant effect. In the other word, PU emulsion did not reduce at lease or even 

increase the wrinkle resistant effect slightly.   
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Figure 4.4 Flat appearance and crease retention of the original ramie fabric and those 

subjected to different treatments after 1 washing. 
 

Figure 4.5 shows the tensile strength retention rates of the original ramie fabric and 

those experienced different treatments. After the pretreatment by liquid NH3, the tensile 

strength of ramie fabric was raised by 10% in warp direction but decreased by 8% in 

filling direction. In some previous reports, the cotton and linen fabrics treated by liquid 

NH3 showed the similar different tensile strength change in different directions. The 

increase of tensile strength in warp direction should be ascribed the swelling effect, 

which increased the elasticity of ramie fibers and reduced the uneven distribution of the 

stress. The different tensile strength should result from the tension difference between 

warp yarn and filling yarn in the liquid NH3 treatment. The tensile strength retention of 

“Resin” sample was only 60-70%. The tensile strength loss was ascribed to two aspects: 

one is the fiber degradation caused by the acid catalyst at high temperature, the other 

one is the restriction of the stress distribution within the fibers due to the cross-linking 

sites. As compared with that of “Resin” sample, the tensile strength retention of 

“NH3+Resin” fabric rose to above 70%. This is because the liquid NH3 on one hand 

raised the elasticity and strength of the ramie fabric and on the other hand the even 

swelling effect reduced the internal stress, which enabled the stress to distribute evenly  
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Figure 4.5 Tensile strength retention rates of the original ramie fabric and those 

subjected to different treatments. 

 

along the ramie fibers. The “NH3+Resin+PU” fabric exhibited the highest tensile 

strength retention (~80%). Besides the tensile strength enhancement brought by the 

liquid NH3 pretreatment the PU molecules also gave rise to the increase of tensile 

strength for the ramie fabric. The molecular mechanism of the strength protection 

rendered by the PU emulsion is demonstrated in Figure 4.6 in which R refers to the 

blocking agent. The PU emulsion DM-3911 was a kind of low-molecular-weight 

reactive polyurethane bearing blocked isocyanate groups. The isocyanate groups could 

be unblocked and released by the elevated temperature in the course of curing. The free 

isocyanate groups thus could react with the –OH groups on the surface of the ramie 

fibers and form cross-linking networks on the ramie fibers. The ramie fabrics were thus 

reinforced further. Since the polyurethane molecules are larger than the cross-linking 

resin molecules, they hardly penetrated into the internal parts of the ramie fibers and 

thus contributed less to wrinkle resistant effect.   

 

Figure 4.7 presents the elongation at break of the untreated ramie fabric and those  
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Figure 4.6 Reaction between blocked PU and cellulose.    
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were finished differently. It can be seen that the elongation at break of the ramie fabric 

was greatly raised prominently by the liquid NH3 pretreatment. This is because the even 

swelling effect rendered by the liquid NH3 pretreatment increased the elasticity and 

reduced the internal stress and stress concentration, resulting in the increase of 

extensibility of the ramie fibers. The elongation at break of the “resin” fabric was 

similar to that of the original ramie fabric. The “NH3+resin” fabric gave rise to lower 

elongation at break as compared with the “NH3” fabric, suggesting the resin finishing 

increased the  rigidity of the fibers and thus reduced the elongation at break. The 

elongation at break of the “NH3+resin+PU” ramie fabric was similar to that of the 

“NH3+resin” fabric.         
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Figure 4.7 Elongation at break of the original ramie fabric and those subjected to 

different treatments. 

 

Figure 4.8 shows the tearing strength retention rates of the original ramie fabrics and 

those subjected to different treatments. As compared with the “Untreated” ramie fabric, 

the “NH3” fabric has its tearing strength decreased by over 10% in both warp and filling 

directions. After resin finishing, the tearing strength retention decreased to below 70%. 

If the liquid NH3 treatment was performed prior to resin finishing, the tearing strength 

retention rates were elevated to over 70%. When the reactive PU emulsion was involved 
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in the resin finishing, the tearing strength retentions in warp and filling directions were 

all increased further by 2-8%.     

 

It thus can be drawn that the liquid NH3 pretreatment on ramie fabric prior to the 

resin finishing was favorable for enhancing wrinkle resistant effect and reducing 

strength loss. The application of the reactive polyurethane emulsion in resin finishing 

could raise the strength retention without influencing wrinkle resistant effect. Therefore 

performing liquid NH3 pretreatment prior to resin finishing and employing reactive PU 

emulsion as strength protector were used for the subsequent studies.   
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Figure 4.8 Tearing strength retention rates of the original ramie fabrics and those 

subjected to different treatments. 

4.3.4 Influences of varying treatment conditions  

To achieve the optimal treatment conditions in resin finishing, the influences of 

curing temperature, curing time, content of cross-linking resin and content of reactive 

PU emulsion on the wrinkle resistant effect and mechanical properties were 

investigated.  

 

The ramie fabrics pretreated by liquid NH3 were finished with Arkofix NETM resin 

by keeping the other conditions identical to those employed in the above resin finishing 
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tests but just varying curing temperature from 120 oC to 160oC with a 10 oC interval.  

In the resin finishing, the reactive PU emulsion was utilized as strength protector. The 

influences of the curing temperature were shown in Table 4.5. It can be seen that with 

the increase of curing temperature the tensile strength, elongation at break as well as 

tearing strength all decreased, suggesting that the cross-linking density of the ramie 

fibers increased. As a result, the flat appearance and crease retention rose with the 

increasing curing temperature. But above the increasing tendency of the wrinkle 

resistant effect was rather slow when the curing temperature was above 140oC. Too low 

curing temperature would not achieve the satisfied wrinkle resistant effect while too 

high curing temperature would result in significant strength loss and could give rise to 

color change. To balance the different requirements of strength loss and wrinkle 

resistant effect, the optimal curing temperature was determined to be 140oC where the 

tensile strength retention was close to 80% while the flat appearance and crease 

retention were above grade 3.5.    

 

Likewise, the influences of curing time was studied by keeping the other 

conditions identical to those employed in the previous resin finishing tests but 

varying curing time from 1min to 4 min. As indicated in Table 4.6, with the 

increase of curing time the mechanical properties including tensile strength, elongation 

at break and tearing strength all depressed. In contrast, the wrinkle resistant got better 

with the increasing curing time. Similar to the case of curing temperature, the rising 

tendency of wrinkle resistant effect was very slow. The optimal curing time for the 

wrinkle resistant treatment of ramie fabrics was determined to be 3 min.          
 
Table 4.5 Effect of curing temperature on the physical properties of ramie 

fabrics 

Tensile 

strength 

retention (%)

Elongation 

at break 

(%) 

Tearing 

strength 

retention 

(%) 

Curing 

temperatur

e 

(oC) 
W F W F W F 

Flat 

appearance 

(grade) 

Crease 

retention

(grade) 

120 88 89 26.9 19.4 86 84 3.0 3.2 
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130 85 80 25.5 18.1 83 82 3.4 3.7 

140 80 79 24.5 17.1 78 74 3.5 4.0 

150 76 74 25.0 15.9 76 70 3.5 4.0 

160 70 68 23.5 16.2 70 63 3.6 4.0 

 
  

Tabke 4.6 Effect of curing time on the physical properties of ramie fabrics 

Tensile 

strength 

retention (%) 

Elongation 

at break 

(%) 

Tearing 

strength 

retention 

(%) 

Curing 

time 

(min) 

W F W F W F 

Flat 

appearance 

(grade) 

Crease 

retention 

(grade) 

1 90 90 26.9 19.4 87 85 2.9 3.2 

2 83 81 24.5 17.1 83 83 3.2 4.0 

3 80 79 23.5 16.0 80 79 3.6 4.2 

4 77 74 22.9 15.8 75 72 3.6 4.3 

 

Similarly, the influences of resin content on the wrinkle resistant effect and tensile 

strength were investigated. As indicated in Figure 4.9, both the flat appearance and 

crease retention rose as the resin content gradually increased from 30g/L to 130g/L. 

However the increasing  
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Figure 4.9 Effect of resin content on (Δ) flat appearance, (□) crease retention, (○) tensile 

strength retention in warp direction and (▲) tensile strength retention in filling 

direction. 

 

tendency was obviously slowed down when the resin content was above 100g/L. In 

contrast, the tensile strength retention continuously decreased with the increase of resin 

content. To balance the wrinkle resistant effect and the tensile strength retention, the 

optimal resin content was determined as 90g/L where the tensile strength retentions in 

warp and filling directions were close to 80% in this study.    

 

The influences of reactive PU content on the wrinkle resistant effect and tensile 

strength were also explored in the same way. As shown in Figure 4.10, the flat 

appearance and crease retention almost did not change with the PU content variation, 

which further proved that the presence of PU molecules on the ramie fibers contribute 

less to wrinkle resistant effect. But the tensile strength retention in warp and filling 

directions rose with the increase of the PU content. To balance the wrinkle resistant 

effect and the tensile strength retention, the optimal resin content was determined as 

90g/L where the tensile strength retentions in warp and filling directions were close to 

80% in this study. However with increase of the PU content the handle of the ramie 

fabrics got worse gradually. By considering both strength protection effect and soft hand 
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of ramie fabric, the optimal PU content was 100g/L in this study.  
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Figure 4.10 Effect of PU content on (Δ) flat appearance, (□) crease retention, (○) tensile 

strength retention in warp direction and (▲) tensile strength retention in filling 

direction.  
 

4.3.5 Wrinkle resistant durability after repeated washings 

To examine the wrinkle resistant durability after many cycles of laundry, all the ramie 

fabrics were treated in the optimal conditions. The flat appearance and crease retention 

evaluations were performed on the ramie fabrics subjected to different washings. The 

wrinkle resistant durability were compared among the ramie fabrics untreated, treated 

by liquid NH3, finished by resin, pretreated by liquid NH3 and then finished with resin 

as well as pretreated by liquid NH3 and finished by resin with PU as protector. For each 

kind of fabrics, five fabric samples were evaluated for averaging and the experimental 

results are summarized in Table 4.7.  
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Table 4.7 Wrinkle resistant durability after repeated laundry cycles.    

Flat appearance after 

repeated washings (grade) 

Crease retention after repeated 

washings (grade) Fabrics 

1 5 10 1 5 10 

Untreated 1.0 1.0 1.0 1.0 1.0 1.0 

Treated with liquid NH3 2.0 1.5 1.0 3.0 2.5 1.5 

Treated with Resin 3.0 3.0 2.0 3.5 3.0 2.5 

Treated with liquid NH3 

+ Resin  

3.5 3.3 3.0 4.0 3.8 3.5 

Treated with liquid NH3 

+ Resin + PU 

3.5 3.5 3.0 4.1 3.7 3.5 

 

As would be expected, the flat appearance and crease retention decreased with the 

increase of washing times. The wrinkle resistant effect of the ramie fabrics experienced 

liquid NH3 pretreatment prior to resin finishing was higher than that of the fabric treated 

only with resin by 0.5-1 grade, which is consistent with the experimental results 

mentioned above. It is also noted that the flat appearance and crease retention of the 

ramie fabrics subjected to liquid NH3 treatment before resin finishing were decreased by 

only 0.5 grade. The flat appearance and crease retention of these ramie fabrics were all 

above 3.0 grade, which is better than those the ramie fabric finished only with resin. 

This should be ascribed to the swelling effect of ramie fibers caused by liquid NH3 

treatment, and as a consequence the elasticity of the ramie fibers was raised greatly. The 

increased elasticity was favorable for the wrinkle resistant durability in repeated 

washings. 

4.4 Conclusions 

In this study, the application of batch type liquid NH3 technique for wrinkle resistant 

treatment of ramie fabric was studied. The liquid NH3 treatment was proved to decrease 

the crystallinity of ramie fibers and bring about apparent swelling effect to the fibers. As 

a result, the accessibility of the ramie fabrics treated by liquid NH3 was elevated. The 

liquid NH3 treatment gave rise to the decrease of dyeing rate but resulted in the increase 
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of equilibrium dye uptake. The liquid NH3 pretreatment prior to wrinkle resistant resin 

finishing could enhance the wrinkle resistant effect and also reduce the strength loss. 

Employing reactive PU emulsion in resin finishing could raise the strength retention of 

the ramie fabric without influencing wrinkle resistant effect since the reactive PU 

molecule could react with ramie fibers and thus played the role of strength protector. 

The influences of wrinkle resistant treatment conditions were explored systematically. 

The optimal conditions was thus determined in which the curing temperature was 140oC, 

curing time 3 min, cross-linking resin content 90 g/L and reactive PU content 100 g/L. 

After 10 laundry cycles, the flat appearance and crease retention of these ramie fabrics 

pretreated by liquid NH3 prior to resin finishing were all above grade 3.0 which is better 

that those the ramie fabric finished only with resin. The increased elasticity brought by 

the liquid NH3 treatment was favorable for the keeping the wrinkle resistant durability 

in repeated washings. Therefore the liquid NH3 pretreatment and the reactive PU 

protector were much helpful for elevating wrinkle resistant effect of ramie fabrics but 

reducing strength loss.      
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CHAPTER 5                      

ELECTROMAGNETIC SHIELDING FINISHING OF 

RAMIE FABRIC USING SUPERCRITICAL CO2 

TECHNOLOGY 

5.1 Introduction 

With the development of science and technology, people are exposed to the 

increasing pollution of electromagnetic (EM) radiation. EM waves have harmful effects 

on mankind health [152, 153]. To solve EM interference problems, the development of 

EM shielding (EMS) fabrics has attracted increasing attention, and many novel 

technologies have been applied to date [105, 152-155]. However, most of investigations 

on the EM shielding (EMS) fabrics were based on the synthetic fibers. Fewer attempts 

have been made on the development of EMS fabrics with natural fibers. This study is 

aimed to develop EMS ramie fabrics via electroless copper plating process.  

 

Ramie fiber has many unique properties, including a high Young’s modulus, a high 

degree of the polymerization, orientation, and crystallinity [78, 91]. Therefore, it has 

some disadvantages in the fabrication process, such as poor spinning ability, easy 

corrugation, and poor dyeing ability. Moreover, it causes disgusting feelings of stinging 

or itching when it is used as a textile and in contact with human skin. Thus, ramie fibers 

must be pretreated before dyeing and finishing. In general, the pretreatment procedure 

through chemical modification of the ramie fibers is rather long and causes heavy 

pollution to the environment. Therefore, it is important to develop a new and effective 

treatment for ramie fiber and fabric. 

 

Recently, the supercritical fluid technique has been attracting much attention as an 

environmentally benign process [106, 107, 156, 157]. Supercritical fluids have a higher 

diffusion rate and a lower viscosity than liquids. Supercritical fluids are widely used in 

chemical extraction, polymerization of polymers, textile dyeing and impregnation of 
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desired additives into the matrices [77, 80, 83, 85, 87-90, 105, 156, 158-160]. 

Supercritical carbon dioxide (scCO2) is inexpensive, essentially nontoxic, and 

nonflammable, has easily accessible critical conditions (Tc = 31°C and Pc= 7.37 MPa) 

and can be recycled. Many efforts have been made on the applications of scCO2 in 

textile processing in the past two decades. But the treatment of ramie fabric with scCO2 

has been rarely reported.  

 

In this study, the scCO2 was employed in the pretreatment of ramie fabrics. It is 

found that the impurities, especially lignin of ramie fibers could be removed apparently 

by scCO2 under appropriate conditions. Meanwhile, the microstructure of the ramie 

fiber also changed, which could give rise to the increase of the absorbency of the ramie 

fibers to additives. The impregnation of Palladium (II)-hexafluoroacetylacetonate 

(Pd(hfa)2) into the ramie fibers was accomplished in scCO2 fluid at 150oC whereby the 

surface was coated with a film of Palladium as catalyst. Afterwards, the pretreated 

ramie fabrics were coated with copper (Cu) via an electroless plating process. It was 

proved that the Cu plated ramie fabrics exhibited high electrical conductivity and good 

EMS effect.    

 

5.2 Experimental  

Materials 

The ramie fabrics were dried in a vacuum oven for 24h and weighed before using.  

The carbon dioxide (purity: 99.99%) was purchased from the Uno Oxygen Co., and 

used as received. Pd(hfa)2 and ethanol (EtOH) were purchased from the Aldrich 

Chemical Co., and used without further purification. Swelling agent was provided by 

Clariant Co. Electroless copper plating solution containing ATS-ADDCOPPER IW-A, 

ATS-ADDCOPPER IW-M, ATS-ADDCOPPER C was bought from the Okuno 

Chemical Industry Co., Ltd.  

 

Pretreatment in scCO2  

All experiments were performed on a batch-type supercritical extractor (SFE System 
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2200, ISCO, USA). The illustration of the apparatus is demonstrated in Figure 1. The 

pretreatment of the ramie fabrics was conducted in a 10cm3 sample cartridge, which 

could be inserted or extracted from a high-pressure stainless-steel vessel being sealed 

with a plug at one end and with a high-pressure needle valve at the other end. After 

heating the sample to a specific temperature, the scCO2 was injected into the 

stainless-steel vessel via the high-pressure syringe pump to the desired pressure. The 

testing sample was then treated for a certain time at a certain constant temperature and 

pressure. In order to enhance the swelling effect of scCO2 for the ramie fabrics, a certain 

amount of swelling agent was added into the scCO2 treating system. After the 

supercritical process, the sample was taken out after decompression. Finally, the 

pretreated fabric samples were dried and weighed individually so as to assess the weight 

losses of the ramie fabrics. 

 

     
 

Figure 5.1 Illustration of the scCO2 equipment. (A) cooling unit. (B) high-pressure 

pump. (C) pressure gauges. (D) thermometer. (E) heater and high-pressure 

stainless-steel vessel. (F) sample cartridge. (G) sample. (H) cleaning pump. (I) valves.   

 

2.3 Electroless Cu plating 

The impregnation of Pd(hfa)2 into ramie fabrics was conducted in the scCO2 fluid at 

150 °C. Before sealing the sample cartridge, a glass filter was placed over the ramie 

fabrics without mutual contact. A certain amount of organometallic complex powder, 
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calculated in 1% of the weight of the ramie sample, was placed on the glass filter. After 

the desired temperature (150 °C) was reached, the sealed sample cartridge was placed in 

the stainless-steel vessel, and then carbon dioxide was added via the high-pressure 

syringe pump to the desired pressure. The impregnation was carried out for 15 or 60 

min. The Cu plating was finished via an electroless Cu plating way in which the 

electroless Cu plating solution was made from ATS-ADDCOPPER IW-A 

ATS-ADDCOPPER IW-M ATS-ADDCOPPER C and deionized water under well 

mixing. The ramie fabrics coated with Pd catalyst were dipped into the electroless 

copper plating solution at 42°C for some tine under magnet stirring or ultrasonic 

irradiation. Eventually, the fabrics were kept in a vacuum oven for 24 h for eliminating 

any moisture in the fibers.  

 

Characterization 

Thermogravimetric analysis (TGA) was used to analyze the thermal decomposition 

of the Pd complex by TG/DTA32 (Seiko Instruments, Inc.). The TGA experiments were 

carried out at a heating rate of 10 °C/min under the protection of argon purging. The 

content of lignin in the ramie fabrics was measured according to the Chinese standard 

GB5889-86. The surface of the treated and untreated ramie fibers were observed by a 

Hitachi S-2600HS scanning electron microscope (SEM). The sectional morphology of 

the treated and untreated ramie fibers was viewed by a Nikon Microscope. The ramie 

fabrics impregnated with Pd(hfa)2 were analyzed by X-ray photoelectron spectroscopy 

(XPS) to verify the presence of Pd on the fiber surface. For the XPS, an ULVAC Φ5500 

spectrometer with Mg-Kα excitation (15.0 kV, 300 W, φ=100 μm) under a vacuum 

pressure of 1×10−8 Pa was used. Also, the plated surface morphology of the sample was 

examined by the Hitachi S-2600HS SEM. The surface resistivity of the plated fabric 

was measured by the four point probe method using a Roresta AP MCP-T400 

(Mitsubishi Petrochemical Co., Ltd.). The electromagnetic shielding effectiveness was 

measured by the KEC (Kansai Electronic Industry Development Center) method.  
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5.3 Result and discussion 

5.3.1 Influences of scCO2 pretreatment 

The chemical compositions of the ramie fiber are usually divided into two parts: 

cellulose and non-cellulose compounds. Cellulose compounds form the fibrillar cell of 

the ramie fiber and are the dominant component of the fiber. Non-cellulose compounds 

including hemicellulose, pectin, oil, wax, lignin and other impurities exist between the 

fibrillar cells or adhere on the surface of the fibrils. When the ramie fibers are treated 

with scCO2, due to the high dissolving capacity of the scCO2, the organic impurities 

adhered on the fiber surface can be dissolved and eliminated from the fiber surface. 

Meanwhile the tacky materials of the ramie fabrics can also be removed. Figure 5.2 

shows the SEM images of the pretreated and untreated ramie fibers. It can be seen that a large 

amount of impurities exists on the surface of the untreated fibers. But after being 

pretreated with the scCO2, the surfaces of the ramie fibers become apparently smoother, 

suggesting that the impurities existing naturally in the ramie fibers and the processing 

auxiliaries such as spinning oil, lubricant, size, etc, adhering on the ramie fabric in 

spinning and weaving process dissolved in the scCO2 fluid and were removed from the 

ramie fabrics. 

 

Figure 5.3 presents the influence of temperature and time on the weight loss of ramie 

fabric during the scCO2 process conducted under the constant pressure of 25MPa. It can 

be seen as the temperature increases from 80oC to 120oC the weight loss of the ramie 

fabric increases. This is because on one hand the increase of temperature raises the 

diffusiveness of CO2 molecules. On the other hand, higher temperature promotes the 

thermal expansion of ramie fibers, resulting in the increase of their free volume. 

Therefore the CO2 molecules can more easily diffuse into the ramie fibers and extract 

the impurities.  
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(A) 

 

   
(B) 

 
Figure 5.2 SEM of the treated and untreated ramie fibers. A：before pretreatment B: 

after pretreatment. 

 

Figure 5.4 presents the influence of temperature and time on the weight loss of ramie 

fabric when the temperature was set at 150oC. It is evident that the weight loss increases 

with the increase of pressure due to the increase of the density of scCO2 at the certain 

temperature. This is because the intermolecular distance of the CO2 molecules decreases 

and thus the interaction between solvent and solute increases leading to the solubility 

increase of the impurities in scCO2 fluid. 
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Figure 5.3 Influences of temperature and time on weight loss under the pressure of 

25MPa. (●) 80oC; (■) 100oC; (►) 120oC.                       
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Figure 5.4 Influences of pressure and time on weight loss at the temperature of 150oC. 

(●) 20MPa; (■) 25MPa; (▲) 30MPa.  

 
 

Figure 5.5 shows the TGA thermograms of the untreated and treated ramie fabrics. It 

can be seen that the initial decomposition temperatures of the pretreated ramie fabrics 

are obviously higher than that of the untreated fabric. Moreover, the thermal stability of 
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the ramie fabric pretreated under 100oC is slightly higher than that of the one pretreated 

at 80 oC. It is supposed that for the untreated ramie fibers the decomposition at lower 

temperatures is mainly ascribed to the decomposition of impurities. The testing results 

prove that the scCO2 pretreatment indeed removed the impurities and resulted in the rise 

of initial decomposition temperature. In addition, higher treatment temperature gives 

rise to better thermal stability, i.e., higher removal ratio of impurities.    

 

It is well known that ramie fibers contain a large amount of lignin which results in 

bad spinning ability and lower absorbency to other additives. In general, the lignin in 

ramie fibers has to be removed in the strong alkaline solutions, resulting in heavy 

environmental pollution. The authors studied the removal of the lignin when the ramie 

fabrics were pretreated at 150oC in scCO2 fluid. Table 5.1 presents the removal of lignin 

under different conditions. It can be seen that the removal ratio of lignin in ramie fabrics 

varies in the range ~48-69% under the different treatment conditions. In general, the 

removal of lignin increases with the increase of treatment temperature, pressure and 

time.  

 

 

   

  

 

 

 

 

 

 

 

 Figure 5.5 TGA tests of the treated and untreated ramie fibers. 

 

In order to raise the lignin removal further, a certain sort of swelling agent was 

employed in the scCO2 pretreatment when the temperature was set at 150oC, pressure 

was 30MPa and treatment time was 60min. As a result, the lignin removal was raised to 
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over 80%. Therefore it is possible to replace the traditional chemical process for the 

elimination of the lignin in ramie fibers with scCO2 fluid technique by selecting 

appropriate conditions. 

 

In order to examine the swelling effect of scCO2 pretreatment on the ramie fibers, the 

cross sectional morphology of the pretreated and untreated ramie fibers were observed 

via microscopy. As shown in Figure 5.6, the pretreated fibers are mostly larger than that 

of the untreated fibers in diameter. Most of the untreated ramie fibers have their lumens 

close. In contrast, those of the treated ramie fibers apparently open. This suggests that  

 

Table 5.1 Effect of the scCO2 pretreatment upon lignin removal of ramie fibers 
 

Pressure 

(MPa) 

Treatment 

temperature 

(oC) 

Time 

(min) 

Lignin removal 

(%) 

100 40 58.4 

120 20 56.6 20 

150 60 69.1 

100 20 48. 3 

120 60 66.8 25 

150 40 65.9 

100 60 65.3 

120 40 62.1 30 

150 20 62.6 

 

scCO2 can result in the swelling of the ramie fibers, which may increase their absorption 

for other additives in dying or finishing.  

 

Table 5.2 shows the influences of scCO2 pretreatment on the warp density, pick 

density and capillary effect of the ramie fabrics. It can be seen that the swelling of the 

ramie fiber led to the increase of pick density but the decrease of warp density. 

Meanwhile, and the wetting time of the ramie fabrics was shortened greatly (see Table 
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5), indicating the absorbency of the ramie fabric was increased significantly. The 

increase of the absorbency of the ramie fibers resulted from the elimination of the 

hydrophobic organic impurities by scCO2 fluid and the expansion of the lumens in the 

ramie fibers. Thereby the pretreatment by scCO2 fluid favors the following processes 

such as dyeing, printing and finishing of the ramie fabrics. 

 

    

(A)                             (B) 

 
Figure 5.6. Cross sectional view of the treated and untreated ramie fibers multiplied by 

500 times  A：before treatment B: after treatment 

 

5.3.2 Electroless copper plating 

Pd(hfa)2 can be easily dissolved in scCO2 due to its hydrophobic feature. Because of 

low viscosity and high diffusiveness of scCO2, the Pd(hfa)2 contained in the scCO2 fluid 

can be impregnated into the polymers [105]. Thermal analysis proved that the thermal 

decomposition of Pd(hfa)2 occurred in the temperature range 90-154°C [105]. After 

being heated to the temperature range, the Pd(hfa)2 has its ligands removed, which 

results in a layer of Pd catalyst coating on the surface of polymer fibers. When a fabric 

coated with palladium was immersed in a copper plating solution a copper film could 

form on the surface of the fabric because of the reduction reaction of copper ions. In 

addition, CO2 is non-polar and thus is difficult to diffuse into hydrophilic natural fibers 

such as cotton and ramie. Some polar co-solvents such as methanol (MeOH), ethanol 

(EtOH), acetone, etc., were reported to be effective for increasing the solubility of polar 
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substance in scCO2 fluid [161, 162]. In this study, the impregnation of Pd(hfa)2 into 

ramie fabrics were conducted at 150oC and 20MPa for 15min or 60min in scCO2 fluid. 

In some experiments, some EtOH calculated in 5.6% of the weight of scCO2 fluid was 

employed.  

 

Table 5.2 The swelling effect of the scCO2 pretreatment on the ramie fabrics 

 

Pressure 

(MPa) 

Temperature 

(oC) 

Time 

(min) 

Warp 

density 

Pick 

density 

Capillary Effect

(sec) 

      Untreated fabric 227.3 193.6 56.8 

60 40 181.8 204.3 33.4 

80 20 184.8 204.3 39.4 20 

100 30 184.8 206.5 45.7 

60 30 163.6 204.3 36.5 

80 40 193.9 206.4 25.5 25 

100 20 193.9 204.3 25.4 

60 20 184.8 202.1 23.5 

80 30 190.9 204.2 19.5 30 

100 40 193.9 206.4 29.8 

 

Figure 5.7 shows the appearance changes of a ramie fabric in the electroless copper 

plating. When the ramie fabric was kept in the scCO2 fluid containing Pd(hfa)2 for 

15min or 60 min at 150 °C the sample changed from original light gray (see Figure 5.7 

(A)) to dark gray in color (see Figure 5.7 (B)), suggesting some Pd catalyst deposited on 

the surface of the ramie fibers. When a ramie fabric coated with Pd catalyst was placed 

into the Cu plating solution, it turned into brown yellow color in 5 min (see Figure 5.7 

(A)), indicating formation of the copper film on the ramie fabric.  
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Figure 5.7 Appearance changes of a ramie fabric in the electoless copper plating. (A) 

Original ramie fabric; (B) After impregnation with Pd(hfa)2; (C) After Cu plating.  
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                               (A) 

          
                               (B) 
 
Figure 5.8 XPS spectra of the ramie fabrics impregnated with Pd(hfa)2. (A) Treated for 

15min without ethanol being employed; (B) Treated for 60 min with ethanol being 

employed.  

 

The atomic compositions of the surface of the ramie fabrics impregnated with 

Pd(hfa)2 under different conditions were investigated by XPS. Figure 5.8 (A) shows the 

XPS spectrum of the ramie fabric impregnated with Pd(hfa)2 for 15min without EtOH 

as co-solvent while Figure 5.8 (B) presents that of the sample impregnated with 

Pd(hfa)2 for 60min with EtOH as co-solvent. As shown in Figure 5.8 (A) and (B), the 

intense peak at ca. 288eV is caused by the emission of the 1s level electrons of C atoms. 

Another two intense peaks at ca. 561eV and ca. 335eV are ascribed to the emission from 
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the 3p1 level and 3d level electrons of the Pd atoms, indicating the presence of Pt 

catalyst on both of the two samples. In Figure 5.8 (A), the peak at ca. 686eV is ascribed 

to the emission from the 1s level electrons of F Original ramie fabric; (B) After 

impregnation with Pd(hfa)2; (C) After Cu plating. atoms whereas the peak disappears in 

Figure 5.8 (B). The atomic compositions of the ramie fabrics treated under different 

conditions were summarized in Table 5.3. It can be seen that as the impregnation time 

increases from 15min to 60min the Pd content on the surface of the ramie fibers 

increases while the F content decreases, suggesting that with the increase of 

impregnation time more Pd(hfa)2 was impregnated into the ramie fibers and gradually 

transformed into Pd film at this high temperature. In addition, it is found that the 

presence of EtOH in the scCO2 greatly raised the Pd content and reduced the F content. 

This suggests that EtOH promoted the impregnation of Pd(hfa)2 into ramie fibers since 

EtOH enhanced the compatibility of ramie fibers and scCO2.  

 

Table 5.3. Atomic compositions of ramie fabrics treated with Pd(hfa)2 and Cu plating 
effect.  
 

Impregnation 

conditions 

Atomic composition of the fabric 

impregnated with Pd(hfa)2 
Cu plating effect 

Time 

(min) 

EtOH 

(wt%) 

Pd/C 

(×10-2) 

F/C 

(×10-2) 

Cu 

content 

(g/m2) 

Surface 

resistance 

(Ω/cm2) 

15 - 3.78 1.37 17.9 0.72 

15 5.6 5.42 0.38 19.6 0.59 

60 5.6 7.27 0 20.2 0.51 
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                                     (A) 

 

 
   (B) 

 
Figure 5.9 SEM images of the ramie fibers before and after Cu plating. (A) After being 

pretreated with scCO2 (B) after Cu plating.  

 

Figure 5.9 shows the SEM images of the ramie fibers before and after Cu Plating. 

Before Cu plating the surface of the ramie fabric is very smooth, thanking to the 

pretreatment of scCO2 after which most of the impurities of the ramie fibers was 

removed (see Figure 9 (A)). After Cu plating for 5min the surface of the ramie fibers 

became rather coarse, suggesting Cu atoms depositing on the surface of the ramie fibers 

(see Figure 9 (B)). The Cu plating effects of the ramie fabrics are summarized in Table 

5.3. As would be expected, with the increase of impregnation time the Cu content 

increased and the surface electric resistance decreased. If the impregnation of Pd(hfa)2 
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was conducted with EtOH as co-solvent the resultant Cu plating fabrics exhibited higher 

Cu content and lower surface electric resistance.   

 

5.3.3 Shielding effect of the Cu plated ramie fabrics 

The shielding effect tests were performed on two fabrics: the one prepared via the 

impregnation for 60 min with EtOH as co-solvent and the other one produced by the 

impregnation for 15 min without EtOH as co-solvent. As shown in Figure 5.10, the 

electromagnetic shielding effectiveness of the ramie fabric treated with EtOH as 

co-solvent in Pd(hfa)2 impregnation reached 92–67 dB in the frequency range of 

10–1000 MHz. In contrast, without EtOH as co-solvent in Pd(hfa)2 impregnation the 

resultant Cu plated ramie fabric exhibited lower electromagnetic shielding effectiveness 

of 89–63 dB in the same frequency range. Both of the two kinds of Cu plated ramie 

fabrics exhibited good electromagnetic shielding effect. Therefore this study presents an 

effective method to develop electromagnetic shielding fabrics from hydrophilic natural 

fibers.  

 
 

Figure 5.10 Electromagnetic shielding effect of the ramie fabrics coated with copper. 

Thick line impregnation for 60 min with ethanol as co-solvent; thin line impregnation 

for 15 min without ethanol. 
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5.4 Conclusions 

This study is concerned with the application of scCO2 fluid technology for the 

electroless Cu plating on ramie fabrics. It was found that the scCO2 fluid could remove 

the impurities of the ramie fibers, especially at higher temperature, higher pressure and 

in longer treatment time. In comparison with the conventionally method where a large 

amount of strong alkaline solutions is employed, the scCO2 fluid is a better way to 

eliminate lignin from the ramie fibers. In particular, the removal of lignin in scCO2 fluid 

could be raised to over 80% in presence of some swelling agent. The scCO2 fluid could 

result in the swelling and expansion of ramie fibers, which increases the absorbency of 

the ramie fibers to additives. By using scCO2 fluid, the Pd(hfa)2 could be impregnated 

into the ramie fibers under appropriate conditions. As co-solvent, ethanol could promote 

the impregnation of Palladium complex into ramie fibers. After the Cu plating, the 

ramie fabrics deposited with Palladium were plated by a Cu film whose content was ca. 

18-20g/m2
. The Cu plated ramie fabrics exhibited good shielding effect. Their 

electromagnetic shielding effectiveness was ca. 63-92 dB in the frequency range 1-1000 

MHz. This study is supposed to explore a new way for the application of scCO2 fluid in 

the textile industry regarding the hydrophilic natural fibers.  
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CHAPTER 6            

MULTIFUNCTIONAL FINISHING OF RAMIE FABRIC 

USING TITANIUM DIOXIDE NANOPARTICLES 

6.1 Introduction 

Nowadays, global trends in textile industry are oriented towards development and 

manufacturing of high-added value products with multifunctional properties. In addition 

to fashion and comfort demands, the garments today are desired to render multiple 

functions [132]. With the advent of nanotechnology, a new area has developed in the 

realm of textile finishing. Through coating nanoparticles on fabric, the high quality 

textile and clothing with functions such as self cleaning, water repellence, antibacterial 

property, UV protection and photocatalytic feature were developed. The multifunctional 

properties give rise to added value to textile and clothing and raise their competiveness.  

 

Among all the nanoparticles, titanium dioxide (TiO2) nanoparticles drew the most 

attention from academia and industry due to their excellent properties, nontoxic feature 

and low cost [163]. The application of TiO2 nanoparticles to textile materials has been 

the object of a good number of studies aimed at producing finished fabrics with 

multifunctional properties. The TiO2 loaded fabrics showing the characteristics such as 

UV protection [110, 117], self cleaning [110, 112, 113, 119, 128, 133], antibacterial 

property [114], harmful gas removing [136, 137] and even wrinkle resistance [164] have 

been reported.  However, most of the investigations on finishing with TiO2 

nanoparticles were conducted with cotton or polyester fabric. Few attempts have been 

made on the nano finishing of ramie fabric. This study is aimed to develop 

multifunctional ramie fabrics through finishing with TiO2 nanoparticles.  

 

Various techniques have been developed and employed to produce nano TiO2 coated 

fabrics, such as the sol-gel method, vacuum evaporation, sputtering, and dip-coating. 

[163] The sol-gel method is one of the most widely used techniques because of its 

simple process. This kind of method, however, does not adapt to preparing uniform and 
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compact functional films in a large area. The bad adhesive force between the fabric and 

the function films also cannot satisfy the need for lengthy and repeated usage. In 

addition, the chemical pollution caused by a wet process is another serious disadvantage. 

Chemical vapor deposition and magnetron sputtering can offer better adhesion between 

the fabric and the function films. But these techniques require some high-temperature 

complicated equipment and are specific to the surface to be coated [163]. Coating of 

TiO2 by dip-coating is most widely used by most researchers because the technique is 

easy and does not require any complicated equipment. [136] 

 

There are two major technical challenges when using TiO2 nanoparticles for textile 

finishing via dip-coating. At first, it is difficult to produce stable and uniformly 

dispersed TiO2 aqueous suspension because of the intense aggregation tendency TiO2 

nanoparticles. This solution is dependent on appropriate selection of dispersant and 

optimization of dispersion condition. Secondly, the interaction between the TiO2 

nanoparticles and the fabric substrate is relatively weak and therefore the finishing 

durability would normally be interfered [115, 117] . In most cases, in order to achieve 

optimum adhesion of the nanoparticles to the textile substrates, modification of either 

the nanoparticles or fabric surface is necessary before nano finishing. For instance, 

before nano finishing the cotton fabrics were activated by radiofrequency (RF) plasma, 

microwave (MW) plasma or UV irradiation for introducing negatively charged 

functional groups to anchor TiO2 to the textile surface [122] .  In another previous 

study, Meilert et. al. used chemical spacers (succinic acid, 1,2,3-propanetricarboxylic 

acid, and 1,2,3,4-butanetetracarboxylic acid) to attach TiO2 particles to cotton fabric 

surfaces [128]. In this process, the spacers were attached on the cotton by the formation 

of ester bonds, which are then used to anchor TiO2 particles. The results showed that 

TiO2 coated cotton fabric possessed stable self-cleaning properties. Apart from 

modification of nanoparticles and fabrics, nanoparticles can also be fixed to the 

substrate by the use of functional polymers.   

 

In this study, in order to produce multifunctional ramie fabric with nano TiO2, 

aqueous dispersion containing TiO2 nanoparticles was prepared for making up working 

bath. A kind of hydrophilic silica aerogel was used as dispersant. The conditions of the 
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dispersion of nanoparticles were optimized. To enhance the nano finishing durability, 

the ramie fabric samples were pretreated by citric acid before coating TiO2. A kind of 

thermal reactive polyurethane (PU) emulsion was employed as the binder of TiO2 

nanoparticles. The photocatalytic and antibacterial properties as well as the UV 

protective capability of the TiO2 loaded ramie fabrics were examined. The citric acid 

pretreatment and the PU emulsion were compared with respect to enhancing the washing 

durability. This study proved the newly developed TiO2 coated ramie fabrics exhibited 

excellent UV protection, good antibacterial property and high capability for 

decomposing formaldehyde. Formaldehyde is a common indoor pollutant and irritant 

and is often used in adhesives, resins, textiles, and consumer products. It is supposed 

that when the newly developed TiO2 coated ramie fabrics are used in decorative things, 

such as bedding, coat of seat and indoor curtain, through catalysis of ultraviolet 

lamp-house of daylight or lamplight, they can result in the degradation of harmful gases 

such as formaldehyde and purify the indoor air, providing comfortable and healthy 

living environment for mankind. 

 

6.2 Experimental  

Materials 

The ramie fabric (21×21s) (provided by Huling Jindi Group, Chongqin, China) was 

desized, scoured and bleached prior to using. The TiO2 nanoparticles were provided by 

PENZHIHUA Iron & Steel (Group) Co. (Penzhihua, China). The particle size of the 

nano TiO2 is about 10-20 nm. The chemicals including sodium dodecyl sulfonate (SDS), 

trimeric sodium phosphate, sodium hexameta phosphate, sodium silicate, sodium 

hypophosphate and citric acid of chemical pure grade were purchased from Sinopharm 

Chemical Reagent Co., Ltd. A hydrophilic silica aerogel powder was provided by Nano 

High-tech Co., Ltd. (Shaoxing, Zhejiang, China). This white powder product own low 

density, high specific surface area, high porosity ratio. The PU emulsion DM-3541 was 

purchased from the DYMATIC Chemicals Inc. (Foshan, Guangdong, China). The water 

used in our experiments was distilled for three times in our laboratory prior to using. 
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Preparing aqueous suspension of TiO2 nanoparticles  

The TiO2 nanoparticle suspension was prepared under the agitation via an ultrasonic 

homogenizer (Ningbo Scientific Biotechnology Co., Ltd., Ningbo, Zhejiang, China) for 

a certain time at a given temperature. Then a certain amount of dispersant was added 

into the TiO2 nanoparticle suspension. The mixed liquid was further agitated by the 

ultrasonic waves for another 30 min. The pH of the nanoparticle suspensions were 

adjusted using HCl or NaOH. After 24 h, some sediment appeared at the bottom of the 

suspensions prepared with different dispersants under different conditions. Removing 

the upper suspension, the sediment at the bottom was dried and weighed. Thereof the 

weight fraction of the dispersed TiO2 nanoparticles was calculated. The dispersion effect 

was also evaluated by analyzing the absorbance of the suspensions. At first, the 

suspensions were subjected to centrifugal operation at 4000 r/min for 40 min. Some of 

the upper clear liquid was extracting after centrifugal operation and was diluted by 10 

times. The light absorbance and transmission of the diluted liquid were measured with 

the 7200 visible spectrophotometer (UNICO (Shanghai) Instruments Co., Ltd.) at λ=360 

nm. According to Beer–Lambert law: 

smbcA ε=                                               (6-1) 

TA log−=                                               (6-2) 

where A and T refer to light absorbance and transmission, respectively. The parameters 

εm, b and cs stand for molar absorbance coefficient, the path length of light and the 

concentration of the solution examined. Higher absorbance means the larger 

concentration of the solution, i.e, the better dispersion effect. By investigating the 

influences of dispersants, ultrasonic dispersion time, dispersion temperature and pH 

value of aqueous suspension, the optimal conditions of the dispersion of TiO2 

nanoparticles were determined. Under the optimal conditions, the TiO2 aqueous 

suspension with concentration of 1 wt% was prepared and used as the master TiO2 

suspension for preparing different working baths.    

 

Fabric coating  

In order to introduce -COOH groups to ramie fibers, an series of aqueous solution of 

citric acid in presence of sodium hypophosphate as catalyst (4 wt%) was prepared in 



CHAPTER 6 

96 

advance. The content of citric acid varied from 2% owf to 7% owf and 10% owf. The 

ramie fabric samples were immersed in the treatment solution for 1 h. After drying at 

90oC for 3 min in a preheated oven, the ramie fabric samples were cured at 150oC for 

2min in another preheated oven. These fabrics were then thoroughly washed with cold 

water and dried at ambient temperature.  

 

The TiO2 coating of the ramie fabric samples modified by citric acid as well as the 

untreated original ramie fabric samples were performed via a conventional 

dip-pad-dry-cure process. At first, a series of working baths were prepared with the 

TiO2 aqueous suspension produced under the optimal dispersion conditions and distilled 

water. In the working baths, the content of TiO2 varied from 0.2g/L to 0.4g/L, 0.6g/L 

and 0.8g/L. In order to enhance the washing durability of the coated ramie fabrics the 

PU emulsion DM-3541 was employed in the working baths. In the working baths, the 

content of PU emulsion DM-3541varied from 2 g/L to 5 g/L, 10 g/L and 20 g/L. The 

ramie fabric samples were immersed into a working bath prepared thereof and padded 

once or twice by the Rapid 354 padding machine Then the wet ramie fabrics were dried 

in the preheated Werner Mathis AG drying machine at 90 oC for 3 min and cured in the 

preheated Mathis Lab dryer at 150 oC for 2 min. After curing, the cured fabric was 

ultrasonically washed for 10 min in order to remove TiO2 nanoparticles having no 

bonding reaction with ramie fibers. The ramie fabric samples coated with TiO2 

nanoparticles and original untreated ramie fabric samples were washed different times 

in a domestic electric washing machine according to the AATCC 124 test method.  

 

Evaluation of photocatalytic degradation of formaldehyde 

As shown in Figure 6.1, the evaluation of the photocatalytic degradation of 

formaldehyde by the fabrics coated with TiO2 nanoparticles was accomplished in a 

specially designed closure reactive cabinet. The cabinet was equipped with a UV lamp 

obtained from Shanghai Philips-Yaming Company (light centered at 366 nm). The 

cabinet was cooled with a cross-flow ventilator to ensure constant temperature for the 

formaldehyde degradation reaction. A ramie fabric sample was placed in the cabinet. 

Then the formaldehyde sample with known concentration was injected into the chamber. 

Afterwards, the fabric sample was exposed to the constant UV irradiation. The 
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concentration of the formaldehyde was examined after a certain time interval with gas 

chromatography (Clarus 480 GC, Perkin Elmer). The effect of photocatalytic 

degradation of formaldehyde is represented by C/C0×100% where C0 is the initial 

concentration of formaldehyde, and C is the residual concentration of formaldehyde 

after photocatalytic reaction. 

 

 
 

 
Figure 6.1 Illustration of the evaluation of photocatalytic degradation of formaldehyde. 

 

UV-resistant tests 

The UV protection of the fabric specimens was measured in accordance with the 

Australian/New Zealand Standard AS/NZS 2604 (1998) using the Cary 300 UV-visible 

spectrophotometer (Varian, USA) with the scope of wavelength ranging from 280nm to 

400nm. The value of ultraviolet protection factor (UPF) was recorded and the result of 

sun protective clothing was classified according to the rated ultraviolet protection factor. 

The UPF (average of 12 scans) was computed using the following formula: 

∫
∫= 400

290

400

290

λτ

λ

λλλ

λλ

dSE

dSE
UPF                                             (6-3) 

where Eλ corresponds to the relative Erythemal effectiveness, Sλ is the solar spectral 

irradiance, Tλ is the average spectral transmittance, and dλ is the measured wavelength 
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interval in nanometers (290 nm≤ λ≤400 nm).  

 

Antibacterial tests 

The antibacterial effect of ramie fabrics was evaluated on two kinds of bacteria 

Escherichia coli and Staphylococcus aureus. The microorganisms used in the 

antibacterial test were obtained from College of Life Science of Sichuan University. 

Escherichia coli and Staphylococcus aureus were all cultured on Tryptic Soy Broth 

(TSB) for 24 h at 35-37oC and 200 rev. /min. The potassium hydrogen phosphate buffer 

solution (0.5M, pH=7.2) was used as the testing medium. Afterwards, 50 mL of sterile 

potassium hydrogen phosphate buffer solution was added to sterile Erlenmeyer flask 

(300 mL), which was then inoculated with 0.5 mL of the bacterial inoculum. The zero 

counts were made by removing 1 ml aliquots from the flask with inoculum, and making 

1:10 and 1:100 dilutions in physiological saline solution. 0.1 ml of the 1:100 solution 

was placed onto a tripton soy agar and after 24 h of incubation at 37 oC, the zero time 

counts (initial number of bacterial colonies) of viable bacteria were recorded. Prior to 

antibacterial test, one gram of a ramie fabric loaded with TiO2 was weighed and cut into 

small precise were put into flask with autoclave and sterilized at 120oC for 20 min. 

Likewise the ramie fabric untreated with TiO2 was subjected to the same sterilization. 

The sterilized fabric was put in the flask where 50 ml of sterile potassium hydrogen 

phosphate buffer solution was inoculated with 0.5 ml of the bacterial inoculum. Then 

the flask was shaken for 1 h. One hour counts were recorded in accordance with the 

procedure describe above. The percentage of bacteria reduction (R%) was calculated 

using the following equation:  

%100×
−

=
W

QWR                                                   (6-4) 

Where W is the number of bacteria colonies on the control fabric and Q is the number of 

bacteria colonies on the fabric loaded with TiO2. 

 

Measurement of tearing strength 

The tearing strength of the ramie fabrics loaded with TiO2 nanoparticles and the 

untreated ramie fabrics was measured by an Elmendorf tearing tester according the 

standard ASTM D 1424-1996. Five samples were prepared in the warp direction of each 
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ramie fabric. Consequently, the tearing strength was separately recorded for each 

sample and the average results were then reported. Before and after exposure to UV 

light for a certain time, the tearing strength change of a ramie fabric loaded with TiO2 

was thus investigated.  

 

6.3 Results and discussion 

6.3.1 Dispersion of TiO2 nanoparticles 

Influence of dispersants 

In this study, the dispersion effect of five kinds of dispersants sodium dodecyl 

sulfonate (SDS), trimeric sodium phosphate, sodium hexametaphosphate, 

triethylolamine and hydrophilic silica aerogel was studied. As shown in Figure 6.3, all 

the five kinds of dispersants exhibited a maximum fraction of dispersed TiO2 at an 

optimal dose (wt% of amount of TiO2) value above and below which the fraction of 

dispersed TiO2 decreased dramatically. The hydrophilic silica aerogel exhibited the best 

dispersion effect. The highest fraction of dispersed TiO2 was above 65% when the dose 

of hydrophilic silica aerogel was 0.06 wt% of the amount of TiO2 nanoparticles. The 

highest fraction of dispersed TiO2 was about 35% when SDS was used as the dispersant. 

According to the maximum fraction of dispersed TiO2 of the dispersant, the dispersion 

capability increased in the order SDS, sodium hexametaphosphate, sodium silicate, 

trimeric sodium phosphate and hydrophilic silica aerogel.  

 

The aqueous solutions of sodium hexametaphosphate, sodium silicate and trimeric 

sodium phosphate are electrolytes. In the dispersion of TiO2 nanoparticles using the 

three kinds of chemicals as dispersants, the static repulsive force dominates the 

dispersion behaviors. TiO2 nanoparticles absorb opposite ions from the electrolytes and 

form electric double layer on the surface of TiO2 nanoparticles with the presence of 

electrolytes in water. With the increase of the content of dispersant, the thickness of 

electric double layer on the surface of TiO2 nanoparticles increased and raised the static  
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Figure 6.2 Influence of different dispersants on the dispersion effect of TiO2  

 

repulsive force among the nanoparticles, which favor the dispersion of TiO2 

nanoparticles. But with the further increase of these electrolyte dispersants, the 

thickness of electric double layer reduced, resulting in the decrease of dispersion of 

TiO2 nanoparticles. It can be seen that the optimal contents of sodium 

hexametaphosphate, sodium silicate and trimeric sodium phosphate for achieving the 

best dispersion of TiO2 nanoparticles were 10%, 10% and 6% (wt% of the dose of TiO2 

nanoparticles).  

 

SDS is a kind of typical anionic surfactant which is composed of a highly hydrophilic 

sulfonic group on one side and a hydrophobic dodecyl chain on the other side in its 

molecule. The presence of long alkyl chain in SDS molecules results in the steric 

hindrance effect is more significant while the role of static repulsive force is weakened. 

In the dispersion of TiO2 nanoparticles, the anionic groups of SDS were absorbed on the 

surface of TiO2 nanoparticles because of the Van Der Waals force. It is noted that the 

dispersion effect of TiO2 nanoparticles varied less with the change of SDS dose. In 

contrast, the variation of the three electrolyte dispersants mentioned above results in 



CHAPTER 6 

101 

great change of dispersion effect. This implies that in the dispersion of the hydrophilic 

TiO2 nanoparticles   the static repulsive force should be an important influencing 

factor.  

 

Silica aerogel, also known as "Blue Smoke" or "Frozen Smoke", is the lightest known 

solid material. As illustrated in Figure 6.3, silica aerogel is highly porous and contains a 

great amount of nano-sized pores. It has high specific surface area and thus strong 

adsorptive ability. It contains a good number of free hydroxyl (-OH) groups as well as 

hydrogen bonded –OH groups inside and outside. In this study, the hydrophilic silica 

aerogel powder has specific surface area of 600 m2/g and density of 40-80kg/m3
.  Its 

porosity is as high as 90-98% and its pore capacity is 3.0-6.0 cm3/g. The pore diameter   

is in the range 20-80 nm. Because of the high specific surface area and strong adsorptive 

ability of the hydrophilic silica aerogel, the TiO2 nanoparticles tent to be easily absorbed 

onto the surface of the hydrophilic silica aerogel particles in the aqueous suspension. 

The presence of abundant –OH groups on hydrophilic silica aerogel surface not only 

favor the dispersion of silica aerogel itself in water but also help the absorbance of TiO2 

nanoparticles. The presence of hydrophilic silica aerogel prevented the aggregation of 

TiO2 nanoparticles with each other. It thus favored the dispersion of nanoparticles on 

one hand and helped retain the small size feature of TiO2 nanoparticles on the other 

hand. In addition, some fraction of TiO2 nanoparticles maybe also were enclosed by 

internal pores of hydrophilic silica aerogel since its pore size is larger than that of TiO2 

nanoparticles because the internal pores of the hydrophilic silica aerogel are larger than 

the nanoparticles. This can reduce the direct contact between TiO2 nanoparticles with 

ramie fibers. It should be favorable for reducing the destruction of ramie fibers brought 

by the photocatalytic reaction. Using the hydrophilic silica aerogel as dispersant 

represents a new method for preparing nanoparticle suspension, which has never been 

reported.  
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Figure 6.3 Illustration of structure of silica areogel 

 

In the following dispersion experiments, hydrophilic silica aerogel was used as 

dispersant and its optimal dose was 6% (wt% of amount of TiO2).  

 

Influence of pH  

The influence of pH on dispersion effect of TiO2 nanoparticles was investigated by 

varying the pH value from 2 to 12. As shown in Figure 6.4, the light absorbance of the 

suspension decreased from 0.8 to 0.23 as pH rose from 2 to 4, suggesting the depression 

of the dispersion effect of TiO2 nanoparticles. In the pH range 4-5, the absorbance was 

very low indication that the dispersion effect was the worst in this case. As rose from 5 

to 7, the absorbance increased prominently, namely, the dispersion effect increased as 

well. In the pH range 9-10, the absorbance reached the highest level, implying the 

dispersion effect was the best in this range. When pH further grew up to 12, the 

dispersion effect depressed dramatically again. This is because the isoelectric point of 

TiO2 nanoparticles was situated at about pH=4.0. When pH was below its isoelectric 

point, the TiO2 nanoparticles were positively charged. As the decrease of pH, the H+ 

ions absorbed on the surface of TiO2 nanoparticles reduced, resulting in the decrease of 

static repulsive force among the nanoparticles which was unfavorable for the dispersion 
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of nanoparticles. In the vicinity of isoelectric point, the static repulsive force among 

nanoparticles reduced to the minimum level and the TiO2 nanoparticles tent to aggregate. 

As a result, the dispersion effect was lower in this range. When pH was above its 

isoelectric point, the TiO2 nanoparticles were negatively charged. With the increase of 

pH, the negative ions increasingly aggregated on the surface of TiO2 nanoparticles, 

leading to the increase of static repulsive force among nanoparticles. Therefore the 

dispersion effect rose as pH increased when pH>5. But as pH increased to over 10, the 

concentration of Na+ in the suspension reached to rather high level. The Na+ could 

reduce the thickness of electric double layer on the surface of nanoparticles, resulting in 

prominent depression of dispersion effect. Hence pH=9 was the employed in the 

following experiments for producing aqueous of suspensions of TiO2 nanoparticles.      
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Figure 6.4 Influence of pH 

 

Influence of dispersion temperature 

Figure 6.5 presents the influence of dispersion temperature on the dispersion of TiO2 

nanoparticles. As can be seen, the light absorbance rose steadily as dispersion 

temperature increased from 25oC to 50oC, suggesting the dispersion effect increased. 

But absorbance decreased when dispersion temperature further increased from 50oC to 

80oC, indicating the reduction of the dispersion effect. This because increasing 
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temperature could raise the molecular mobility of dispersants and enable them to be 

easily absorbed by TiO2 nanoparticles, forming compact electric double layer on the 

surface of TiO2 nanoparticles. But too high temperature could result in rather high 

molecular mobility of dispersants and give rise to the difficulty of covering TiO2 

nanoparticles by dispersants.  Moreover, higher temperature could raise the probability 

of collisions among nanoparticles and reduce the dispersion effect. Hence the optimal 

dispersion temperature was determined at 50 oC. 
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Figure 6.5 Influence of dispersion temperature 

 

Influence of ultrasonic treatment time   

As well established, ultrasound is a very effective processing method in the 

generation and application of nano materials. During the low pressure cycle, 

high-intensity ultrasonic waves create small vacuum bubbles or voids in the liquid. 

When the bubbles attain a volume at which they can no longer absorb energy, they 

collapse violently during a high pressure cycle. This phenomenon is termed as 

cavitation. In general, ultrasonic cavitation in liquids may cause fast and complete 

degassing and is favor of producing uniform dispersions of nanoparticles. Figure 6.6 

indicates the influence of time of ultrasonic treatment in the dispersion of TiO2 

nanoparticles. When the dispersion time increased from 10 min to 30 min the 

absorbance rose apparently. However, after 30 min the dispersion effect depressed with 
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the extension of ultrasonic time. This is because ultrasonic wave also gives rise to 

Bemoulli force via non-linear vibration besides the cavitation effect. The Bemoulli force 

results in the TiO2 nanoparticles to approach with each other and tend to aggregate 

thereby. In addition, long-time ultrasonic treatment could raise the temperature of the 

suspension and enhance the collisions among nanoparticles. The separated nanoparticles 

could thus reunion. Therefore the optimal ultrasonic time was determined as 30 min in 

this study.  
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Figure 6.6 Influence of time of ultrasonic treatment 

 

The dispersion effect of the TiO2 nanoparticles in aqueous suspensions were observed 

by a Nikon SMZ645 Microscope. Figure 6.7 the views of aqueous suspension prepared 

using the optimal conditions and the conditions before optimization under microscope 

with a magnification of ×1000. It can be seen that the dispersion effect of TiO2 

nanoparticles were improved prominently. Under inappropriate conditions, larger 

clusters of TiO2 nanoparticle aggregation could be viewed. In contrast, the TiO2 

nanoparticles were evenly distributed when the suspension was prepared using the 

optimal condition combination.       
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              (a)                                (b) 

 

Figure 6.7 Views of dispersion effect under microscope with a magnification of ×1000: 

(a) suspension prepared under the optimal condition combination; (b) suspension 

prepared using the conditions before optimization.  

 

6.3.2 Photocatalytic degradation of formaldehyde 

Influence of content of TiO2  

Figure 6.8 presents the effect of photocatalytic degradation of formaldehyde by the 

ramie fabrics treated by the working baths in which the content of TiO2 varied from 

0.2g/L to 0.8g/L. As shown in Figure 6.8, for the untreated ramie fabric, the 

concentration of formaldehyde changed only slightly due to exposure of UV light. In 

contrast, the concentration of residual formaldehyde dramatically decreased with the 

extension of UV exposure time when the tests were performed on the ramie fabrics 

coated with TiO2, suggesting the occurrence of prominent photocatalytic degradation of 

formaldehyde upon exposed to UV light. For the ramie fabrics coated with TiO2, the 

formaldehyde concentration reduced dramatically at the beginning of photocatalytic 

reaction, especially for the ramie fabrics with higher loading of TiO2, suggesting the 

rapid photocatalytic degradation rate. With the elapse of time, the photocatalytic 

degradation rate declined. This is because the probability of the collision between TiO2 
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nanoparticles and formaldehyde molecules reduced with the decrease of formaldehyde 

concentration. This means that most of formaldehyde in reactor could be destroyed by 

the ramie fabrics loaded with TiO2 nanoparticles in a short time after being exposed to 

UV light. It is also viewed that as the content of TiO2 increased from 0.2 g/L to 0.8g/L 

in the working bath the effect of photocatalytic degradation of formaldehyde increased 

gradually. Apparently, this is ascribed to increased amount of TiO2 nanoparticles loaded 

on the ramie fiber surface, which improved the decomposition efficiency of 

formaldehyde. For the ramie fabric treated with working bath in which the content of 

TiO2 was 0.8g/L, the residual formaldehyde percentage reduced to 45% when it was 

exposed to UV light for 200 min. It is apparent that the photocatalytic degradation 

efficiency of formaldehyde was dependent on many factors. Besides the nature of TiO2 

nanoparticles, the loading of TiO2 on ramie fabric, the UV light intensity and UV 

exposure time, the atmosphere environment and humidity, the interaction area of 

formaldehyde and fabric coated with TiO2 nanoparticles, the cabinet capacity, and the 

ratio of fabric area to formaldehyde amount also play important roles in determining the 

photocatalytic efficiency.  

 

0 50 100 150 200
0

20

40

60

80

100

 Untreated
 0.2g/L 
 0.4g/L
 0.6g/L
 0.8g/L

 

10
0C

/C
0 %

Time (min)
 

               Figure 6.8 Influence of content of TiO2 nanoparticles 
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Influence of PU emulsion 

For the ramie fabrics treated with the working baths made up only by TiO2 aqueous 

dispersion and distilled water, the TiO2 nanoparticles were only attached to the ramie 

fibers due to the physical interactions, such as Van Der Waals force, which can not stand 

repeated laundry cycles. In order to enhance the washing durability, polymer adhesives 

such as the self cross-linking acrylic emulsions were frequently employed in the textile 

finishing with nanoparticles. But using the self cross-linking acrylic emulsions can 

result in hard handle of the treated fabrics. In this study, a kind of PU emulsion was 

employed as the binder of TiO2 nanoparticles. Polyurethane is well known for its 

outstanding elasticity, which is supposed to avoid the depression of soft handle of ramie 

fabric in this study. Moreover, the PU emulsion employed in this study was also 

thermally reactive, similar to that described in Chapter 4. The blocked –NCO groups 

can be released at higher temperatures and react with the –OH groups on ramie fibers. 

As a result, the washing resistance of TiO2 loaded fabrics is supposed to enhance.  

 

In this study, the ramie fabric without citric acid pretreatment were finished by the 

series of working baths made up of TiO2 aqueous suspension and PU emulsion in which 

the dose of PU emulsion DM-3541varied from 2 g/L to 5 g/L, 10 g/L and 20 g/L. Figure 

6.9 shows the influence of PU emulsion on the residual formaldehyde percentage after 

200 min photocatalytic reaction. As can be seen, the residual formaldehyde percentage 

greatly increased with the increase of washings if PU emulsion was absence in the 

working bath. This proved that the photocatalytic effect of ramie fabric dramatically 

decreased because TiO2 nanoparticles lost in repeated washing cycles. In contrast, the 

residual formaldehyde percentage increased slowly with the increase of washings when 

the PU emulsion was employed in working baths. In particular, with the increase of 

content PU emulsion employed in working baths the tendency of residual formaldehyde 

percentage rising with the increase of washings was gradually weakened. This 

suggested that the presence of PU emulsion in working baths indeed enhanced the 

washing durability of the TiO2 coated ramie fabrics. However, with the increase of PU 

content in working baths the residual percentage of formaldehyde before washing 

increased, suggesting the photocatalytic effect reduced. When the PU emulsion content 
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was 20g/L, the residual percentage of formaldehyde was above 70% before washing. 

This is because PU emulsion formed a layer of thin film on ramie fibers after finishing. 

The TiO2 nanoparticles were mostly embedded in the polymer film and could not 

contact with air and formaldehyde when higher content of PU emulsion was used. 

Moreover the UV light could be greatly blocked. The photocatalytic effect was greatly 

weakened. Therefore the content of PU emulsion in working bath must be strictly 

controlled in order to balance the washing resistance and depression of photocatalytic 

effect. Therefore the content of PU emulsion in working bath was determined as 5g/L.  
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 Figure 6.9 Influence of PU emulsion on photocatalytic degradation of formaldehyde. 

 

Influence of pretreatment by citric acid  

Apart from polymer adhesive, chemical modification on fabric or nanoparticles were 

also employed to fix nanoparticles on fabrics. One way to graft nanoparticles onto 

cellulose fabrics is attained by using cross-linking agents. The cross-linking agents have 

at least two free carboxylic groups to be able to bind both fiber and nanoparticles. The 

cross-linking agents such as succinic acid, 1,2,3-propanetricarboxylic acid and 

1,2,3,4-butanetetracarboxylic acid have been used for the purpose in previous reports. In 
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this study, citric acid was used as the cross-linking agent. As illustrated in Scheme 6.1, 

the carboxyl (-COOH) groups citric acid can either form a covalent ester bond with a 

cellulose macromolecule or react with two hydroxyl (-OH) groups resulting in the 

cross-linking of ramie fibers. Through reactions the cross-linking agent citric acid is  

 

 
 
    Scheme 6.1 Reaction with cellulose and interaction with TiO2 of citric acid.  
 

grafted onto ramie fibers. The residual –COOH groups are meant to anchor TiO2 on 

ramie fibers by an electrostatic interaction. Previous studies have shown that TiO2 

presents a strong electrostatic interaction with carboxylic group. Of course, the three 

–COOH groups of citric acid can all react with –OH groups of ramie fibers under 
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appropriate conditions. Therefore it is essential to control the curing temperature and 

time in the pretreatment of ramie fabrics with citric acid so that a proper content of free 

–COOH groups left for fixing TiO2 nanoparticles on ramie fibers in the following TiO2 

coating process.  

 

Figure 6.10 shows the influence of pretreatment by citric acid on washing durability. 

As can be seen, the residual formaldehyde percentage increased significantly with the 

increase of washing time when the ramie fabric was pretreated by citric acid. This 

means that the photocatalytic effect of ramie fabric greatly decreased. In contrast, the 

residual formaldehyde percentage increased more slowly with the increase of washing 

time if the ramie fabric was subjected to pretreatment by citric acid. This suggests that 

after cross-linking pretreatment the washing resistant of the ramie fabric coated with 

TiO2 was enhanced greatly. Moreover, the washing resistant was significantly enhanced 

as the concentration of citric acid increased from 2% owf to 7% owf in the pretreatment 

of ramie fabrics. But when the citric acid concentration increased from 7% owf to 10% 

owf the washing resistant effect increased little. This might be because with the increase 

of citric acid concentration the free –OH groups on the surface of ramie fibers mostly 

react with –COOH. This means the amount of –OH groups available for reacting 

decreased. In addition, with the increase of citric acid concentration the amount of 

-COOH groups on ramie fibers rose, resulting in the increase of grafting TiO2 

nanoparticles. However, with the increasing amount of TiO2 nanoparticles on ramie 

fibers the steric hindrance rose as well, which prevented more TiO2 nanoparticles to 

attach to ramie fibers. In the other word, with the increase of citric acid concentration 

the reaction sites on ramie fibers tent to saturation state. Hence the washing durability 

could not be raised by further increasing the citric acid concentration in ramie 

pretreatment. Hence the optimal citric acid concentration in ramie pretreatment was 

determined as 7% owf in this study.  
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Figure 6.10 Influence of pretreatment by citric acid on washing durability 
 

6.3.3 Antibacterial effect 

In this study, the antibacterial property against of Escherichia Coli and 

Staphylococcus Aureus of the ramie fabrics loaded TiO2. Table 6.1 presents the 

antibacterial property of the TiO2 loaded ramie fabrics prepared differently. As would be 

expected, the antibacterial property the TiO2 loaded ramie fabrics rose with the 

increasing content of aqueous suspension of TiO2 nanoparticles in working bath. 

Moreover, the antibacterial property against Escherichia Coli of a TiO2 loaded ramie 

fabric was close to its antibacterial property against Staphylococcus Aureus. When the 

content of TiO2 in the working bath increased to 0.8g/L, the percentage of bacteria 

reduction approached to 100%.  
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Table 6.1 Antibacterial property of the TiO2 loaded ramie fabrics prepared differently.   
 

Number of bacteria 

colony (cfu/ml) 
R% 

Sample 

A B A B 

Control (not coated with TiO2) 1.38×105 1.65×105 - - 

0.2g/L TiO2 in working bath 1.43×104 1.85×104 89.6 88.8 

0.4g/L TiO2 in working bath 8.97×103 1.30×104 93.5 92.1 

0.6g/L TiO2 in working bath 4.69×103 6.27×103 96.6 97.2 

0.8g/L TiO2 in working bath 1.93×103 1.98×103 98.9 99.2 

0.8g/L TiO2 and 5g/L PU emulsion in 

working bath 

6.62×103 9.08×103 97.0 96.5 

7% owf citric acid pretreatment + 

0.8g/L TiO2 working bath 

2.07×103 1.65×103 98.5 99.0 

 
Note:  A represents Escherichia Coli;  

B refers to Staphylococcus Aureus. 

 

Figure 6.11 presents the comparison of antibacterial performance of untreated ramie 

fabric and that finished by the working bath containing 0.8g/L TiO2 suspension. A lot of 

bacteria colonies can be viewed in the untreated ramie samples. On the contrary, most of 

the bacteria were killed by the TiO2 loaded ramie fabric. Only very few bacteria 

colonies can be seen for both the antibacterial tests against Escherichia Coli and 

Staphylococcus Aureus.  
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                 (a)                                    (b) 

 

    

 
(c)                                    (d) 

 
Figure 6.11 Images of antibacterial effect of ramie fabrics finished by TiO2 working 

bath in which the 0.8g/L TiO2 was involved. (a) control sample in Escherichia Coli 

suspension; (b) TiO2 loaded fabric in Escherichia Coli suspension; (c) control sample in 

Staphylococcus Aureus suspension; (d) TiO2 loaded fabric in Staphylococcus Aureus 

suspension. 
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Figure 6.12 Antibacterial properties of ramie fabrics prepared differently before 

washing and after repeated washing cycles: (■) and (□) finished by only 0.8g/L TiO2; (●) 

and (○) finished by 0.8g/L TiO2 and 5g/L PU emulsion; (▲) and (Δ) pretreated by 7% 

owf citric acid and finished by 0.8g/L TiO2. The solid symbols (■), (●) and (▲) refer to 

the antibacterial property against Escherichia Coli while the empty symbols (□), (○) and 

(Δ) represent the antibacterial property against Staphylococcus Aureus.  

 

Figure 6.12 shows the antibacterial property of ramie fabrics prepared differently 

before washing and after repeated washing cycles. As would be expected, for all the 

ramie fabrics prepared differently the antibacterial property decreased with the increase 

of washing time, suggesting the loss of TiO2 nanoparticles in repeated laundry cycles. 

For the untreated ramie fabric, the antibacterial property decreased rapidly with the 

increasing washing time because the TiO2 nanoparticles were attached to ramie fibers 

only be physical interactions. The ramie fabric loaded with both TiO2 and PU exhibited 

better washing durability because the polymer binder improved the attachment of TiO2 

to ramie fibers. The ramie fabric subjected to the pretreatment of citric acid presented 

the best washing durability because the some TiO2 nanoparticles were anchored to 
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ramie fibers via covalent ester bonds and the strong electrostatic interaction between 

–COOH and TiO2 as illustrated in Scheme 6.1. Hence chemical cross-linking agent is 

better than polymer adhesive for fixing TiO2 nanoparticles on ramie fibers.  

 

6.3.4 UV protective effect 

Table 6.2 shows the UV absorbance of the untreated and the TiO2 loaded ramie 

fabrics prepared differently. As can be seen, the UPF of untreated ramie fabric is only 

5.85. In contrast, the UPF of the TiO2 loaded ramie fabrics was above 30 at least. With 

the increase of content of TiO2 in working bath, the UPF of the TiO2 loaded ramie 

fabrics increased prominently. When the content of TiO2 in working bath was above 

0.6g/L, the UPF of the TiO2 loaded ramie fabrics rose to above 60 which were rated as 

50+, i.e, excellent UV protection. It is noteworthy that the UPF of the ramie fabric 

finished by TiO2 and PU was slightly higher than the fabric coated only by TiO2. This is 

likely because the PU film formed on ramie fibers blocked some UV light and gave rise 

to a small increase of UPF.  
 
Table 6.2 UV protective property of the untreated and the TiO2 loaded ramie fabrics.   
 

Sample 
UPF UPF 

rating 

UV protection category 

Control (not coated with TiO2) 5.86 5 - 

0.2g/L TiO2 in working bath 33.9 35 Very good  

0.4g/L TiO2 in working bath 45.3 45 Excellent  

0.6g/L TiO2 in working bath 60.5 50+ Excellent  

0.8g/L TiO2 in working bath 75.6 50+ Excellent 

0.8g/L TiO2 and 5g/L PU emulsion in 

working bath 

78.9 50+ Excellent  

7% owf citric acid pretreatment 

+0.8g/L TiO2 working bath 

76.3 50+ Excellent 
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Figure 6.13 presents the UPF change before and after washing of the ramie fabric 

differently prepared. Similar to the cases of photocatalytic degradation and antibacterial 

property, the UPF of the ramie fabrics also decreased gradually with the increase of 

washings. Moreover, the ramie fabrics subjected to pretreatment by citric acid exhibited 

the best washing durability due the same mechanism described above.   
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Figure 6.13 UPF change before and after washing of the ramie fabric differently 

prepared: (□) finished by only 0.8g/L TiO2; (○) finished by 0.8g/L TiO2 and 5g/L PU 

emulsion; (Δ) pretreated by 7% owf citric acid and finished by 0.8g/L TiO2. 
 
Conclusion 

Although nanotechnology has been extensively used in the finishing of textile 

materials the application of nanoparticles for the modification of ramie fabrics has less 

been investigated. In this study, a kind of TiO2 nanoparticle product   was employed in 

the multi-functional finishing of ramie fabric. At first, for optimizing the dispersion 

conditions of TiO2 nanoparticles in aqueous suspension, the influencing factors such 

dispersant type and content, pH, dispersion temperature and time were studied 

systematically. It was found that a kind of hydrophilic silica aerogel product was 
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suitable for serving as dispersant for producing TiO2 aqueous suspension. In addition, 

the optimal pH, dispersion temperature and ultrasonic time were also experimentally 

determined. A series of working baths with varying content of TiO2 were prepared and 

the ramie fabrics were coated with TiO2 via a dip-pad-dry process. In order to enhance 

the washing durability of the TiO2 modified fabric the ramie fabrics were pretreated by 

citric acid. It was proved that the efficiency of photocatalytic degradation of 

formaldehyde rose with the increase of content of TiO2. The ramie fabrics coated with 

TiO2 nanoparticles exhibited good antibacterial property. When the working bath 

contained 0.8 g/L TiO2 the percentage of bacteria reduction approached to 100%. Using 

5g/L PU emulsion as the binder of TiO2 in working bath could enhance the washing 

resistant of the TiO2 loaded ramie fabric. The ramie fabrics loaded with TiO2 also 

exhibited excellent UV protective property when the content of TiO2 increased to 0.8 

g/L. Using PU emulsion as the binder of TiO2 could raise the washing durability of the 

TiO2 loaded ramie fabrics. In contrast, the pretreatment of fabric by citric acid before 

TiO2 coating was more effective for improving the washing durability of TiO2 loaded 

ramie fabrics.   
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CHAPTER 7                   

CONCLUSIONS 

 
In this chapter, the experimental findings achieved from all the investigations in the 

PhD study were summarized as follows.   

 

7.1 Natural dying of ramie fabrics with rare earth as mordant  

At present, ramie fabrics are mostly dyed with synthetic colorants which can give rise 

to serious environmental pollution and potential harm to mankind health. Thus the 

natural and healthy features of ramie fabric are greatly weakened. In this study, ramie 

fabrics were dyed with the natural extracts of caesalpinia sappan, rhizoma coptidis, 

gardenia and areca catechu. The post-mordanting, dyeing temperature of 90oC and 

dyeing time of 50-70 min and dyeing bath pH of 7-8 were determined as the optimal 

dyeing conditions.  The fabrics dyed in presence of rare earth as mordant exhibited 

higher color shade stability against pH variation owing to the stable coordination bonds 

among the rare earth, natural dye and fiber. It was found that the color fastness to 

washing, rubbing and light of the ramie fabrics was raised significantly when rare earth 

was used as mordant in natural dyeing. As compared with Fe2+ and Cr6+, rare earth 

could greatly reduce the ionic concentration employed in natural dyeing. This study 

proved that rare earth represented a kind of promising mordant in natural dyeing. 

 

7.2 Wrinkle resistant treatment of ramie fabrics using liquid NH3 technology  

In order to raise the wrinkle resistant properties or ramie fabric, the combination of 

liquid NH3 pretreatment and resin finishing was explored in this study. The liquid NH3 

treatment was proved to decrease the crystallinity of ramie fiber and bring about 

apparent swelling effect. As a result, the accessibility of the ramie fabrics treated by 

liquid NH3 was elevated. The liquid NH3 treatment gave rise to the decrease of dyeing 
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rate but resulted in the increase of equilibrium dye uptake. The liquid NH3 pretreatment 

prior to resin finishing could reduce strength loss. Employing reactive PU emulsion in 

resin finishing could raise the strength retention of the ramie fabric without influencing 

wrinkle resistant effect since the reactive PU molecule could react with ramie fibers. 

The influences of wrinkle resistant treatment conditions were explored systematically. 

After 10 launderings, the flat appearance and crease retention of these ramie fabrics 

were all above grade 3.0 when they were produced from liquid NH3 pretreatment 

followed by resin finishing. Therefore the liquid NH3 pretreatment combined with 

thermally reactive PU as protector was favorable for the wrinkle resistant finishing of 

ramie fabric.  

. 

7.3 Electromagetic shielding finishing of ramie fabrics using scCO2 technology  

The electromagnetic shielding ramie fabrics were developing from electroless Cu 

plating using scCO2 fluid technology in this study. It was found that the scCO2 fluid 

could greatly remove impurities of ramie fibers. In comparison with the conventionally 

method where a large amount of strong alkaline solutions is employed, the scCO2 fluid 

is a better way to eliminate lignin from the ramie fibers. In particular, the removal of 

lignin in scCO2 fluid could be raised to over 80% in presence of some swelling agent. 

The scCO2 fluid could result in the swelling of ramie fiber, which would raise the 

accessibility of ramie fiber to additives. By using scCO2 fluid, the Pd(hfa)2 could be 

impregnated into the ramie fibers, especially when ethanol was used as co-solvent in the 

impregnation of Palladium complex. After the Cu plating, the ramie fabrics deposited 

with Palladium were plated by a Cu film of 18-20g/m2. The Cu plated ramie fabrics 

exhibited good shielding effect. This study presented a new way for upgrading ramie 

fabric.  
 

7.4 Multi-function finishing of ramie fabric using TiO2 nanoparticles 

Although nanotechnology has been extensively used in the finishing of textile 

materials the application of nanoparticles for the modification of ramie fabrics has less 

been investigated. In this study, the multifunctional ramie fabrics finished by TiO2 
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nanoparticles were developed. It was found that a kind of hydrophilic silica aerogel was 

suitable for serving as dispersant in producing TiO2 suspension. The ramie fabrics were 

coated with TiO2 nanoparticles via a dip-pad-dry process. In order to enhance finishing 

durability in repeated launderings the ramie fabric samples were pretreated by citric acid. 

When the working bath contained 0.8 g/L TiO2 the TiO2 coated ramie fabrics exhibited 

excellent antibacterial property and UV protection. In addition, the TiO2 coated ramie 

fabrics showed high capability of decomposing formaldehyde. Using PU emulsion as 

the binder could raise the washing durability of the TiO2 loaded ramie fabrics. In 

contrast, the pretreatment of ramie fabric by citric acid before TiO2 coating was more 

effective for improving washing durability.  
 

 

7.5 Investigations by collaborating with other researchers 

Apart from the studies mentioned above, the I also collaborated with other 

researchers investigations and published several refereed papers as co-author. I 

cooperated with Dr Shouxiang Jiang in the development of metal coated fabrics via 

either electroless plating or magnetron sputtering. The fabrics exhibited either good 

electromagnetic shielding effect or excellent antibacterial property. Through the 

collaboration with Prof Zheng Qingkang, I conducted the study of transfer printing with 

disperse dyes on cotton fabric modified with an aqueous tolylene diisocyanate 

derivative. It was found that the printing fastness was raised by the aqueous tolylene 

diisocyanate derivative.  
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