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To combine the logic programming system and the 
conventional procedural ~rogramming system, we intend 
to introduce the production rules as a data type in 
Pascal. Then, the compiler system should have the 
ability to accept this type of data and the inference 
mechanism to respond the questions in the program. 

As a method of inferences, we pick out one method 
of automated theorem proving. In this paper, we describe 
how to prove the theorems in propositional logic and 
predicate logic, and to apply the method to the inference 
mechanism. We propose to transform the rules given as 
data into internal form to perform inference efficiently, 
and denote the role of rule-compiler. 

Introduction 
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In designing and constructing softwares, it is required to use 
an appropriate programming language to describe programs. For this 
requirement, new concepts are introduced into programming 
languages. Some of them are as follws. 
(a) non-procedural representation to specify "what to solve", but 

not "how to solve ll
, 

(b) rule-based representation which is composed of a set of 
condition-action pairs, 

(c) parallel algorithm representation to specify the parallel 
actions to be executed on several processors. 

* Dept. of Information Science. 
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As concerns to these representation, we introduced "Conditional 
Expression" into Pascal concerning to (a), and "Condition Action 
Linkage Forml! into Pascal concerning to (b and c). 

Conditional Expression[lJ is to specify values of variables in 
the form of equations as follows, not in the sequence of assign­
ment statements. 

x : WEIGHT * LENGTH * cos(x) = K * x ; 
Programmers are not required to know how to solve this equation. 
Condition Action Linkage Form(calf) is to specify the processing 

algorithm in a set of actions and conditions when each action is 
activated. From several calfs an unit is composed. In an unit we 
can specify not only to execute each calf sequentially one after 
another(seq), but also to execute all calfs in parallel at a time 
(para)[2J. 

para (* find i and j such as ar[jJ<=x<=ar[iJ *) 
? ar[iJ<x : i :=i+l; 
? a r [ j ] >x : j: = j - 1 ; 
? (ar[jJ<=x) and (x<=ar[iJ) 

endpara; 
With these representations, we are able to write numerical 

computation program concisely, and to write complex controlled 
program and parallel program conpactly. 

Now, to extend these concepts and make them more useful, we 
attempt to introduce the rule-typed data in Pascal, for example, 
as follows. 

fact F(X). 
rule P(X): Cl(X) and C2(X) and ... and Ck(X). 

In a program which has rule-typed data, we can write a 
conditional expression such as 

x : Q( x, C ) ; 

and condition action pair such as 
? Q(C) : action ; 

( i ) 

( i i ) 

But, for this extension, language processing system should 
provide the following two functions. 
(at compiling time) to accept the rule-typed data and to transform 

them into internal form in order to perform inference 
efficiently. 

(at running time) to compute the variable's value(for (i)) or 
function's value(for (ii)), through the inference, in 
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response to the question (i) or (ii). 
As one method of inference we chose the inference mechanism of 

automated theorem proving. In this paper, we describe the way of 
proving the theorems of propositional logic and predicate logic, 
and of modifying it for adapting to the inference on the rule-typed 
data. And we mention what internal form of rule-typed data is 
suitable for efficient inference, and what the rule-compiler should 
do. 

Adding the rule-typed data on Pascal, we attempt to combine the 
logic programming system and the procedural programming system. 

2 Proving theorem of propositional logic 

We use the following symbols to represent the theorem of 
propositional logic, and to implement the theorem prover in a 
Pascal program. 
°propositional variable is represented in a capital letter such as 

P, Q, R. 
°logical operator is represented in a special symbol used on 

implementation. 
negation (, ) 

conjunction ( 1\ ) * 
di·sjunction (v ) + 

implication ( :::» ) > 
equivalent ( :. ) 

°formula ( f) is 
( i ) a propositional variable, or 
(ii) a combination of a logical operator and formulae such as, 

-f fl*f2 f l +f 2 fl>f2 f l =f2 · 

°list of formulae is a sequence of formulae separated by "," 

f l , f2' ... ,f k · 
°sequent is composed of two lists of formulae separated by ":", 
the left of 11.11 is the antecedent and the right of 11.11 is the 

consequent. 
antecedent : consequent . 

A sequent is called an atomic sequent if all its formulae are 
propositional variable. 

When all formulae of the antecedent are true and some formula 
of the consequent is true, then the sequent is true. Moreoveri 
when some formula of the antecedent is false, then the sequent is 

true regardless of truth of consequent. When a sequent is true all 
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the time, it is a theorem. 

Example 1 (a sequent of propositional logic) 

P > Q -P, Q. ( 1 ) 

To prove that a given sequent is a theorem, it is sufficient to 
derive the sequent from axioms by applying the inference rules of 

logical operator. 
[Axiom] An atomic sequent, 

antecedent list of consequent list of 
[propositional variablesJ:[propositional variables]' 

is a theorem if some propositional variable is included in 
both lists. 

Example 2 (truth of the atomic sequent) 
P, Q R, S. 
P, Q : P, R, S. 

... not theorem 
theorem 

[Inference rules of logical operators] 

_ left -y,sl :s2 _ right sl :s2,-y 

* 1 eft 

+ 1 eft 

> 1 eft 

= 1 eft 

sl :s2,y y,sl :s2 
x*y,sl:s2 
x,y,sl :s2 

x+y,sl :s2 
x,sl :s2 y,sl :s2 

x y,sl :s2 
y,sl :s2 sl :s2,x 

x=y,sl :s2 

* right 

+ right 

> right 

right 

sl:s2,x*y 
sl:s2,x sl:s2,y 
sl:s2,x+y 
sl:s2,x,y 
sl :s2,x y 
x,sl :s2,y 

sl:s2,x=y 
x,y,sl :s2 sl :s2,x,y x,sl :s2,y y,sl :s2,x 

Where,x and yare formulae, sl and s2 are list of formulae, 
IIleftli or IIrightli means that the operator is at the left part of 
the sequent or at the right part of the sequent respectively. 

Each inference rule indicates that we can infer the sequent 
above the line from the sequents below the line (in reverse side of 
usual notation). 

In the case when we use the computer to prove the theorem, it is 

preferable to start from the given sequent, to delete logical 
operators according to inference rules, and to reduce to atomic 
sequents. If all of them are theorems, then we can conclude that 



the original sequent is a theorem. We constructed the theorem 
prover program with the following rule-typed data modified from 
the inference rules. 
Rule left 

2 right 

3 * left 
4 

5 

6 

7 

* 
+ 
+ 

> 

right 
left 
right 
left 

8> right 
9 1 eft 

10 right 

1 Right y. 
1 Left y . 

. 1 Left x, Left y. 
2 Right xl Right y. 
2 Left xl Left y. 
1 Right 
2 Left 

x, Right y. 
yl Right x. 

Left x, Right y. 
2 Left x, Left yl Right x, Right y. 
2 Left x, Right yl Left y, Right x. 
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Where 1 and 2 indicate the number of derived sequents (sequents 
below the line), and "Right y"(for example) means to insert the 
operand y(the right operand of the operator) into the right part 
of the derived sequent. 

Example 3 (proving steps of the sequent of propositional logic) 
The sequent (1) of example is proved to be a theorem through 

following steps. 
Step P '> Q -P, Q. 

1 {P>Q), Q, ( - P ) , ( 7 left) 
1 - 1 

~ 
Q, ( - P ) , ( 2 right) 

1 -2 P, Q, Q, ... true 
1 = 1 P , Q, ( - P ) , ( 2 - right) 

1 =2 P, P, Q, ... true 
True 

This process of proving is the simple transformation of 
sequents by removing the logical operators in accordance with 
Rule 1-10, and does not require any intelligence such as conjecture. 
But, by deciding the truth of the non-atomic sequent in advance, 
we can get the conclusion in less steps. For instance, on step 1-1 
of the previous example, we can know the truth of the first branch 
of the sequent step 1 before the step 1-2. 

3 Proving theorem of predicate logic 

On the case of predicate logic, we include two symbols of 
quantifiers and inference rules of them[3]. 
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Two quantifiers are represented in the following symbols on 
implementation. 

universal quantifier ( 'V ) @ 
existential quantifier ( 3 ) # 

[Inference rules of quantifier] 

@ 1 eft @xF{x} ,s1 :s2 @ right sl :s2,@xF(x) 
@xF(x) ,F(t) ,sl :s2 sl:s2,F(a) 

# left #xF(x),sl:s2 # right sl :s2,#xF(x) 
F(a) ,sl :s2 sl :s2,F(t) ,#xF(x) 

Where F is a predicate. A predicate takes the value 'true' or 
'false' depending on the set of values of arguments. "x"(variable 
behind @ or #) is a bound variable, and is able to take the value 
over the doma in of the argument of F. "t" is a va 1 ue (term) on the 
domain of the argument. "a" is an arbitrary free variable which is 
not included in the sequent to be proved. 

Example 4 (a sequent of predicate logic) 
#x(P(x,y)*Q(x,y)) : #xP(x,y) * Q(x,y). (2) 

The theorem prover program is added following rule-typed data 
corresponding to the inference 
Rule 11 @ left Left 

12 @ right Right 
13 # left Left 
14 # right Right 

rules. 
expand-term 
any-free-variable 
any-free-variable 
expand-term 

Where "any-free-variable" means to replace the quantified 
predicate with the predicate which has an arbitrary free variable 
(for instance "a"), and "expand-term" means to replace the 
quantified predicate with the predicate which has one term of the 
domain of the argument one after another. 

This time, an atomic sequent is the one which is composed only 

of the lists of the predicates. 
Two predicates of the same name are regarded as the same atoms, 

(i) if both of them have the same term as the argument, 
(ii) if both of them have the same variable name, or 
(iii) if one of them has the arbitrary free variable symbol "a". 

Example 5 (truth of an atomic sequent) 
(5.l) @xP(x) P(x). (11 @ left) 
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P ( t i ) P (x) . ... false 
( 5 . 2 ) @xQ(x) Q(t j ). (11 @ left) 

Q ( t i ) Q(t j ). ... true if ti=tj 
... false if t ·1t. 

1 J 
( 5 . 3) #xR(x) R (x) . (13 # left) 

R(a) R (x) . . .. true 

The domain of the k-th argument of a predicate is a set of terms 
(constant values) which the argument may have. These values are 
determined from the definition of the predicate (or from the set of 
facts). For the case of expanding the bound variable (the sequent 
(5.2) of example 5), if any value make the sequent true, then the 
sequent is true. But, no value make the sequent true, then the 
sequent -is false. 

Example 6 (proving steps of the sequent of predicate logic) 
The sequent (2) of example 4 is proved to be a theorem through 

following steps. 
step #x(P(x,y)*Q(x,y» 

1 #x(P(x,y)*Q(x,y», 
2 P(a,y)*Q(a,y), 
3 P(a,y),Q(a,y), 
3-1 P(a,y),Q(a,y), 
3-2 P(a,y),Q(a,y), 
3=1 P(a,y),Q(a,y), 

True ..... 

#xP(x,y)*Q(x,y). 
#xP(x,y)*Q(x,y), 
#xP(x,y)*Q(x,y), 
#xP(x,y)*Q(x,y), 
#xP(x,y), 

P(tl,y), 
Q(x,y), 

(13 # left) 
( 3 * left) 
( 4 * right) 
(14 # right) 
... true 
... true 

On this process of proving, it is a key point to find the value 
of the expanded variable which makes the sequent true,as early as 
possible. To do this effectively, it is preferable to ascertain 
that the domain includes the value which is an argument of other 
predicate in the sequent, instead of expanding the bound variable. 
For instance, we can say that the sequent (5.2) is true if the 
predicate Q(t j ) is true (namely, the domain of Q includes the 
value t j ). The prover is required to have certain intelligence to 
do this in general. 

4 A model of the inference system 

We bound the framework of the objects to be infered as follows. 
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Fact F(X). 
Where X is a list of arguments. A fact defines a combination of 

the argument values which make the predicate true. 

Rule 

If all of Ci(X) (i=l .. k) are true, then the predicate P(X) is 
true. 

Question ? Q(X). 
If all of the arguments are constant values, then the truth of 

Q is returned as a response. But, if some of the arguments are 
variable names, then the set of values which make Q true are 
returned as a response. 

? Q(a l ,a 2 ,a 3 , ••• ,am)' ~ True or Fal se 

? Q(x, y, a3 , •.• ,a m). ~ set of values (x,y). 

We presume that the inference system responds to the question 
only through the top-down type replacement according to the given 
set of rules. 

Example 7 (a set of facts and rules) 
The next family tree is equivalently represented by a set of 

facts and rules. 

Fact : 

TaT 
Takeshi , 

i 
Akio 

i 
Takeko 

! 

I 
Momoe 

Jiro Yuki 
I , 

Hirbshi Kiyoshi Umeko , I ' 
Hanae 

Father 
Mather 

Rule: 

F(Taro,Takeshi),F(Jiro,Takeko), ... ,F(Kiyoshi ,Hanae). 
M(Yuki ,Takeko), M{Yuki ,Hiroshi), ... ,M(Umeko,Hanae). 

Parent P(x,y) 
P(x,y) 

Grand father 
G(x,y) 

Grand mother 
H(x,y) 

F(x,y) . 
M(x,y). 

F(x,z) * P(z,y). 

M(x,z) * P{z,y). 



Couple C(x,y) 
Brother B{x,y) 
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F(x,z) * M(y,z). 
P(z,x) * P(z,y} * (x~y). 

With inference through these facts and rules, we can get answers 
for each question as follows. 

? P(Takeshi ,Momoe). 
? P(x,Hiroshi). 

? C{x,y). 

. .. True 

. .. x=Jiro, 
x=Yuki. 

. .. x=Jiro y=Yuki, 
x=Takeshi y=Takeko, 
x=Kiyoshi y=Umeko. 

5 The process of inference and the internal form of rules 

For a given question, 
? Q(X). 

the inference is performed in the same manner as proving the sequent 

of predicate logic after transforming the question into the follow­
ing form. 

True: ? Q(X). ( 3) 

We can classify the question into four types shown in the table. 

~ argument only constant include some variable 
predicate ~ 

fact [1 ] F(C) [2] F(x,C) 
relation [3] R(C) [4] R(x,C) 

To get the answer for each type of question in efficient, we 
construct and store the facts and rules in internal form from the 
given set of them. 

[1] F(C) : the question of the fact with only constants as 
arguments 

For this type of question we can know the truth of the predicate 
F(C) directly from the given set of facts. Retrieving the facts, we 
replace F(C) with the value Itrue l or 'false ' . If the resulting 
sequent of (3) is 

True: True. 
then the answer is "truell,otherwise the answer is IIfalse". 

So as to get the truth value of the predicate F(C), we form the 
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value rule internally composed of a set of tuples whose values make 
the predicate true. 

Example 7-1 (value rules of facts) 
From the facts of example 7, we can form the two rules which 

define the tuples of values making up each fact. 
Rule 21 Value F 2 : (Taro,Takeshi), (Jiro,Takeko), 

22 Value M 2 

(Jiro,Hiroshi), 
(Takeshi ,Akio), 
(Kiyoshi ,Hanae). 
(Yuki ,Takeko), 
(Yuki ,Umeko), 
(Takeko,Momoe), 

(Jiro,Umeko), 
(Takeshi ,Momoe), 

(Yuki ,Hiroshi), 
(Takeko,Akio) , 
(Umeko,Hanae) . 

Where the numerical value 2 is the number of arguments of the 
fact. 

[2] F(x,C) : the question of the fact with some variables as 
arguments 

When the predicate F(x,C) includes some variables as arguments, 
we change the question mark "? II to the existential quantifier "#", 
and place the variable name behind the quantifier. Now the form (3) 
becomes the sequent of predicate logic as follows. 

True: #xF(x,C). 
The bound variable x is expanded over the domain of the cor­

responding argument. For that, we form the domain rules internally 
which define the values of each argument of the fact. 

Example 7-2 (domain rules of facts) 
From the facts of example 7 (or value rule of example 7-1), we 

can form the following rules defining the values which the argument 
can take up. 
Rule 31 Domain F 

32 Domain F 2 
Taro, Jiro, Takeshi, Kiyoshi. 
Takeshi, Takeko, Hiroshi, Umeko, Akio, 
Momoe, Hanae. 

33 Domain M 1 : Yuki, Takeko, Umeko. 
34 Domain M 2 : Takeko, Hiroshi, Umeko, Akio, Momoe, Hanae. 

Where the numerical values 1 or 2 is an ordinal number of each 
argument of the fact. 

[3] R(C) : the question of the relation other than fact with only 



constant as arguments 
The relation other than fact is replaced with the right hand 

side of the rule defining the relation. On replacing, some inter­
ventional variable may appear. We should distinguish the variable 
from argument variable of the relation. So we represetn the 
variables in a rule by the ordinal number in the internal form of 
rules. 

Example 7-3(1) (defining rules of relations) 
The rules of example 7 are transformed into the following 

internal 
Rule 51 

52 
53 
54 

55 

form. 
Define 
Define 
Define 
Define 
Define 

P 2 
G 2 

H 2 
C 2 
B 2 

2 F(1,2) + r4(1,2). 
3 F(1,3) * P(3,2). 
3 M(l,3) * P(3,2). 
3 F(l,3) * M(2,3). 
3 P(3,1) * P(3,2) * (lf2). 

Where the first numerical number indicates the number of 
arguments of the defined predicate, and the second one indicates 
total number of variables of the defining expression including of 
the interventional variables. 

149 

Moreover, in front of the replaced expression, we put one pair 
of existential quantifier "#" and appropriate variable name as the 
bound variable, for each one interventional variable in the 
expression. These generated bound variables may take the value over 
the domain of the argument of the predicate. To clarify these 
domain, we form the domain rules defining the values which the 
argument of the relation can take up, in addition to the domain 
rules of facts. 

Example 7-3(2) (domain rules of relations) 
From the definition of the relation in example 7, we can extract 

the set of values which each argument of the relation may take up. 
Rule 35 Domain P 1 : (F 1) + (M 1) 

36 Domain P 2 

37 Domain G 1 

Taro, Jiro, Takeshi, Kiyoshi, Yuki, Takeko, 
Umeko. 
(F 2) + (M 2) 

Takeshi, Takeko, Hiroshi, Umeko, Akio, 
Momoe, Hanae. 
(F 1) 
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Taro, Jiro, Takeshi, Kiyoshi. 
38 Domain G 2 (P 2). 
39 Domain H (M 1) 

Yu k i , Takeko, Umeko. 
40 Domain H 2 ( P 2) . 
41 Domain C (F 1). 
42 Domain C 2 (M 1). 
43 Domain B (P 2). 
44 Domain B 2 (P 2). 

Each domain is simply calculated from one rule of the relation, 

so it may be wider than a set of values which make the predicate 
true really. For instance, the domain G 1 is calculated wider than 
the set [Taro, Jiro], each member of which can be a grand father in 
the family tree of example 7. An certain intelligence is required 
to close the domain in tight. 

[4] R(x,C) : the question of the relation with some variables as 
arguments 

For this type of the question, the transformation into the 
sequent is performed through the procedures of type [2J and [3J. 
(i) delete the question mark 1I?1I and add a pair of the 

existential quantifier "I" and the variable name for each 
argument variable, ....... [2J, 

(ii) add a pair of the existential quantifier 11#11 and an 
appropriate variable name for each interventional variable 

(iii) replace the relation with the defining expression, by 
substituting the argument value or variable name over the 
argument number 

Example 8 (a set of internal rules) 

[3J, 

[3]. 

A set of internal rules 21-22,31-44, and 51-54 are made from 
the set of facts and rules of example 7. 

After the question mark II?II is replaced with the existential 
quantifier "#11, the process of proving the sequent of predicate 
logic may be proceeding as described in section 3. But we need 
modify the procedure on the two parts of it. 
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When a predicate is separated alone through the rule 1-14, it is 
replaced as follows, 

if it is a type F(C), then it is replaced with the truth value 
by accessing the value rules, in accordance with case [1], 

if it is a type R(C), then it is replaced with the right hand 
side of one rule defining the relation R, in accordance with case 
[3]. 

For the question of type F(x,C) or R(x,C) in case [2] or [4], it 
is required to pick up all the values that make the predicate true. 
So, even if the prover finds an answer, it reset the sequent to 
'false' and continues the proving process. The prover closes the 
process of the extension for an existential quantifier when it 
examines all the values of the corresponding bound variable over 
the domain. 

Example 9 (a question and its answering process) 
A question of the family tree of example 7 

? G(x,Momoe). 
is transformed into the sequent 

True: #x#z(F(x,z) * P(z,Momoe». 

( 4) 

( 5 ) 

according to the case [4]. The prover finds the rule 14 of #-right 
and expands the bound variable x over the domain of G 1 (rule 37). 

For the first value x=Taro, (5) is changed into 
True: #z(F(Taro,z) *P{z,Momoe». (6) 

Again by rule 14, the prover expands the bound variable z over the 
domain F 2 (rule 32). 

After the prover examines all the values of x and all the values 
of z for each XiS value, it returns the answers. 

x=Taro, z=Takeshi and x=Jiro, z=Takeko. 

In example 9, the domain of variable z of (6) is simply chosen 
as F 2 from the first apperence of z in (6). But, if we determine 
it from (6) as 

(F 2) and {P l)=[Takeshi, Takeko, Umeko], 
then the prover takes less time to find the same answers. 

6 Conclusion 

We implemented an inference mechanism for the logic programming 
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system in Pascal by simply extending the process of the automated 

theorem proving. 
We proposed a solution of what internal form of rules is 

desirable for the prover. And also we mentioned that it is necessary 
to close the domain of the variables as narrow as possible, in order 
to lessen the number of trials and to perform the inference 
effectively, on the cases as follows. 
(i) The domain of an argument variable is simply calculated from 
the defining expression. But the real domain may be smaller than the 
calculated one. For instance, the calculated domain G 1 is 

[Taro, Jiro, Takeshi, Kiyoshi] (Rule 37), 
but the real domain G 1 in the family tree would be 

[Taro, JiroJ. 
(ii) The domain of an interventional variable is simply determined 
from one argument position of the variable in the defining 
expression. But if we take the intersection of domains for all 
argument positions of the variable, we could choose more suitable 
domain for the interventional variable. For instance, the domain of 
the interventiona1 variable z in (6) is simply found as F 2(or P 1), 
but we get more suitable domain by calculating (F 2)and(P 1). 

In order to attain these two optimization, it is required certain 
intelligence for the rule-compiler processing the rule trans­
formation. In addition, if rule-compiler would posses much 
intelligence, 
(iii) it could be poSsible to extract the sets of intermediate facts 
to perform the inference much efficiently. 

For instance, from the family tree of example 7, the following 
value rule is gained. 
Rule ** Value C 2 : (Jiro,Yuki), (Takeshi,Takeko), 

(Kiyoshi ,Momoe). 

These three intelligent processing are desirable especially for 
the large set of facts and rules from the point of performance of 
the inference. But, from the point of rule transformation, they 
make a trouble to reform the set of facts and rules when its some 
part is modified. The suitable degree of the rule transformation 
would be determined depending on the number of times of modifying 
the set of facts and rules, and the number of times of making use 
of the prover. 
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