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HF-band radio-frequency identification (RFID) is a robust identification system that is rarely influenced by objects in the robot
activity area or by illumination conditions. An HF-band RFID system is capable of facilitating a reasonably accurate and robust
self-localization of indoor mobile robots. An RFID-based self-localization system for an indoor mobile robot requires prior
knowledge of the map which contains the ID information and positions of the RFID tags used in the environment. Generally,
the map of RFID tags is manually built. To reduce labor costs, the simultaneous localization and mapping (SLAM) technique is
designed to localize the mobile robot and build a map of the RFID tags simultaneously. In this study, multiple HF-band RFID
readers are installed on the bottom of an omnidirectional mobile robot and RFID tags are spread on the floor. Because
the tag detection process of the HF-band RFID system does not follow a standard Gaussian distribution, extended Kalman
filter- (EKF-) based landmark updates are unsuitable. This paper proposes a novel SLAM method for the indoor mobile robot
with a non-Gaussian detection model, by using the particle smoother for the landmark mapping and particle filter for the
self-localization of the mobile robot. The proposed SLAM method is evaluated through experiments with the HF-band RFID
system which has the non-Gaussian detection model. Furthermore, the proposed SLAM method is also evaluated by a range and
bearing sensor which has the standard Gaussian detection model. In particular, the proposed method is compared against
two other SLAM methods: FastSLAM and SLAM methods utilize particle filter for both the landmark updating and robot
self-localization. The experimental results show the validity and superiority of the proposed SLAM method.

1. Introduction

With the development of self-driving systems, simultaneous
localization and mapping (SLAM) technologies based on
vision sensors and LiDAR devices are nowwidely used in out-
door environments. In the SLAM method, self-localization
can be performed while simultaneously building an envi-
ronment map. To allow intelligent robots to better inte-
grate into everyday human life, indoor SLAM technology
is also being developed. Vision sensors [1–3] and laser
rangefinders (LRFs) [4, 5] are also widely used for the
SLAM work of the indoor mobile robots. Vision sensors

are capable of providing visualization environmental maps
that can be directly used for other tasks, while LRFs can
provide precise range information. However, the vision
sensor- and LRF-based approaches often suffer from sev-
eral types of interference. The visual SLAM requires stable
and easy-track visual landmarks which is easily redetect-
able when the robot passing by a previously visited place.
However, visual sensors are easily affected by environmen-
tal changes which may lead to the missing recognition for
the visual landmarks; in particular, changes in the intensity
of light and the movements of objects cause landmarks to
be lost or to appear to change. The accuracy of the self-
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localization of the robot and map building by utilizing LRFs
is easily affected by the unknown moving obstacles around
the robot and the transparent walls which are widely used
in the current indoor environment.

Unlike visual sensors and LRFs utilized in the indoor
mobile robots, radio-frequency identification (RFID) systems
employ electromagnetic waves. The communication of the
RFID system happens between the RFID reader/writer and
IC tags. The RFID system is robust against lighting condi-
tions and the influence of unknown objects around the robot
[6–8]. Barcode technology is similar to RFID technology and
widely applied in the logistics warehouse. The autonomous
delivery robots in the Amazon logistics warehouse navigate
around the warehouse by following a series of computerized
barcode stickers on the floor. However, it is easily affected by
some objects or smudge on the stickers so that they have to
keep the floor clean. The characters, SLAM methods, and
applications of the sensors mentioned above are listed in
Table 1. Although the arrangement of RFID tags is needed,
the characters of accurate identification and robust commu-
nication are suitable for the self-localization of indoor mobile
robots.

The conventional RFID-based self-localization system
requires a map which contains the ID information and
positions of the IC tags to estimate the location and orienta-
tion of the robot. Obtaining the IDs and measuring the
positions of IC tags and subsequently building an IC tag
map by people are time-consuming and exhausting pro-
cesses, especially that the RFID-based self-localization system
always needs a large number of IC tags for an accurate esti-
mation [17]. Landmark-based SLAM recognizes the natural
or artificial characteristic objects in the environment sur-
rounding the robot as landmarks, builds a map of these land-
marks, and localizes itself simultaneously. Landmark-based
SLAM is useful for the RFID-based self-localization system
for the indoor mobile robot by utilizing the IC tags as the
landmarks to reduce the labor costs. RFID-based SLAM is
capable of providing precise and stable estimation for the
localization of the robot and landmarks. Moreover, it can
be fused with the vision sensor- and LRF-based SLAM [18]
to improve the accuracy of the localization, while obtaining
the environmental map to realize feasible navigation for the
indoor mobile robot. An RFID IC tag provides a significant
advantage owing to its more stable detectability as a land-
mark. However, the tag detection process of an HF-band
RFID system cannot be modeled using a Gaussian distribu-
tion which makes the Kalman filter not suitable.

Wang and Takahashi [16] used independent particle filters
[19] to achieve both landmark mapping and self-localization
for a mobile robot utilizing the HF-band RFID system. To
make the article concise, we refer to this SLAM method with
the particle filter-based landmark updating as P-SLAM in
the following description. The differences between the P-
SLAM and FastSLAM with extended Kalman filter (EKF)
based landmark updating were also clarified in [16]. In addi-
tion, the theoretical and practical superiority of P-SLAM was
demonstrated by comparing the method with FastSLAM,
using the RFID detection model. However, the particle filter
degeneracy problem becomes more serious over time [20].

By adding a Gaussian random value during the motion model
updating step for each robot particle at each loop of the SLAM
procedure in [16], the degeneration of the particle filter for
estimating robot self-localization can be prevented. However,
the particles for estimating a stationary landmark are always
updated within the states initialized at the first detection of
this landmark by using the particle filter in [16]. The tag par-
ticles easily converge to a small number of particles at the
resampling step and generate the degeneracy problem when
using an RFID reader with a large detection range. Utilizing
an RFID reader with a large detection is capable of reducing
the production cost by decreasing the number of RFID
readers and the density of the IC tag set in the environment.

In order to reduce the production cost by increasing the
detection range of the RFID reader and suppress the degener-
acy problem, we propose to utilize a particle smoother [20,
21] for updating a landmark location in this study. The
fixed-lag smoothing method [22, 23] is utilized to estimate
the location of the landmark. When a tag is detected multiple
times, the particles for estimating this tag are updated by add-
ing a Gaussian random value at each update, which is capable
of suppressing the particle degeneracy problem. In particular,
the stationary landmark location is estimated based on the
historical and current states of the particles so that the esti-
mation becomes more smoothing and accurate. Each
detected landmark is updated by an independent particle
smoother, which increases the scalability of the proposed sys-
tem such that it can cope with a large number of landmarks.

The details of the proposed SLAM method with particle
filter-based self-localization for mobile robot and particle
smoother-based landmark updating are explained in this
paper. The proposed method is tested in experiments with
different types of conditions. Furthermore, the proposed
method is compared against P-SLAM and FastSLAM, using
the same experimental environments. The validity and supe-
riority of the proposed method are demonstrated through
numerous experiments. This paper is organized as follows.
An overview of SLAM approaches with particle filters and
smoothers is shown in Section 2. In Section 3, the RFID
system and the proposed SLAM method are introduced.
In Section 4, we present the results of the experiments.
Conclusions are drawn in Section 5.

2. Related Work

Vision sensors and LiDAR devices are widely used in current
SLAM technologies. However, visual sensors are sensitive to
the illumination and dynamic scene and LRFs are also
affected by the dynamic objects and transparent materials.
RFID sensor utilizes the electromagnetic wave to communica-
tion, which is robust against the interference of the dynamic
obstacles and illumination conditions. Fetch Robotics has
built SICK RFID technology into its TagSurveyor robot, in
which logistics providers and retailers can gain data about
tagged inventory without requiring handheld or fixed readers.
Reverse logistics provider Asset Recovery Specialists mon-
itors the movements of hundreds of pieces of equipment
in its San Diego warehouse with an RFID system that
detects the zone in which tagged items were last detected,
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thereby increasing productivity by 30 percent. The RFID
system is effectively applied to logistics and manufacturing
in recent years. In this paper, we focus on addressing the
problem of an RFID system used for the self-localization
of the indoor mobile robot.

According to the working frequency, the RFID system
can be divided into different species. RFID systems with
low frequency, high frequency, and ultrahigh frequency are
always used for the localization of the indoor mobile robot.
The traditional RFID-based localization systems are listed
in Table 2 and compared with our approach.

Yang et al. [24] proposed a hybrid particle filter method
for object tracking by using the UHF-band RFID system.
The proposed method is more computationally efficient than
the traditional particle filter while providing the same accu-
racy. However, this method is not able to estimate the orien-
tation of the robot which limits the practicability. Hähnel
et al. [25] utilized a UHF-band RFID system with an LRF that
is setup on board a mobile robot. A piecewise-constant tag
detection sensor model was used to first localize the tags,
and then, the map of the tags was used to localize the mobile
robot. Joho et al. [26] proposed a probabilistic sensor model
characterizing the received signal strength (RSS) information
for localizing RFID tags and for tracking a mobile agent.
They also assumed that the antenna was localized when
building the map of tags and then tracked the mobile agent
by utilizing this known tag map. Compared with Hähnel
et al. [25] and Joho et al. [26], we locate the RFID tag and
mobile agent simultaneously. Kleiner et al. [15] utilized a
combination of pedestrian odometry and tag detections
to perform graph-based RFID SLAM in a large outdoor
environment. However, the long detection range of the
UHF-band RFID system also generates great uncertainty
and error. Kodaka et al. [27] performed the robot self-
localization based on the LF-band RFID system. The local-
ization error was less than 100mm and 6deg on average.
However, it is difficult in increasing the localization accu-
racy given the dependence on the size of a tag.

Yang et al. [28] and Mi et al. [29] proposed robot self-
localization systems based on the HF-band RFID sensor
and significantly improved the precision. An HF-band RFID
system is more robust against the influence of environmental
changes than the UHF band, which makes it capable of
detecting the RFID tags reliably and precisely. Furthermore,
the longer communication distance of the HF-band RFID
system makes it more suitable than the LF band for the robot
localization. An HF-band RFID system is also adopted to our
approach. Compared with our research, a precoordinated
map of RFID tags is needed for both [28, 29]. In particular,
both approaches utilized dense tags in the environment
which requires a lot of labor costs to build the map of RFID
tags manually.

Wang and Takahashi [16] used independent particle
filters to achieve landmark mapping and localization for
mobile robots based on HF-band RFID. The superiority
of P-SLAM is demonstrated through a comparison with
FastSLAM using the RFID system. However, in this SLAM
method, degeneracy was observed in the particle filter for
estimating tag locations. The detection area of the RFID

reader used in [16] was configured as a square with a side
length of 60mm; this small size did not demonstrate that
the particle filter degeneracy affects the estimation accuracy
obviously. When the detection area of the RFID reader is
increased, the effect becomes obvious. Therefore, to solve
the degeneracy problem, this paper proposes the use of a par-
ticle smoother for updating landmark locations.

The fixed-lag smoothing algorithm, proposed by
Kitagawa [22], is based on a storing state vector. The compu-
tational cost of this method is almost the same as that of the
particle filter. Because the only requirement for fixed-lag
smoothing is the memory for storing the particles, the
method is relatively fast. A persistent problem is that fixed-
lag smoothing cannot use all observations when the number
of observations is larger than 10-50. Aside from the fixed-lag
smoothing method, researchers have developed alternative
methods based on the two-filter formula [30, 31], a forward
filtering-backward smoothing formula [32, 33], a maximum
posterior sequence estimation [34], and a recursive recompu-
tation approach [35]. However, these methods incur larger
computational costs. In order to make the SLAM perform
in real time, the fixed-lag smoothing method is adopted in
this study.

Berntorp and Nordh proposed the use of Rao-
Blackwellized particle smoothing (RBPS) for occupancy-
grid based SLAMwith an ultrasound sensor [36]. The authors
implemented an RBPS for jointly estimating the position of
the robot and the map. A more effective map model that
incorporates the uncertainty of the measurements was used
in this approach. The proposedmethodwas verified on a Lego
Mindstorms mobile robot with low-performance motors and
a low-cost ultrasonic range finder. The experimental results
show that the smoothing substantially improved robustness
and increased the predictability of the proposed algorithm.
However, each particle contains an estimate of the entire
map in [36], which significantly increases memory require-
ments. The computational demands of smoothing are also
greater than those offiltering. As a result, thememory require-
ments and computational costs will be prohibitive when
handling larger maps. In our proposed method, each land-
mark is updated by a set of particles using the fixed-lag
smoothing method. The computational costs of this method
are almost the same as those of the particle filter. The only
requirement is the memory for storing the particles.

Clark et al. developed a random finite set approach to
SLAM by introducing forward-backward smoothing to refine
vehicle trajectories [37]. The algorithms were implemented
using sequential Monte Carlo and Gaussian mixture tech-
niques. The proposed method was evaluated in a simulated
environment with a range and bearing detection model. In
this scenario, the uncertainty in the vehicle position distribu-
tion increases as the vehicle traverses the path; when the loop
is closed, the uncertainty decreases. By smoothing backwards
at times immediately prior to the loop closure, a significant
reduction in estimated vehicle positions is achieved. In a sim-
ilar manner as in [37], we propose using a smoother to refine
the estimation of landmarks. Our proposed method is not
only suitable for the non-Gaussian RFID detection model
but also can be used with other models. The validity of the
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proposed method is also evaluated using a range and bearing
detection model.

3. SLAM Method for an Indoor Mobile Robot
Based on an HF-Band RFID System

3.1. HF-Band RFID System Utilized for an Indoor Mobile
Robot. The HF-band RFID system applied to the indoor
mobile robot used in our study is shown in Figure 1. Multiple
RFID readers are installed on the bottom of the robot. The
size of one RFID reader antenna in Figure 1 is 60 × 60mm2

. The detection range of the RFID reader is almost the same
with this size. In particular, the detection model of the RFID
reader is close to a step function. IC tags are embedded in the
carpets and spread on the floor. The size of the passive IC tag
is 10 × 20mm2. Each IC tag is assigned with a unique ID, and
the distribution of these IC tags is unknown when they are
spread on the floor. The robot localization can be achieved
with known IC tag IDs and positions. However, measuring
the positions and recording the ID information of IC tags
require a significant amount of labor and time. SLAM is a
sensible method for solving this problem. In this study, IC
tags are used as landmarks in the SLAM system. The robot
localizes itself by using RFID readers to recognize the IC tags
spread on the floor and estimates the locations of the detected
IC tags simultaneously during movement.

3.2. Prior Knowledge of RFID-Based SLAM. From a probabi-
listic perspective, the RFID-based SLAM problem can be
written in the factored form:

p wxt ,wm1:N zt ,ut ,nt

��� �
= p wxt zt ,ut ,nt

��� �
p wm1:N wxt ,zt ,ut ,nt

���� �
, ð1Þ

where wxt = ðwx,wy,wθÞ is the pose of the robot at time t,
wm1:N denotes themap of the tags built during themovement,

N is the number of tags spread in the environment, z is the
observation, u is the robot control, and n is the index of the
detected tag.

FastSLAM uses a particle filter to estimate the robot pose
of the first term in the posterior in equation (1). A separated
estimator is used to estimate the location of each tag in m.
The estimated robot pose and the parameters express the
tag locations are contained in one particle. Each particle in
FastSLAM is of the form

y k½ �
t = wx k½ �

t ,ω k½ �
t , μ k½ �

1,t , 〠
k½ �

1,t
,⋯, μ k½ �

N ,t , 〠
k½ �

N ,t

* +
, ð2Þ

where y½k�t is the combined state vector of the robot pose and

the map of RFID tags. wx½k�t is the pose of the robot in the
world coordinate system represented by particle ½k�. ω½k�

denotes the importance weight of particle ½k�. μ½k�
n,t and ∑½k�

n,t
are the center vector and the covariance matrix, which used
to present the location of the tags. The location parameters
of the tags are updated by an EKF. FastSLAM is capable of
using a case of the likelihood model for tag detection, which
can be modeled as a Gaussian distribution. The detection
model of an HF-band RFID reader is modeled as shown in
Figure 1, and it does not belong to a Gaussian distribution.
Therefore, FastSLAM is not appropriate to the SLAM task
based on the HF-band RFID system with the non-Gaussian
detection model.

Particle filter does not need any parametric model
so that it is suitable to estimate a non-Gaussian state.
P-SLAM [16] used the particle filter to estimate both the
robot localization and tag locations. In P-SLAM, 1 +N
particle filters are used to estimate the pose of the robot
and N tag locations. One particle filter is used to estimate

IC tag

8 RFID 
readers

Detection 
model

Mobile
robot

1

0.5

0

–10 –10
–5 –5

0 0
5 5

10 10

1
0.9
0.8
0.7
0.6
0.5
0.4
0.3
0.2
0.1
0

Y (cm) X (cm)

Figure 1: An RFID system utilized for the indoor mobile robot in this research.
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the position and orientation of the robot. Each robot par-
ticle is of the form

y i½ �
r,t = wx i½ �

t ,ω
i½ �
t

D E
, ð3Þ

where ½i� is the index of the robot particle, and y½i�r,t is the
state vector of robot particle ½i�. N particle filters are used
to estimate the positions of N detected tags. The particle
filters are independent of each other. Each tag particle is
of the form

~y j½ �
n = wm j½ �

n ,ω
j½ �
n

D E
, ð4Þ

where ~y½j�n is the state vector of tag particle ½j� in P-SLAM.
wm½j�

n = ðwxn,wynÞ is the position of tag n in the world

coordinate system represented by tag particle ½j�. ω½j�
n is

the importance weight of tag particle ½j�.
However, the degeneracy of the particle filter for estimat-

ing a stationary tag location becomes serious over time, which
may result in irreversible tag location errors. In order to avert
this problem, we propose utilizing a particle smoother for
each landmark updating.

3.3. Particle Fixed-Lag Smoother. The smoothing distribution
of the particles can be represented sequentially as

p x0:t z1:tjð Þ∝ p x0:t−1 z1:t−1jð Þh z t xtjð Þf xt xt−1jð Þ, ð5Þ

where x0:t is the path of the robot and z t means the observa-
tions obtained during the robot movements. f ðxtjxt−1Þ and
hðz tjxtÞ are, respectively, the specified state function and
observation function. The sequential character appears clearly
when this equation is decomposed into a prediction step,

p x0:t z1:t−1jð Þ = p x0:t−1 z1:t−1jð Þf xt xt−1jð Þ, ð6Þ

and an analysis step,

p x0:t z1:tjð Þ∝ p x0:t z1:t−1jð Þh zt xtjð Þ: ð7Þ

The particle fixed-lag smoother, which was proposed
by Kitagawa, can be achieved through a simple extension
to the particle filter as shown in [22]. The difference lies
in the fact that the size of the state vector to be estimated
is kept stationary in the last L time steps. Consequently,
the oldest state is ruled out from the estimation process
at each prediction step. The prediction step becomes

p xt−L+1:t z1:t−1jð Þ = f xt xt−1jð Þ
ð
p xt−L+1:t−1 z1:t−1jð Þdx: ð8Þ

This smoother is straightforward to implement and
incurs a negligible CPU cost similar to that of the particle

filter. However, the diversity of the particles in the state
vector representing the smoothing distribution decreases
with a large L; as a result, the smoothing distribution
cannot be approximated correctly. In order to avert this
problem, L is constantly set at 20 to 30 based on [38].

3.4. SLAM Based on Particle Smoother for Landmark
Mapping and Particle Filter for Robot Self-Localization.
The proposed SLAM method utilizes one particle filter to
estimate the pose of the robot and N particle fixed-lag
smoothers to estimate the positions of the RFID tags. The
form of the robot particle is the same as equation (3). Each
detected RFID tag is estimated by an independent particle
smoother. Each tag particle in the particle smoother is of
the form

y c½ �
n,t = wm c½ �

n,t , Ŝ
c½ �
n,t ,ω

c½ �
n,t

D E
, ð9Þ

where y½c�n,t is the state vector of tag particle ½c� used to esti-
mate the location of tag n in the proposed SLAM method.
wm½c�

n,t = ðwxn,t ,wyn,tÞ is the position parameter of tag particle

½c�. Ŝ½c�n,t is the set that records the value from wm½c�
n,t−L+1 to

wm½c�
n,t . The importance weight of tag particle ½c� is repre-

sented by ω½c�
n,t .

Algorithm 1 presents the algorithm of our proposed
SLAM method which utilizes a particle filter for the robot
localization and N independent particle smoothers for
the landmark updating. The robot starts with a known
position and orientation. The particles for estimating the
robot localization are initially distributed around this start
spot. The parameters of the position and orientation of
these robot particles are updated by the motion model at
each loop of the SLAM procedure. The motion model is
defined as

wxt= wxt−1 + vΔt + εΔt, ε ~N 0, σð Þ, ð10Þ

where v = ðvx,, vy,ωÞ and Δt are the velocity of the robot
and the period between times t − 1 and t, respectively. N
ð0, σÞ denotes the Gaussian distribution with the standard
deviation σ.

When a tag is detected by the robot, the robot firstly
determines whether this tag has been detected before by its
ID. If this tag is detected for the first time, a novel tag particle
set is assigned to this tag for estimating its location. These tag
particles are distributed around the RFID reader that
detected this tag and the importance weight of these tag par-
ticles are assigned with value 1. Moreover, the initial position
parameters of these particles are stored in their respective set

of Ŝ
½c�
n used for the following step of smoothing procedure.

Otherwise, the position parameters of the tag particles for
estimating the detected IC tag n are updated by adding a
Gaussian random value in line 11 to suppress the degeneracy
problem. Then, the updated position parameters are used to
calculate the importance weight of each tag particle with
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index n based on the likelihood function. The likelihood
function is defined based on the HF-band RFID detection
model. Figure 2 shows the likelihood distribution of the RFID
detection model.

Likelihood function is expressed as a piecewise func-
tion as

ω =
1, if rxn−

rxaj j < σ, ryn−
ryaj j < σ,

γ exp −
1
2σ2

rxn−
rxað ÞT rxn−

rxað Þ
� �

, else,

8><
>:

ð11Þ

where rxn = ðrxn,rynÞT and rxa = ðrxa,ryaÞT are the coordi-
nates of the detected IC tag n and the reader a detects this
tag in the robot coordinate system, respectively. σ is set
using the half value of the detection range, and γ is a con-
stant. The updated position parameters of each tag particle

for estimating tag n are also stored in its set of Ŝ
½c�
n . At the

resampling step, a new distribution of the tag particles for
estimating tag n is generated based on the importance
weights obtained in line 12 of Algorithm 1. Then, the
smoothed distribution of the tag particles for estimating

1: Initialize robot particles Sr,t = ðy½1�r,t , y½2�r,t ,⋯,y½I�r,tÞ
2: fori = 1 to Ido

3: Update particles with the motion model: wx½i�t =MotionModelðwx½i�t−1Þ
4: end for
5: if tag n is detected then
6: if tag n is detected for the first time then

7: Initialize tag particles Sn,t = ðy½1�n,t0 , y
½2�
n,t0 ,⋯,y½C�n,t0Þ

8: Store wm½c�
n,t0 in Ŝ

½c�
n,t0

9: else
10: for From c = 1 to Cdo

11: Obtain wm½c�
n,t based on wm½c�

n,t−1 with a Gaussian random value

12: Update ω½c�
n,t on the basis of the likelihood function

13: Store wm½c�
n,t in Ŝ

½c�
n,t

14: end for
15: end if
16: for From c = 1 to Cdo

17: Draw k with probability ∝w½k�
n,t

18: Add �y½k�n,t to �Sn,t
19: end for
20: Sn,t ⟵ �Sn,t
21: for From c = 1 to Cdo

22: w ~m½c�
n,t =∑t

o=t+1−L
w
m½c�

n,o/L
23: end for

24: Update wxn based on w ~m½c�
n,t and ω½c�

n,t
25: for From i = 1 to Ido

26: Update ω½i�
t on the basis of the likelihood function

27: end for
28: end if
29: fori = 1 to Ido

30: Draw k with probability ∝w½i�
t

31: Add �y½k�r,t to �Sr,t
32: end for
33: Sr,t ⟵ �Sr,t
34: return Sr,t , Sn,t

Algorithm 1: SLAM based on particle smoother for landmark mapping and particle filter for self-localization.

1

0.5

0
𝜇–𝜎 𝜇+𝜎𝜇

Figure 2: Likelihood model for tag detection.

8 Journal of Sensors



tag n is obtained by calculating the average value of m½c�
n

from t + 1 − L to t, which were stored in Ŝ
j
n of each tag

particle. The location of tag n is lastly estimated based

on this average value w ~m½c�
n,t and the importance weight

ω½c�
n,t of each tag particles with index n.
After estimating the location of the detected IC tag, the

position and orientation of the robot are estimated by the
robot particles by using the particle filter. The updated loca-
tion of the detected IC tag is utilized as the observation to cal-
culate the importance weight of each robot particle based on
the likelihood function of equation (11) as shown in line 26 of
Algorithm 1. The distribution of the robot particles is trans-
formed at the resampling step based on the updated impor-
tance weights. Finally, the position and orientation of the
robot are estimated based on the resampled robot particles.
Then, the procedure is repeated.

3.5. The Validity and Superiority of the Proposed SLAM
Method. To demonstrate the validity and superiority of our
proposed SLAM method, it was compared with P-SLAM
and FastSLAM in time cost and accuracy in a simulated envi-
ronment. The simulated environment is set with the IC tags
with the density of 4 tags/m2. Eight RFID readers are
installed on the bottom of the robot.

The simulated environment is built by using a PC with a
2.6GHz CPU.

Firstly, three SLAM methods were evaluated by utilizing
a different number of particles for estimating the robot local-
ization. The robot particles of our proposed SLAM method
and P-SLAM and the particles of FastSLAM were set from
100 to 5000. Both the proposed SLAM method and P-
SLAM method used 100 tag particles for estimating a
detected IC tag. The robot run along a predefined trajectory.
The average time costs of an update of three SLAM methods
were calculated after the movement. The average time costs
of an update of three SLAM methods with the different
number of robot particles are shown in Figure 3(a). For all
three methods, the average time cost increases as the num-
ber of robot particles increases. However, the increased rate
of the time cost utilizing FastSLAM is much faster than the
increased rates of our proposed SLAM and P-SLAM.
Although more parameters are stored in the tag particle of
the proposed SLAM, the average time cost of an update
of the proposed SLAM method is basically the same with
P-SLAM.

We subsequently investigated how an increase in the
number of detected tags would affect the time cost of an
update in all three methods. The robot also run along a
predefined trajectory. The average time costs of an update
of three SLAM methods at the different number of
detected IC tags were calculated after the movement.
Figure 3(b) shows the results of the times costs of three
SLAM methods at the different number of detected IC tags.
The time cost of FastSLAM shows a linear growth trend as
the number of detected RFID tags increases. The time costs
using the proposed SLAMmethod and P-SLAM are substan-
tially unchanged and much smaller than those of FastSLAM.
By using our proposed SLAM method and P-SLAM, each

tag is, respectively, estimated by an independent particle filter
and particle smoother so that the time cost of an updating is
not affected by the increase of the detected tags. The proposed
method incurs almost the same time cost as the P-SLAM.

Finally, we evaluated the accuracy of three SLAM
methods by using different detection ranges of the RFID
reader. The detection range was set from 100 to 500mm.
The robot run on five predefined trajectories with each detec-
tion range. On each trajectory, the robot moved in three
loops. Figure 4 shows the average robot and tag location
errors generated by these three SLAM methods on the five
predefined trajectories with different detection ranges. The
accuracy of the robot and tag locations decreases with
increases in the detection range. Because the RFID detection
model does not belong to a Gaussian model, a large detection
range brings increased uncertainty and noise. According to
the results, the errors generated by FastSLAM are signifi-
cantly larger than those generated by the other two methods,
particularly when the detection range increases. The accura-
cies of the proposed method and P-SLAM are very similar
when the detection range is less than 180mm. However, the
performance of the proposed method becomes better than
that of P-SLAM as the detection range continues to increase.
This proves that the proposed method is more suitable for
non-Gaussian detection model sensors with large detection
ranges. When a particle filter is used to estimate the tag loca-
tion, particles easily converge to an incorrect location with
rapid degeneracy. A particle smoother allows the particles
to converge slowly and obtains a stable estimation, which
improves the accuracy of full SLAM tasks.

According to the evaluations in time cost and accuracy
mentioned above, although the proposed method utilizes
the particle smoother which requires more memory than
particle filter for estimating the tag location, the time cost
of the proposed SLAM method is almost the same as that
of the P-SLAM and much smaller than FastSLAM. In partic-
ular, the proposed SLAMmethod got a better performance in
accuracy than P-SLAM and FastSLAM by using an RFID
reader with the large detection range.

4. Experiment

The proposed SLAM method which utilizes the particle
smoother for landmark updating was evaluated in more
experiments using the HF-band RFID detection model and
a range and bearing sensor detection model. Using the HF-
band RFID detection model, we tested the proposed method
with three types of movement trajectories: a predefined
trajectory without rotation, a predefined trajectory with rota-
tion, and an unspecified trajectory. When the robot moved
on a predefined trajectory, the path estimated by the SLAM
method was easily compared with the predefined trajectory;
this made it relatively easy to evaluate the performance of
the robot self-localization. When the robot moved on an
unspecified trajectory, it moved a longer distance and
detected more tags to evaluate the stability and accuracy of
the proposed method. The proposed SLAM method evalu-
ated by the range and bearing sensor was operated on two
types of predefined trajectories: with rotation and without
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rotation. Moreover, five different trajectories were utilized in
the predefined trajectory experiments for both sensor model
types. Using the same experimental environment, we also
evaluated the P-SLAM and FastSLAM, in order to compare
them against our proposed method. The average errors of
the robot and tag location were used to evaluate the three
SLAM methods mentioned above. We assigned 500 particles
to FastSLAM. Our proposed SLAM method and P-SLAM
utilized 500 robot particles and 100 tag particles in the
experiments.

4.1. Experiment with the HF-Band RFID Detection Model.
The proposed method was evaluated with eight HF-band
RFID readers installed on the bottom of the mobile robot.
The detection range of the RFID reader was set at 300 by
300mm2 (σ = 150mm). The detection range of the RFID
reader used in [16] was set at 60 by 60mm2. By using a large
detection range, a type of the RFID-tag textile with a density
of 4 tags/m2 was used in this study which reduces the produc-
tion cost than [16] that utilized types of the RFID-tag textile
with the densities of 100 and 16 tags/m2.
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Figure 3: Average time costs of an update of the proposed SLAM method, P-SLAM, and FastSLAM with (a) a different number of robot
particles and (b) a different number of detected tags.
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4.1.1. Predefined Trajectory without Rotation Experiment.
The robot equipped with eight RFID readers moved along
five predefined trajectories without rotation to estimate the
robot self-localization and tag locations to evaluate the
proposed SLAM method, P-SLAM, and FastSLAM. The
robot runs on each predefined trajectory three loops. We
only show figures of the results of three SLAM methods
on one predefined trajectory here to avoid a lengthy arti-
cle. Figure 5 shows the results of the proposed SLAM
method, P-SLAM, and FastSLAM on one trajectory.
Figure 5 shows that the path of the robot and the tag loca-

tions estimated by the proposed SLAM method is more
accurate than that estimated by P-SLAM and FastSLAM.
The path of the robot estimated by FastSLAM has incor-
rect estimations both on the position and orientation,
and the tag locations are also incorrectly estimated, as
shown in Figure 5(a). The path of the robot and tag posi-
tions estimated by P-SLAM offsets to the right as pre-
sented in Figure 5(b). Figure 5(c) shows that the robot
path estimated by the proposed SLAM method almost
coincides the predefined trajectory and most of the tags
overlap with the ground truth.
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Figure 4: (a) Average robot location errors by the proposed method, P-SLAM, and FastSLAM, using different detection ranges. (b) Average
tag location errors by the proposed method, P-SLAM, and FastSLAM, using different detection ranges.
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Table 3 presents the average errors of the robot self-
localization and tag locations obtained by the proposed
SLAM method, P-SLAM, and FastSLAM on the five prede-
termined trajectories without rotation. The average distance
errors of the robot self-localization and tag locations are
54mm and 79mm by using our proposed SLAM method.
The average orientation error of the robot self-localization is
0.006 rad. The results obtained by the proposed SLAM
method are sufficiently precise for the robot self-localization
and tag locations taking into account the detection range
and the interval of the IC tags. The localization errors
generated by P-SLAM are smaller than that generated
by FastSLAM. However, comparing the results of P-SLAM
with our proposed SLAM method, the distance errors gen-
erated by P-SLAM are much larger than that generated by
our proposed SLAM method in the same situation. The
proposed SLAM method exhibited the best performance

on the predefined trajectory without rotation by using the
HF-band RFID detection model.

4.1.2. Predefined Trajectory with Rotation Experiment. The
robot with eight HF-band RFID readers moved along five
predefined trajectories with rotation to estimate the robot
self-localization and tag locations to evaluate the proposed
SLAM method, P-SLAM, and FastSLAM. The paths of the
robot and tag locations estimated by the proposed SLAM
method, P-SLAM, and FastSLAM on one predefined
trajectory with rotation are shown in Figure 6. Figure 6
shows the same performance as that shown in Figure 5;
that is, the results obtained by the proposed method are
superior to those estimated by FastSLAM and P-SLAM.
The path of the robot and tag positions estimated by Fas-
tSLAM largely deviate from the ground truth, as shown in
Figure 6(a). Figure 6(b) shows that the estimation obtained
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Figure 5: Results obtained by FastSLAM, P-SLAM, and the proposed method, using the RFID detection model on a predefined trajectory
without rotation. (a), (b), and (c), respectively, show the results obtained by FastSLAM, P-SLAM, and the proposed method.
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by P-SLAM is more accurate than that of FastSLAM.
However, the path of the robot and the location of the
detected tags estimated by the proposed method almost
overlap with the ground truth, as shown in Figure 6(c);
as can be seen, the results are better than those shown
in Figure 6(b).

Table 4 lists the average errors of the robot self-
localization and the tag locations on five different trajectories
with rotation, as generated by our proposed method,
P-SLAM, and FastSLAM. For the proposed method, the aver-
age position error of the robot is approximately 36mm and
the average rotation error of the robot is 0.005 rad, while the
average position errors of the detected RFID tags are approx-

imately 66mm. In contrast, the average position errors of the
robot and tags estimated by FastSLAM exceed 300mm, which
fully proves that FastSLAM is not suitable for the HF-band
RFID detection model. Although the results obtained by the
P-SLAM method were better than those of FastSLAM, our
proposed method obtained the best overall performance.

4.1.3. Unspecified Trajectory Experiment. As discussed in
[16], when using P-SLAM, the distribution of particles for
estimating a detected tag can be effectively modified by let-
ting the robot detects this tag in additional alternative direc-
tions to obtain more observations; this step helps improve the
accuracy of the tag location and robot self-localization.
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Figure 6: Results obtained by FastSLAM, P-SLAM, and the proposed method, using the RFID detection model on a predefined trajectory
with rotation. (a), (b), and (c), respectively, show the results obtained by FastSLAM, P-SLAM, and the proposed method.

Table 3: Errors of the robot and tag localization generated by FastSLAM, P-SLAM, and the proposed SLAM method, using the RFID
detection model on predefined trajectories without rotation.

Method
Robot location Tag location

x (mm) y (mm) θ (rad) dr (mm) x (mm) y (mm) dt (mm)

FastSLAM 315.1 204.5 0.182 420.8 296.6 210.1 412.1

P-SLAM 41.4 66.6 0.003 82.1 66.1 80.1 110.5

Proposed method 25.4 45.1 0.006 53.8 50.3 51.2 79.0
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Running on an unspecified trajectory makes the robot detects
the tags in more additional directions. The results were more
accurate when the P-SLAM evaluated on an unspecified
trajectory than a predefined trajectory in [16]. Our proposed
SLAM method also has this feature that the accuracy of tag
location can be improved by detecting a tag in additional
alternative directions. Because the particles are updated using
a pseudorandom value when a tag is detected multiple times,
the distribution of the tag particles cannot be narrowed to a
point by detecting the detected tag in different directions.
However, this also preserves the possibility of a correct esti-
mation when errors occur and prevents the particles from
converging to an unrecoverable and incorrect estimation.

We tested the proposed SLAM method by letting
the robot moves along an unspecified trajectory to ver-
ify this hypothesis. Figure 7 shows the results obtained by
FastSLAM, P-SLAM, and the proposed SLAM method. The

results obtained by FastSLAM show a large deviation from
the trajectory and the actual tag locations, as shown in
Figure 7(a). Figure 7(b) shows a comparison between ground
truth data and estimations generated by P-SLAM. Figure 7(c)
shows comparisons between the ground truth data with the
path of the robot and tag locations estimated by the proposed
method on an unspecified trajectory. The estimations by our
proposed method and P-SLAM were more accurate on an
unspecified trajectory than the estimations on a predefined
trajectory. However, the path of the robot and tag locations
estimated by the proposed method achieved better overlaps
than P-SLAM on the unspecified trajectory.

Table 5 summarizes the error data generated by
FastSLAM, P-SLAM, and the proposed method, on an
unspecified trajectory. FastSLAM generated larger errors
relative to the other two methods. P-SLAM obtained better
results on the unspecified trajectory than on the predefined

Table 4: Errors of the robot and tag localization generated by FastSLAM, P-SLAM, and the proposed SLAM method, using the RFID
detection model on predefined trajectories with rotation.

Method
Robot location Tag location

x (mm) y (mm) θ (rad) dr (mm) x (mm) y (mm) dt (mm)

FastSLAM 147.9 266.5 0.063 330.4 134.3 254.06 311.9

P-SLAM 74.3 36.8 0.005 86.6 81.2 52.7 104.6

Proposed method 23.9 22.7 0.005 36.2 41.9 41.0 65.7
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Figure 7: Results obtained by FastSLAM, P-SLAM, and the proposed method, using the RFID detection model on an unspecified trajectory.
(a), (b), and (c), respectively, show the results obtained by FastSLAM, P-SLAM, and the proposed method.

14 Journal of Sensors



trajectory, as also demonstrated in [16]. For our proposed
method, the average position errors of the robot and tag
localization were approximately 30mm and 50mm, respec-
tively. The average orientation error of the robot was
0.010 rad. Comparing to P-SLAM, our proposed method
obtained better performance on the unspecified trajectory.
Furthermore, the robot self-localization and tag locations
obtained by the proposed method on the unspecified trajec-
tory were also better than those obtained on the predefined
trajectory. This proves the validity of the hypothesis men-
tioned above. Although the particles for estimating the
detected tag cannot be converted to a small range via the
smoothing method, the accuracy and stability are improved.

4.2. Experiment with the Range and Bearing Detection Model.
In the simulation, a general range and bearing sensor belong-
ing to a Gaussian detectionmodel was also utilized to evaluate
the proposed method, P-SLAM, and FastSLAM. An illustra-
tion of the mobile robot with a range and bearing sensor is
shown in Figure 8. The detection range was set to 500mm,
and the detection angle was set to 120 deg. The landmark per-
ception was modeled with independent zero-mean Gaussian
noise εr and εb on the range and bearing. The standard devi-
ations σr and σb were set to 10mm and 3deg, respectively.
The robot with the range and bearing sensor was operated
on two types of predefined trajectories: with rotation and
without rotation.

4.2.1. Predefined Trajectory without Rotation Experiment.
The robot with the range and bearing sensor moved along
five predefined trajectories without rotation to evaluate the
proposed method. The robot also runs on each predefined
trajectory three loops. The results of the path of the robot
and tag locations generated by our proposed method and
the other two SLAM methods on a predefined trajectory
without rotation are shown in Figure 9. Figure 9(a) shows
the path of the robot and tag locations estimated by
FastSLAM. Although the results generated with the range
and bearing sensor were better than those generated with the
HF-band RFID sensor, deviations occurred during the move-
ment. Both the route of the robot and tag positions estimated
by FastSLAM have an offset to the upper left. Figure 9(b)
shows that the tag positions estimated by P-SLAM overlap
with the ground truth. However, the routes of the robot show
unstable performance. In comparison, both the path of the
robot and tag locations estimated by the proposed method
overlap with the ground truth on the predefined trajectory,
as Figure 9(c) shows.

Table 6 lists the errors of the robot self-localization and
tag locations generated by FastSLAM, P-SLAM, and our pro-
posed method. The errors represent the average errors on the
five different trajectories. For our proposed method, the
position error of the robot is approximately 113mm and
the orientation error is 0.016 rad. The position error of the
tag locations by the propose SLAM method is approximately
112mm. Unlike with the RFID sensor, the results obtained
by our proposed method on the predefined trajectory with-
out rotation are similar to those obtained by P-SLAM. The
robot ran on a predefined trajectory without rotation, which
prevents the noise in the bearing from being modified effec-
tively. Therefore, the particle smoother method for estimat-
ing landmarks does not show its superiority over the
particle filter method. However, both these SLAM methods
obtained better performance than FastSLAM.

4.2.2. Predefined Trajectory with Rotation Experiment.
Figure 10 shows the performance obtained by our proposed
method, P-SLAM, and FastSLAM using a range and bearing
sensor on a predefined trajectory with rotation. The path of
the robot and tag locations estimated by FastSLAM are
shown in Figure 10(a). On the trajectory with rotation, the
results obtained by FastSLAM using the range and bearing
sensor were more accurate than those obtained using the
HF-band RFID system. Figure 10(b) shows the estimations
obtained by P-SLAM. Although some deviations appear,
the estimations are more accurate than those obtained by
FastSLAM. However, as Figure 10(c) shows, the proposed
method exhibits the best performance.

Table 7 lists the average robot self-localization errors and
tag location errors on the five predefined trajectories with
rotation, as obtained by our proposed method, P-SLAM,
and FastSLAM. The average position and orientation errors
of the robot are approximately 97mm and 0.012 rad,

Table 5: Errors of the robot and tag localization generated by FastSLAM, P-SLAM, and the proposed SLAM method, using the RFID
detection model on an unspecified trajectory.

Method
Robot location Tag location

x (mm) y (mm) θ (rad) d (mm) x (mm) y (mm) d (mm)

FastSLAM 110.4 198.6 0.131 245.7 122.5 234.1 280.0

P-SLAM 61.0 25.3 0.007 66.7 67.5 38.5 82.3

Proposed method 21.0 15.1 0.010 29.1 31.9 32.9 50.4

60°

500 mm

Figure 8: Robot with the range and bearing sensor.
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respectively, when using our proposed SLAM method. The
average position error of the tag locations is approximately
93mm. On the predefined trajectory with rotation, our pro-
posed method generated smaller errors than P-SLAM. This
proves the hypothesis that the noise in the bearing can be

modified effectively by using the proposed method when
the robot moves on the trajectory with rotation. The average
distance error estimated by FastSLAM is approximately
270mm, which is three times the average distance error gen-
erated by our proposed method.
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Figure 9: Results obtained by FastSLAM, P-SLAM, and the proposed method, using a range and bearing sensor on a predefined trajectory
without rotation. (a), (b), and (c), respectively, show the results obtained by FastSLAM, P-SLAM, and the proposed method.

Table 6: Errors of the robot and tag localization generated by FastSLAM, P-SLAM, and the proposed SLAM method, using a range and
bearing sensor on predefined trajectories without rotation.

Method
Robot location Tag location

x (mm) y (mm) θ (rad) d (mm) x (mm) y (mm) d (mm)

FastSLAM 106.1 213.8 0.031 259.4 105.4 231.4 281.5

P-SLAM 42.2 90.8 0.013 108.4 40.8 52.6 70.9

Proposed method 55.4 85.2 0.016 113.2 53.1 86.3 111.5
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According to the experiments, our proposed method
obtained better results than the other two SLAM methods.
The experiment results obtained by FastSLAM prove that it
is unsuitable for the sensors with the non-Gaussian detection

model. Our proposed method and P-SLAM not only show
better performance with the RFID system but also with the
range and bearing sensor, which incorporates the Gaussian
detection model. P-SLAM obtained an accurate estimation
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Figure 10: Results obtained by FastSLAM, P-SLAM, and the proposed method, using a range and bearing sensor on a predefined trajectory
with rotation. (a), (b), and (c), respectively, show the results obtained by FastSLAM, P-SLAM, and the proposed method.

Table 7: Errors of the robot and tag localization generated by FastSLAM, P-SLAM, and the proposed SLAM method, using a range and
bearing sensor on predefined trajectories with rotation.

Method
Robot location Tag location

x (mm) y (mm) θ (rad) d (mm) x (mm) y (mm) d (mm)

FastSLAM 114.4 237.8 0.040 275.1 100.7 218.1 251.3

P-SLAM 45.2 121.6 0.020 137.1 42.6 112.9 128.2

Proposed method 21.5 90.9 0.012 96.6 19.8 86.0 92.6
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according to the detection range and interval of the land-
marks. However, when comparing the results obtained by
the proposed method against those obtained by P-SLAM, it
is clear that our proposed method provides improved accu-
racy by using the particle smoother method to estimate land-
mark positions, particularly when using the RFID system
with large detection range.

5. Conclusions

A novel SLAM technique based on particle smoothers for
landmark mapping and a particle filter for self-localization
of a mobile robot are proposed in this paper. HF-band RFID
tags are used as the landmarks spread on the floor. Multiple
readers are installed on the bottom of the mobile robot to
detect the tags that allow the robot to estimate its position
and orientation. The SLAM method is utilized to reduce the
labor and time cost of collecting the IDs and positions of
RFID tags, which are needed in the self-localization of mobile
robots. However, a detection model using the HF-band RFID
system cannot be modeled with a Gaussian distribution,
which makes the Kalman filter unsuitable. Although the par-
ticle filter can handle the non-Gaussian distribution of the
landmark detection, the degeneracy problem becomes more
serious over time when a particle filter is used to update a
landmark position. Therefore, the proposed SLAM method
utilizes independent particle smoothers to update the posi-
tions of landmarks and a particle filter to update the position
and orientation of the mobile robot. The particle smoother
method reduces particle degeneration, preserves the possibil-
ity of a correct estimation when errors occur, and prevents
the particles from converging to an unrecoverable and incor-
rect estimation. The smoothed estimation is more suitable to
the stationary landmarks. The particle smoother is able to
improve the accuracy and stability of the estimation in SLAM
tasks. The proposed method is evaluated through experi-
ments with the RFID detection model and the range and
bearing detection model. Furthermore, the proposed method
is compared against FastSLAM and P-SLAM. The experi-
mental results show the validity and superiority of the pro-
posed SLAM method on both the RFID detection model
and the range and bearing detection model.

The graph-based optimization method is widely used in
the laser and visual SLAM. Considering the computational
cost of the graph-based optimization method (that is linear
in the number of observations) to the computational cost of
filtering (that is cubic in the number of observations), the
graph-based optimization method is the more efficient tech-
nique. However, the number of observations in our approach
is much less than that in visual SLAM. Furthermore, majority
of graph optimizers assume Gaussian noise in the con-
straints, and considering the non-Gaussian distribution of
the HF-band RFID detection model, the particle filter with
the nonparametric inference was preferred in this research.
Several works have been proposed to cater for non-Gaussian
noise, e.g., using robust cost functions [39], robust optimi-
zation methods [40], or explicitly handling non-Gaussian
distributions [41]. The utilization of these optimization

methods to the HF-band RFID-based SLAM would be an
interesting topic for our future work.
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