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This paper proposes grammars for visual languages. The proposed grammars 

introduce relations into the constraint multiset grammars[4J. Relations are the 

constraints on the relationships among symbols in visual languages. The proposed 

grammars. which are called constraint relation multiset grammars. have the 

relations as the first class citizens of the grammars because the relationships among 

symbols play an important role in visual languages. Constraints on both 

relationships among symbols and attribute values of symbols can be specified in 

production rules. A parser generator based on the proposed grammars has been 

constructed. 
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1 Introduction 
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Recently, hardware and software advances enable computer users to use computers in a graphi­

cal manner rather than a textual one, e.g. UNIX commands. Many visual languages have been 

extensively studied and proposed[l] in order to supply the comfortable human-machine interface. 

Visual languages are the languages that symbols exist in the space of two or more dimensions, 

and a symbol holds relationships among the others in the space. Visual languages include iconic 

languages[9, 10, 11, 12, 13], diagrammatic languages[14, 15, 16, 17, 18, 19, 20, 21, 22], three di­

mensional spatial languages, and two or three dimensional space and ( one dimensional) time 

languages. 

It is very hard to code visual language processing system. If the system is written directly in a 

programming language, the amount of code becomes very large and updating it is very difficult. 

* : Department of Information Science 



232 

Grammars for defining this kind of language and processing it efficiently are expected, and ar.e exten­

sively investigated. Positional grammars[2], relation grammars[3], constraint multiset grammars[41, 

and adjacency grammars[5] are such grammars. These grammars extend the grammars for textual 

languages to be able to be applied to the visual languages. 

One of the most distinctive difference between textual and visual languages is that the symbols 

in a visual language are placed in the space of two or more dimensions, whereas those in a textual 

one lie in a line. The symbols in a textual language have the relationships of only "preceding" 

and "succeeding". Each of them is fundamentally related to the symbol preceded or succeeded. 

On the other hand, a symbol in a visual language relates to other symbols in the space of two 

or more dimensions. There are va.rious kinds of relationships defined in the space of two or more 

dimensions. Their examples are left, right, over, under, above, below, crossing, apart, and touching. 

What symbols are related and how they are related should be naturally and concisely represented 

in a grammar. 

Positional grammars(2] introduce binary relations into context free grammars. Symbols and rela­

tions are placed alternately in a line in a production rule. Relative positions of the symbols relating 

to a relation are specified. Users have to map the relationships in two or more dimensions into 

those in one dimension. Relation granuuars[3] introduce relation symbols and relation productions. 

The relationships between terminal and/or non-terminal symbols are specified in an s-production, 

which is a production for symbols, through relations. The rule of transformation of a relation is 

described in an r-p'T'Od'ILction, which is a production for a relation. The idea of relation productions 

is quite interesting. However, it may be difficult to define a grammar of a visual language because 

r-productions and s-productions are related mutually and deeply. Adjacency constraints are intro­

duced into constraint grammars, e.g. constraint multiset grammars[4], in adjacency grammars[5]. 

These constraints are good tools in expressing the constraints among adjacent symbols in the multi­

dimensional space. It is easy for production rules to be understood. However, it may be too hard 

to make users use only adjacency constraints. 

This paper proposes the grammars introducing relations into constraint multi set grammars ( 

CMGs) as the first class citizens of the grammars. Relations are the constraints on the relationships 

among symbols. The proposed grammars are referred to as constraint relation multiset grammars 

( CRMGs). Constraints on the relationships among symbols as well as the attribute values of 

symbols can be described in CRMGs. This causes several advantages. A conjunction of constraints 

expressing the relationships among symbols may appear at more than one production rule in CMGs. 

This conjunction can be described as a relation in CRMGs. A production rule can be described with 

a relation rather than a conjunction of constraints on the relationship among symbols. Production 

rules in a grammar can be very concisely described. Names of the relations may help the readers 

of grammars to understand them well. If the constraints are required to be modified, only the 

definition of a relation is updated, and production rules relating to it do not have to be updated. 

The constraints that is neither natural nor easy to be defined as relations can be described as 

the ordinary constraints in a production rule. A parser generator for visual languages has been 

constructed by using CRMGs. This generator reads the definition of the symbols, that of the 

relations, and production rules, and generates a parser processing a visual language. 

The remains of this paper is organized as follows: Section 2 describes constra.int multiset gram-
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Figure 1: An example of path language 

mars, on which the proposed grammars are based. The constraint relation multiset grammars are 

proposed in Section 3. Section 4 describes the implementation of the parser generator based on 

the constraint relation multiset grammars. Evaluations 011 the definition of visual languages are 

presented in Section 5. Section 6 concludes this paper. 

2 Constraint M ultiset GraIrlIrlars 

Constraint multiset grammars [4] use constraints over the type symbol attributes to define the 

relationships between a diagram and its components. Arguments of the constraints are terms built 

from the computation domain. A constraint multiset grammar specifies a rewriting system over 

rnultisets of tokens where a token is a type symbol and an assignment to the attributes of the 

symbol. 

Definition 1 A token, written T(if), consists of a type symbol, T, and a sequence of elements 

from the computation domain, if, which represents an assignment to the attributes of T. If T is 

a terminal type, a non-terminal type, or a start type, the token is said to be a terminal token, a 

non-terminal token, or a start token, respectively. A ( multiset ) sentence is a multiset of tokens. 

A terminal sentence is a sentence that contains only terminal tokens. 

A constraint multiset grammar is a quadruple ( TT, TNT, ST, P ), where TT is a set of terminal 

type symbols, TNT is a set of non-terminal type symbols, ST is a distinguished start type symbol, 

and P is a set of productions. Each type symbol t E TT U TNT has a sequence of attributes. The 

start symbol may only appear on the left hand side of a production. Productions have the following 

form: T(x) ::= TI(xI),'" ,Tn(x~) where exists T{{x1),··· ,Tm(x~) where C and x = F, where T 

is a non-terminal type symbol, TI,"', Tn are type symbols with n ~ 1, TI,"', Tm are type symbols 

with m ~ 1, X, ii, and x~ are sequences of distinct variables, C is a conjunction of constraints over 
.. -I ~ ... 

Xl, ... , X~, xi, ... , x~, and F is a function of Xl, ... , x~, xi, ... , x~. 0 

Example 1 Consider the grammar that recognizes the diagram in Fig. 1 as a path. The diagram 

ha..o:; two labeled nodes ( circles ) and a directed labeled edge between them. 0 

The types for this example are CIRCLE, ARROW, and PATH. The type CIRCLE has x_center, 

y_center, radius, and label attributes. The type ARROW has x_start, y_start, x_end, y_end, 

and label attributes. The type PATH has x_upleft, y_upleft, x_lowright, and y_lowright at­

tributes, where x_upleft and y _upleft represent the upper left point of minimum bounding box, 

and x_lowright and y_lowright represent its lower right point. 
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Let us consider the production producing a non-terminal symbol of type PATH from two symbols 

of type CIRCLE and a symbol of type EDGE, of which label is "down". The production is defined as 

follows. 

P:PATH .. = Cl:CIRCLE, A1:ARROW, C2:CIRCLE 

where 

Cl.x_center + Cl.radius Al.x_start 

Cl.y_center Al.y_start 

C2.x_center - C2.radius Al.x_end 

C2.y_center Al.y_end 

Al.label II down II 

and 

P.x_upleft Cl.x_center - C1.radius 

P.y_upleft Cl.y_center - Cl.radius 

P.x_lowright C2.x_center + C2.radius 

P.y_lowright C2.y_center + C2.radius 

Here, P :PATH denotes a symbol P of t.he t.ype PATH. Cl.x_center denotes an attribute x_center of 

the symbol C1. The first two predicates check the connection of the symbols Cl and Ai. The next two 

predicates check the connection of the symbols Ai and C2. The next predicate Ai.label == "down" 

check whether the label of an edge is "down". Four subst.itutions, which are described below" and" , 

are for the att.ribute values of the produced symbol P. 

3 Constraint Relation Multiset Grammars 

Relations are introduced into CMOs in Constraint Relation Multiset Grammars ( CRMGs ). CR­

MGs are formally defined as follows by using the definition of CMGs. 

Definition 2 A constraint relation multiset grammar is a quintuple ( TT, TN, BT, P, R ), where 

TT is a set of terminal type symbols, TN is a set of non-terminal type symbols, Br is a distin­

guished start type symbol, P is a set of productions, and R is a set of relations. Each type symbol 

t E TTUTN has a sequence of attributes. The start symbol may only appear on the left hand side of 

a production. Productions have the same form as those in CMGs except for the constraints G. G 

is a conjunction of constraints over xi, ... , x~, x1, ... , x~, and constraints on relations. Relations 

have the following form: rel(Tl (xi),' .. ,Tn(x~)){ Grel, L where Grel is a conjunction of constraints 

over xi,"" x~. 0 

Here, we consider Example 1 again. Types are the same as those in the CMG described before. 

Relations among symbols can be described in CRMOs. Here, the relations ConnectS and ConnectE 

are introduced. The relation ConnectS represents that a symbol of type CIRCLE connects to the 

starting point of a symbol of type ARROW. The relation ConnectE represents that a symbol of type 

CIRCLE connects to the terminal point of a symbol of type ARROW. The definition of the relation 

ConnectS is as follows. 



relation ConnectS ( C:CIRCLE, A:ARROW ) 

{ 

} 

C.x_center + C.radius 

C.y_center 

A.x_start 

A.y_start 

The production rules in producing a non-terminal symbol of type PATH can be described as follows. 

P:PATH ::= C1:CIRCLE, A1:ARROW, C2:CIRCLE 

where 

ConnectS(C1, A1) 

ConnectE(C2, A1) 

A1.label == "down" 

and 

P.x_upleft 

P.y_upleft 

Cl.x_center - Cl.radius 

Cl.y_center - Cl.radius 

P.x_lowright = C2.x_center + C2.radius 

P.y_lowright C2.y_center + C2.radius 

As described above, the relations make production rules concise. 

Obviously, the following theorem on the expressive power is obtained. 

Theorem 1 Constraint relation multiset grammars have the same expressive power as the con­

straint multiset grammars. 0 
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( Proof) A CMG is the CRMG having the empty set of relations. Contrarily, if a conjunction 

of the constraints of each relation in a CRMG is directly ( and recursively) substituted for the 

relation, the CRMG becomes the CMG because no relation appears in all of the production rules, 

and the set of relations may become empty. 0 

4 Parser Generator 

A parser generator NAE ( N-dimensional syntax Analysis Environment generator ) has been con­

structed. This parser generator is based on CRMGs. It takes a definition of a visual language, and 

generates its parser in C++. 

It consists of three translators: Type Translator, Relation-Translator"and Production Translator, 

and a common parser ( Fig. 2 ). 

Type Translator takes type definition files as input, and generates class definition files in C++, 

and a class identifier definition file. Types defined in a type definition file are straightforwardly 

converted to classes in C++. Every type has the member function Self 0 that returns the class 

identifier. A class identifier is an own number of the class. A class identifier definition file is for 

defining the class identifiers. The class identifiers are defined through an enumeration type in 

C++as follows. 

enum SYMTYPE { RECTANGLE, CIRCLE, ARROW}; 
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Type TYPE Class Class Definition TRANSLATOR Definition 
File Name(ID) 

Definition 

Relation Relation RELATION 
Definition TRANSLATOR 

Function Common 
File Definition Parser 

Production 
Definition PRODUCTION Production 

File TRANSLATOR Function 
Table 

Figure 2: A parser generator NAE 

Relation 'franslator takes relation definition files as input, and generates a relation function 

definition files in C++. A relation definition is transferred into the C++function that returns a 

Boolean value. 

Production Translator takes production definition files as an input, and generates production 

function definition files in C++, and a production function table. A production is converted to 

the C++function that evaluates the constraints, and produces a new non-terminal symbol if the 

constraints is satisfied. Production Translator puts a name to a production. A production function 

table manages the function names put to productions, the addresses of the production functions, 

and the information of their arguments. 

Common parser is commonly used by all of the languages. The algorithm in parsing a sentence 

of this parser is the same as that for a CMG[4]. The parser receives a set of terminal symbols. It 

applies each production to the possible combinations of the symbols. It returns whether a sentence 

is received, or not. This algorithm is simple, but is not effective. It should be improved. 

From here on, we demonstrate how to use this parser by using an example. 

Example 2 Consider the grammar of which terminal symbols are of the type Rectangle. If two 

symbols are horizontal each other, a new symbol of the type Rectangle is produced ( Fig. 3 ). 0 

First, the type definition is shown: The type Rectangle is defined as follows. 

terminal-type Rectangle { 

int x_upleft; 

} 

int y_upleft; 

int x_lowright; 

int y_lowright; 

String label; 
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Figure 3: An example of simple visual language 

This type is for managing a labeled rectangle. It has x_upleft, y_upleft, xJowright, yJowright, and 

label attributes as the type PATH in Example l. 

Next, a relation is defined by using the attributes of the type defined above. The relation HOR, 

which evaluates whether two symbols are horizontal, is defined as follows. 

relation HOR(Rectangle SYM1, Rectangle SYM2 ) 
{ 

} 

SYM1.y_upleft == SYM2.y_upleft; 

SYM1.x_lowright <= SYM2.x_upleft; 

This relation evaluates two conditions. First, the values of the attribute y _upleft of the symbols 

SYMl and SYM2. Second, the value of the attribute x_lowright of the symbols SYMl is equal to or 

less than that of the attribute x_upleft of the symbols SYM2. If these two conditions are satisfied, 

two symbols are determined to be horizontal. 

Lastly, a production is defined by using the type and the relation definitions. A production that 

produces a new symbol of type Rectangle from the two horizontal Rectangle symbols is defined 

as follows. 

NEWSYM:Rectangle ::= SYM1:Rectangle, SYM2:Rectangle 

where 

HOR(SYM1, SYM2); 

and 

NEWSYM.x_upleft = SYM1.x.upleft, 

NEWSYM.y_upleft = SYM1.y_upleft, 

NEWSYM.x_lowright = SYM2.x_lowright, 

NEWSYM.y_lowright = SYM2.y_lowright; 

Two symbols SYMl and SYM2 are evaluated whether they satisfy the relation HOR. If it is satisfied, 

a new symbol NEWSYM is produced. This symbol succeeds the attribute values from those of SYMl 

and SYM2. 
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5 Related Works 

Functions can be described in CMGs[4]. Relations in CRMGs correspond to the functions in CMGs. 

Indeed, relations are converted into functions in C++. However, functions are not the first class 

citizens in CMGs. They are for the convenience and the adaptability. Relations in CRMGs are the 

first class citizens in the grammars. This is caused by the fact that relationships among symbols 

play an important role in visual languages. On this point, CRMGs follow the same approach as 

adjacency grammars[5]. 

Adjacencies are introduced in adjacency grammars[5]. These include algebraic adjacency, spatial 

adjacency, and logical adjacency. Logical adjacency is a broad class of relation. It does not concern 

the spatial placement of symbols. In this sense, the adjacencies in adjacency grammars are equal to 

the relations in CRMGs. An adjacency grammar is defined by a quintuple (VT, VN, S, P, A), where 

VT is a set of terminal symbols, VN is a set of non-terminal symbols, S is the start symbol, P is 

a set of productions, and A is a family of adjacency constraints. A production has the following 

form. a -+ {fit, ... ,,8n} if r(,8l, ... ,/3n) after t1 

where a E V N, ,8j E VT U V N, r is a adjacency constraint, and t1 is a set of expressions over 

attributes of the ,8j, which synthesize attributes of a. t1 includes only members of A. In the case 

of specifying a simple constraint, e.g. Al.label == "down", the constraint has to be included 

in A. There may he two methods in addressing this issue in the adjacency grammars. First is 

that adjacency, which is among symbols. is extend to that between a symbol and a constant. For 

example, adjacency constraint label ( Al. "down") checking whether the value of the attribute 

label of a symbol Al is equal to "down"-. Second is tha:t the adjacency constraint is specialized 

to be able to also check this kind of simple constraints. In this method, a variety of specialized 

adjacency constraints may have to be introduced into a family of adjacency constraints A in a 

grammar. These methods may be cumbersome in the real world applications. The constraints that 

do not relate relations can be straightforwardly specified in a production in CRMGs. This may be 

convenient in writing a visual language, which may have a lot of exceptions. 

6 Concluding Remarks 

This paper proposes constraint relation multiset grammars. The proposed grammars introduce 

relations into the constraint multiset grammars[4] as the first class citizens of the grammars. Rela­

tions are the constraints on the relationships among symbols in visual languages. Visual languages 

are naturally defined in the proposed grammars because the relationships among symbols play an 

important role in visual languages. Constraints on relationships among symbols as well as those 

on attribute values of symbols can be specified in production rules. A parser generator based on 

the proposed grammars has been constructed. This parser generator takes the type, the relation, 

and the production definitions as inputs, and produces a parser written in C++. 

Improving the parsing algorithm, and applying the parser generator to real applications are the 

subjects for the future research. 
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