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This paper is concerned with an analytical study of the 

dynamics of a plunger-type pneumatic pressure control 

valve, already proposed by the authors, which maintains a 

constant secondary pressure lower than the primary pres­

sure, in spite of the change of the primary pressure or 

the fluctuation of the load connected with this valve. 

At first, the dynamics of the secondary pressure and the 

plunger movement, caused by changes of the primary pres­

sure and the load, is analyzed by means of the state vari­

able method. Furthermore, for improvement of responsibi­

lity, the conditions for adjusting system parameters are 

found through the root locus method. Next, the sensitivi­

ty analysis is applied to the investigation of the influ­

ences of parameter variations on the dynamics of the con­

trol valve. By means of simulation studies of sensitivity 

functions, we have shown which parameters are really sig­

nificant and also which are not. Throughout these analy­

tical and simulation studies, guidelines for improving 

the performance of a plunger-type pressure control valve 

are obtained. 

I, Introduction 
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The plunger-type pressure control valve is a pneumatic control 

valve which holds a constant pressure by controlling the position 

of the plunger equipped with a spool valve instead of the diaphrarn, 

to improve the characteristics of the diaphram-type pressure 

reducing valve used widely. The authors(l) had already made this 

control valve on trial, and examined the performance, especially, 
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the static characteristics from the theoretical and experimental 

viewpoints. As a result, we had obtained both the excellent pres­

sure-flow characteristics and the pressure-adjustment one, compar­

ing with the diaphram-type control valve. In addition, it had been 

shown that the regulation was easy to obtain a prescribed pressure 

in this valve. 

In this paper, we present the analytical study for the dynamics 

of a plunger-type pressure control valve by means of the state 

variables method, in which the dynamic behaviors of both the second­

ary pressure and the plunger movement, caused by changes of the 

primary pressure and the load, are analyzed. Furthermore, the 

sensitivity analysis(2) (3)is applied to the investigation of the 

influences of parameter variations on the dynamics of the control 

valve. Throughout these studies, the guidelines for improving the 

performance of a plunger-type pressure control valve are shown. 

Both the structure and its principle of action of the plunger­

type pressure control valve (which is simply called the control 

valve, hereafter) were already explained in details(l). Then, we 

will give only the simple explanation for the principle of the con­

trol valve, which is necessary to understand the contents of this 

paper. The schematic diagram of the control valve is shown in 

Fig.I. If the secondary pressure (the prescribed pressure) P2 may 

be changed by the load fluctuation, the change of the pressure is 

transmitted to the bottom of the plunger through the oil-filled 

3 ~ 

Oil 

Fig. I Sc.b.ematic diagram of Plunger-type pressure control valve 
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pipe (feedback pipe) and the plunger goes up or down from the equi­

librium position. Hence, as the spool valve of the plunger becomes 

extended or narrow quickly and then the volume of the air supply 

increases or decreases, the secondary pressure Pz returns to the 

prescribed one. Thus, this control valve has the function which 

maintains a constant secondary pressure. As the alteration of the 

command pressure can be determined by selecting a moderate counter 

weight on the top of the plunger, it becomes possible to realize 

a remote control by using the moderate alterating mechanism of the 

counter weight. The pressure-adjustment sensitivity is always 

raised by giving the slow rotation to the plunger. Principal 

symbols used here are listed below: 

f 

Z bottom area of plunger m 
2 openning area of spool valve m 

2 openning area of outlet throttle valve m 

coefficient of feedback pipe mS/(N·s) 

mass flow rate of air through spool valve kg/s 

mass flow rate of air through outlet throttle valve 

mass of movable portion kg 

pressure acted to the bottom of plunger MPa 

primary pressure MPa 

secondary pressure MPa 

output pressure of outlet throttle valve MPa 

volume of air chamber at the secondary side m3 

friction coefficient of movable portion N·s/m 

flow coefficient of plunger port 

flow coefficient of outlet throttle valve 

2. Description of the System Model 

kg/s 

With respect to the secondary pressure P 2 and the plunger dis­

placement x as shown in Fig.I, the dynamics of each portions can be 

represented by linearized equations, taking the small deviations 

around stationary states into consideration. 

At first, the plunger shifts from x to x+~x due to the small 

deviation·~PO of the pressure acted under the bottom of the plunger. 

Hence, associated with the dynamics of the movable portion, the 

following equation yields, 

2 M d (~x) + f d(~x) = A ~P (1) 
dt2 dt 0 0 

Nextly, from the material balance of air, the following relation-
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ship holds, 

d(~P2) 

Kl dt 2 + ~P2 = K2~x - K3~P3 + K4~PI - KS~c2A2 (2) 

Furthermore, it follows that the relationship between the displace­

ment of the plunger and the oil pressure holds as 

d(~x) = ~(~P - ~Po). 
dt AO 2 

(3) 

In Eqs.(l) to (3), "~" denotes the small deviation from the station­
ary states. Also, KI ~ K5 are coefficients determined by mass flow 

rates of air G1 , G2 , pressures PI' P2' P3 , and the openning areas 
of spool valve or throttle valve AI' A2 . (see Appendix) 

Here, in the case, where the ratio between the primary pressure 
PI and the secondary one P2 satisfies P2/PI ~ 0.528, the velocity of 
a flowing air becomes supersonic. Then, it must be careful about 

the treatments of KI to KS. In this study, we treat only the dy­

namics in the case where the velocity of flowing air is subsonic, 

that is, P2/PI> 0.528. 

In order to express the system in state variable form, the 

state vector can be taken as 

xl ~x(t), x 2 
. 
xl' x3 ~P2(t) 

u 1 ~P3' u 2 ~PI ' u 3 ~c2A2 

Using the above notation, Eqs.(l) to (3) can be rewritten by 

dX1 (4) dt = x 2 

(S) 

(6) 

From Eqs.(4) to (6), the state equation of the pressure control 

valve can be represented as 
. 
x = Ax + Bu , (7) 

where 

x = o 1 

o -(f+A0
2/F,)/M 

K2/Kl 0 
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U = l ~~], B = l 
Through finding out the solution of the differential equation 

(7), we can obtain the transient responses for both the variation 

of the secondary pressure ~P2(=x3) and the displacement of the 
plunger ~x(=xl)' caused by the disturbance to the system. Further­

more, for the purpose of the improvement of responsibility, the 
conditions for adjusting system parameters are found through the 

root locus method. 

3. Analysis of System Dynamics 

For the convenience of analysis, the insight into the free re­

sponse of the vector state equation (7) can be considered by setting 

U =0 in Eq. (7), i.e., 

l Xl] [all a
12 

a
13

] Xl] x = eft x 2 = a 2l a 22 a 23 x 2 = Ax, (8) 

x3 a 31 a 32 a 33 x3 

2 where a 11=0, a 12=1, a 13=0, a 21=0, a 22=-(f+AO /~)/M, a 23 =AO/M, a 31= 

K2 /K1' a 32=0, and a 33=-1/Kl . The eigenvalues of the matrix A, 

letting A be eigenvalue, can be obtained by 

A -a12 0 

det(AI-A)=det 0 A-a 22 -a23 =0. 

-a31 0 A-a33 

From Eq.(9), the characteristic equation is as follows, 

(9) 

3 2 
A - (a22+ a 33 ) A + a 22a 33 A - a12a23a31 = 0 . (10) 

By finding the eigenvalues of Eq.(10)~4) we can construct the so­

lution of Eq.(7). 

The general solution of Eq.(7) can be expressed as follows, 

A(t t ) t A(t-T) 
x(t) =e - 0 x + It e BU(T)dT. (11) 

o 0 

The state transition matrix ¢(t) at to=O is given by 

¢(t) At 
= e (12) 

Since the determinant (12) is a function with infinite power series 
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of the matrix A, it can be, applying the Sylvester's expansion 

theorem~5) obtained in the following form, 

where 

3 
~(t) = L f(A.)F(A.), 

i=l ~ ~ 

f (A. ) 
~ 

F (A. ) 
~ 

eAi t 

3 A-A. I 
II [--~-] 

j=1 A.-A. 
j;ti ~ J 

(13) 

(14) 

(15) 

where Ai are roots of Eq. (10). Let the state transition matrix 4>(t) 

be 

(16) 

Then, the (i,j) elements of Eq.(l~) can be determined as follows. 

(1) The case where eigenvalues are three real ones,i.e. ,).=(111,112'113)' 

* 3 n t 

3 
L 

i=l 

3 
I 

i=1 

{a .. -a .. L n }e i 
~J ~JlR;l m 

3 
(17) 

II (ni-n ) 
R~l n 

* 3 3 n t 
{a .. -a,. L n + II n }e i 

~~ ~~m~l m R~l n 
(i=j) (18) 

(2) The case where one is a real and others are complex conjugate, 

i.e., A=(l1,~±jV). 

* nt ~t * ~;J' = (a .. -2~a .. )(e -e cosvt)+{(~-n)a .. 
.L.. ~J ~J ~J 

+(v2_~2+n2)a .. }e~tsinvt/v] {v2+(~-n) 2} (i~j) (19) 
~J . 

~;J' ({a~.-2~a .. +(~2+v2)}ent-{a~.-2~a .. +n(2~-n)}e~tcosvt 
.L.. ~~ ~~ ~~ ~~ 

+{(~-n)a~.+(v2-~2+n2)a .. +n(~2~n~-v2)}e~tsinvt/v] 
~~ ~~ 

/{v2+(~_11)2} (i=j) (20) 

where 



* 3 
a 1'J' ~ I (a'kak') . 

k=l 1 J 
(21) 

Using Eqs.(17) to (20), we can represent the solution form of 

Eq.(ll). Now, we shall consider the transient responses of both 

the variation of the secondary pressure ~P2 and the plunger dis­

placement ~x, due to the fluctuation of the load pressure ~P3' 

Letting initial condition be xO=O at to=O, Eq.(ll) becomes, 

t 
x (t) f 0 cl>(t-T) Bu (T)dT (22) 

Hence, the transient response of the plunger displacement can be 

given by 
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and the transient response for the variation of the secondary pres­

sure can be obtained by 

t K3 K4 KS 
x 3 (t) = f {-~u1¢33(t-T)~u2¢33(t-T)-~u3¢33(t-T)}dT. (24) 

o 1 1 1 

Here, ¢13(t-T) and ¢33(t-T) are obtained by Eqs.(17) to (20). 

The practical responses for the control valve made on trial can 

be calculated utilizing a set of parameters in Table 1 'of the refer­

ence (1). Here, the resistance coefficient ~ for the throttle of 

the valve in feedback pipe, which gives an important effect for the 

transient response, can be determined through the root locus based 

on Eq. (10) . 

Figure 2 shows the root locus in each cases where the pre­

scribed values of the secondary pressure are P 2=0.4.6 (M=3 . 61kg) , 0.41 

(M=3.11kg) and 0.36(M=2.61kg)MPa. Here, as the gain parameter, the 

resistance coefficient ~ was taken for the throttle of the valve in 

feedback pipe. Although the alteration of the prescribed secondary 

pressure P 2 is done by the change of the mass M, then the system 

parameters take all different values. Hence, the root locus draws 

different curves in each cases of P 2 , as shown in Fig.2. Now, we 

shall examine the dynamic behaviors in the case where P2=0.41MPa 

(~4.2kg/cm2). As examples, the transient responses for the varia­

tion of the secondary pressure ~P2 were calculated by using 

Eqs.(17) to (21) and Eq,(24), subjected to the load fluctuation 

~P3=SOOOOPa. These results are shown in Fig.3, where the damping 

constants are set as ~=0.3 and 0.7. From Fig.3, it can be under-
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stood that the favorable responses are, by experience, obtained at 
~=O.SSxlO-10 m5 /(N's) (~=O.3) if the speed responsibility is im­

portant and at ~=O.17xl0-l0 mS/(N's) (~=O.7) if the damping one is 

important. 

. 
01 
(tj 
e 

30.---------~-----------~--------~ 
~ .. 2. 23x10- 1 0 m 5 / (N. s) z: = a . 3 

~ • O. 55 xl 0 - 1 0 

E: .. O. 54x10- 1 0 

E: .. 0 .77xIO- 1 0 

f; • O,17xIO- 1 0 

E: .. 0 .17xIO-1 0 

o~--------------~~----~----~~~------------~ 

M = 2.61 kg 

M = 3.11 
M = 3.61 

-30~--------~--------~--------~ 
-60 -30 0 30 

Real Part 

Fig.2 Root-locus for eigenvalue of system 

N a.. 

3
x104 

~ = O. 55xlO- 1 a m 5 I ( N' S ) 

f; = O.17xl0- 10 

~ 1H----~---~-------------+-----------~---------~ 

-1~------~~=----___ ~~ ____________ ~ _________ ~ 
o 0.25 0.5 0.75 

time !reC 

Fig.3 Transient response of llP2 to the deviation, llP3=50000 Pa 
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4. Sensitivity Analysis 

The pressure control valve is normally designed through the 

analysis of dynamics by mathematical models expressed as constant 

coefficient state equations, as described in the above chapter. 

However, the parameters of models based on physical laws or the 

technical characteristics given by the manufacturers are quite in­

accurately known in the design situation. On the other hand, the 

parameters change with the external conditions and with time. For 

instance, the environmental conditions such as the minute variations 

of the primary pressure or secondary one, temperature fluctuation 

and air leakages change the dynamic characteristics of the system. 

In order to obtain a reliable system agreeing with the design, it 

is important to be able to estimate the influences of parameter 

variations on the dynamic behaviors of the system. In this section, 

parameter influences can be studied by sensitivity analysis~2) 
Now, we set system parameters as 

al=M, a 2=f, a 3=AO' a4=~' as=Kl 

a6=K2 , a 7=K3 , as=K4' ag=KS' (25) 

From Eqs. (4) to (6), a mathematical model of the system is described 

by 
. 
x = f ( x, u, C1 ) (26) 

where 

T 
0= [al,a2,a3,a4,a5,a6,a7,aS,agJ , 

and where 

f ( x, U, 0. ) (27) 

Denote the vector sensitivity functions 

zj 

where the 

parameter 

entiating 

ax 
(aa::-)n' 

J 

suffix n 

vector. 

equation 

j=l, ..... ,9, (2S) 

represents the normal value and j the order of 

Assuming that u is independent on a and differ­

(26) partially with respect to a, we obtain the 



78 

sensitivity equations in the form, 

j=1,·· .. ·,9 (29) 

where (af/ax) is the Jacobian matrix evaluated on the nominal so-. n 
lution. From Eq.(27), the first term of Eq.(29) is obtained as 

follows. 

0 1 0 
2 

af 
0 

0. 2 0. 3 0. 3 (30) ax -----
0. 1 0. 10. 4 0. 1 

0. 6 0 1 
as as 

Also, the second term of Eq. (29) is obtained by differentiating 

Eq.(27) partially with respect to aj(j=l, .~. ",9). The initial 

conditions for Eq.(29) are 

j=l, ..... ,9. (31) 

Now, the initial state is assumed to be zero state 

(32) 

so that the initial conditions of the sensitivity equations are 

zoj = 0, j=l,····· ,9. (33) 

Using Eqs.(26) to (33), we can solve, with the computer simulation, 

the vector sensitivity functions Zj(j=1, ... ·.,9). 

In addition to the sensitivity functions, we often have to know 

the differential variation OX of state variables, which is due to 

the parameter variation, 

(34) 

Using Taylor's expansion theorem, the first approximation of the 

variation OX may be written 

(35) 

where (ax/aa) is the rnxj matrix of the sensitivity functions. 
n 

Here, m is the order of the state vector. Once we know the vector 

sensitivity functions, we can, according to Eq.(3s), calculate the 

first order approximation of the variation ox. 
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5 I Simulation Experiments 

Simulation Experiments have been done, taking notice of the 

variation of the secondary pressure ~P2 (described by the state 

variable x 3 ), which is th~ most interesting dynamic behavior in this 

control valve. The sensitivity analyses were performed by select­

ing the step-like variation of the load u l as the input signal. 

As the values of parameters in Eq.(27), the physical constants of 

the control valve made on trial were used~l) Figure 4 shows the 

transient response o~P2 and the sensitivity functions zj to a step 

input ~P3=50000Pa, which were obtained from computations of Eq.(29). 

To simplify the comparison, each sensitivity functions are shown as 

non-dimensional form from 1 to -I, _by dividing with each maximum 

values. The size of the variation of the nominal step response of 

~P2 is given, taking into account Eq.(35), by 

300 
o:!S 

Q.. 

C\l 
P-
<l 

O 
'0 

-300 
0 1 Time sec 

(36) 

2 

[z~]max=4.02XI014 N2 s/m7 

[z~]max=4.85xIOS Pals 

I [dlmax=5.16'lO-4 m 

[zI]max=3.30 XI0 4 Pa 

Fig.4 Transient response o~2 and sensitivity function to 

a step input llP)=50000 Pa 
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This implies that the variation of the secondary pressure 6P2 is 
represented as the total sum of the product of each parameter vari­

ations by the sensitivity function. In order to examine the rate 

of any influence of parameter variation on the response of the 

secondary pressure 6P Z' we get the equation for comparisons, 

I 
86 P 21 _ I Z3 j I m~x "1 6

" j I . 
P 2 s max, j I 2 s 

j=l, ..... ,9, (37) 

where P2s is the value of the secondary pressure in the steady 

state. In this case, we set P2s =0.41MPa. 

By means of simulation studies, it has been found that the first 
order sensitivity model is still very accurate even when the varia­

tions in the parameter vectoI;' a. ar~ 10 percent ~ 6) So, if we are look­
ing at the influences of 1 percent parameter changes, we can be sure 

that the first order sensitivity model gives' results accurate enough 

for comparisons. Giving 1 percent change for the parameters, i.e., 

(38) 

and taking the maximum values IZ3jl~x according to Fig.4, we can 

compute maximum variations I 156P2/P2s I max,j by Eq. (37). The result 
is shown in Fig.5 with the aid of histograms, in which one column 
represents a maximum variation in the nominal step response of 6P 2 

xlO-3 
6 

.r; 5 
~ 

x 
~ 

4 E 

en 
C\I 
~ 3 
........ 

C\I 
~ 
<l 2 
'0 

1 

0 
1 

M 

Fig.5 

2 3 4 5 6 7 8 9 

t t t t t 
a. 

t t J ~ 
f Ao t; K1 K2 K3 K4 K5 

Comparison of parameter influences on the 

secondary pressure ~2 

j 
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scaled by the steady-state value P2s and caused by a one percent 

variation in one parameter at a moment of time when the sensitivity 

function corresponding to the parameter reaches its maximum abso­

lute value. It may be noted that different sensitivity functions 

reach their maximum absolute value at different moments of time. 

However, the histograms clearly show which parameters are really 

significant and show are not. 

From Fig.s, it can be seen that the coeffIcient K2 (a6) with re­

spect to the open area of the plunger port gives the maximum influ­

ence for the variation of the secondary pressure 6P2. Also, the 

coefficients Kl(a s ) and K3 (a 7 ) reflect strongly, which are related 

to the volume of air chamber at the secondary side and the varia­

tion of the load pressure, respectively. Furthermore, the bottom 

area AO(a3 ) of plunger in the feedback pipe influences fairly, simi­

larly to the coefficient t; (a4) of the throttle valve in the feedback 

pipe. On the otherhand, it can be understood that the mass M(a l ) 

and the viscous resistance coefficient f(a2) of the movable portion 

are almost non-sensitive. 

From results described above, the rate of the influence of each 

parameters was clarified from the viewpoints of the system design. 

In order to obtain the favorable system dynamics, since it is diffi­

cult to regulate K1 , K2 and K3 which depend strongly- on the air flow 

or the air pressure, it is especially important to regulate the 

resistance coefficient t;, that is, the throttle of the valve in the 

feedback pipe. 

6 I Conclusions 

In this research, for the plunger-type pressure control valve 

proposed already by authors, we derived the system equation by the 

state space model and clarified the system dynamics. Especially, 

we analized both the dynamics of the secondary pressure and the 

plunger displacement by the load fluctuation and examined their 

dynamic behaviors by simulation experiments. Also, we have found, 

by root locus method, the adjusting conditions of parameters to 

obtain the favorable response characteristics. Furthermore, for 

the trial of the control valve practically,' we can not necessarily 

design a set of parameters precisely. Taking into account these 

facts, the sensitivity analysis was applied to examine the influ­

ence of parameters to the system dynamics, when the parameters 

change with the external conditions and with time. From this 
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analysis, it was clarified that the coefficients with respect to 

the volume of air chamber in the secondary side and the bottom area 

of the plunger give strongly effects·on the system dynamics. In 

order to improve the responses of the control valve in the case of 

the·practical use, it has been known that it was mostly effective 

to adjust the throttle of the valve in the feedback pipe. 

From the analytical results presented in this paper, the guide­

line for the design could be obtained to improve the performance 

of the plunger-type pressure control valve. 
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Appendix 

The coefficients from K1 to KS are given below; 

Vm aG2 5.-
K1 RT / {( aP

2 
) - ( ap2 ) } 

aG l aulA l aG 2 aG l 
(dalAl)(~)/{(dP2)-(dP2)} 

aG 2 a~ a~ 
( ap 3)/{(ap2 )-(ap2)} 

aG l aG2 aGl 
(aP

1
)/{( ap2 )-<ap

2
)} 

and 


