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( Received Feb.lO, 1988 ) 

This research is concerned with the modeling and con­

trol of a double-walled thermostatic container. This con­

tainer is an important element of a device which measures 

the difference of pressures between two points in tunnels. 

The principle of this measuring method is comparison be­

tween constant pressure in the container and external 6ne 

at two points. (1) In order to obtain the exact constant pres­

sure, the temperature in the container must be controlled 

at a high accuracy within 10- 3 °C. In this paper, analytical 

and experimental studies are developed for both modeling 

and control of temperature dynamics in the container. 

First, several parameters of a bilinear control system 

can be estimated using the least-squares and the correlation 

-regression algorithms from input-output measurements. 

Using these parameters, the temperature in the container 

can be estimated. Next, the ambient air temperature influ­

ences the accuracy of the temperature control in the con­

tainer. In order to eliminate this influence , a feedfor­

ward controller is added to regulate the output of the 

heater according to the atmospheric temperature. The ex­

perimental results show the good regulation. 

I. Introduction 

125 

This paper develops both the estimation of the controlled tem­

perature and the control strategy to keep at a constant tempera­

ture with high accuracy for a double-walled thermostatic container, 
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which is one of the most important elements in the measuring device 

of the barometric differences. (1) (2) Now, if we demand the accuracy 

within ±O.2Pa on the measuring device, it is necessary for the 

container to be kept at a constant temperature with the accuracy of 

lO-3 o C. For this purpose, we already proposed a thermostatic 

device which consists of the double-walled container. In this 

device, the space between the inner and outer casings, which is 

called as the intermediate space, can be thermostated at 50°C by 

the on-off regulation of the heater. At a result, the air tempera­

ture in the inner container, which is called as the inner space, 

can be kept constant with high accuracy of lO-3 o C. 

In the research on the trial device already implemented ,(2) each 

parameter values for the inner and outer containers have been 

determined through the transient response experiments, from which 

the theoretical analysis has been performed with respect to the 

variation of the temperature in the intermediate space. However, 

these experiments require much trouble and also there exists a 

fairly difference between theoretical and experimental values. 

In this paper, a parameter estimation method is presented which 

determines the parameters for both the inner and outer containers 

using all informations contained in the input and output data of 

the temperature control system. Based on the estimated parameters, 

the states of the temperature in the intermediate and inner spaces 

can be estimated precisely. 

Next, one of the problems is that the thermostatic. container is 

always subjected to the effect of the ambient temperature. That is, 

due to the fluctuation of the ambient temperature, the center posi­

tion of temperature oscillation in the intermediate space changes 

in the steady-state. Then, the temperature characteristics in the 

inner space suffers a harmful influence. In order to avoid this 

unfavorable effect, the feedforward controller is equipped with 

this thermostatic control system to regulate the output of the 

heater according to the variation of the atmospheric temperature. 

From the experimental results, it is seen that the variation of the 

steady-state oscillation due to the effect of the ambient tempera­

ture can be taken away and also a favorable thermostatic charac­

teristics can be obtained. 

2, Structure of Thermostated Device and Block Diagram 
2. 1 Structure The structure of thermostated device is shown 

in Fig.l, which consists of a double-walled container. The outer 
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Fig.l Structure of a Double-Walled Thermostatic Device 
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casing is made of the stylene form and the inner one the special 

glass covered by the stylene form. The intermediate space. between 

two casings can be thermostated at 50°C by the on-off regulation of 

the heater. From this regulation and heat transfer characteristics 

of the inner vessel, the inner space can be structurally kept at a 

constant temperature with higher accuracy, comparing with the 

intermediate space. In the intermediate space, the small fan to 

uniform the temperature in the space, thermometer and the pressure 

transducer to detect the difference of the pressure between the 

ambient air and the one in the inner space are settled. Further­

more, in order to eliminate the effect of the ambient temperature 

for ones both in the intermediate and inner spaces, the output of 

the heater can be precisely controlled through the detection of the 

ambient temperature by the use of a platinum temperature sensor. 

2.2 Block diagram The principal symbols are denoted as follows; 

heat capacities of inner and intermediate spaces 

heat transfer coefficients of outside and inside con­

tainers 

G1,GO ; transfer functions of inner and intermediate spaces 

~el,~eO ; difference of temperature from the reference states 

in the inner and intermediate spaces 

~q total heating value generated from electric heater and 

fan etc. 

The transfer functions GO(s) of the intermediate space and Gl(~) 

f th . d by (2) o e ~nner space are represente 
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2 
cOcls +(cOol+clol+cloO)s+oOol 

and 1 

Also, the transfer function G (s) of the sensor is given by s 
K 

(1) 

(2) 

G ( ) s (3) 
Ss =l+Ts 

s 
where K is a temperature coefficient of the sensor and T a time s s 
constant of the sensor. 

Letting the desired temperature (50°C) as the reference state, 

the relay element in the case of 8 as =7.9°C where eas presents the 

reference ambient temperature of this device is shown as Fig.2(a). 

For the relay element in Fig.2, let 2h be a hysteris~s width, Z an 

input amplitude and 2A an output magnitude where A=ll.lw. If the 

atmospheric temperature rises 68 a more than 8as ' it can be considered 

that the relay element becomes non-symmetric as shown in Fig.2(b). 

As a result, the center position of the steady-state oscillation of 

the temperature in the intermediate space shows a rizing trend and 

then the accuracy becomes worse. In order to eliminate the effect 

due to the variation of the atmospheric temperature, it is necessary 

to reduce the output of the heater only by 200~8a' as shown by the 

broken line in Fig.2(b). For this purpose, the feedforward control­

ler may be supplemented to regulate the output of the heater by the 

previous detection of the atmospheric temperature. Figure 3 repre­

sents the block diagram with respect to the thermostatic device 

with the feedforward controller, which is shown in Fig.l. 

For the convenience of analysis, the simplified block diagram 

is shown in Fig.4. In Fig.4, y (t) is a random noise which 

generates mainly through the stirring of the air due to the fan 

in the intermediate space. Also, K is the gain constant of the 

amplifier. 

3. Parameter Estimation 
Using Eq.(l), the dynamic model representing the relation be­

tween 68 0 and 6q may be written by the following differential 

equation, 

d
2 ~8 a a a d~8 a a a 
__ 0 + (~-r-l~) __ 0 + --.LQ 68 - ~ (~+ ~6q) = KW. (4) 

dt 2 c 1 Co Co dt clc O 0 Co dt c 1 

Here, it is assumed that w( t) is a white Gaussian noise with 
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zero mean, which is made of yet). Define the state variables by 

d.6.8 0 1 
cit - Co .6.q = x 2 , .6.q = u. 

The equation (4) is rewritten by the state equation, 

(5) 

where the model parameters are given by all=O; a 12=1; a 2l=-oloO/ 

(clc O); a22=-(ol/cl+ol/cO+oO/cO)/cO; kl=l/c O; k 2=ol/(c l c O)-(ol/c l 

+ol/cO+oO/cO)/c O; dl=O; d 2=K, and a is a constant. 

To estimate the unknown system parameters from the input-output 

measurements, the input-output relation is presented in the follow­

ing. Let.6.T be the discretizing interval. The system model (5) 

can be represented by a discrete-time state variable model, 

(6) 

A.6.T A.6.T A.6.T A.6.T where ¢ll=(Ale 2 -A 2e 1 )/(AI-A2); ¢12=(e 1 -e 2 )/(A 1-A2); 

A.6.T A.6.T A.6.T A.6.T 
¢21=AI A2(e 2 -e I )/(Al-A2); ¢22=(A l e I -A2e 2 )/(AI-A2); Dl 

F l =-K(-¢11+1)/(A 1A2); F 2=K¢12' and where Al,A2=a22/2±/a~2+4a21/2. 

Letting the transfer function of the temperature sensor be ex­
-Ls pressed by time delay element e ,and also ]J an integral number 

of the value L/.6.T, then the output y(k) is given by 

y(k) = [G 0] x(k-]J) +v(k), 

where G is the gain constant as 

G = KK / 11 +T ~ ( 2 Tf / T) 2 . s 

(7) 

(8 ) 

Here, T is the period of the temperature oscillation in the inter­

mediate space. Also, v(k) in Eq.(7) represents the observation 

noise, which is a zero mean white Gaussian random sequence. The 

input signal u(k) to the intermediate space is assumed to be un­

correlated with both w(k) and v(k). 

Equations (6) and (7) yield the input-output model (Appendix A) 

y(K+2) = a 2y(k+l) + aly(k) + b 2u(k+l-]J) 

(9) 
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where a 2=¢11+¢22; a 1=¢12¢21-¢11¢22; b 2=GD 1 and b1=G(¢12D2-¢22Dl)' 

~(k+2) is a composite noise term containing both the state noise 

and the measurement one. 

The unknown system parameters aI' a 2 , b 1 and b 2 in Eq.(9) are 

estimated based on both the experimental data u(t) and y(t), in 

which u(t) is the input signal with a periodic pseudorandom 

binary sequence and y(t) the output signal representing the 

sample behavior of the temperature variation in the intermediate 

space. The least-squares algorithm and the correlation-regression 

1 . h d . h k (3) (4) N a gor1t m are use to est1mate t e un nown parameters. ow, 

the correlation functions with limit in the mean-square sense are 

defined as 

N 
~ (j) = lim ~ L y(k)u(k-j) 

yu N-+oo k=1 
N 

~uu (j) = lim ~ L u(k)u(k- j) 
N -+00 k=1 

where N is the number of input-output observations. 

(10) 

If Eq.(9) is multiplied by u(k+2-j), then time correlations on 

both sides yield, 
N 

~ (j) = ¢ (j_l)Ta + ¢ (j_l_jJ)T b + lim ~ I ~(k+2)u(k+2-j), 
yu yu uu N-+oo k= 1 

( 11) 

where a
T

=[a1 a 2 ], b
T =[b1 b 2 ], ¢ (j_1)T=[~ (j-2) ~ (j-1)] 

yu yu yu 
and ¢ (j -1- jJ ) T = [~ (j - 2 - jJ) ~uu (J' -1- jJ) ] . uu uu 

Supposing that u and ~ are uncorrelated each other, we have, 
N 

lim ~ I t,: (k+2)u(k+2- j) = 0 . (12) 
N-+oo k=l 

For j=I,2,···,n,n+l,···,2n, Eq.(II) can be written as 

N=MP, (13) 

where N T = [~yu(l) ~yu(2) ~yu(n) ~yu(n+l) .... ~yu(2n) 

pT=[aTb T ] 

¢ yu(O)T ¢ uu(_jJ)T 

¢ yu (1) T ¢ uu (1- jJ) T 
I 

M ¢ ;u(n)T ¢ uu (n- jJ) T 
¢ (n+l) T ¢ (n+l-jJ) T yu uu 

¢ yu (2n-l) T ¢ (~n-l-jJ)T uu 
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The least-squares parameter estimates are given by(3) 

P = [MTM] -lMTN (14) 

where ~ denotes the estimated value. (Appendix B) Through the 

calculations of Eq.(14) based on the data of both the input u(k) 

and the output y(k) over a finite time interval, the unknown parame­

ters a 1 , a2 , b 1 and b 2 can be determined uniquely, which are com­

posed of system parameters c 1 , cO' 01 and 00' 

4. Analytical Results 
As illustrating examples, the following experiments have been 

performed for the estimation of unknown system parameters, in the 

cases where the atmospheric temperatures are goC and 16°C. The 

width of hysterisis in the relay element was set as h=131mV, and 

the output of the heater was 18.3w at goC and 18.3w at 16°C. In 

the input-output measurements, u(t) and yet) were discretized at 

the interval of O.ls by the AID converter. The number of data was 

n=2,000. 

Using these measured data, the unknown parameters have been 

estimated according to the method described in Chapter 3. Figures 

5 and 6 show the estimated results in the case where the atmos-
'" '" pheric temperature is goC. The estimated values a 1 and a2 are 

shown in Fig.S and bi and bi in Fig.6, respectively. Here, bi and 

bi in Fig.6 are defined as 

(15) 

where G is the gain constant determined by both the amplifier and 

the sensor, which is obtained from Eq.(8). 
A 

From Figs.S and 6, the estimates a l and a 2 show a very good con-

vergence to a constant value, respectively. However, the estimates 

bi and bi do not necessarily show a good convergence, although they 

have the tendency to converge to a constant value, respectively. 

It can be considered that this result can be caused by the follow­

ing reasons. That is, the atmospheric temperature could not be 

held constant precisely, the heater output was always fluctuating 

slightly by the action of feedforward controller and the number of 

measurement data was not extracted sufficiently, etc. In Figs.S 

and 6, the broken lines are values obtained through the individual 

experimental studies as before .(1) 

The estimated model parameters with the correlation-regression 

method are 
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A -1 
a 1 = -9.820x10 ~2=1.980, hi =-1.058x10- 4 

b2 = 1. 201x10- 4 

These values are the average of data in the time interval, 160s~t~ 

200s. Using parameters ~l' ~2' hi and h2 obtained here, the temper­

ature characteristics of the stationary self-oscillation in the 

intermediate space are analyzed by the describing function method. 

As a result, it can be seen that the period of self-oscillation is 

10.9s and the input amplitude to the relay element 2718 mV, from 

which the temperature amplitude in the intermediate space is 0.11 °C. 

On the other hand, the experimental results show that the tempera­

ture deviation is 0.12°C and the period is 12.0s. Comparing with 

the theoretical results obtained by the parameter estimation, it 

follows that both the period and the temperature deviation agree 

with the experimental ones. 

In the case where the atmospheric temperature is 16°C, the esti­
mated parameters are, 

A -1 
a 1 = -9. 907x10 ~2=1.989, hi =-l.008x10- 4 

A I -4 
b 2 =1.091 x lO • 

From these results, it follows that both the period and the temper­

ature in the intermediate space agree with the experimental ones. 

These facts imply a good correspondence between the experiment of 

the practical device and the analysis of the system model establish­

ed here. 

5. Feedforward Control Experiments 
In order to eliminate the shift of the center position in the 

stationary oscillation of the temperature due to the variation of 

the atmospheric temperature, the following two experiments have 

been carried out using the thermostatic device of Fig.1 equipped 

with the feedforward controller. 

First, to ascertain the improvement of the characteristics by the 

addition of the feedforward controller, the experiment has been 

performed at the atmospheric temperature 19°C. The measurement 

results of both y(t) and u(t) are shown in Fig.7. Figure 7(a) 

shows the controlled state of the temperature in the intermediate 

space and (b) the output of the heater, in which at t=t f the feed­

forward controller begins to operate. From Fig.7, before the 
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feedforward controller starts to work (t ~ t f ), the output of the 

heater becomes non-symmetric and also the steady state oscillation 

in the intermediate space non-symmetric. Then, the center position 

shifts only to YO=l.lv (O.04°C as the change of the temperature) 

from the reference one. However, it follows that, after the feed­

forward controller starts to work at t=t f , the steady state oscil­

lation in the intermediate space becomes symmetric and then the 

shift of the center position may be eliminated. Furthermore, in 

this experiment, the amplitude of the temperature in the intermedi­

ate space may be reduced from O.lSoC to O.OBoC due to the addition 

of the feedforward controller. Consequently, it is seen that the 

control accuracy can be improved by the feedforward controller. 

Next, we examine the controlled temperature in the intermediate 

space in the case where the ambient temperature is slowly changed 

from 9°C to 19°C, under the condition that the feedforward control­

ler is operating. Figure B shows the sample behaviors of yet) and 

u(t) in both cases; (a) after beginning and (b) after l3min .. As 

a result, even if the atmospheric temperature changes, the shift of 

the center position in the steady state oscillation can not be 

admitted in the intermediate space, as shown in Fig.B. Therefore, 

it is ascertained that the feedforward controller could operate 
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efficiently in this experiment. The average values of the temper­

ature amplitude and period in the intermediate space are 0.12°C and 

12.0s for the case that the atmospheric temperature changes from 

9.SoC to 10.SoC; 0.08°C and 12.0s for the change from 14.5°C to 

lS.0°C; 0.07°C and 12.0s for the change from 19.5oC to 19.8°C, res­

pectively. Accordingly, these results satisfy sufficiently the 

control accuracy for the thermostatic container. However, since it 

is, at present, difficult to measure precisely the amplitude of the 

temperature in the inner space, we could not give the positive evi­

dence of the experimental results. 

6. Conclusions 
For a double-walled thermostatic container made on trial, which 

is one of the most important elements in the measuring device of 

barometric difference, the system identification from input-output 

measurements has been developed and the state of the temperature in 

the container clarified from both theoretical and experimental view­

points. Furthermore, in order to eliminate the effect to the con­

trol accuracy of the temperature both in the intermediate and inner 
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spaces by the variation of the atmospheric temperature, a feedfor­

ward controller has been implemented to regulate the sample temper­

ature and the efficiency ascertained through the experiment. The 

results obtained above can be summarized as follows. 

(1) The unknown parameters of a bilinear control system with re­

spect to the thermostatic container.has been estimated using the 

least-squares and the correlation-regression algorithms. The theo­

retical results, obtained through the estimated parameters, with 

respect to the temperature amplitude and period in the intermediate 

space, have shown the good consistency compared with the experi­

mental ones. From this result, it has been shown that the state of 

the temperature regulation can be estimated precisely.both in the 

intermediate and inner spaces. 

(2) Though the steady state oscillation of the temperature in the 

intermediate space becomes non-symmetric due to the variation of 

the atmospheric temperature, the shift of the center position in 

the steady-state oscillation can be eliminated by the addition of 

a feedforward controller. From this result, the effect of. the at­

mospheric temperature in the inner space can be taken away and the 

temperature regulation may be achieved with high accuracy. 

(3) Using the temperature amplitude in the intermediate space ob­

tained above, the temperature amplitude in the inner space can be 

estimated to be about 1x10- 4 °C to 2x10- 4o C. 

From described above, it has been shown that the estimation al­

gorithm applied here has been effective to a simulation model of a 

double-walled thermostatic container and also the addition of the 

feedforward controller has been successfully applied for the tem­

perature regulation of the container. 
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[Appendix A] Derivation of Eq. (9). 

From Eq.(6), it follows that 

(AI) 
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x Z (k+1) =¢21 X I Ck ) +¢22 X Z(k) +D 2u(k) +FZw(k). 

Using Eqs.(AI) and (AZ), we obtain 

xl (k+2) = ('P
11 

+ ¢2)x1 (k+l) 

+ (¢12¢21 - ¢JJ¢22)x1 (k) +D1u(k+l) 

+ (¢ 1 2 D Z - ¢ 2 2 D 1) u (k) -+- F 1 w (k+ 1) 

+ (¢12 F 2 - ¢22 F I)w(k) . 

From Eq.(7), it becomes, 

y (k) = Gx 1 (k - ~) + v (k) . 

Using Eqs.(A3) and (A4), we obta~~ 

y(k+2) = (CPll + ¢22)yCk+l) 

+(¢12¢21 - ¢11¢22)yCk) +GDlu(k+l-j..J) 

+G(¢l2 D2 - ¢22Dl)uC~-fJ) +GF 1w(k+l-fJ) 

+G ( ¢ 1 2 F Z - ¢ 2 2 F 1 ) w k - fJ) + v ( k + Z ) 

-(¢11 +¢22)V(k+1) - (¢12¢2l - ¢11¢22)V(k) 

In Eg. (AS), Letting be 

(A2) 

(A3) 

(A4) 

(AS) 

¢ ] 1 + ¢ 2 2 = a z; ¢ 1 2 ¢ 2 1 - ¢ 1 ; ¢ 2 2 = a 1; GD 1 = b 2; G ( ¢ 1 2 D 2 -¢ 2 2 D 1 ) 

=b 1 ; GF 1w(k+l-w) + G(¢].F Z - ¢22 F l)w(k-fJ) +v(k+2) - (¢11 + ¢22) 

xv(k+l) - (¢12¢21 - ¢11 ¢22)V(k) = t;:(k+2), 

we obtain Eq.(9). 

[Appendix 8] Derivation of Eq. (14) 

Let the criterion be chosen as to minimize the loss function, 
2n Z T 

V = I e (k) = e e . (BI) 
k=O 

An Equation error is defined, 
A A 

e = N - N 2n , (BZ) 

which is an error between the new observation ¢Uy and its prediction 

by the model. The minimum of loss function (BI) is found through 

the calculation of 

dV / dP = 0, (B3) 

with respect to the parameters P. Using Eq. (13) and (B2), we ob­

tain the least squares parameter estimate Eq.(14). This estimate 

is consistent in mean square sense. 


