
One Inference Mechanism based on Automated
Theorem Proving

言語: English

出版者:

公開日: 2011-08-31

キーワード (Ja):

キーワード (En):

作成者: WATANABE, Katsumasa, TSUJI, Tatsuo

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10098/3819URL

MEMOIRS OF THE FACULTY OF ENGINEERING
FUKUI UNIVERSITY
VOL.34 No.1 1986

One Inference Mechanism

based on Automated Theorem Proving

Katsumasa WATANABE and Tatsuo TSUJI*

(received Feb. 1, 1986)

To combine the logic programming system and the
conventional procedural ~rogramming system, we intend
to introduce the production rules as a data type in
Pascal. Then, the compiler system should have the
ability to accept this type of data and the inference
mechanism to respond the questions in the program.

As a method of inferences, we pick out one method
of automated theorem proving. In this paper, we describe
how to prove the theorems in propositional logic and
predicate logic, and to apply the method to the inference
mechanism. We propose to transform the rules given as
data into internal form to perform inference efficiently,
and denote the role of rule-compiler.

Introduction

139

In designing and constructing softwares, it is required to use
an appropriate programming language to describe programs. For this
requirement, new concepts are introduced into programming
languages. Some of them are as follws.
(a) non-procedural representation to specify "what to solve", but

not "how to solve ll
,

(b) rule-based representation which is composed of a set of
condition-action pairs,

(c) parallel algorithm representation to specify the parallel
actions to be executed on several processors.

* Dept. of Information Science.

140

As concerns to these representation, we introduced "Conditional
Expression" into Pascal concerning to (a), and "Condition Action
Linkage Forml! into Pascal concerning to (b and c).

Conditional Expression[lJ is to specify values of variables in
the form of equations as follows, not in the sequence of assign­
ment statements.

x : WEIGHT * LENGTH * cos(x) = K * x ;
Programmers are not required to know how to solve this equation.
Condition Action Linkage Form(calf) is to specify the processing

algorithm in a set of actions and conditions when each action is
activated. From several calfs an unit is composed. In an unit we
can specify not only to execute each calf sequentially one after
another(seq), but also to execute all calfs in parallel at a time
(para)[2J.

para (* find i and j such as ar[jJ<=x<=ar[iJ *)
? ar[iJ<x : i :=i+l;
? a r [j] >x : j: = j - 1 ;
? (ar[jJ<=x) and (x<=ar[iJ)

endpara;
With these representations, we are able to write numerical

computation program concisely, and to write complex controlled
program and parallel program conpactly.

Now, to extend these concepts and make them more useful, we
attempt to introduce the rule-typed data in Pascal, for example,
as follows.

fact F(X).
rule P(X): Cl(X) and C2(X) and ... and Ck(X).

In a program which has rule-typed data, we can write a
conditional expression such as

x : Q(x, C) ;

and condition action pair such as
? Q(C) : action ;

(i)

(i i)

But, for this extension, language processing system should
provide the following two functions.
(at compiling time) to accept the rule-typed data and to transform

them into internal form in order to perform inference
efficiently.

(at running time) to compute the variable's value(for (i)) or
function's value(for (ii)), through the inference, in

141

response to the question (i) or (ii).
As one method of inference we chose the inference mechanism of

automated theorem proving. In this paper, we describe the way of
proving the theorems of propositional logic and predicate logic,
and of modifying it for adapting to the inference on the rule-typed
data. And we mention what internal form of rule-typed data is
suitable for efficient inference, and what the rule-compiler should
do.

Adding the rule-typed data on Pascal, we attempt to combine the
logic programming system and the procedural programming system.

2 Proving theorem of propositional logic

We use the following symbols to represent the theorem of
propositional logic, and to implement the theorem prover in a
Pascal program.
°propositional variable is represented in a capital letter such as

P, Q, R.
°logical operator is represented in a special symbol used on

implementation.
negation (,)

conjunction (1\) *
di·sjunction (v) +

implication (:::») >
equivalent (:.)

°formula (f) is
(i) a propositional variable, or
(ii) a combination of a logical operator and formulae such as,

-f fl*f2 f l +f 2 fl>f2 f l =f2 ·

°list of formulae is a sequence of formulae separated by ","

f l , f2' ... ,f k ·
°sequent is composed of two lists of formulae separated by ":",
the left of 11.11 is the antecedent and the right of 11.11 is the

consequent.
antecedent : consequent .

A sequent is called an atomic sequent if all its formulae are
propositional variable.

When all formulae of the antecedent are true and some formula
of the consequent is true, then the sequent is true. Moreoveri
when some formula of the antecedent is false, then the sequent is

true regardless of truth of consequent. When a sequent is true all

142

the time, it is a theorem.

Example 1 (a sequent of propositional logic)

P > Q -P, Q. (1)

To prove that a given sequent is a theorem, it is sufficient to
derive the sequent from axioms by applying the inference rules of

logical operator.
[Axiom] An atomic sequent,

antecedent list of consequent list of
[propositional variablesJ:[propositional variables]'

is a theorem if some propositional variable is included in
both lists.

Example 2 (truth of the atomic sequent)
P, Q R, S.
P, Q : P, R, S.

... not theorem
theorem

[Inference rules of logical operators]

_ left -y,sl :s2 _ right sl :s2,-y

* 1 eft

+ 1 eft

> 1 eft

= 1 eft

sl :s2,y y,sl :s2
x*y,sl:s2
x,y,sl :s2

x+y,sl :s2
x,sl :s2 y,sl :s2

x y,sl :s2
y,sl :s2 sl :s2,x

x=y,sl :s2

* right

+ right

> right

right

sl:s2,x*y
sl:s2,x sl:s2,y
sl:s2,x+y
sl:s2,x,y
sl :s2,x y
x,sl :s2,y

sl:s2,x=y
x,y,sl :s2 sl :s2,x,y x,sl :s2,y y,sl :s2,x

Where,x and yare formulae, sl and s2 are list of formulae,
IIleftli or IIrightli means that the operator is at the left part of
the sequent or at the right part of the sequent respectively.

Each inference rule indicates that we can infer the sequent
above the line from the sequents below the line (in reverse side of
usual notation).

In the case when we use the computer to prove the theorem, it is

preferable to start from the given sequent, to delete logical
operators according to inference rules, and to reduce to atomic
sequents. If all of them are theorems, then we can conclude that

the original sequent is a theorem. We constructed the theorem
prover program with the following rule-typed data modified from
the inference rules.
Rule left

2 right

3 * left
4

5

6

7

*
+
+

>

right
left
right
left

8> right
9 1 eft

10 right

1 Right y.
1 Left y .

. 1 Left x, Left y.
2 Right xl Right y.
2 Left xl Left y.
1 Right
2 Left

x, Right y.
yl Right x.

Left x, Right y.
2 Left x, Left yl Right x, Right y.
2 Left x, Right yl Left y, Right x.

143

Where 1 and 2 indicate the number of derived sequents (sequents
below the line), and "Right y"(for example) means to insert the
operand y(the right operand of the operator) into the right part
of the derived sequent.

Example 3 (proving steps of the sequent of propositional logic)
The sequent (1) of example is proved to be a theorem through

following steps.
Step P '> Q -P, Q.

1 {P>Q), Q, (- P) , (7 left)
1 - 1

~
Q, (- P) , (2 right)

1 -2 P, Q, Q, ... true
1 = 1 P , Q, (- P) , (2 - right)

1 =2 P, P, Q, ... true
True

This process of proving is the simple transformation of
sequents by removing the logical operators in accordance with
Rule 1-10, and does not require any intelligence such as conjecture.
But, by deciding the truth of the non-atomic sequent in advance,
we can get the conclusion in less steps. For instance, on step 1-1
of the previous example, we can know the truth of the first branch
of the sequent step 1 before the step 1-2.

3 Proving theorem of predicate logic

On the case of predicate logic, we include two symbols of
quantifiers and inference rules of them[3].

144

Two quantifiers are represented in the following symbols on
implementation.

universal quantifier ('V) @
existential quantifier (3) #

[Inference rules of quantifier]

@ 1 eft @xF{x} ,s1 :s2 @ right sl :s2,@xF(x)
@xF(x) ,F(t) ,sl :s2 sl:s2,F(a)

left #xF(x),sl:s2 # right sl :s2,#xF(x)
F(a) ,sl :s2 sl :s2,F(t) ,#xF(x)

Where F is a predicate. A predicate takes the value 'true' or
'false' depending on the set of values of arguments. "x"(variable
behind @ or #) is a bound variable, and is able to take the value
over the doma in of the argument of F. "t" is a va 1 ue (term) on the
domain of the argument. "a" is an arbitrary free variable which is
not included in the sequent to be proved.

Example 4 (a sequent of predicate logic)
#x(P(x,y)*Q(x,y)) : #xP(x,y) * Q(x,y). (2)

The theorem prover program is added following rule-typed data
corresponding to the inference
Rule 11 @ left Left

12 @ right Right
13 # left Left
14 # right Right

rules.
expand-term
any-free-variable
any-free-variable
expand-term

Where "any-free-variable" means to replace the quantified
predicate with the predicate which has an arbitrary free variable
(for instance "a"), and "expand-term" means to replace the
quantified predicate with the predicate which has one term of the
domain of the argument one after another.

This time, an atomic sequent is the one which is composed only

of the lists of the predicates.
Two predicates of the same name are regarded as the same atoms,

(i) if both of them have the same term as the argument,
(ii) if both of them have the same variable name, or
(iii) if one of them has the arbitrary free variable symbol "a".

Example 5 (truth of an atomic sequent)
(5.l) @xP(x) P(x). (11 @ left)

145

P (t i) P (x) false
(5 . 2) @xQ(x) Q(t j). (11 @ left)

Q (t i) Q(t j). ... true if ti=tj
... false if t ·1t.

1 J
(5 . 3) #xR(x) R (x) . (13 # left)

R(a) R (x) true

The domain of the k-th argument of a predicate is a set of terms
(constant values) which the argument may have. These values are
determined from the definition of the predicate (or from the set of
facts). For the case of expanding the bound variable (the sequent
(5.2) of example 5), if any value make the sequent true, then the
sequent is true. But, no value make the sequent true, then the
sequent -is false.

Example 6 (proving steps of the sequent of predicate logic)
The sequent (2) of example 4 is proved to be a theorem through

following steps.
step #x(P(x,y)*Q(x,y»

1 #x(P(x,y)*Q(x,y»,
2 P(a,y)*Q(a,y),
3 P(a,y),Q(a,y),
3-1 P(a,y),Q(a,y),
3-2 P(a,y),Q(a,y),
3=1 P(a,y),Q(a,y),

True

#xP(x,y)*Q(x,y).
#xP(x,y)*Q(x,y),
#xP(x,y)*Q(x,y),
#xP(x,y)*Q(x,y),
#xP(x,y),

P(tl,y),
Q(x,y),

(13 # left)
(3 * left)
(4 * right)
(14 # right)
... true
... true

On this process of proving, it is a key point to find the value
of the expanded variable which makes the sequent true,as early as
possible. To do this effectively, it is preferable to ascertain
that the domain includes the value which is an argument of other
predicate in the sequent, instead of expanding the bound variable.
For instance, we can say that the sequent (5.2) is true if the
predicate Q(t j) is true (namely, the domain of Q includes the
value t j). The prover is required to have certain intelligence to
do this in general.

4 A model of the inference system

We bound the framework of the objects to be infered as follows.

146

Fact F(X).
Where X is a list of arguments. A fact defines a combination of

the argument values which make the predicate true.

Rule

If all of Ci(X) (i=l .. k) are true, then the predicate P(X) is
true.

Question ? Q(X).
If all of the arguments are constant values, then the truth of

Q is returned as a response. But, if some of the arguments are
variable names, then the set of values which make Q true are
returned as a response.

? Q(a l ,a 2 ,a 3 , ••• ,am)' ~ True or Fal se

? Q(x, y, a3 , •.• ,a m). ~ set of values (x,y).

We presume that the inference system responds to the question
only through the top-down type replacement according to the given
set of rules.

Example 7 (a set of facts and rules)
The next family tree is equivalently represented by a set of

facts and rules.

Fact :

TaT
Takeshi ,

i
Akio

i
Takeko

!

I
Momoe

Jiro Yuki
I ,

Hirbshi Kiyoshi Umeko , I '
Hanae

Father
Mather

Rule:

F(Taro,Takeshi),F(Jiro,Takeko), ... ,F(Kiyoshi ,Hanae).
M(Yuki ,Takeko), M{Yuki ,Hiroshi), ... ,M(Umeko,Hanae).

Parent P(x,y)
P(x,y)

Grand father
G(x,y)

Grand mother
H(x,y)

F(x,y) .
M(x,y).

F(x,z) * P(z,y).

M(x,z) * P{z,y).

Couple C(x,y)
Brother B{x,y)

147

F(x,z) * M(y,z).
P(z,x) * P(z,y} * (x~y).

With inference through these facts and rules, we can get answers
for each question as follows.

? P(Takeshi ,Momoe).
? P(x,Hiroshi).

? C{x,y).

. .. True

. .. x=Jiro,
x=Yuki.

. .. x=Jiro y=Yuki,
x=Takeshi y=Takeko,
x=Kiyoshi y=Umeko.

5 The process of inference and the internal form of rules

For a given question,
? Q(X).

the inference is performed in the same manner as proving the sequent

of predicate logic after transforming the question into the follow­
ing form.

True: ? Q(X). (3)

We can classify the question into four types shown in the table.

~ argument only constant include some variable
predicate ~

fact [1] F(C) [2] F(x,C)
relation [3] R(C) [4] R(x,C)

To get the answer for each type of question in efficient, we
construct and store the facts and rules in internal form from the
given set of them.

[1] F(C) : the question of the fact with only constants as
arguments

For this type of question we can know the truth of the predicate
F(C) directly from the given set of facts. Retrieving the facts, we
replace F(C) with the value Itrue l or 'false ' . If the resulting
sequent of (3) is

True: True.
then the answer is "truell,otherwise the answer is IIfalse".

So as to get the truth value of the predicate F(C), we form the

148

value rule internally composed of a set of tuples whose values make
the predicate true.

Example 7-1 (value rules of facts)
From the facts of example 7, we can form the two rules which

define the tuples of values making up each fact.
Rule 21 Value F 2 : (Taro,Takeshi), (Jiro,Takeko),

22 Value M 2

(Jiro,Hiroshi),
(Takeshi ,Akio),
(Kiyoshi ,Hanae).
(Yuki ,Takeko),
(Yuki ,Umeko),
(Takeko,Momoe),

(Jiro,Umeko),
(Takeshi ,Momoe),

(Yuki ,Hiroshi),
(Takeko,Akio) ,
(Umeko,Hanae) .

Where the numerical value 2 is the number of arguments of the
fact.

[2] F(x,C) : the question of the fact with some variables as
arguments

When the predicate F(x,C) includes some variables as arguments,
we change the question mark "? II to the existential quantifier "#",
and place the variable name behind the quantifier. Now the form (3)
becomes the sequent of predicate logic as follows.

True: #xF(x,C).
The bound variable x is expanded over the domain of the cor­

responding argument. For that, we form the domain rules internally
which define the values of each argument of the fact.

Example 7-2 (domain rules of facts)
From the facts of example 7 (or value rule of example 7-1), we

can form the following rules defining the values which the argument
can take up.
Rule 31 Domain F

32 Domain F 2
Taro, Jiro, Takeshi, Kiyoshi.
Takeshi, Takeko, Hiroshi, Umeko, Akio,
Momoe, Hanae.

33 Domain M 1 : Yuki, Takeko, Umeko.
34 Domain M 2 : Takeko, Hiroshi, Umeko, Akio, Momoe, Hanae.

Where the numerical values 1 or 2 is an ordinal number of each
argument of the fact.

[3] R(C) : the question of the relation other than fact with only

constant as arguments
The relation other than fact is replaced with the right hand

side of the rule defining the relation. On replacing, some inter­
ventional variable may appear. We should distinguish the variable
from argument variable of the relation. So we represetn the
variables in a rule by the ordinal number in the internal form of
rules.

Example 7-3(1) (defining rules of relations)
The rules of example 7 are transformed into the following

internal
Rule 51

52
53
54

55

form.
Define
Define
Define
Define
Define

P 2
G 2

H 2
C 2
B 2

2 F(1,2) + r4(1,2).
3 F(1,3) * P(3,2).
3 M(l,3) * P(3,2).
3 F(l,3) * M(2,3).
3 P(3,1) * P(3,2) * (lf2).

Where the first numerical number indicates the number of
arguments of the defined predicate, and the second one indicates
total number of variables of the defining expression including of
the interventional variables.

149

Moreover, in front of the replaced expression, we put one pair
of existential quantifier "#" and appropriate variable name as the
bound variable, for each one interventional variable in the
expression. These generated bound variables may take the value over
the domain of the argument of the predicate. To clarify these
domain, we form the domain rules defining the values which the
argument of the relation can take up, in addition to the domain
rules of facts.

Example 7-3(2) (domain rules of relations)
From the definition of the relation in example 7, we can extract

the set of values which each argument of the relation may take up.
Rule 35 Domain P 1 : (F 1) + (M 1)

36 Domain P 2

37 Domain G 1

Taro, Jiro, Takeshi, Kiyoshi, Yuki, Takeko,
Umeko.
(F 2) + (M 2)

Takeshi, Takeko, Hiroshi, Umeko, Akio,
Momoe, Hanae.
(F 1)

150

Taro, Jiro, Takeshi, Kiyoshi.
38 Domain G 2 (P 2).
39 Domain H (M 1)

Yu k i , Takeko, Umeko.
40 Domain H 2 (P 2) .
41 Domain C (F 1).
42 Domain C 2 (M 1).
43 Domain B (P 2).
44 Domain B 2 (P 2).

Each domain is simply calculated from one rule of the relation,

so it may be wider than a set of values which make the predicate
true really. For instance, the domain G 1 is calculated wider than
the set [Taro, Jiro], each member of which can be a grand father in
the family tree of example 7. An certain intelligence is required
to close the domain in tight.

[4] R(x,C) : the question of the relation with some variables as
arguments

For this type of the question, the transformation into the
sequent is performed through the procedures of type [2J and [3J.
(i) delete the question mark 1I?1I and add a pair of the

existential quantifier "I" and the variable name for each
argument variable, [2J,

(ii) add a pair of the existential quantifier 11#11 and an
appropriate variable name for each interventional variable

(iii) replace the relation with the defining expression, by
substituting the argument value or variable name over the
argument number

Example 8 (a set of internal rules)

[3J,

[3].

A set of internal rules 21-22,31-44, and 51-54 are made from
the set of facts and rules of example 7.

After the question mark II?II is replaced with the existential
quantifier "#11, the process of proving the sequent of predicate
logic may be proceeding as described in section 3. But we need
modify the procedure on the two parts of it.

151

When a predicate is separated alone through the rule 1-14, it is
replaced as follows,

if it is a type F(C), then it is replaced with the truth value
by accessing the value rules, in accordance with case [1],

if it is a type R(C), then it is replaced with the right hand
side of one rule defining the relation R, in accordance with case
[3].

For the question of type F(x,C) or R(x,C) in case [2] or [4], it
is required to pick up all the values that make the predicate true.
So, even if the prover finds an answer, it reset the sequent to
'false' and continues the proving process. The prover closes the
process of the extension for an existential quantifier when it
examines all the values of the corresponding bound variable over
the domain.

Example 9 (a question and its answering process)
A question of the family tree of example 7

? G(x,Momoe).
is transformed into the sequent

True: #x#z(F(x,z) * P(z,Momoe».

(4)

(5)

according to the case [4]. The prover finds the rule 14 of #-right
and expands the bound variable x over the domain of G 1 (rule 37).

For the first value x=Taro, (5) is changed into
True: #z(F(Taro,z) *P{z,Momoe». (6)

Again by rule 14, the prover expands the bound variable z over the
domain F 2 (rule 32).

After the prover examines all the values of x and all the values
of z for each XiS value, it returns the answers.

x=Taro, z=Takeshi and x=Jiro, z=Takeko.

In example 9, the domain of variable z of (6) is simply chosen
as F 2 from the first apperence of z in (6). But, if we determine
it from (6) as

(F 2) and {P l)=[Takeshi, Takeko, Umeko],
then the prover takes less time to find the same answers.

6 Conclusion

We implemented an inference mechanism for the logic programming

152

system in Pascal by simply extending the process of the automated

theorem proving.
We proposed a solution of what internal form of rules is

desirable for the prover. And also we mentioned that it is necessary
to close the domain of the variables as narrow as possible, in order
to lessen the number of trials and to perform the inference
effectively, on the cases as follows.
(i) The domain of an argument variable is simply calculated from
the defining expression. But the real domain may be smaller than the
calculated one. For instance, the calculated domain G 1 is

[Taro, Jiro, Takeshi, Kiyoshi] (Rule 37),
but the real domain G 1 in the family tree would be

[Taro, JiroJ.
(ii) The domain of an interventional variable is simply determined
from one argument position of the variable in the defining
expression. But if we take the intersection of domains for all
argument positions of the variable, we could choose more suitable
domain for the interventional variable. For instance, the domain of
the interventiona1 variable z in (6) is simply found as F 2(or P 1),
but we get more suitable domain by calculating (F 2)and(P 1).

In order to attain these two optimization, it is required certain
intelligence for the rule-compiler processing the rule trans­
formation. In addition, if rule-compiler would posses much
intelligence,
(iii) it could be poSsible to extract the sets of intermediate facts
to perform the inference much efficiently.

For instance, from the family tree of example 7, the following
value rule is gained.
Rule ** Value C 2 : (Jiro,Yuki), (Takeshi,Takeko),

(Kiyoshi ,Momoe).

These three intelligent processing are desirable especially for
the large set of facts and rules from the point of performance of
the inference. But, from the point of rule transformation, they
make a trouble to reform the set of facts and rules when its some
part is modified. The suitable degree of the rule transformation
would be determined depending on the number of times of modifying
the set of facts and rules, and the number of times of making use
of the prover.

153

References :

[1] K. Watanabe, Y. Enomoto and T. Tsuji
Conditional Expression Embedded in Pascal : as a Nonprocedural
Representation (in Japanese),
Trans. of Inform. Processing Society of Japan,
Vol.25, No.6 (Nov. 1984), pp980-989.

[2] K. Watanabe and T. Tsuji
Combination of the Procedural Language and Production
Language,
Memo. of the Faculty of Engi. Fukui Univ.
Vo1.33, No.1 (Mar. 1985), pp9-22.

[3] T. Nishimura
Automated Theorem Proving (in Japanese),
Mathematikal Sciences (Suri Kagaku),
No.257 (Nov. 1984), pp21-27.

154

