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Yoshiyuki Koga and Takuto Miyake

Abstract. In this paper, we study a relation between super
Weyl groupoids defined by Sergeev and Veselov [9] and Coxeter
groupoids by Heckenberger and Yamane [3]. As an application,
we provide generators and defining relations for the super Weyl
groupoids.

1. Introduction

In the representation theory of basic classical Lie superalgebras, cer-
tain reflections, called odd reflections, play important roles. An odd
reflection is defined as a transformation between basis of a root system
(see e.g. [10]), and it is not necessarily extended to a linear transfor-
mation on the dual space of the Cartan subalgebra containing the root
system. Hence, it is not obvious what kind of algebraic system should
be considered in order to treat ordinary (real) and odd reflections at the
same time.

In [3], I. Heckenberger and H. Yamane proposed the notion of a Cox-
eter groupoid from the viewpoint of structures of Nichols algebras and
basic classical Lie superalgebras. On the other hand, in [9], A. N. Sergeev
and P. Veselov introduced the super Weyl groupoid associated with a
basic classical Lie superalgebra, and show that the representation rings
of the Lie superalgebras can be regarded as invariants of the groupoid.

The main purpose of this article is to give a relation between the super
Weyl groupoids associated with the basic classical Lie superalgebras
and Coxeter groupoids. Since a super Weyl groupoid is defined as the
disjoint union of the Weyl group of the corresponding Lie superalgebra
and a certain groupoid, we concentrate on the groupoid part. In this
paper, we introduce the notion of an involutive Coxeter groupoid and its
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extension. The groupoid part of a super Weyl groupoid is obtained as
the extension of an involutive Coxeter groupoid. Moreover, the structure
of the involutive Coxeter groupoid in a super Weyl groupoid can be
described by means of (1) the direct product of Coxeter groupoids, (2)
the semi-direct product groupoid constructed from an action of a Weyl
group. As an application, we obtain generators and defining relations
for the super Weyl groupoids.

Finally, we remark on an expected relation between a super Weyl
groupoid and certain generalized Verma modules over the corresponding
basic classical Lie superalgebra. It is well-known that the embedding
structure of Verma modules over a finite dimensional simple Lie algebra
can be described by its Weyl group. At least in the simplest case, one
can observe a similar relation between generalized Verma modules over
sl(2, 1) and the super Weyl groupoid of type A(1, 0).

This paper is organized as follows: In Section 2, after giving some
basic definitions in the theory of groupoids, we recall the definitions of
a super Weyl groupoid and a Coxeter groupoid and give examples of
them. In Section 3, we introduce the notion of an involutive Coxeter
groupoid and its extension, and show that the groupoid part of a super
Weyl groupoid is isomorphic to the extension of an involutive Coxeter
groupoid. In Section 4, we explicitly describe the super Weyl groupoids
of types A(m,n), B(m,n), C(n) and D(m,n) in terms of the Weyl
groups of simple Lie algebras. In Section 5, we compare the embedding
structure of generalized Verma modules over sl(2, 1) and the super Weyl
groupoid of type A(1, 0). In Appendix, we analyze the structure of the
atypical integrable representations over sl(2, 1) by means of generalized
Verma modules.

Throughout this paper, we denote the cardinality of a set A by ♯A,
and the disjoint union of sets A and B by A⊔B. The vector spaces are
over the complex number field C unless otherwise stated.

2. Super Weyl groupoids and Coxeter groupoids

2.1. Preliminaries

A super Weyl groupoid is defined to be the semi-direct product
groupoid of a group and a groupoid. Here, we give the definition of
semi-direct product groupoids following [1].

Recall that a groupoid G is a small category such that any morphism
is an isomorphism. The set Ob(G) of all objects is called base of G. Let
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Γ be a group with the unit 1Γ, and G a groupoid. We first introduce
the notion of a group action on a groupoid.

Definition 2.1. An action of Γ on G is a collection of the following
maps: For each γ ∈ Γ,

(1) γ : Ob(G) → Ob(G) satisfying

(γ′ ◦ γ)(x) = γ′(γ(x)), 1Γ(x) = x (∀γ, γ′ ∈ Γ, ∀x ∈ Ob(G)),

(2) γ : HomG(X,Y ) → HomG(γ(X), γ(X)) satisfying

(γ′ ◦ γ)(f) = γ′(γ(f)), 1Γ(f) = f (∀γ, γ′ ∈ Γ, ∀f ∈ HomG(X,Y )),

γ(g ◦ f) = γ(g) ◦ γ(f) (∀γ ∈ Γ, ∀f ∈ HomG(X,Y ), ∀g ∈ HomG(Y, Z)).

By definition, it is easy to see that γ(1X) = 1γ(X).

Definition 2.2. The semi-direct product groupoid Γ⋉G of Γ and G is
the groupoid defined by

(1) Objects: Ob(Γ⋉G) := Ob(G),

(2) Morphisms: HomΓ⋉G(X,Y ) := {(γ, f)|γ ∈ Γ, f ∈ HomG(γ(X), Y )},

(3) Composition:
(δ, g) ◦ (γ, f) := (δγ, g ◦ δ(f)), (2.1)

where (γ, f) ∈ HomΓ⋉G(X,Y ) and (δ, g) ∈ HomΓ⋉G(Y, Z).

Suppose that a group Γ acts on a set M . We regard M as a fine
groupoid, namely, the groupoid on M consisting only of identities. As
a typical example of the semi-direct product groupoid, we have Γ⋉M .
In fact, we will see in Section 2.4 that if Γ is a Weyl group, then Γ⋉M
is a Coxeter groupoid. For simplicity, set

[γ,m] := (γ,1γ(m)) (γ ∈ Γ, m ∈ M). (2.2)

Notice that [γ,m] ∈ HomΓ⋉M (m, γ(m)). Under this setting, Definition
2.2 can be rewritten as follows:

Definition 2.3. The semi-direct product groupoid Γ⋉M is defined by

(1) Objects: Ob(Γ⋉M) := M .

(2) Morphisms: HomΓ⋉M (m,n) := {[γ,m]|γ(m) = n} for m,n ∈ M .
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(3) Composition: [δ, n] ◦ [γ,m] := [δγ,m], where n = γ(m).

Finally, for later use, we recall the disjoint union and the direct prod-
uct of two groupoids Gi (i = 1, 2). The disjoint union

G1 ⊔G2 (2.3)

is the groupoid defined by

(1) Objects: Ob(G1 ⊔G2) := Ob(G1) ⊔Ob(G2),

(2) Morphisms:

HomG1⊔G2(X,Y ) :=

{
HomGi(X,Y ) (X,Y ∈ Ob(Gi))

∅ (otherwise)
.

The direct product
G1 ×G2 (2.4)

of the groupoids Gi (i = 1, 2) is defined as the product of categories:

(1) Objects: Ob(G1 ×G2) = Ob(G1)×Ob(G2),

(2) Morphisms: for Xℓ, Yℓ ∈ Ob(Gℓ),

HomG1×G2((X1, X2), (Y1, Y2)) := {(f1, f2)|fℓ ∈ HomGℓ
(Xℓ, Yℓ)}

(3) Composition: (g1, g2) ◦ (f1, f2) := (g1 ◦ f1, g2 ◦ f2).

In Section 4.1, we will see that if both of Gi are Coxeter groupoids, then
G1 ×G2 is also a Coxeter groupoid.

2.2. Definition of super Weyl groupoids

In order to define super Weyl groupoids, we first introduce notation
for Lie superalgebras. Let g be a basic classical Lie superalgebra, and
h a Cartan subalgebra of g. Let (·, ·) be a non-degenerate even super-
symmetric invariant bilinear form on g and ξ : h → h∗ the linear map
defined by ⟨ξ(h), h′⟩ = (h, h′). We introduce a non-degenerate bilinear
form (·, ·) on h∗ as (λ, µ) = (ξ−1(λ), ξ−1(µ)). Let ∆ be the root sys-
tem of g, {αi}i∈I the set of the simple roots with an index set I and
Q :=

∑
i∈I Zαi the root lattice. Denote the sets of the even and the odd

roots by ∆0̄ and ∆1̄. The subset ∆iso = {α ∈ ∆1̄|(α, α) = 0} of ∆1̄ is
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the set of the isotropic odd roots. Put ∆+ := ∆ ∩Q+, ∆+
0̄
:= ∆0̄ ∩Q+,

∆+
1̄
:= ∆1̄ ∩Q+ ∆+

iso := ∆iso ∩Q+, where Q+ :=
∑

i∈I Z≥0αi.

For γ ∈ ∆0̄, define the real reflection rγ ∈ GL(h∗) by rγ(λ) := λ −

⟨λ, γ∨⟩γ, where γ∨ :=
2ξ−1(γ)

(γ, γ)
is the coroot of γ. Let W be the Weyl

group of g, namely, W is the subgroup of GL(h∗) generated by all real
reflections rγ (γ ∈ ∆0̄). We define the groupoid I as follows:

(1) Objects: Ob(I) = ∆iso,

(2) Morphisms: for α, β ∈ ∆iso,

HomI(α, β) :=


{1α} (β = α)

{tα} (β = −α)

∅ (otherwise)

.

By definition, t−α ◦ tα = 1α, tα ◦ t−α = 1−α, and thus, t−1
±α = t∓α.

Lemma 2.1. The Weyl group W acts on I as follows:

w : α 7→ w(α), 1α 7→ 1w(α), tα 7→ tw(α) (w ∈ W, α ∈ ∆iso)

Then, one can consider the semi-direct product groupoid of W and I:

W := W ⋉ I. (2.5)

We remark that

HomW(α, β) =


{(w,1w(α))} (β = w(α) if ∃w ∈ W )

{(w, tw(α))} (β = −w(α) if ∃w ∈ W )

∅ (otherwise)

. (2.6)

Definition 2.4 ([9]). The super Weyl groupoid associated to a basic
classical Lie superalgebra g is the disjoint union W ⊔ W of the Weyl
group W of g and the groupoid W (see (2.3)). Here, we regard W as a
groupoid with the base consisting of one point.

Since the structure of the Weyl group W is well-known ([5]), we con-
centrate on the groupoid part W.



30 Y. Koga and T. Miyake

Remark 2.1. If we regard ∆iso as a fine groupoid, then the semi-direct
product W ⋉∆iso is a subgroupoid of W. Since ♯I = 2× ♯∆iso, we have

♯W = 2× ♯(W ⋉∆iso). (2.7)

In Subsection 2.4, we will show that W ⋉∆iso is a Coxeter groupoid.

Throughout this paper, we assume that ∆iso is not empty, namely, g
is not a finite dimensional simple Lie algebra or the simple Lie super-
algebra of type B(0, n). For the classification of the basic classical Lie
superalgebras, see [5].

Now, we look at an example of W in the case where g is of type
A(1, 0).

Example 2.1. A Cartan matrix of type A(1, 0) is given by(
2 −1
−1 0

)
. (2.8)

Here, α1 and α2 are simple roots, and α := α1+α2. We have ∆+
0̄
= {α1},

∆+
1̄

= {α2, α}, ∆+
iso = ∆+

1̄
and W = {1, r}, where r denotes a unique

even reflection (r = rα1). Since ♯I = 2 × ♯∆iso = 8, we have ♯W = 16.
One can arrange the elements of W as follows:

α2 α −α2 −α

α2 (1,1α2) (r,1α2) (1, t−α2) (r, t−α2)
α (r,1α) (1,1α) (r, t−α) (1, t−α)

−α2 (1, tα2) (r, tα2) (1,1−α2) (r,1−α2)
−α (r, tα) (1, tα) (r,1−α) (1,1−α)

(2.9)

where each row and column respectively correspond to the codomain
and domain of morphisms.

2.3. Definition of Coxeter groupoids

Coxeter groupoids were first introduced as semigroups in [3], and later
on the notion is reformulated by Cuntz and Heckenberger [2] in terms
of groupoids.

Let I be a finite index set, and Q a finitely generated free abelian
group with base {βi}i∈I . Put Q+ :=

∑
i∈I Z≥0βi. Let C = (ci,j)i,j∈I be

a generalized Cartan matrix, i.e., a matrix with integer entries satisfying

(i) ci,i = 2 and ci,j ≤ 0 (i ̸= j), and
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(ii) if ci,j = 0, then cj,i = 0. Let us recall the definition of a Cartan
scheme.

Definition 2.5. For a non-empty set A, the sets {ρi}i∈I of maps ρi :
A → A and {Ca}a∈A of generalized Cartan matrices Ca = (cai,j), the
quadruple C := C(I, A, {ρi}i∈I , {Ca}a∈A) is called a Cartan scheme if it
satisfies

(C1) ρ2i = idA (∀i ∈ I),

(C2) c
ρi(a)
i,j = cai,j (∀i, j ∈ I, ∀a ∈ A).

For i ∈ I and a ∈ A, define σa
i ∈ Aut(Q) by

σa
i (βj) = βj − cai,jβi (j ∈ I).

A root system associated with a Cartan scheme C is defined as follows:

Definition 2.6. Suppose that a subset Ra ⊂ Q is given for each a ∈ A.
Set Ra

+ := Ra ∩Q+ and

ma
i,j := ♯{Ra ∩ (Z≥0βi + Z≥0βj)} (i, j ∈ I). (2.10)

A pair R := R(C, {Ra}a∈A) of a Cartan scheme C = C(I, A, {ρi}i∈I ,
{Ca}a∈A) and the set {Ra}a∈A is called a root system of type C if it
satisfies

(R1) Ra = Ra
+ ∪ (−Ra

+) (∀a ∈ A),

(R2) Ra ∩ Zβi = {βi,−βi} (∀i ∈ I, ∀a ∈ A),

(R3) σa
i (R

a) = Rρi(a) (∀i ∈ I, ∀a ∈ A),

(R4) if ma
i,j < ∞ for i, j ∈ I (i ̸= j) and a ∈ A, then (ρiρj)

ma
i,j (a) = a.

Let R be a root system of type C.

Definition 2.7. The Coxeter groupoid W(R) associated with R is the
groupoid defined by the following generators and relations.

(1) Objects: Ob(W(R)) = A,

(2) Generators: {sai |i ∈ I, a ∈ A}, where sai ∈ HomW(R)(a, ρi(a)),



32 Y. Koga and T. Miyake

(3) Relations:

s2i1a = 1a, (sjsk)
ma

j,k1a = 1a (∀i, j, k ∈ I (j ̸= k), ∀a ∈ A).
(2.11)

Here and after, we often abbreviate the superscript of generators
determined automatically from a ∈ A and use the following con-
vention: For i1, · · · , in ∈ I, denote

sin · · · si2si11a := sanin ◦ · · · ◦ sa2i2 ◦ sa1i1 , (2.12)

where a1 := a, a2 := ρi1(a1), · · · , an := ρin−1(an−1).

Precisely speaking, in [2], the next definition is adopted.

Definition 2.8. The groupoid WCH(R) is defined by

(1) Objects: Ob(WCH(R)) := A,

(2) Morphisms: for a, b ∈ A, HomWCH(R)(a, b) is the set of all triples
(b, f, a) with f = σan

in
◦ · · · ◦ σa1

i2
◦ σa1

i1
and b = ρin(an), where,

for i1, · · · , in ∈ I, we put a1 := a, a2 := ρi1(a1), · · · , an :=
ρin−1(an−1).

(3) Composition: (c, g, b) ◦ (b, f, a) = (c, g ◦ f, a).

In fact, two definitions are equivalent.

Theorem 2.1 ([3],[2]). The Coxeter groupoid W(R) is isomorphic to
the groupoid WCH(R), and an isomorphism is given by the functor which
sends sai 7→ (ρi(a), σ

a
i , a).

For the details of proof, see [12].

2.4. Coxeter groupoids constructed from Weyl groups

Many Coxeter groupoids appeared in the representation theory of Lie
superalgebras can be constructed as semi-direct product groupoids (Def-
inition 2.3) from Weyl groups. For later use, we give typical examples
of such Coxeter groupoids.

Let a be a finite dimensional semi-simple Lie algebra of rank n. Set
I := {1, 2, · · · , n}. In this subsection, let C = (ci,j)i,j∈I be the Cartan
matrix, ∆ the root system and {βi}i∈I the set of the simple roots of a.
Let W be the Weyl group, whose generators (the simple reflections) are
denoted by {si}i∈I .
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Suppose that W acts on a finite set A and regard A as a fine groupoid.
We will show that the semi-direct product groupoid W ⋉A is a Coxeter
groupoid.

Lemma 2.2. Define the quadruple CW ;A and the pair RW ;A as follows:

CW ;A := C(I, A, {ρi}i∈I , {Ca}a∈A), RW ;A := R(CW ;A, {Ra}a∈A),
(2.13)

(1) ρi := si : A → A (i ∈ I) are given by the action of W on A,

(2) Ca := C and Ra := ∆ (a ∈ A).

Then, CW ;A is a Cartan scheme and RW ;A is a root system of type CW ;A.

By the lemma, we obtain the Coxeter groupoid W(RW ;A) with RW ;A.
Let {sai }a∈A be its generators, where sai ∈ HomW(RW ;A)(a, si(a)).

Lemma 2.3. The Coxeter groupoid W(RW ;A) is isomorphic to the
semi-direct product groupoid W ⋉ A. An isomorphism is given by the
functor which sends sai 7→ [si, a], where the symbol [si, a] is defined in
(2.2). Hence, we have

♯W(RW ;A) = ♯W × ♯A. (2.14)

Proof. Set mi,j := ♯{∆∩ (Z≥0βi+Z≥0βj)}. For any a ∈ A, the constant
ma

i,j given by (2.10) is equal to mi,j . Hence, the elements {[si, a]|i ∈
I, a ∈ A} satisfy the relations (2.11), and there exists a homomorphism
Φ : W(RW ;A) → W ⋉A of groupoid which sends sai 7→ [si, a].

Since {[si, a]|i ∈ I, a ∈ A} generate W ⋉ A, the homomorphism Φ is
surjective. We will prove that it is injective. It suffices to show that for
any

x = s
ap
ip

· · · sa1i1 ∈ W(RW ;A) (a1 := a, ak+1 := sik(ak) (k = 1, · · · , p)),

if Φ(x) = [1, a], then x = 1a. Under the isomorphism in Theorem 2.1,
x corresponds to the triple (b, w, a) with w := sip · · · si1 and b := ap+1.
By the definition of Φ, we have Φ(x) = [w, a]. Hence, if Φ(x) = [1, a],
then w = 1 and (b, w, a) = (a, 1, a) which corresponds to 1a. Thus, we
obtain x = 1a, and the injectivity holds.

To describe the groupoid part W of a super Weyl groupoid, we will
use W ⋉A constructed from the actions of W on A given below:
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(1) Case a = An:
A := {η1, η2, · · · , ηn+1}, (2.15)

where {ηi}i=1,··· ,n+1 is the orthonormal base satisfying βi = ηi −
ηi+1.

(2) Case a = Bn, Cn or Dn:

A := {±η1,±η2, · · · ,±ηn}, (2.16)

where {ηi}i∈I is orthogonal bases of h∗ satisfying

βi =


ηi − ηi+1 (i < n)

ηn (i = n ∧ a = Bn)

2ηn (i = n ∧ a = Cn)

ηn−1 + ηn (i = n ∧ a = Dn)

.

3. Extensions of Coxeter groupoids and the groupoid part W

3.1. Involutive Coxeter groupoids and their extensions

Here, we introduce the notions of an involutive Coxeter groupoid and
its extension.

Definition 3.1. Let W(R) be the Coxeter groupoid with a root system
R of type C, where C = C(I, A, {ρi}i∈I , {Ca}a∈A) andR = R(C, {Ra}a∈A).
We say that W(R) is involutive if there exists a bijection

·̄ : A → A (3.1)

with the following conditions:

(1) (ā) = a, ā ̸= a (∀a ∈ A),

(2) ρi(ā) = ρi(a) (∀i ∈ I, ∀a ∈ A),

(3) C ā = Ca, Rā = Ra (∀a ∈ A).

In the cases of Bn, Cn Dn, the groupoid W(RW ;A) in (2.16) is an
involutive Coxeter groupoid with the bijection ·̄ : A → A is given by
ā := −a.

We introduce an extension We(R) of the involutive Coxeter groupoid
W(R) with a root system R of type C, where R = R(C, {Ra}a∈A) and
C = C(I, A, {ρi}i∈I , {Ca}a∈A). Let ·̄ : A → A be the bijection (3.1).
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Definition 3.2. Define the groupoid We(R) as follows:

(1) Objects: Ob(We(R)) = A,

(2) Generators: {sai , ta|i ∈ I, a ∈ A}, where sai ∈ HomWe(R)(a, ρi(a)),
ta ∈ HomWe(R)(a, ā).

(3) Relations:

s2i1a = 1a, (sjsk)
ma

j,k1a = 1a, t21a = 1a, sit1a = tsi1a

(∀i, j, k ∈ I (j ̸= k), ∀a ∈ A),

(3.2)

where we use notation similar to (2.12) and abbreviate sai and ta

to si and t respectively. For example, sit1a = tsi1a should be
regarded as sāi t

a = tρi(a)sai .

Proposition 3.1. The following equality holds:

We(R) = W(R) ⊔ tW(R),

where the right hand side is the set-theoretic disjoint union. Hence, we
have

♯We(R) = 2× ♯W(R). (3.3)

Proof. For simplicity, set W := W(R) and let ι : W → W be the
isomorphism of groupoids given by

f = sanin · · · sa1i1 7→ ι(f) := sanin · · · sa1i1 .

We will introduce appropriate groupoid structure on the set-theoretic
disjoint union G := W ⊔W and show that it is isomorphic to We(R).
Here, the groupoid G is defined by

(1) Objects: Ob(G) := A,

(2) Morphisms:

HomG(a, b) := HomW(a, b) ⊔HomW(a, b),

where the right hand side is the set-theoretic disjoint union.
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(3) Composition: for f ∈ HomG(a, b) and g ∈ HomG(b, c),

g ◦
G
f :=

{
g ◦ f (f ∈ HomW(a, b))

ι(g) ◦ f (f ∈ HomW(a, b))
,

where to distinguish composition in G and W, we denote that of
G (resp. W) by ◦

G
(resp. ◦).

Then, one can show that G is a groupoid. Indeed, the inverse of f ∈
HomG(a, b) is given by

f−1 :=

{
f−1 (f ∈ HomW(a, b))

ι(f−1) (f ∈ HomW(a, b))
.

Moreover, if we define the functor Φ : We(R) → G by

sai 7→ sai , ta 7→ 1a ∈ HomW(a, (ā)) ⊂ HomG(a, ā),

then Φ is an isomorphism. Hence, we obtain the proposition.

3.2. Main results

Let W be the groupoid part (2.5) associated with a basic classical Lie
superalgebra g. Let g0̄ be the even part of g. In the following, g′

0̄
denotes

the semi-simple part of g0̄. Remark that ∆0̄ is the root system of the
semi-simple Lie algebra g′

0̄
. Let {βi}i∈I′ be the set of the simple roots

of g′
0̄
with an index set I ′. For each i ∈ I ′, we denote the real reflection

corresponding to βi by si.

Let W(RW ;∆iso) be the Coxeter groupoid given by Lemma 2.2 for
a := g′

0̄
. By Lemma 2.3, we have

Lemma 3.1. The semi-direct product W ⋉ ∆iso is isomorphic to
W(RW ;∆iso), and an isomorphism is given by the functor W(RW ;∆iso) →
W ⋉∆iso which sends

sγi 7−→ (si,1si(γ)) (i ∈ I ′, γ ∈ ∆iso). (3.4)

Moreover, if we define the bijection ·̄ : ∆iso → ∆iso by γ̄ := −γ, then it
is an involutive Coxeter groupoid.

As a corollary, we obtain the following theorem:
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Theorem 3.1. The groupoid part W of the super Weyl groupoid is iso-
morphic to the extension We(RW ;∆iso) of the involutive Coxeter groupoid
W(RW ;∆iso).

Proof. One can extend (3.4) to a homomorphism We(RW ;∆iso) → W by
tγ 7→ (1, tγ) (γ ∈ ∆iso). It is surjective sinceW is generated by {sγi , tγ |i ∈
I ′, γ ∈ ∆iso}. By (2.7) and (3.3), we have ♯W = ♯We(RW ;∆iso). Hence,
it is also injective. We complete the proof.

4. Description of the groupoid part W

The Weyl group of a basic classical Lie superalgebra g coincides with
that of the semi-simple part g′

0̄
. From this fact, we obtain a description of

W in terms of the Weyl groups of simple Lie algebras. Here, we consider
the case where g is of types A(m,n), B(m,n), C(n) and D(m,n).

4.1. Preliminaries

In this subsection, we will show that the direct product (2.4) is a
Coxeter groupoid if G1 and G2 are Coxeter groupoids. We first introduce
the product of two Cartan schemes.

Lemma 4.1. For Cartan schemes Cℓ := C(Iℓ, Aℓ, {ρℓ;i}i∈Iℓ , {Ca
ℓ }a∈Aℓ

)
and root systems Rℓ := R(Cℓ, {Ra

ℓ}) of Cℓ with ℓ = 1, 2, define the
quadruple C and the pair R by

C := C(I, A, {ρi}i∈I , {Ca}a∈A), R := R(C, {Ra}a∈A), (4.1)

(1) I = I1 ⊔ I2,

(2) A := A1 ×A2,

(3) For i ∈ I, the maps ρi : A → A are given by

ρi((a, b)) :=

{
(ρ1;i(a), b) (i ∈ I1)

(a, ρ2;i(b)) (i ∈ I2)
.

(4) For (a, b) ∈ A,

C(a,b) :=

(
Ca
1 0

0 Cb
2

)
and R(a,b) := Ra ⊔Rb.

Then, C is a Cartan scheme, and R is a root system of type C.
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We denote the Cartan scheme C and the root system R in the lemma
by C1 × C2 and R(C1 × C2). Then, one can define the Coxeter groupoid

W(R(C1 × C2)) with R(C1 × C2). Let {sai |i ∈ Iℓ, a ∈ Aℓ} and {s(a,b)i |i ∈
I1⊔I1, a ∈ A1, b ∈ A2} be the generators of W(Rℓ) and W(R(C1×C2)).
Let W(R1)×W(R2) be the direct product (2.4) of W(R1) and W(R2).

Proposition 4.1. The Coxeter groupoid W(R(C1 × C2)) is isomorphic
to W(R1) × W(R2), and an isomorphism is given by the functor ϕ :
W(R(C1 × C2)) → W(R1)×W(R2) which sends

s
(a,b)
i 7→

{
(sai ,1b) (i ∈ I1)

(1a, s
b
i) (i ∈ I2)

.

Hence, we have

♯W(R(C1 × C2)) = ♯W(R1)× ♯W(R2). (4.2)

Next, we consider an operation to provide an involutive Coxeter
groupoid. Let W(R) be a not necessarily involutive Coxeter groupoid
with the root system R of type C, where C = C(I, A, {ρi}i∈I , {Ca}a∈A)
and R = R(C, {Ra}a∈A).

For the set A in the quadruple C, we set Ă := A+⊔A−, where A± are
copies of A, and denote a ∈ A± by ±a. Define the bijection ·̄ : Ă → Ă
by (±a) := ∓a. Then, we have

Lemma 4.2. For the above C and R, define the Cartan scheme C̆ and
the root system R̆ by

C̆ := C(I, Ă, {ρ̆i}i∈I , {C̆a}a∈Ă), R̆ := R(C̆, {R̆a}a∈A), (4.3)

(1) ρ̆i(±a) := ±ρi(a) (i ∈ I, a ∈ A),

(2) C̆±a := Ca and R̆±a := Ra (a ∈ A).

Then, the Coxeter groupoid W(R̆) is involutive.

Let W(R) ⊔ W(R) be the disjoint union (2.3) of the same Coxeter
groupoids W(R). One can easily show the following proposition:

Proposition 4.2. The Coxeter groupoid W(R̆) is isomorphic to W(R)⊔
W(R), and an isomorphism is given by the functor which sends

s+a
i 7→ (sai )1, s−a

i 7→ (sai )2,
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where the subscript ℓ in (sai )ℓ indicates that sai is in the first (ℓ = 1)
(resp. the second (ℓ = 2)) component of the disjoint union. Hence, we
have

♯W(R̆) = 2× ♯W(R). (4.4)

Finally, we give three examples: (i) W(RW ;A) with RW ;A given in
(2.13), (ii) W(R̆W ;A) with R̆W ;A given in Lemma 4.2, (iii) the extension
We(R̆W ;A), in the case where a = sl2.

Example 4.1. Suppose that a = sl2 (of type A1). Then, the Weyl group
is given by W = {1, s}, where s is a unique simple reflection. The action
of W on the set A = {η1, η2} in (2.15) is given by s(ηi) = η3−i (i = 1, 2).
The fact that ♯W(RW ;A) = ♯W × ♯A = 4 implies ♯W(R̆W ;A) = 8 and
♯We(R̆W ;A) = 16. We arrange the elements of these groupoids in a way
similar to (2.9):

(1) W(RW ;A):
η1 η2

η1 1η1 sη2

η2 sη1 1η2

(4.5)

(2) W(R̆W ;A):
η1 η2 −η1 −η2

η1 1η1 sη2

η2 sη1 1η2
−η1 1−η1 s−η2

−η2 s−η1 1−η2

(4.6)

where the blanks mean the corresponding Hom-sets are empty.

(3) We(R̆W ;A):

η1 η2 −η1 −η2
η1 1η1 sη2 t−η1 t−η1s−η2

η2 sη1 1η2 t−η2s−η1 t−η2

−η1 tη1 tη1sη2 1−η1 s−η2

−η2 tη2sη1 tη2 s−η1 1−η2

(4.7)

Remark that the above W(R̆W ;A) is isomorphic to the groupoid W
given in Example 2.1 for g = sl(2, 1). In the following subsection, we
consider similar isomorphisms for general basic classical Lie superalge-
bras.
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4.2. Explicit description

For the basic classical Lie superalgebra g of type X(m,n), we denote
the groupoid part W defined in (2.5) by WX(m,n). For the simple Lie
algebra a of type Xn, we also denote the Cartan scheme CW ;A and the
root system RW ;Λ given in (2.13), (2.15) and (2.16) by CXm and RXm

respectively.

Theorem 4.1. The groupoid part WX(m,n) is isomorphic to the exten-
sion of the following involutive Coxeter groupoid:

(1) Case g = A(m,n): WA(m,n) ≃ We(R̆(CAm × CAn)),

(2) Case g = B(m,n): WB(m,n) ≃ We(R(CBm × CCn)),

(3) Case g = C(m,n): WC(n) ≃ We(R̆(CCn−1)),

(4) Case g = D(m,n): WD(m,n) ≃ We(R(CDm × CCn)).

In the case of g = A(m, 0), R̆(CAm×CAn) should be regarded as R̆(CAm).

Proof. At first, we will prove the theorem in the case where g = A(m,n).
By Lemma 3.1 and Theorem 3.1, we may prove that there exists an
isomorphism

Φ : W(R̆(CAm × CAn)) −→ WA(m,n) ⋉∆iso, (4.8)

where WA(m,n) denotes the Weyl group of g.
Let a be the simple Lie algebra of type An and WAn its Weyl group.

We consider Im+n+1 := {1, 2, · · · ,m+ n+ 1} and In := {1, 2, · · · , n} as
the index sets of the simple roots of g and a respectively. To distinguish
notation for g (resp. a), the kth simple root by αk (resp. βk) and the
kth simple reflection by rk (resp. sk). Here, we use the following data
on the root system of g.

(1)

αk =


ϵk − ϵk+1 (1 ≤ k ≤ m)

ϵm+1 − δ1 (k = m+ 1)

δk−m−1 − δk−m (m+ 2 ≤ k ≤ m+ n+ 1)

,

where {ϵi, δj |1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n+ 1} is an orthogonal base
satisfying (ϵi, ϵi) = 1 and (δj , δj) = −1.

(2) ∆iso = {±(ϵi − δj)|1 ≤ i ≤ m+ 1, 1 ≤ j ≤ n+ 1},
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(3) WA(m,n) is generated by {rk|k ∈ Im+n+1 \ {m+ 1}}, and

WA(m,n) ≃ WAm ×WAn . (4.9)

(4) ∆iso = ∆+
1̄
⊔ (−∆+

1̄
) : the orbits with respect to the action of

WA(m,n).

Recall that WAn acts on the set {η1, · · · , ηn+1} as in (2.15). Put

Im,n := Im ⊔ In, Am,n := {η1, · · · , ηm+1} × {η1, · · · , ηn+1}.

Let us consider a natural action of WAm × WAn on the set Am,n. By
abuse of notation, for each k ∈ Im,n, we define the reflection sk ∈ WAm×
WAn by

sk :=

{
(sk, 1n) (k ∈ Im)

(1m, sk) (k ∈ In)
,

where 1n denotes the unit of WAn .
Let ϕ : WAm × WAn → WA(m,n) be the inverse of the isomorphism

(4.9). We may suppose that ϕ is given by

ϕ(sk) =

{
rk (k ∈ Im)

rm+1+k (k ∈ In)
.

The following lemma is a key of our proof.

Lemma 4.3. Define the bijection ϕ : Am,n → ∆+
iso by

ϕ((ηi, ηj)) := ϵi − δj . (4.10)

Then, ϕ commutes with the action of WAm ×WAn, namely,

ϕ(x.(ηi, ηj)) = ϕ(x).ϕ((ηi, ηj))

holds for any x ∈ WAm ×WAn and (ηi, ηj) ∈ Am,n.

By means of the correspondence (4.10), we define the isomorphism Φ
in (4.8) by

Φ(s
±(ηi,ηj)
k ) := [ϕ(sk),±(ϵi − δj)].

In fact, one can directly check that Φ is a homomorphism of groupoid.
Since {[ϕ(sk),±(ϵi − δj)]|k ∈ Im,n, (ϵi − δj) ∈ Am,n generate W ⋉∆iso,
Φ is surjective. Moreover, (2.14), (4.2) and (4.4) imply

♯W(R̆(CAm × CAn)) = 2× (m+ 1)!(m+ 1)× (n+ 1)!(n+ 1).
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The right hand side equals to ♯(WA(m,n) ⋉ ∆iso), since ♯∆iso = 2(m +
1)(n+1). Hence, Φ is bijective. We have proved the theorem for A(m,n).

Next, we consider the case of B(m,n). It is enough to show that there
exists an isomorphism

Φ : W(R(CBm × CCn)) −→ WB(m,n) ⋉∆iso, (4.11)

where WB(m,n) denotes the Weyl group of B(m,n).
Let WBm and WCn be the Weyl groups of the Lie algebras of type

Bm and Cn respectively. Let us recall the following description on the
simple roots and the Weyl group of B(m,n).

(1)

αk =


δk − δk+1 (1 ≤ k ≤ n− 1)

δn − ϵ1 (k = n)

ϵk−n − ϵk−n+1 (n+ 1 ≤ k ≤ m+ n− 1)

ϵm (k = m+ n)

,

where {ϵi, δj |1 ≤ i ≤ m, 1 ≤ j ≤ n} is an orthogonal base satisfy-
ing (δj , δj) = 1 and (ϵi, ϵi) = −1.

(2) ∆iso = {σ1ϵi + σ2δj |i ∈ Im, j ∈ In, σ1, σ2 ∈ {±}},

(3) WB(m,n) is generated by the real reflections {ri|k ̸= n} ∪ {r2δn},
and

WB(m,n) ≃ WBm ×WCn . (4.12)

(4) WB(m,n) acts on ∆iso transitively.

Let {sk}k∈Im and {sk}k∈In be the generators of the Coxeter groups
WBm and WCn . They act on the sets {±ηi}i∈Im and {±ηj}j∈In given
in (2.16). Put

Im,n := Im ⊔ In, Am,n := {±η1, · · · ,±ηm} × {±η1, · · · ,±ηn}.

Let ϕ : WB(m,n) → WBm × WCn be the inverse of the isomorphism
(4.12). Unlike the case of A(m,n), WB(m,n) transitively acts on ∆iso,
and the following lemma holds:

Lemma 4.4. Define the bijection ϕ : Am,n → ∆iso by

ϕ((σ1ηi, σ2ηj)) := σ1ϵi + σ2δj (σ1, σ2 ∈ {±})

Then, ϕ commutes with the action of WBm ×WCn.
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One can prove that Φ is an isomorphism by arguments similar to the
case of A(m,n). Now, we have proved the theorem for B(m,n).

In the cases where g = C(n) (resp. D(m,n)), the theorem can be
shown in ways similar to A(m,n) (resp. B(m,n)), since ∆iso consists of
two orbits ±∆+

iso (resp. one orbit ∆iso) with respect to the action of the
Weyl group.

Remark 4.1. The structure of WX(m,n) is related to the Weyl group
WX(m,n) and the orbits of ∆iso with respect to the action of WX(m,n).

X(m,n) WX(m,n) Orbits

A(m,n) WAm ×WAn ±∆+
iso

B(m,n) WBm ×WCn ∆iso

C(n) WCn−1 ±∆+
iso

D(m,n) WDm ×WCn ∆iso

5. Generalized Verma modules and the groupoid W

Here, we discuss a relation between certain generalized Verma mod-
ules over sl(2, 1) with atypical highest weight and the groupoid WA(1,0).
For basics in the representation theory of Lie superalgebras needed in
this and the next sections, the reader can consult [8] and [10].

5.1. Definition of generalized Verma modules

For simplicity, we set g := sl(2, 1). Let W = {1, r} be the Weyl group
of g, where r denotes a (unique) even reflection. Let Σ be one of the
bases Πk (k = 0, 1, 2) of g given in (A.1). We define the triangular
decomposition of g associated with Σ as follows:

g = g+Σ ⊕ h⊕ g−Σ , g±Σ :=
⊕
γ∈∆±

Σ

gγ ,

where ∆±
Σ := ∆ ∩ Q±

Σ (Q±
Σ := ±

∑
γ∈Σ Z≥0γ), and gγ denotes a root

subspace of g. Let ρΣ ∈ h∗ be the Weyl vector associated with Σ, which
satisfies (ρΣ, γ) =

1
2(γ, γ) (γ ∈ Σ).

For later use, we introduce notation. Let bΣ := g+Σ ⊕ h be the Borel
subalgebra associated with Σ andMΣ(Λ) the Verma module with highest
weight Λ ∈ h∗. We denote a highest weight vector of MΣ(Λ) by 1ΛΣ. Let
LΣ(Λ) be the irreducible quotient of MΣ(Λ).
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We are interested in the structure of the generalized Verma modules
defined below. For Σ and an isotropic odd root τ ∈ Σ, define a parabolic
subalgebra by pΣ;τ := bΣ ⊕ Cfτ , where fτ ∈ g−τ denotes a root vec-
tor. For Λ ∈ h∗ such that (Λ, τ) = 0, let C1ΛΣ;τ be the 1-dimensional

pΣ;τ -module defined by g+Σ1
Λ
Σ;τ = {0}, h.1ΛΣ;τ = Λ(h)1ΛΣ;τ (h ∈ h) and

fτ1
Λ
Σ;τ = 0. Let U(g) be the enveloping algebra of g. We define a

generalized Verma module NΣ(Λ; τ) as follows:

Definition 5.1. NΣ(Λ; τ) := U(g)⊗U(pΣ;τ ) C1
Λ
Σ;τ .

It should be noted that fτ1
Λ
Σ is a singular vector of MΣ(Λ) and

NΣ(Λ; τ) ≃ MΣ(Λ)/U(g)fτ1
Λ
Σ. (5.1)

Let rτ be the odd reflection defined by τ , and set Σ′ := rτ (Σ).

Proposition 5.1. There exists an isomorphism of g-modules:

NΣ(Λ; τ) ≃ NΣ′(Λ;−τ). (5.2)

Proof. Since Σ ∪ {τ} = Σ′ ∪ {−τ} by Lemma 3.3 in [10], we have
pΣ;τ = pΣ′;−τ and hence, there exists the isomorphism which sends 1ΛΣ;τ

to 1ΛΣ′;−τ .

For other fundamental properties of NΣ(Λ; τ), see [10].

5.2. Action of the groupoid W

In [9], Sergeev and Veselov introduced an action of the super Weyl
groupoid on h∗, and show that the representation rings for basic classi-
cal Lie superalgebras can be regarded as invariants with respect to the
action. Here we consider the restriction of their action to the groupoid
part W.

For α ∈ ∆iso, define the subspace h∗α of h∗ by

h∗α := {λ ∈ h∗|(λ, α) = 0}, (5.3)

and consider the union
∪

α∈∆iso
h∗α ⊂ h∗. Remark that h∗α = h∗−α. Let us

introduce the action of W on the union as follows: For each α ∈ ∆iso,
we define the maps (w,1w(α)), (w, tw(α)) : h

∗
α → h∗w(α) by

(w,1w(α))(λ) := w(λ), (w, tw(α))(λ) := w(λ+ α), (5.4)

where λ ∈ h∗α. Then, we have

Lemma 5.1. The groupoid W acts on the union
∪

α∈∆iso
h∗α by (5.4).
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5.3. Embedding diagrams of NΣ(Λ; τ)

For ν ∈ ∆iso, let us consider

{x ∈ WA(1,0)|dom(x) = ν} = {(1,1ν), (1, tν)(r,1r(ν)), (r, tr(ν))},

where dom(x) denotes the domain of x ∈ WA(1,0). It is a column of the
super Weyl groupoid WA(1,0) in Example 2.1. Here, we will show that
each column is related to the embeddings of generalized Verma modules
given in Theorem A.1 and Remark A.1.

For any σ ∈ ∆iso, there uniquely exists a base Σ containing σ. We de-
note it by Σ[σ]. For x ∈ HomW(σ, τ) and an atypical integrable highest
weight Λ ∈ h∗σ (see (A.3)), set

N [x] := NΣ[τ ](x(Λ + ρΣ[σ])− ρΣ[τ ]; τ),

where x(Λ + ρΣ[σ]) is given by the action (5.4). Then, we have

Proposition 5.2. There exists following diagram of generalized Verma
modules:

N [(1,1ν)]
∼

N [(1, tν)]

N [(r,1r(ν))]

OO

∼
N [(r, tr(ν))]

OO

Proof. We use the notations in Section A. Since ∆iso = {α2, β1, β2, γ1},
the vertical arrows correspond to the embeddings given in Theorem A.1
and Remark A.1. Let us look at the horizontal isomorphisms. For each
w ∈ W = {1, r}, we have

N [(w,1w(ν))] = NΠ[w(ν)](w(Λ + ρΠ[ν])− ρΠ[w(ν)];w(ν)),

N [(w, tw(ν))] = NΠ[−w(ν)](w(Λ + ρΠ[ν] + ν)− ρΠ[−w(ν)];−w(ν)).

Since Π[−w(ν)] = rw(ν)(Π[w(ν)]) and ρΠ[−w(ν)] = ρΠ[w(ν)] + w(ν), we
have

w(Λ + ρΠ[ν])− ρΠ[w(ν)] = w(Λ + ρΠ[ν] + ν)− ρΠ[−w(ν)].

Hence, N [(w,1w(ν))] ≃ N [(w, tw(ν))] by Proposition 5.1.
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A. Structure of NΣ(Λ; τ) with atypical highest weight

In this appendix, we will describe the structure of generalized Verma
modules NΣ(Λ; τ) whose irreducible quotients are atypical integrable
representations. For ordinary Verma modules over sl(2, 1), the complete
description of the structure is provided in [7].

In the case of sl(2, 1), there are three conjugacy class of bases with
respect to the action of the Weyl group W and the representatives Πk

(k = 0, 1, 2) are obtained form the standard base {αi}i=1,2 by odd re-
flections. Here, we denote the standard and the other two bases by
Π0 = {αi}i=1,2, Π1 = {βi}i=1,2 and Π2 = {γi}i=1,2. They correspond to
the Dynkin diagrams:

α1�������� α2

×�������� rα2

⇄
rβ2

β1

×�������� β2

×�������� rβ1
⇄
rγ1

γ1

×�������� γ2�������� (A.1)

and these roots satisfy β1 = α1 + α2, β2 = −α2 and γ1 = −α1 − α2,
γ2 = α1.

Here, we use the notation in Section 2.2. We may choose the coroots
ν∨ := ξ−1(ν) for ν ∈ ∆. For each x ∈ {α, β, γ}, the Cartan matrices
(⟨x∨i , xj⟩)i,j=1,2 are given by

Π0 :

(
2 −1
−1 0

)
, Π1 :

(
0 1
1 0

)
, Π2 :

(
0 −1
−1 2

)
. (A.2)

Let {exi , fxi , h|i ∈ {1, 2}, h ∈ h} be the Chevalley generators with
commutation relations [exi , fxj ] = δi,jx

∨
i , [h, exi ] = xi(h)exi , [h, fxi ] =

−xi(h)fxi . Further, let {Λxi}i=1,2 be the fundamental weights with re-
spect to Πk, i.e., they satisfy Λxi(x

∨
j ) = δi,j . These weights are explicitly

given by{
Λα1 = −α2

Λα2 = −α1 − 2α2
,

{
Λβ1 = β2
Λβ2 = β1,

,

{
Λγ1 = −2γ1 − γ2
Λγ2 = −γ1

,

and the Weyl vectors are ρΠ0 = −α2, ρΠ1 = 0 and ρΠ2 = −γ1.
We are interested in highest weight Λ such that LΣ(Λ) is an atypical

integrable module. Such highest weights are given by

Π0 : Λ = mΛα1 ,mΛα1 − (m+ 1)Λα2 (m ∈ Z≥0),

Π1 : Λ = mΛβ1 , mΛβ2 (m ∈ Z≥0),

Π2 : Λ = mΛγ2 , − (m+ 1)Λγ1 +mΛγ2 (m ∈ Z≥0).

(A.3)
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Here, we concentrate on the cases of mΛα1 and mΛγ2 , since

LΠ0(mΛα1 − (m+ 1)Λα2) ≃ LΠ1((m+ 1)Λβ2) ≃ LΠ2((m+ 1)Λγ2),

LΠ2(−(m+ 1)Λγ1 +mΛγ2) ≃ LΠ1((m+ 1)Λβ1) ≃ LΠ0((m+ 1)Λα1).

Theorem A.1. There exist the following short exact sequences of g-
modules:

0 → NΠ1(r(mΛα1 + ρΠ0)− ρΠ1 ; r(α2))

→ NΠ0(mΛα1 ;α2) → LΠ0(mΛα1) → 0,

0 → NΠ1(r(mΛγ2 + ρΠ2)− ρΠ1 ; r(γ1))

→ NΠ2(mΛγ2 ; γ1) → LΠ2(mΛγ2) → 0.

Remark A.1. Combining Theorem A.1 with Proposition 5.1, we have

0 → NΠ2(r(mΛβ1 + ρΠ1)− ρΠ2 ; r(β2))

→ NΠ1(mΛβ1 ;β2) → LΠ1(mΛβ1) → 0,

0 → NΠ0(rβ(mΛβ2 + ρΠ1)− ρΠ0 ; rβ(β1))

→ NΠ1(mΛβ2 ;β1) → LΠ1(mΛβ2) → 0.

Proof of Theorem A.1. We show the theorem for Λ = mΛα1 . Let us look
at the structure of NΠ0(Λ;α2). For α := α1 + α2, set eα := [eα1 , eα2 ],
fα := [fα1 , fα2 ]. Then, we have [eα, fα] = α∨. Since fm+1

α1
1ΛΠ0;α2

is a

singular vector with respect to g+Π0
, there exists a homomorphism

ϕ : MΠ0(Λ− (m+ 1)α1) → NΠ0(Λ;α2) (1
Λ−(m+1)α
Π0

7→ fm+1
α1

1ΛΠ0;α2
).

In order to describe the kernel of ϕ, we introduce an auxiliary module

M̄Π0(Λ− (m+ 1)α1) := MΠ0(Λ− (m+ 1)α1)/U(g)fαfα21
Λ−(m+1)α1

Π0
.

By (fαfα2)f
m+1
α1

= fα(f
m+1
α1

fα2 − (m+ 1)fm
α1
fα) = fαf

m+1
α1

fα2 , we have
(fαfα2)f

m+1
α1

1ΛΠ0;α2
= 0, and thus, the map ϕ induces

ϕ̄ : M̄Π0(Λ− (m+ 1)α1) −→ NΠ0(Λ;α2).

The odd reflection rα2 gives the following isomorphism:

Lemma A.1. M̄Π0(Λ− (m+ 1)α1) ≃ NΠ1(Λ− (m+ 1)α1 − α2;α).
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Proof. Since (Λ− (m+ 1)α1, α2) ̸= 0, we have

MΠ1(Λ− (m+ 1)α1 − α2) ≃ MΠ0(Λ− (m+ 1)α1)

(1
Λ−(m+1)α1−α2

Π1
7→ fα21

Λ−(m+1)α1

Π0
).

Moreover, since (Λ− (m+ 1)α1 − α2, α) = 0, we obtain

NΠ1(Λ− (m+ 1)α1 − α2;α)

≃ MΠ1(Λ− (m+ 1)α1 − α2)/U(g)fα1
Λ−(m+1)α1−α2

Π1
.

By combining these isomorphisms, the lemma is proved.

Lemma A.2. The map ϕ̄ : NΠ1(Λ− (m+1)α1−α2;α) −→ NΠ0(Λ;α2)
is injective.

Proof. We choose C-bases of NΠ0(Λ;α2) and NΠ1(Λ−(m+1)α1−α2;α)
as follows:

{
fk
α1

f l
α1

Λ
Π0;α2

}
k∈Z≥0, l∈{0,1},

{
fk
α1

elα2
1
Λ−(m+1)α1−α2
Π1;α

}
k∈Z≥0, l∈{0,1}

. By

fα2f
m+1
α1

= fm+1
α1

fα2 − (m+ 1)fm
α1
fα, we have

ϕ̄(1
Λ−(m+1)α1−α2

Π1;α
) = fα2f

m+1
α1

1ΛΠ0;α2
= −(m+ 1)fm

α1
fα1

Λ
Π0;α2

,

and thus,

ϕ̄(fk
α1
elα2

1
Λ−(m+1)α1−α2

Π1;α
) =

{
−(m+ 1)fk+m

α1
fα1

Λ
Π0;α2

(l = 0)

(m+ 1)fk+m+1
α1

1ΛΠ0;α2
(l = 1)

,

since [eα2 , fα] = −fα1 . The vectors in the right-hand side are linearly
independent, and hence, ϕ̄ is injective.

One can directly check that the cokernel of the map ϕ̄ is irreducible.
Therefore, Theorem A.1 for Λ = mΛα1 holds.

Remark A.2. Motivated by the representation theory of the N = 2
superconformal algebra, Semikhatov and Taormina gave the BGG res-
olutions of atypical representations over the ŝl(2, 1) via certain Verma
type modules called narrow Verma modules in [11]. A narrow Verma
module is isomorphic to NΣ(Λ; τ) by choosing an appropriate parabolic
subalgebra pΣ;τ of ŝl(2, 1) (see [6]). One of the sl(2, 1)-counterparts of
narrow Verma modules is

MΠ0(Λ− (m+ 1)α1)/U(g)eα2fαfα21
Λ−(m+1)α1

Π0
(Λ = mΛα1)

and it is isomorphic to NΠ1(Λ− (m+ 1)α1 − α2;α) by Lemma A.1.
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