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This paper is concerned with the control strate

gy of a robot manipulator system. In designing the 

control strategy, there will be always some differ

ence between the actual behavior of the physical 

system and that predicted by the mathematical model. 

This difference brings the unstable behavior to 

the system. Then, it is important to assure a deg

ree of "robustness" or immunity to uncertainty or 

changes in the system parameters. 

First, in order to implement the robust control, 

the model reference adaptive control theory is 

applied to the linearlized manipulator system. 

Next, through the simulation studies, it is clari

fied that the stability of the system is not lost by 

parameters change but lost under torque constraints. 

Finally, the sensitivity analysis is applied to 

the investigation of the influence of parameter 

difference from nominal values on the dynamics of a 

robot manipulator. Through this analysis, we can 

find which parameters really influence to the 

manipulator control and which do not. 

I. Introduction 

75 

When obtaining the mathematical model of the dynamics with re

spect to a manipulator and constructing an adaptive control system 

based on this model, there arise the modeling errors since the 

system parameters can not be accurately estimated. Even if there 
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exist more or less errors, it is extremely important to maintain the 

stable control performance (robustness) from the practical viewpoint. 

This paper develops some problems in the case where the robust con

trol strategy is applied to a 2-link manipulator. 

The manipulator is a nonlinear dynamical system with the inter

actions among various joints. Applying the non-interaction control 
theory 1),2),3) to a 2-link manipulator, individual outputs may be 

non-interacted and transformed into linear systems. Then, the opti
mal control strategy 3),4),5) can be applied to this linearlized sys

tem, which is one of robust control theories. In order to confirm 

the effects of robust controller, simulatibn studies are performed 

which the manipulator follows a prescribed path. Especially, .-under 
1';1 

torque constraints between each joints, the dynamics of the manipu-

lator has been analized. 

Furthermore, when system parameters of the manipulator which 

has been linearlized by the non- interacting control theory change 

from nominal values, the rates of the effect for the system dynamics 
are investigated by the sensitivity analysis. 6) 

2 I Mathematical Model of the Manipulator 

Figure 1 shows a 2-link manipulator. 

As generalized joint variables 8 i ( i=l, 

2 ), we denote the relative angular 

position between links at i-th joint. 

The masses and lengths of both links 1 

and 2 are relatively ml , ffi2 , ~l and ~2· 

The manipulator mathematical model can 

be written in the form; 1) ,2) 

. 
Me + De + G = 1[ (1) 

where 1[ is the vector of torques acting 

on the joints, M the matrix of inertia, 

y 

X 

1 g 

o the matrix of Coliolis and centrifugal Fig.l 2-link manipulator 

forces and G the vector of gravitational 

torques. 
For the mathematical model of Eq.(l), the estimation of unknown 

parameters can be performed on the basis of measured values of ij and . 
ij. From above results, t~e dynamical equations can be, in practice, 

represented by 
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Me 
':\J 

+ no:: To (2) 

(3) 

Here, it is assumed that.the driving torque ~ of the manipulator is 

the input which can be directly regulated. Let be x =.[ 9, e]T as the 

state vector and y = 9 as the observation vector. Applying the non
interaction control theory 1),2),3) to Eqs.(2) and (3), the following 

control input Lo is obtained. 

(4) 

( col[·] denotes the column vector) 

Substituting To of Eq.(4) into T of Eq.(l), we have 

2 1 • col[ L (AU. - alS. - a S. )]+ M- 15.0 0 9 
i=l ~ 1 0 ~ 

(5) 

where 15. ° = Do - 0, 15. G = Go - G. 

If both dynamical equations of Eqs.(l) and (5) are perfectly 
-1 

consistent, it becomes that M Mo = I, 15. 0=0 and b.G = 0 in E q . (5). 

Letting x = [Yl' Y2 ]T, the following non-interaction system may be 
obtained. 

where 

x=Ax+8u 

Y = ex 

A 8 [ :]. c 

3 I Design of the Adaptive Controller 

(6 ) 

(7) 

(8) 

Applying the model reference adaptive control systems (MRACS) 
techniques 3),4),S) to the manipulator dynamical equation (6), the 

optimal regu~ator is constructed as follows. 

Assume that "d = [Ydl' Yd2 ]T represents a desired trajectory in 
joint space that the manipulator is to track. Then, the dynamics 
may be written by 
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Xd= AdXd+ 

Yd= Cd x d , 

where 

0 I 
Ad = 

-ao -a, 

Bdu d 

0 
Bd = 

ao 

0 
C -d -

I 

(9 ) 

( 10) 

( 11 ) 

Now, using Eqs. (6) and (9), we shall consider the optimal control of 

the manipulator, based on the adaptive following servo control(AFSC) 

technique. Let's define e ~ Y d - Y as the error between the model 

state y and the desired path Yd' Differentiating Eqs. (6) and (9), 

we have, 

x* = A* x* + B* u 

e* = C* x* 

where 

x* [ x e x
d

] 

A 0 0 
A* -C 0 Cd 

0 0 Ad 

C* = [ 0 I 0 ] 

T 

B 
B* 0 

0 

(12) 

(13) 

(14) 

For Eq.(12), the following quadratic cost function 3 ),4) is used: 

J ( u) = r::o (e T Q e + ~ T R ~ ) dt 
o 

(15) 

where Q and R are positive definite 2x2 symmetric matrix. 

The contro 1 u which minimize J ( u) to Eq. (12) is called to be 

an optimal input. The control input is formulated as;3),7) 

u = K x*, (16) 

where the optimal gain matrix K is given by 

K ::: (17) 

where P is the unique positive definite symmetric solution to the 

following Riccati equation; 

*T * * 1 *T A P + P A + Q + P B R - B P = 0 . (18) 

Using Eq. (17), the integral of Eq. (16) under the initial condition 

x (0)= Xd(O)=O becomes as 



Heference 
Model 

x"=A,, x,,+ Bd u" 

IF tC G; tl TIIEN Ks w = 0 
IF Tc < tL THEN Ksw = I 

x 

x 

Fig.2 Construction of MRACS (Optimal Control System) 
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(19) 

From described above, the construction of the model following servo 

system is shown by the block diagram in Fig.2. Here, Ksw will be 

explained later. In order to determine the values of K, the desired 

responses were examined by changing values of both Q and R in Eq. 

(15) on trial and error. At result, we had Q=lx107 and R=l. Also, 

the optimal gain K was obtained as K = [433 28.6 3160 343 15.4]. 

Using K obtained above, simulation experiments are carried out. 

4 I Simulation Experiments 

4.1 Manipulator Dynamics due to the Addition of the Load 

In the case where the load is added to the manipulator, para

meters of the dynamical equation (1) may change and become disagreed 

wi th ones of Eq. (2). Accordingly, since the nonlinear term occures 

for the linearlized equation (6) as the error term, the manipulator 

dynamical equation becomes nonlin'ear one as Eq. (5) . In order to a

chieve the perfect non-interaction control, it is necessary to re

calculate the control scheme by identifying Eq. (2) again. However, 

it is in fact difficult to estimate system parameters because of 

variations in the load. Then, when the nonlinear term occures for 

the linearlized equation, we will examine, through simulation ex

periments, whether the optimal regulator operates in the stable 

state for any extent of the load. 

For the optimal controlled manipulator, we consider that the 

load is added to the endpoint of link 2. In this case, supposed that 

there is no load in Eq. (2), there arise errors between the sys tem 

equation (1) and the model one (2). Thus, when there exist errors, 

we shall examine the effect of the optimal control strategy for the 

manipulator. Here, initial states of the manipulator are 81 = 8 2 = 0 



80 

[rad]. As the desired values, the different ramp inputs are given 

for both link 1 and link 2. Also, loads added to the manipulator are 

mp=l[kg] and 7[kg], respectively. The simulation experiments are 

performed using the model reference adaptive control technique as 

shown in Fig.2. 

Figures 3, 4 and. 5 show responses of the manipulator obtained 

through simulation studies, in which Fig.3 is the case of no optimal 

control and Figs.4 and 5 ones of opfimal control. From these re

sults, the manipulator follows the desired trajectories so far as the 

load of ~=7 [kg]. At this time, the mass of only link 2 .is approxi

mately mc 2=5 [kg] and m2=mc2~=13 [kg] with load 7 [kg]. In spite of 
2.6 times of the weight compared with the case of no load, the favor

able responses can be realized. From this fact, even if there are 

some differences of parameters between the practical model (1) and 

the linearlized one (2), it has been confirmed that it might be pos

sible to keep the robust control of the manipulator. 

LJ.2 Manipulator Dynamics under Torque Constraints 

In the previous section, it was supposed that the motor to reg

ulate the manipulator generated the torque proportional to the input 

signal. However, from the practical viewpoint, the manipulator is 

subject to bounds on the available torque at each joints. In this 

section, the effect of the torque constraints is examined through 

simulation studies. 

As shown in Fig. 4, it was obtained that the maximum torque to 

regulate the manipulator is, with no load i.e. ~=O[kg], 85.3[N·~]. 

From this fact, it was assummed that the maximum torque was limited 

to 1[ L = 80.0 [N 'm] . In this case, the block diagram of the manipu

later is shown in Fig. 6. The responses and the torque variations, 

concerning with both the link 1a and 2a, are shown in Fig.7(a) and 

(b) . From the dynamics of both links la and 2a in Fig. 7, it can be 

understood that there occures vibration on the response of the mani

pulater, even if the maximum torque is s lightly limited. As the 

cause that the system becomes unstable, when the torque 1[ is limit

ed, it may be considered to be windup phenomenon9) of the integr~
tor. This phenomenon is explained as follows. When the torque 1[ 

takes the limit, the torque 1[ becomes constant and doesn't change. 

On the otherhand, the error e is added and stored to the integrator 

K. / s as an input. Thus, when the error e takes the 
~ 

the torque 1[ can not change at once because of the 

storred in the integrator Ki/s. Accordingly, when 

inverse sign, 

extra quant:ity 

the torque 1[ 



Fig.3 Response of manipulator (No optimal control) 
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Fig.4 Response of manipulator-l (~=l[kg]) 
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Fig.S Response of manipulator-2 (~=7[kg]) 
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takes the upper or lower limit, the amplitude of the controlled vol

ume y increases and causes the oscillation in the worst case. Then, 

such phenomenon is called to be windup phenomenon of the integrator. 

As the simplest method to suppress the windup phenomenon, 

there is a method to hold the content of the integrator while the 

torque T takes the limit. This strategy is, as shown in Fig.2, to 

set that Ksw= 0 if Tc::: TL and Ksw= I if Tc < TL' In order to con

firm the effect of this method, the simulation exp.eriment has been 

performed under same conditions as Fig.6. Figure 7 shows both (a) 

responses of link 1 and link Z- and (b) the torques variations, in 

which link la and link 2a are the case of oscillation under the 

torque constraints and link 2a and link Zb the case with the windup 

countermeasure. From results in Fig.7 for the optimal control sys
tem including the windup countermeasure, the responses of the mani

pulator can be improved to some degree. 

From simulation experiments described above, it has been clar

ified that the robustness of the optimal control system may be lost 

under the torque constraints of the electric-motor. 

5 I Sensitivity Analysis 

5.1 Sensitivity Model 

For the sensitivity analysis, the parameters uded here are 

listed in Table 1. 

Table 1 Numerical values of link parameters 

Parameter values Parameter values 

Pl=rncl S.O[kg] Ps=aO 100.0 

PZ=rncZ S.O[kgJ P6=al 14.14 

P3=£'cl O.S[kgJ P7=>" 100.0 

P4=£'cZ O.S[kgJ 

Now, let be xl = 81 , X z = 81 , x3 = 8Z and x 4 = 8Z' Also, denote that 

T 
x = [ xl' x z' x 3 ' x 4 ] 

T 
u = [u l ' u Z ] , 

P [P1'PZ'······'P7] 
T 

and A = mIl mZ Z - mZ1 rn12 . 

Then, using parameters as shown in Table 1, a mathematical model 

of Eq. (S) can be represented by the following state equation, 
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Manipulator 
Mil +' D ,} + G = T 

o 9 

Fig.6 Block diagram of non-interaction control system, 
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(1) Torques developed at manipulator joints 

Fig.7 Responses of manipulator-3 
(Improvement of windup phenomenon) 
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x=f(x,u,p) 

x 2 

[-a11PSx 1 + (b11-a11P6)x2 - a 12PSx 3 + (b12-a12P6)x4 

+ a11P7ul + a 12P7u 2 + c 1 ] / A 

X4 
[-a21PSx l + (b21-a21P6)x2 :.. a 22PSx 3 + (b22-a22P6)x4 

+ a21P7ul + a 22P 71i 2 + c 2 ] / A 

By the way, the solution of Eq.(20) is, in general, given by 

. (20) 

xn (t) = q, ( t, Pn ) , (21) 

where the suffix n represents the nominal value. From Eq.(21), the 

vector sensitivity function Z is defined as,6) 

. a x 
ZJ = (--) , 

a p. n 
J 

j=1,2,·····,7. (22) 

Assuming that u is independent on p and differentiating Eq.(20) 

partially with respect to p, we obtain the sensitivity equations in 

the form, 

d f . d f i j = (_) ZJ + (-.-) 
d x nap. n 

J 

j =1,2,······,7 (23) 

where (af/ax) is the Jacobian matrix evaluated on the nominal 
n 

solution. 

The initial state for Eq. (23) is zoj. Also, the initial one 

of Eq. (20) is assumed to be xO(O)=q,(O,Pn ). Letting Xo = 0 at to=O, 

the initial condition of the sensitivity function is zoj = O. 

In addition, we shall consider the differential variation ox 

of state variables due to the parameter variation, 

o P = P - Pn . (24) 

Then, the variation of state variables becomes, 

6x(t) = q,(t,P
n

) - q,(t,p). (2S) 

Using Taylor's expansion theorem, the first approximation of the 

variation 8 x may be written 

d x 
ox(t) 'V (-) 6p 

a p n 
(26) 
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From Eq. (26), we can find the differential variation 0 x of state 
variables due to the parameter variation. 

T The magnitude of the output o(!l) = [ 081 , 082 1 , which fluctuates 

due to each parameters variation op j (j = 1,2,·····, 7) , can be ob

tained, using Eqs.(22) and (26), as 

7 . 
o(!l) = I zJ Ope . (27) 

j=l J 

5.2 Simulation Experiments 

Through simulation experiments, the effect has been examined 

that the slight variation of each parameters gives on the response 
of the manipulator. The sensitivity analyses were performed by 

selecting 5% variation of any parameters from their nominal value. 

For parameters mc1 and mc 2 of the manipulator, the responses of out

put angle 0 (!l) are shown in Figs. 8 and 9, which were obtained from 

the computation of Eq. (27). In these figures, the response 08 1 of 

link 1 in Fig.9, due to the parameter mc2' fluctuates more than one 
in Fig.8. Since the maximum value is 08 1=7.13 x lO- 2 [radl, it becomes 

1081/811=0.0713 where the final moving angle 81=1.0[radl. 

2.08rx1~rr~2 __________________________________________________ ~ 

!f\ /Llnkl 

0.00 1-' \.J.J../---------____ --l 
\ 
\ "".LLink2 . 

-2.08 ~I -----------,-----,------

o 2 4 6 8 10 
Time(s) 

Fig.8 Response of o(!l) due to the variation of mc1 

7.13,x1_rr-_2 _____________ -... 

/Llnk2 ::Q ('. 
~ 0.00 

,~ -
~ }! 
000 

;.If-Link 1 

-7.13 V I I I 

0 2 4 6 8 10 
Time(3) 

Fig.9 Response of o(!l) due to the variation of m
c2 
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.. 
I:!::I 

;;; 4.00 
Go 

2 3 4 
Pi 

5 6 7 

Fig.10 Comparison of parameters influence 
on the output 8 1 

B.OO ~~----------------. 

.. 
Cb 
;;; 4.00 
Go 

2 3 4 
Pi 

5 6 7 

Fig.11 Comparison of oarameters influence 
on the output 8 2 

Accordingly, it has the error of about 7.1%. Similarly, we examine 

the rate of the effect that other parameters variation influences 
on the response of the manipulator. Letting 9 s be the steady state 

value, the maximum values of 189/9s I are given by 

I 8
9
9
s 
I I z j I max I 8 P j I 

I 9s I 
(28) 

where 18 Pj I = 0.05 Pj . The results of the computation for Eq. (28) 

are, as histograms, shown in Figs .10 and 11, in which one column 
represents a maximum variation in the nominal step response of 89 

scaled by the steady state value 9 s • Figure 10 shows each parame

ters influence on the output response 81 of link 1, and Fig. lIon 

the response 82 of link 2. 
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From both figures, we consider the effect of variation on mcl' 

me2 , tel.and te2 to the manipulator. Concerning with link 1 in 

Fig.lO and link 2 in Fig.ll, it may be noted that the effects of 

mc 2 and tc2 are larger than on~s of mcl and tcl. Also, it can be 
understood that, when each parameters fluctuate, the rate of effect 

for the output angle e is stronger on link 2 than on link 1. 
Next, we notice the effect of each parameters for each links. 

It can be seen that, in link 1 of Fig.lO, a parameter mc2 is the 

most effective on the dynamics__ The rate of the effect that the 

variation of nonlinear feedback parameters ao, aI, A influences on 

the ~esponse of the manipulator is almost the same degree for both 
links 1 and 2. For that reason, with respect to link 2 in Fig .11, 

as the effect of system parameters mcl' mc2' tcl and tc2 is small, 

the influences of parameters ao, al and A become relatively large. 

Especially, among 7 parameters of link 2, the most effective para

meter is ao. The effect of ao is about 2.5 times, comparing with 

mc2 which is the most effective among parameters mcl' mc2' tcl and 

tc2· 

6. Conclusions 

In this research, we obtain the followings. 

(1) In order to ascertain the varidity of the optimal control 

strategy for a manipulator, in which the optimal gain K was deter

mined under the assumption of no load, the simulation exper~ments 

had been performed under the condition that the load was added at 

the endpoint of the manipulator. Consequently, even if the load 

was about 1.5 times for the link weight, the stable responses were 

obtained. For that, it has been clarified for this system to con

struct the robust optimal control system. 

(2) Under the torque cons traints, which means the case where the 

torque needed to control the manipulator exceeds the maximum limit 

of the joint torque, the system generates oscillation and unstable 

state which is called windup phenomenon. In this case, ~t was con

firmed that the response was improved to a certain degree by a 

windup countermeasure. However, it was clarified that the robust

ness of the optimal control system was generally lost under torque 

constraints of the joint motor. 

(3) Through the sensitivity analysis, it has been examined that 

the parameters variation influences on the response of the manipu-
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lator to what extent. At result, 

parameter of link 2 influenced on 

link 1 and the response of link 1 

variation more than one of link 2. 

it was verified that the system 

the response more than ones of 

was sensitive to the parameters 

References 

(1 ) T.Yoshikawa, Multi-variable Control, 

(2) 

(3) 

Korona Compo 

E.Freund, Int. 

K.Furuta et al 

Compo 

J. Robotics Research, 
2, Mechanical Control 

Computrol, No.9, 47, (1985) , 

1-165, 78, (1982) 

Theory, 102, (1984), Ohmu 

(4) T.Fujii, Robustness of Optimal Control, Computrol, No.13, 39, 

(1986), Korona Compo 
(5) K.Furuta et alI, Trans. SICE, 18-1, 8, (1982) 
(6) M.J.Vilenius, J. of Dynamics System Measur. and Cont., 105-1, 

77, (1983) 

(7) R.E.Kalman, Bol. Soc. Mat. Mex., 5, 102, (196) 

(8) H.Kimura et al 3, PC-9801 Control System Design Programming,113, 

(1985), Nikkan Kogyo Shinbun 

(9) T. Kawaguchi , Robust Control Iron Steel Comp., Computrol, 13,117, 

(1986), Korona Compo 


