

The Analysis of PT Distributions at the CERN pp Collider

| メタデータ | 言語：eng |
| :---: | :--- |
|  | 出版者： |
|  | 公開日：2011－10－19 |
|  | キーワード（Ja）： |
|  | キーワード（En）： |
|  | 作成者：FUKUSHIMA，Takayuki，KUDO，Kiyoshi， |
|  | NAKAMURA，Ryoku，SASAKI，Seibun |
|  | メールアドレス： |
|  | 所属： |
| URL | http：／／hdl．handle．net／10098／4296 |

The Analysis of $p_{T}$ Distributions at the CERN $p \vec{p}$ Collider<br>Takayuki FUKUSHIMA*, Kiyoshi KUDO*, Ryoku NAKAMURA** and Seibun SASAKI*

(Received Feb. 28, 1986)
In 1982, the detail transverse momentum ( $\mathrm{p}_{\mathrm{T}}$ ) distributions of charged particles were measured at CERN $p \bar{p}$ collider. ${ }^{\prime}$ ), 2) The colliding energy at this experiment was higher than that of ISR by one order ${ }^{3}$ ), and at this experiment we firstly got the semi-inclusive data about the $p_{T}$ distributions of charged particles produced in $p \bar{p}$ reaction, which make us possible to analyse the multiplicity depending behaviour of the $p_{T}$ distributions. In this paper, we analyse the $p_{T}$ distributions of charged particles at ISR and at CERN $p \bar{p}$ collider using Twocomponent model, which is based on thermodynamical model and includes two temperature parameters. Our model accounts well the behaviour of multiplicity and energy dpendences of $p_{T}$ distributions. It is found that two temperature parameters contained in the model are slowly increasing functions of multiplicity and energy. However the rate of them is almostly constant.

The $p_{T}$ spectra measured in these experiments have the following characteristic properties;
(a) The invariant cross sections, which are functions of $p_{T}$, decrease sharply as $p_{T}$ increases at low $p_{T}$ region, but the rate of decreasing is moderate at higher $p_{T}$ region.
(b) As the multiplicity increases, $p_{T}$ spectrum becomes flatter and the entire cross section increases.

[^0](c) As the incident energy increases, $p_{T}$ spectrum becomes flatter and entire cross section increases.

From property (b), the mean $p_{T}$ value $\left\langle p_{T}\right\rangle$ increases as the multiplicity increases, but if energy and momentum are conserved, $\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle$ should decrease like $1 / \mathrm{n}$ as the multiplicity increases. Therefore, the property that $\left\langle\mathrm{p}_{\mathrm{T}}\right\rangle$ increases with multiplicity, reflects the dynamics concerning with mechanism of creating particles.

When we analyse $p_{T}$ distributions, it is convenient to divide $p_{T}$ domain into three regions as follows;
(1) Low $\mathrm{p}_{\mathrm{T}}$ region

This is a region of $\mathrm{p}_{\mathrm{T}} \leqq 1$ ( $\mathrm{GeV} / \mathrm{c}$ ). In this region, $\mathrm{p}_{\mathrm{T}}$ distributions are well described by exponential-like decreasing function $\exp \left(-\alpha M_{T}\right)$. Since most particles produced are pions, we are to consider pion gas. As pions obey Bose-Einstein statistics, the invariant cross section might be expected to have the form;

$$
\begin{equation*}
E d^{3} \sigma / d p^{3}=A\left[\exp \left(\alpha M_{T}\right)-1\right]^{-1} \tag{1}
\end{equation*}
$$

where
$\mathrm{M}_{\mathrm{T}}=\left(\mathrm{p}_{\mathrm{T}}{ }^{2}+\mathrm{m}^{2}\right)^{1 / 2}, \quad \mathrm{~m}:$ pion mass
and $\alpha$ is a parameter which has the dimension of inverse of temperature. This model is known as "thermodynamical model".4), 5) (2) Intermediate $p_{T}$ region

This is the region of $1 \leqq \mathrm{p}_{\mathrm{T}} \leqq 4(\mathrm{GeV} / \mathrm{c})$. $4(\mathrm{GeV} / \mathrm{c})$ is about ten times mean $\mathrm{p}_{\mathrm{T}}$ value.
(3) High $p_{T}$ region

This is the region of $4(\mathrm{GeV} / \mathrm{c}) \leqq \mathrm{p}_{\mathrm{T}}$. In this region invariant cross section is supposed to be explained by the hard collision model of quarks based on QCD. Due to this model the invariant cross section is considered to decrease as $p_{T}{ }^{-8} .6$ )

There are attempts to reproduce the data in the whole region. One of them is the QCD parametrization. 1 ), 2) There taking account that the hard collision model explains high $p_{T}$ region well, the following empirical formula is assumed;

$$
\begin{equation*}
E d^{3} \sigma / d p^{3}=A\left(b+p_{T}\right)^{-a} \tag{3}
\end{equation*}
$$

where $a \doteqdot 8, \quad b \doteqdot 1$.
In high $p_{T}$ region eq.(3) behaves like $p_{T}{ }^{-8}$. In accoordance with
the hard collision model it is hard to give some physical meaning to the formula in low $\mathrm{p}_{\mathrm{T}}$ region. And in low $\mathrm{p}_{\mathrm{T}}$ region we must admit the exponential-like behaviour of invariant cross section. That is, the $\mathrm{p}_{\mathrm{T}}{ }^{-8}$ formula like eq.(3) should be considered to hold only in high $p_{T}$ region. From experimental data, it seems that the behaviour of $p_{T}$ spectra in intermediate region resembles the behaviour in low $p_{T}$ region, so we should consider low $p_{T}$ region and intermediate $p_{T}$ region together. As we mentioned before, the thermodynamical distribution decreases sharply as $p_{T}$ increases, in rather higher $p_{T}$ region, this exponential-like distribution does not contribute to invariant cross section. To accomdate both the low $p_{T}$ region and the intermedeate $p_{T}$ region, we consider there is another state whose temperature is higher than ordinary temperature, and we expect, even in inetermediate $p_{T}$ region, a kind of thermodynamical model is valid. Our two-component model is composed of these two component; the first component is the thermodynamical distribution of ordinary temperature and is dominant in low $p_{T}$ region, and the second component is the thermodynamical distribution of higher temperature and is dominant in intermediate $\mathrm{p}_{\mathrm{T}}$ region. We call the former the ordinary state and the latter the hot state. In this model, the invariant cross section becomes

$$
\begin{equation*}
E d^{3} \sigma_{n y} / d p^{3}=A\left\{(1-R)\left[\exp \left(\alpha M_{T}\right)-1\right]^{-1}+R\left[\exp \left(\beta M_{T}\right)-1\right]^{-1}\right\} \tag{4}
\end{equation*}
$$

where $n_{y}$ is the multiplicity per unit rapidity and $R\left(n_{y}, s\right)$ is the ratio defined by

$$
\begin{equation*}
\mathrm{R}=\sigma_{\mathrm{H}} /\left(\sigma_{\mathrm{H}}+\sigma_{\mathrm{H}}\right), \tag{5}
\end{equation*}
$$

where $\sigma_{H}$ is the cross section for producing hot temperature state and $\sigma$ is the cross section for producing ordinary temperature state, and $\alpha\left(n_{y}, s\right)$ is the temperature parameter of ordinary state and $\beta\left(n_{y}, s\right)$ is the temperature parameter of hot state.

These parameters are decided to fit eq. (4) with the data from the experiments at CERN $p \bar{p}$ collider and at ISR. The results are shown in Figs. $1 a-1 c, F i g .2$, and the values of parameters are tabulated in Table 1.

As is shown in Figs. 1a-1c, Fig. 2, eq. (4) reproduces experimental data well from low $p_{T}$ region to intermediate $p_{T}$ region. Further we calculated the mean values of $p_{T}$ at each $n_{y}$, and the results are also shown in Table 1 . These values show good accordance with the experimental results. From these analyses, we con-
clude that
(1) The rate $R$ is small and is increasing function of multiplicity and energy. In higher energy and higher multiplicity experiments, we can find the second component more clearly.
(2) The temperature of ordinary state, $T$ and the temperature of hot state, $T_{H}$, are both increasing function of multiplicity and energy but their rate $\gamma=\mathrm{T}_{\mathrm{H}} / \mathrm{T}$ has almostly constant value $2 \sim 3$. This means the temperature of the hot state is a few times higher than that of the ordinary state.

## Acknowledgments

We are grateful to the members of the elementary particle group of Fukui University.

References

1 G. Arnison it al.: Phys. Lett. 118B, 167 (1982)
2 M. Banner et al.: Phys. Lett. 122B, 322 (1983)
3 B. Alper et al.: Nucl. Phys. B100, 237 (1975)
4 A. T. Laasanen et al.: Phys. Rev. Lett. 38, 1 (1977)
5 R. Hagedorn : Riv. Nuovo Cimnento 6, N. 10 (1983)
6 R. P. Feynman, R. D. Feild, G. C. Fox : Phys. Rev. D18, 3320 (1978)

Table caption
Table 1. Fit parameters at $\sqrt{s}=540 \mathrm{GeV}$ for the different multiplicities.

Figure captions
Fig. 1a. The invariant cross sections as a function of $p_{T}$ for charged hadrons ( $\sqrt{ } s=540 \mathrm{GeV}$ ) for $n_{y}=2.4$. The solid line is our calculation based on eq. (4).
Fig. 1b. The invariant cross sections as a function of $p_{T}$ for charged hadrons ( $\sqrt{ } \mathrm{s}=540 \mathrm{GeV}$ ) for $\mathrm{n}_{\mathrm{y}}=5.7$. The solid line is our calculation based on eq. (4).
Fig. 1c. The invariant cross sections as a function of $p_{T}$ for charged hadrons ( $\sqrt{ } s=540 \mathrm{GeV}$ ) for $n_{y}=10.2$. The solid line is our calculation based on eq. (4).

Fig. 2. The invariant cross sections as a function of $p_{T}$ for charged pions ( $\sqrt{ } s=63 \mathrm{Gev}$ ). The solid line is our calculation based on eq. (4) with $A=2.88 \times 10^{-25}, \quad R=0.016, \alpha=7.47, \beta$ $=3.15$, and $\gamma=2.37$.

Table 1.




Fig. 1 b


Fig. 1 c


Fig. 2


[^0]:    * Dept. of Applied Physics
    ** Fukui Prefectural College

