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In this article, contrary to the common visual sensors for the self-localization of

the indoor mobile robot, we focus on utilizing the artificial landmarks and ad-

dressing the problem of the low-cost, stability and accuracy of the positioning

system. Radio-frequency identification (RFID) and infrared (IR) LED systems

have been used for the self-localization of the indoor mobile robot for a long

time. RFID system uses an electromagnetic wave, which is robust against the

influence of obstacles outside the RFID communication area or lighting con-

ditions. Especially, comparing with the visual sensors, RFID system is robust

against the data association errors. The IR system has the advantages of a stable

signal, fast response, high confidentiality of information, and it is less affected

by environmental change. Therefore, RFID and IR sensors are useful for the

self-localization of an indoor mobile robot. However, RFID positioning sys-

tem needs a large amount of preparation work, e.g., building a map of the IDs

and the positions of the RFID tags and most IR-system-based self-localization

approaches use a unique ID to encode the landmarks which means that some

mobile robot localization techniques are inappropriate for a large indoor en-

vironment because of the limited availability of IDs and the associated high

production cost.
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In this work, we propose to use two novel simultaneous localization and map-

ping (SLAM) methods to replace the preparations of an HF-band RFID-based

positioning system and a novel landmark arrangement to reduce the cost of the

IDs and production cost of the IR-sensor-based positioning system. Because

the tag detection of the HF-band RFID system does not follow the standard

Gaussian distribution, the proposed SLAM methods use particles for the self-

localization of the robot and landmark mapping. The novel landmark arrange-

ment consisting of the IR LED arrays with unique ID-encoding capabilities

based on a combination of different frequencies and the repeated ID-encoding

LEDs to address the problems of limited IDs and production cost of the IR-

sensor-based positioning system. Both positioning systems are verified by the

experiments. The experimental results confirmed the validity of our proposed

methods for both positioning systems.
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Chapter 1

Introduction

With the development of intelligent robots, indoor mobile robots are being ex-

pected to perform more tasks. For safe and stable performance, one of the fun-

damental requirements for the indoor mobile robot is the localization technol-

ogy. Indoor mobile robot estimates its position and orientation mainly based

on the measurements obtained by the sensors which equipped on the robot

and the prior knowledge such as an environment map or artificial landmarks

[1][2][3][4]. The sensors used for the self-localization of indoor mobile robots

are centered on laser range finders (LRFs) [5][6], ultrasonic sensors [7][8], Blue-

tooth [9][10], WiFi [11][12], magnetic sensor [13][14], visual sensors [15], the ra-

dio frequency identification (RFID) [16][17], and infrared (IR) sensors [18][19][20].

LRF and ultrasonic sensor based positioning systems have superiority of

high accuracy and simple structures. However, the accuracy of both of these

two types of sensors is easily affected by the unknown moving objects. The

limitation of LRF to the transparent materials which are widely used in the

current indoor environment also restricts its utilization. Although it is easy to

integrate hardware of Bluetooth and WiFi into the mobile device, the energy

and economic demands of Bluetooth infrastructure is high, and the localization

accuracy based on WiFi is influenced by characteristics of transmitters and re-

ceivers and characteristics of the environment which influences on the radio

signal propagation. The stability of the distributed magnetic filed is capable of

keeping over a long period of time so that the magnetic sensor can be used for

the localization of the indoor mobile based on a magnetic map. However, the

practicality of the magnetic sensor for the self-localization is easily affected by

1



2 Chapter 1. Introduction

the magnetized materials. The self-localization of a mobile robot based on a

visual sensor is realized without the environment alteration and is convenient

for the interaction of human-computer. However, the practicality of the visual

sensor is adversely affected by the environmental conditions and illumination

changes.

The communication of the HF-band RFID system utilizes the electromag-

netic induction. HF-band RFID system is capable of providing a precise and

secure detection model. The communication of the IR system happens between

the IR emitter and receiver. It supports a stable and fast signal transmission. Es-

pecially, the production cost of the IR system is commonly low which utilizes

the cheap IR LEDs. Both the RFID and IR systems have the advantage of high

information confidentiality and are less affected by environmental changes.

These valuable characteristics are useful for the self-localization of the indoor

mobile robot and prompted us to utilize an RFID system and an IR system to

locate the robot. However, the RFID technology for the self-localization of the

indoor mobile robot needs burdensome preparation work, such as measuring

the tag positions and recording the tag IDs. Therefore, we propose two novel si-

multaneous localization and mapping (SLAM) methods [21][22][23][24][25][26]

which is suitable to the RFID system detection model to achieve the robot self-

localization and reduce the preparation work. In addition, most current IR-

based positioning techniques only use unique IDs to encode the emitters for

the self-localization of the indoor mobile robot. Because of the limitation of

the available IDs and high system cost, this leads to some IR-based robot po-

sitioning systems are unsuitable for a large indoor environment. In this study,

we propose a novel emitter arrangement for an IR-based indoor mobile robot

self-localization system with the purpose of solving the difficulty of the limited

available IDs and reducing the production and computational costs. In this

chapter, a brief overview of two novel SLAM technologies based on RFID sys-

tem and a positioning system based on the IR sensor is given to make clear the

purpose of this dissertation.
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1.1 SLAM Technology for HF-band RFID System

RFID system contains a reader/writer and an integrated circuit (IC) chip built-

in tag. The information of the tag can be read and written by the antenna in-

stalled on the reader/writer. The communication between the reader/writer

and tag using the electromagnetic wave is robust against the illumination con-

ditions or the influence of the objects outside the communication range of the

RFID system [27][28]. Therefore, RFID is capable of using for the self-localization

of an indoor mobile robot [29][30][31][32]. For the self-localization of the indoor

mobile robot based on the RFID system, the positions and ID information of the

RFID tags are needed to be built in advance [16][33][34]. However, measuring

the positions and recording ID information of the IC tags are time-consuming.

Especially an RFID positioning system always needs a huge amount of tags to

achieve an accurate estimation.

With the rapid development of self-driving, visual sensors and LiDAR de-

vices based SLAM technologies are widely applied in outdoor environments.

SLAM as the underlying technology can be used for performing the localization

of the vehicle and building the environment map simultaneously [35][36][37].

SLAM method is also being expected to use for the indoor robots to make a safe

and more intelligent performance. Landmark-based SLAM [38][39] utilizes the

feature objects in the environment as landmarks and builds a landmark map

while localizes the robot. The RFID IC tags in the environment can be used

as the landmarks of the SLAM technology. Therefore, by using the landmark-

based SLAM method, the robot is able of localizing itself without a prior knowl-

edge of positions and ID information of the IC tags so that the labor and time

costs can be reduced.

1.1.1 Particle Filter used for the Landmark Updating of The

SLAM Method

FastSLAM [40][39] which using the Kalman filter to update the tag locations

was utilized in an unknown indoor environment to achieve the self-localization
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of the mobile robot and the localization of HF-band RFID tags simultaneously

by Wang and Takahashi [41]. The RFID system with a small detection range

obtained a good performance by using FastSLAM. The robot localization and

tag location errors are within 3 cm. The antenna of the RFID reader used in [41]

is very small so that 96 readers are needed to cover a wide detection range. A

large number of RFID readers seriously increases the production cost of the sys-

tem. The antenna with a large detection range is needed to reduce the number

of the readers for a practical RFID system. However, the non-Gaussian detec-

tion model of the HF-band RFID system makes the Kalman filter is unsuitable

for the estimation of the IC tag locations. This problem becomes obvious with

the increase of the detection range. Moreover, the insufficient scalability of Fast-

SLAM easily results in a failure in an environment with a greater number of

landmarks.

Therefore, we propose the SLAM method of using the particle filter [42][43]

[44][45] for both the robot localization and the location of the IC tags. Particle

filter does not need any parametric model so that it is suitable to the SLAM

technology based on HF-band RFID system with the non-Gaussian detection

model. Self-localization of the mobile robot is estimated by Monte Carlo local-

ization (MCL) [46][47] method. A set of independent particle filters are used

to the landmark mapping. Each detected IC tag is assigned with a particle fil-

ter which makes the proposed SLAM method is capable of achieving a good

scalability for the environment with a great number of RFID tags.

1.1.2 Particle Smoother used for the Landmark Updating of The

SLAM Method

Particle filter is suitable to the positioning system based on RFID with the non-

Gaussian detection model. However, the shortage of the degeneracy prob-

lem of the particle filter possibly causes a large error for the SLAM method

[48][49][50]. By adding a Gaussian random value to each particle for estimat-

ing the robot localization during the motion model updating step at each loop



Chapter 1. Introduction 5

of the SLAM procedure, the degeneracy problem of the robot particles can be

avoided. However, the particles for estimating a stationary landmarks are up-

dated within the states initialized at the first detection of this landmark by using

the particle filter. The tag particles easily converge to a small number of parti-

cles at the resampling step and generate the degeneracy problem when using

a RFID reader with a large detection range. This degeneracy problem of the

particle filter for estimating the tag location easily leads to a wrong estimation.

Especially, with the increase of the detection range of the RFID reader, the ef-

fect of the degeneracy problem of the particle filter for estimating the landmark

becomes serious.

Therefore, a novel SLAM method is proposed to use the particle smoother

[51][52][53] to update the landmark location. In this study, the fixed-lag smooth-

ing method [54][55] is used for the particles for estimating the tag location. Each

detected IC tag is updated by an independent particle smoother. By using the

fixed-lag smoothing method, the particles for estimating a detected tag are up-

dated by adding a Gaussian random value in the subsequent detection after

the first detection of this tag. In addition to the states initialized at the first de-

tection, novel states of the tag particles are generated by adding the Gaussian

random value at the updating step. The position of the detected tag is updated

based on both the historical and current states of the particles. The utilization

of the particle smoother effectively suppresses the degeneracy of particles for

estimating the location of IC tags and smooths the estimation when using an

RFID reader with a large detection range. Self-localization of the mobile robot

in this novel SLAM method also utilizes Monte Carlo localization method.

1.2 Self-localization Based on IR System

IR position systems for the indoor mobile robot mainly based on the devices of

the IR emitter and receiver [56][57][58][59]. IR receiver always set on the robot

to scan the IR signal transmitted from the emitter. Some researches positioned

the IR emitters in the environment as the active landmarks and transmit the
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encoded IR signal [60][61]. The robot estimates the position and orientation of

the robot based on the signal information of the detection emitter through the

receiver. Other researches utilize the IR light-reflecting materials as the passive

landmarks [62][63]. Both an emitter and an IR camera receiver are integrated

into the mobile robot. The emitter continuously transmits the IR signal to the

environment. The signals transmitted to the IR light-reflecting materials are

reflected and received by the IR camera. The robot recognizes the landmarks

through the signals and locates itself based on the measurements with the de-

tected landmarks.

The landmark used for current active or passive landmark-based IR self-

localization systems is encoded by the unique ID. Because of the limitation

of the valuable landmark IDs and the related high production cost, some IR-

system-based localization systems are inappropriate for a large indoor envi-

ronment. However, a mobile robot with the assistance function is expected to

play a greater role in a large indoor environment, such as the hospital, large

exhibition centers, large dining halls, and large sports complexes. Therefore,

a novel landmark arrangement is proposed to support an adequate number of

available IDs and reduce the production and computational costs for the IR-

system-based self-localization system capable of being utilized in a large envi-

ronment. Two types of the IR emitters are used as the active landmarks and

applied to the novel landmark arrangement. The emitters are installed on the

ceiling to minimize disturbance of the signals by obstacles. The first type of

the emitter is a unique ID encoded IR LED array. The other is a repeated ID

encoded IR LED. The ID of the IR emitter is driven by an on-off Keying (OOK)

modulator [64][65] through a microcontroller. We use the frequency of the OOK

modulator to encode the IDs of the IR emitters in this study. The unique ID is

composed of multiple frequencies by a mathematical combination method. The

repeated ID only contains a single frequency. Nine frequencies are supported

to design the IDs in this research; however, 511 available IDs can be obtained

by using the mathematical combination method. Using the repeated ID encod-

ing emitter of the proposed emitter arrangement makes these available IDs can
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be applied to a larger environment. Moreover, this novel arrangement of the

landmarks is also suitable for an indoor mobile robot self-localization system

with other-sensors-based landmarks.

Two receivers are set on the top of the mobile robot to detect the IR signals.

The robot utilizes the detected IR signals to recognize the emitters and realize

self-localization based on the measurements. Because of repeated IDs utilized

in the emitter, a belief function is applied to compute a probability for each

emitter with the detected repeated ID. The emitter with the largest belief value

is considered as the detected emitter. The MCL method with this belief function

is used to estimate the localization of the robot in this research.



8



Chapter 2

Related Work

2.1 SLAM based on Particle Method

In this dissertation, two novel SLAM technologies with the landmark updating

respectively based on particle filter and particle smoother are proposed. Early

landmark-based SLAM works with filter method were mainly based on the ex-

tended Kalman filter (EKF) [66][67][68]. In addition to the filter method, pose

graph as a optimization method is widely used for the visual SLAM method.

EKF SLAM as one of the early SLAM methods with filter method has obtained

some successful applications. However, EKF SLAM is limited to the shortage

of the computational complexity and the requirement of the Gaussian assump-

tion. Murphy described that the method of using Rao-Blackwellized particle

filters for solving the SLAM problem [69][70] is an effective approach. Fast-

SLAM proposed by Montemerlo et al. utilized a Rao-Blackwellized particle fil-

ter to estimate the pose of the robot and a separate EKF to update the position

of each landmark which improves the flexibility and reduces the computational

complexity. However, these EKF-based SLAM methods assumed that the land-

mark detection could be modeled by a Gaussian model. Some sensors used for

the SLAM technology do not follow the Gaussian model so that the estimation

based on the EKF method becomes inaccurate and unstable.

9
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2.1.1 Particle Filter used for SLAM Technology

Particle filter is based on the particles with the probability densities, which can

be utilized to a non-linear/non-Gaussian state space model. Eliazar and Parr

[71] proposed a particle filter-based SLAM method called DP-SLAM based on a

laser detection model. DP-SLAM uses a particle filter to maintain a joint prob-

ability distribution of robot location and maps which effectively eliminates the

accumulated errors of the map. Forster et al. [72] estimate the tag positions

in a hybrid metric-topological map by particle filter with the received signal

strength information from the sensor model.

Joho et al. [73] built a novel combined sensor model for the self-localization

of a mobile agent and UHF RFID tag mapping by using the tag detection of the

RFID system and the received signal strength. The map of the tags is built based

on the assumption that the antenna set on the robot was known in advance.

With the known locations of the RFID tags, the robot location can be estimated

by using the same sensor model. The error of the tag locations is about 27 cm

based on the predefined trajectory. Comparing with this research, the HF-band

RFID system used in our research does not provide the received signal strength

(RSS) information. Moreover, the self-localization of the robot and tag location

are performed simultaneously in our research. The proposed sensor model for

both estimations of the RFID locations and the robot poses provides us realize

the SLAM study by the particle filter.

Deyle et al. [74] presented a mobile robot equipped with a UHF RFID reader

with multiple antennas and utilizes a particle filter implementation for estimat-

ing the location of the RFID tags in the environment. A new particle filter frame-

work is developed for estimating the distance and bearing of the UHF RFID tag

respected to the reader which positioned on the robot by incorporating with RF

signal propagation models. A mean range error of 690 mm and a mean bearing

error of 6.1 degrees are presented over the distances of the robot to tag over

4 m based on the proposed method in [74]. The localization system used in

our research is based on an HF-band RFID system. The detectable range of the

HF-band RFID system is shorter than the UHF-band RFID system. It makes the
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accuracy of the HF-band RFID system higher than UHF-band RFID system. Ac-

cording to the experiment results, our proposed method based on an HF-band

RFID system obtained more accurate results. Especially, we applied the parti-

cle filter based landmark updating in the SLAM study without an RFID signal

propagation model.

2.1.2 Particle Smoother Used for SLAM Technology

Particle filter can be utilized for the landmark estimation of the SLAM based on

the HF-band RFID system with the non-Gaussian detection model within a cer-

tain detection range. However, the degeneracy problem of the particle filter for

estimating the tag location becomes serious with the increase of the detection

range. Because of this disadvantage of the particle filter, a particle smoother

is proposed to estimate the position of each landmark in this study. We used

the fixed-lag smoothing algorithm proposed by Kitagawa [54] to update the

landmark location. The computational cost of the fixed-lag smoothing method

which based on the storing state vector is almost the same as the particle filter.

An additional requirement of this method is a little memory for storing the his-

torical states of the particle. The fast computation of the fixed-lag smoothing

method makes the proposed SLAM be capable of performing in real time.

Berntorp and Nordh proposed to utilize the Rao-Blackwellized particle smooth-

ing (RBPS) for occupancy-grid based SLAM with an ultrasound sensor [75].

The authors implemented an RBPS for jointly estimating the position of the

robot and the map. A more effective map model incorporates the uncertainty

of the measurements was used in this approach. The proposed method was

verified on a Lego Mindstorms mobile robot which has low-performance mo-

tors, with a low-cost ultrasonic range finder. The experimental results show

that the smoothing gives a substantial robustness improvement and increased

predictability of the proposed algorithm. However, each particle contains an es-

timate of the entire map in [75], thus it is of significant size. The computational

demands then using smoothing are also greater than for filtering by using the

method. This means that for larger maps, the memory requirements and the
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computational cost will be a problem. In our proposed method, each landmark

is updated by a set of particles with the fixed L-lag smoothing method. The

computational cost of this method is almost the same as the particle filter. The

only requirement is a little memory for storing the particles.

Clark et al. developed the random finite set approach to SLAM by intro-

ducing forward-backward smoothing in order to refine the vehicle trajectory

[76]. The algorithms are implemented with sequential Monte Carlo and Gaus-

sian mixture techniques. The proposed method was evaluated in a simulated

environment with a range and bearing detection model. In this scenario, the

uncertainty in the distribution on the vehicle position grows as the vehicle tra-

verses the path until the loop is closed, and the uncertainty decreases at this

point. By smoothing backwards at times just prior to the loop closure, a signif-

icant reduction is achieved in the estimated vehicle position. Comparing with

[76], we proposed to use the smoother to refine the estimation of the landmark.

Our proposed method is capable of using for the non-Gaussian RFID detection

model.

2.2 IR-sensor-based Self-localization System

IR sensor has been widely used for the indoor positioning system. Some IR pas-

sive landmark based self-localization systems were developed for the indoor

mobile robot. The Hagisonic StarGazer localization system [77] has been widely

used for the researches and sold as a commodity. Ul-Haque et al. [78] evalu-

ated the Hagisonic StarGazer localization system and point out this system to

be reliable, stable and, accurate. Oh et al. [62] also evaluated this localization

system. Several types of errors are found in the experiments. They utilized

an optimal arrangement of landmarks and an EKF to improve the accuracy.

The passive landmarks used in the Hagisonic StarGazer localization system are

easily installed and inexpensive. An HLD1-L 4x4 grid passive landmark used

in this system is approximately $3.52. However, the localization sensor of the
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Hagisonic StarGazer localization system costs nearly $1,400 which is unsuit-

able for an environment with multiple mobile robots. Moreover, the Hagisonic

StarGazer localization system offers only thousands of unique IDs leads to it is

not appropriate to a large-scale environment, whereas our proposed system is

able of supporting more unique IDs. Especially, our proposed system utilizes

repeated IDs encoding landmarks in the environment.

Most of the active IR landmark-based localization systems utilize the emit-

ter as the active landmark. Krejsa and Vechet [60] used IR beacons and a scan-

ner realize the self-localization of the indoor mobile robot. The IR beacons are

placed in the environment with known positions. The scanner is placed around

the robot with 16 receivers to cover the entire range of 360 degrees. The self-

localization of the mobile robot was estimated by the EKF method based on

the measurements of the scanner. Hijikata et al. [18] proposed an indoor self-

localization system by using the IR LEDs as the landmarks and a CCD camera

to observe the IR LEDs. The IR LEDs are observed as bright spots by using the

CCD camera with the optical filter. The self-localization problem is solved with

the nonlinear least squares method. This system is light because it only needs

several LEDs and a CCD camera. The proposed system is easily installed in the

environment and needs low production cost. Jungyun Bae et al. [19] designed

a mobile robot localization system based on the coded IR light. Several IR LEDs

coed by unique IDs are put on the ceiling. The robot activity area is divided into

several sections by the combination of different ID encoding LEDs. The robot

can roughly estimate itself by identifying these unique sections. They also pre-

sented an algorithm that combines both the dead-reckoning and the detected

IR signal to improve the accuracy of the estimation.

Comparing these approaches with our proposed method, we make a more

delicate treatment of the IR signal by using the RSS method to obtain a more

accurate result. Especially, some IDs are repeatedly used in the environment so

that the production costs are reduced.

Gorostiza et al. [79] tried to use the receiver which positioned on the ceiling

as the landmark to estimate the position of the mobile robot. An emitter was
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set on the top of the robot and continuously transmits the modulated IR signal.

The distance between the receiver and emitter could be calculated based on the

phase-shift. Therefore, the position of the robot was estimated by hyperbolic

trilateration method. The precision of this system is below 10 cm based on the

experiment results. The limitation of available IDs is solved by placing the re-

ceiver in the ceiling other than utilizing the emitter as the landmark. However,

the communication cost between the robot and backstage controller increases

when multiple robots operation in the workspace. Moreover, the receiver com-

monly complex than the emitter which makes the production cost of the system

proposed in [79] increases obviously in a large environment.



Chapter 3

SLAM Method utilizing Particle

Filter for Landmark Updating on

RFID System

This chapter introduces the SLAM method with particle filter based landmark

updating in detail. To make the article concise, we refer to it as PF-SLAM in the

following description. First, the RFID system used in our study is presented in

Section 3.1. In Section 3.2, FastSLAM based on RFID system is briefly reviewed.

In Section 3.3, the proposed SLAM algorithm is explained and compared with

FastSLAM in computational efficiency. The results of PF-SLAM from simula-

tions and the real experimental environment are shown in Sections 3.4 and 3.5.

Last, summaries are drawn in Section 3.6.

3.1 RFID Positioning System for Indoor Mobile Robot

The communication of the HF-band RFID system [80][81] utilizes the electro-

magnetic induction. Although the communication range of the HF-band RFID

system is shorter than the UHF-band RFID system [82][83], the communica-

tion of the HF-band RFID system is robust against the influences between the

antenna and tags. This character makes the landmark detection of the SLAM

work reliable and precise.

Figure 3.1 shows the RFID system used for the SLAM work with an indoor

mobile robot. Eight RFID readers are installed on the bottom of the mobile

15
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FIGURE 3.1: RFID system used for an indoor mobile robot.

robot. The detection range of the RFID reader in this study is 60 × 60 mm2.

The RFID tags are embedded in the floor carpet. One RFID tag is presented in

Figure 3.1 and the size of this RFID tag is 10 × 20 mm2. Each RFID tag has a

unique ID so that the detection of RFID tags more reliable. Two types of carpets

with densities of 100 tags/m2 and 16 tags/m2 are spread on the floor. The ideal

configures of 8 RFID readers and two types of RFID tags are shown in Figure

3.2. However, it is difficult to position the RFID readers and tags precisely as

Figure 3.2 shows. Therefore, they are installed with unavoidable errors in prac-

tical environment. In this study, the IDs and associated positions of the tags

are unknown for the robot. The robot detects the RFID tags by using the RFID

readers. The mobile robot self-localization is achieved and modified based on

the RFID tags and the locations of the RFID tags are updated simultaneously

during the robot movement.
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(a) Configuration of the RFID
readers

(b) Configuration of the RFID
tags with 100 tags/mm2

(c) Configuration of the RFID
tags with 16 tags/mm2

FIGURE 3.2: Configurations of RFID readers and tags.

3.2 FastSLAM for RFID system

From a probabilistic perspective, the SLAM problem can be written in the fac-

tored form:

p(x1:t,m | z1:t,u1:t,n1:t) = p(x1:t | z1:t,u1:t,n1:t)p(m | x1:t, z1:t,u1:t,n1:t) (3.1)

where x1:t is the path of the robot, m is the map built during the movement, z

means the observation, u is the robot control, and n is the index of the detected

landmark.

FastSLAM utilizes a particle filter to estimate the robot paths of the first

term in the posterior in Equation. (3.1). A separate estimator is used to locate

the position p(mn | x1:t, z1:t,u1:t,n1:t) for each landmark in m. Each particle in

FastSLAM is of the form

y
[i]
t =< x

[i]
t , ω

[i], µ
[i]
1,t,Σ

[i]
1,t, ..., µ

[i]
N,t,Σ

[i]
N,t > (3.2)

where y
[i]
t is the combined state vector of the robot pose and the map. ωi is

the importance weight of particle [i]. µ[i]
n,t and Σ

[i]
n,t are the center vector and the

covariance matrix of the Gaussian distribution of the landmark n, respectively.
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The posterior of the FastSLAM is transformed to:

p(y1:t | z1:t,u1:t,n1:t) = p(x1:t | z1:t,u1:t,n1:t)
N∏

n=1

p(mn | x1:t, z1:t,u1:t,n1:t) (3.3)

N is number of the landmarks set in the environment.

The position parameters of the landmarks are updated by an EKF. Figure

3.3(a) shows a likelihood model belongs to a Gaussian distribution. The detec-

tion model of a general range and bearing sensor always follows this distribu-

tion. However, the detection model of the HF-band RFID system is close to a

step function. The likelihood model of the RFID system with the size of 60 ×

60 mm2 is shown in Figure 3.3(b). It does not belong to a Gaussian distribu-

tion. The detection model of the RFID antenna with the size of 60 × 60 mm2

or larger is unsuitable to be modeled as a Gaussian distribution. Therefore,

Kalman-filter-based FastSLAM is not appropriate to the SLAM task based on

the RFID system with a large antenna.

3.3 SLAM Method utilizes Particle Filters for The

Robot and Landmark Localization

Because of the non-Gaussian detection, particle filter is proposed to estimate

the RFID tag location. Each detected tag is updated by an independent particle

filter. The pose of the mobile robot is also estimated by a particle filter. A total

of 1+N independent particle sets are utilized for the proposed SLAM method.

One particle set is used for estimating the self-localization of the mobile robot

and N particle sets are utilized for updating the locations of N detected tags.

Each robot particle is of the form

x
[i]
t =<w x

[i]
t , ω

[i]
r,t > (3.4)

where wx
[i]
t is the position and orientation of particle [i] in the world coordinate

at time t and ω
[i]
r,t represents the importance wight of robot particle [i]. Each tag
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(a) Gaussian distribution
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(b) Non-Gaussian distribution

FIGURE 3.3: Distributions of the likelihood with (a) Gaussian
model and (b) non-Gaussian model.

particle is of the form

m
[j]
n,t =<w m

[j]
n,t, ω

[j]
n,t > (3.5)

where wm
[j]
n,t = (wxn,

w yn) presents the location of tag n in the world coordinate

system. [j] is the index of the tag particle. The importance weight of tag particle

[j] is represented by ω
[j]
n,t.

Algorithm 1 presents the PF-SLAM algorithm utilizes independent particle

filters for both the self-localization of the robot and landmark updating. The

robot starts with a known position and orientation. The particles for estimating
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Algorithm 1: PF-SLAM:

1: Initialization of the robot particle set Sr,t = (x
[1]
t ,x

[2]
t , · · · ,x[I]

t )
2: for i = 1 to I do
3: Robot particles are updated by the motion model:

wx
[i]
t = MotionModel(wx

[i]
t−1)

4: end for
5: if landmark n is detected then
6: if landmark n never seen before then
7: Initialize a new tag particle set Sn,t = (m

[1]
n,t,m

[2]
n,t, · · · ,m

[J ]
n,t)

8: else
9: for from j = 1 to J do

10: Update ω
[j]
n,t for each particle in Sn,t

11: end for
12: end if
13: for from j = 1 to J do
14: Create particle [k] with probability ∝ w

[j]
n,t

15: Add m
[k]
n,t to Sn,t

16: end for
17: for from i = 1 to I do
18: Update ω

[i]
r,t based on the likelihood function

19: end for
20: end if
21: for from i = 1 to I do
22: Create particle [o] with probability ∝ w

[i]
r,t

23: Add x
[o]
r,t to Sr,t

24: end for
25: Return Sr,t, Sn,t
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the robot localization are initialized around the start point. These robot particles

are updated by the motion model at each loop of the SLAM procedure. The

motion model used in this study is expressed as

wxr,t =
w xr,t−1 + V∆t+ ϵ∆t, ϵ ∼ N(0, σ) (3.6)

where V = (vx, vy, ω) and ∆t are the velocity of the robot and the period be-

tween times t− 1 and t, respectively. N(0, σ) denotes the Gaussian distribution

with the standard deviation σ.

When a tag is detected by an RFID reader, the robot recognizes this tag if

seen before by its ID firstly. If never detected before, a novel tag particle set is

assigned to this tag for estimating its position. The tag particles are initialized

around the area of the reader that detected this tag and assigned with an impor-

tance weight value 1. Otherwise, the importance weights of these tag particles

are updated based on the likelihood function. The likelihood function is asso-

ciated with the HF-band RFID detection model. Particles in the detection area

have the same possibility as the real tag location as shown in Figure 3.3(b). The

likelihood function is defined as a piecewise function as

ω =

1, if |ex| < σ and |ey| < σ

β exp
(
− 1

2σ2e
Te
)
, else

(3.7)

where e = (ex, ey)
T. ex = rxn − rxb and ey = ryn − ryb. (rxn,

ryn)
T means the

location of the detected tag n in the robot coordinate. (rxb,
ryb)

T presents the

location of reader b that detects tag n in the robot coordinate. σ is set at 30 and

β is a constant. || is the symbol of the absolute value. The positions of the RFID

readers can be calculated through configure of the readers as shown in Figure

3.2(a). At the resampling step, a new distribution of the detected tag particles

is generated according to the importance weights obtained by Equation (3.7).

The position of the detected tag is estimated based on the new distributed tag

particles.

Then, the position and orientation of the robot are estimated by using the
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updated tag location. The importance weights of the robot particles are also

updated by Equation (3.7). In this step, rxn is known and used as the obser-

vation value. After the importance weight of each robot particle is updated,

the resampling is executed. A new distribution of the robot particles are ob-

tained. Finally, the position and orientation of the robot is estimated by using

the updated robot particle set.

Figure 3.4 shows the procedure of the PF-SLAM based on the RFID sys-

tem. Particles around the center of the robot are used for estimating the self-

localization of the mobile robot. These particles are always updated by the mo-

tion model during the movement. When the robot detects a new tag, a new tag

particle set is assigned to estimate the tag location. These tag particles are ran-

domly distributed in the detection range of the reader with importance weights

1 in the beginning. As shown in Figure 3.4(b), if this tag is detected again, an-

other detection area of the reader is defined. The importance weights of some

particles in the area of first detection but outside the area of second detection

are updated with smaller values. These particles are transformed into particles

with larger importance weights at resampling step. A more accurate area for

the detected tag is achieved based on second detection. The particles for esti-

mating the localization of the mobile robot are also updated after the estimation

of the detected tag. A more accurate estimation of the robot localization can be

obtained with the decrease of the possible area of the detected tag. The feasible

area of the detected tag becomes much smaller with multiple detection by the

mobile robot at additional location as shown in Figure 3.4(c). A greater accu-

racy of the tag location is obtained. The accuracy of the robot localization also

improves.

This hypothesis is evaluated in a simulation by moving the robot in a ran-

dom method to detect a tag at more locations. The accuracy of the tag esti-

mation is recorded during the detection. The evolution of the error of the tag

estimation against the detection times is shown in Figure 3.5. The error of the

estimation decreases with the increases of the detection times which proves the

validity of the hypothesis mentioned above. Even though the converge of the
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tag particles becomes difficult after the 65 detection times, the accuracy is suffi-

cient for the estimation of the tag locations.

3.3.1 Comparison between FastSLAM and PF-SLAM

The computation efficiency of the proposed PF-SLAM is compared with Fast-

SLAM. Equation (3.2) presents the form of the particle in FastSLAM. If Mf par-

ticles and N landmarks are used in FastSLAM, a memory size of O(MfN) is

needed. The forms of the robot particle and tag particle in PF-SLAM are de-

fined in Equations (3.4) and (3.5). If we use Mp robot particles and J tag parti-

cles for each landmark. The proposed SLAM method needs a memory size of

O(Mp + JN). Because the scale of the possible area for the robot localization

is much larger than that of a tag localization, the number of the robot particles

Mf and Mp are always much larger than the number of the tag particles J . This

makes the increase rate of O(MfN) is larger than O(Mp+JN) with the increase

of the detected tags. In this study, we set Mf = Mp = 500 and J = 100. When

N ≥ 2, the memory size O(MfN) is larger than O(Mp + JN). Taking into ac-

count the parameters inside the particle, three robot localization parameters,

one importance weight, two mean parameters, and three covariance parame-

ters of the tag position, in total (3 + 1 + 2 + 3)Mf parameters are needed to

update for FasrSLAM when a tag is detected. However, our proposed method

requires (3+1)Mp+(2+1)J parameters (three position parameters and one im-

portance weight for each robot particle and two position parameters and one

importance weight for each tag particle). Substituting the values of the robot

and tag particles used in this study into the formula, 4500 and 2300 parameters

need to be updated for FastSLAM and PF-SLAM, respectively. Moreover, PF-

SLAM becomes much faster than FastSLAM with the increase of the number of

robot particles. The superiority of the proposed SLAM method is also correct

for the mobile agent in 3D space. For a mobile agent in 3D space, (6+1+3+6)Mf

parameters (six robot position parameters, one importance weight, three mean

parameters, and six covariance parameters of the tag position) are required for

FastSLAM, and (6+1)Mp+(3+1)J parameters (six position parameters and one
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importance weight for each robot particle and three position parameters and

one importance weight for each tag particle) are needed for PF-SLAM method,

respectively. If we also use the values of Mf = Mp = 500 and J = 100, 8000 and

3900 parameters are required for FastSLAM and PF-SLAM, respectively. The

calculation cost of FastSLAM is also larger than the proposed SLAM method.

The efficiency of the proposed method in computation cost is evaluated in

a simulation by using a PC with a 2.6 GHz CPU. The RFID tag in the environ-

ment is set with a density of 100 tags/m2. FastSLAM is also evaluated in the

same simulation environment. Both two SLAM methods are evaluated under

two conditions. Firstly, we compared the time costs by using PF-SLAM and

FastSLAM of an update against the increase of the particles for estimating the

robot localization. The robot moves on a predetermined trajectory with differ-

ent numbers of the robot particles. The average time cost of an updating of the

SLAM procedure is calculated. The numbers of the particles are set from 100

to 4000. The results of an updating using FastSLAM and the proposed SLAM

method with different robot particles are presented in Figure 3.6. The time cost

for both SLAM methods increases with the number of the particles for esti-

mating the robot localization increases. However, the average time cost of an

updating using PF-SLAM always less than FastSLAM.

The time cost of FastSLAM can be reduced by using fewer particles. How-

ever, reducing the number of particles affects the accuracy of FastSLAM. We

investigated the influence of the number of particles on the accuracy of the pro-

posed SLAM method and FastSLAM. Two SLAM methods were tested on a pre-

determined trajectory with different particles for estimating the self-localization

of the robot. The error data obtained by using the proposed SLAM method and

FastSLAM are presented in Figure 3.7. Our proposed SLAM obtained a stable

and accurate estimation even using a small number of particles. The errors of

the robot and tag localization by using FastSLAM have large changes with the

increase of the particle numbers. FastSLAM obtained large errors by using a

small number of particles. The accuracy of FastSLAM tends to stable and ac-

curate as the number of particles increases. However, the errors obtained by
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FastSLAM also larger than the proposed SLAM method. According to Figures

3.6 and 3.7, FastSLAM can obtain an accurate estimation at the expense of the

time cost. Our proposed can get a more accurate result with less time cost.

Then, the time costs by using PF-SLAM and FastSLAM with an update

against the increase of the number of the detected tags are surveyed. 500 par-

ticles for estimating the robot localization in FastSLAM and PF-SLAM method

are set in the test. The robot using two SLAM methods run on the same trajec-

tory. The average time cost for each RFID tag is calculated during the move-

ment. Figure 3.8 shows the results of the average time costs of using PF-SLAM

method and FastSLAM with an updating against the detected tag increases.

The time cost using FastSLAM increases obviously with the increase of the de-

tected tags. However, the time cost using the proposed SLAM method mostly

has no alteration. Each tag is estimated by an independent particle filter so that

the time cost of the updating is not affected by the increase of the detected RFID

tags. The tag particles take a long time for the initialization than the updating

time of the subsequent detection. The undulating of the results in Figure 3.8 is

because of some tags only detected with single time which requires initializa-

tion and the average time cost of these tags becomes longer than that of the tags

with multiple detection times.

3.4 Simulation Experiment

PF-SLAM was tested in a simulated environment. Eight HF-band RFID readers

are installed on the bottom of the mobile robot as the configure shown in Fig-

ure 3.2(a) and two types of RFID-tag textiles with densities of 100 tags/m2 and

16 tags/m2 are set in the environment. The detection range of the RFID reader

is set at 60 × 60 mm2. The predetermined trajectory and a random trajectory

are used to evaluate the proposed SLAM method. The estimated path of the

robot can be easily compared with the predetermined trajectory. The random

trajectory is much longer and more complex than the predetermined trajectory.
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Running on the random trajectory is capable of evaluating the stability and sus-

tainability of the proposed SLAM method. Moreover, the tag can be detected by

the robot in more locations to improve the accuracy of the tag and robot local-

ization. To show the superiority of PF-SLAM, FastSLAM was also tested in the

same simulated environment. At last, the kidnapping problem of the mobile

robot using the proposed SLAM method is also discussed.

3.4.1 Predetermined Trajectory Experiment

The simulated and environments with the density of 100 tags/m2 and 16 tags/m2

are presented in Figure 3.9. The predetermined trajectories are rectangular tra-

jectories also shown in Figure 3.9. The robot run along the predetermined tra-

jectories three times. The path of the robot and the detected tags are recorded

during the movements. The proposed SLAM method and FastSLAM are eval-

uated on these two trajectories. We assigned 500 particles for estimating the

mobile robot self-localization and 100 particles for the tag location to PF-SLAM

and 500 particles to FastSLAM. To avoid a lengthy article, we only show the

figures of the results on the RFID-tag textile with a density of 16 tags/m2 in

this chapter. The date of the results both on the density of 100 tags/m2 and 16

tags/m2 is listed in the table.

Figure 3.10 shows the results achieved by PF-SLAM and FastSLAM. The

tag positions estimated by both methods are correctly estimated. However,

the route estimated by FasSLAM presents some deviations as shown in Figure

3.10(c). The route of the mobile robot estimated by our proposed method almost

overlaps with the trajectory.

Table 3.1 lists the average errors of the position and orientation of the mo-

bile robot and the errors of the detected tag location during the movements on

the predetermined trajectory. PF-SLAM and FastSLAM obtained an accurate

estimation in the environment with the density of 16 tags/m2. The distance er-

rors of the tag and robot localization are about 35 mm for both SLAM methods.

However, the robot runs in the environment with the density of 100 tags/m2
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detects more tags than 16 tags/m2. Using FastSLAM, the errors increase obvi-

ously in the environment with the density of 100 tags/m2. The distance errors

of the robot and tag localization are about 62 mm by using FastSLAM. The dis-

tance errors obtained by our proposed method also maintained at 35 mm. Ac-

cording to the error data summarized in Table 3.1, our proposed SLAM method

obtained more stable and accurate estimations.

TABLE 3.1: Errors of the robot and tag localization utilizing two
SLAM methods on the predetermined trajectory in the simulated

environment.

Density Method Robot localization Tag localization
tags/m2 x [mm] y [mm] θ [rad] dr [mm] x [mm] y [mm] dt [mm]

16 FastSLAM 27.6 24.0 0.022 36.6 19.0 28.9 34.6
16 PF-SLAM 20.8 25.8 0.015 33.1 26.7 23.1 35.3

100 FastSLAM 44.4 43.7 0.031 62.3 44.7 33.2 55.7
100 PF-SLAM 23.2 23.9 0.011 33.3 25.7 24.1 35.2

3.4.2 Random Trajectory Experiment

The accuracy of the robot self-localization and tag locations can be improved

by letting the robot detect the tags in more additional locations as introduced

in Section 3.3. In this experiment, the robot run along a random trajectory. The

random trajectory is much longer and more complex than the predetermined

trajectory to make the robot is capable of detecting the tags in more locations.

The assignments of the particles in both SLAM methods are same as Section

3.4.1. The results using the proposed SLAM method and FastSLAM are shown

in Figure 3.11. Figures 3.11(a) and 3.11(b) present the path of the robot and tag

locations estimated by using PF-SLAM. The path of the robot and the locations

of the tags estimated by PF-SLAM mostly overlap the ground truth. Our pro-

posed SLAM method exhibits an accurate estimation for the robot and tag lo-

calization. The robot path and tag locations estimated by FastSLAM are shown

in Figures 3.11(c) and 3.11(d). The results estimated by FastSLAM drastically

deviate from the ground truth. The superiority and validity of the proposed

SLAM method show obviously on a longer trajectory.
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TABLE 3.2: Errors of the robot and tag localization utilizing two
SLAM methods on the random trajectory in the simulated envi-

ronment.

Density Method Robot localization Tag localization
tags/m2 x [mm] y [mm] θ [rad] dr [mm] x [mm] y [mm] dt [mm]

16 FastSLAM 122.0 72.6 0.076 142.0 147.0 71.3 163.4
16 PF-SLAM 10.8 26.8 0.006 28.9 9.3 26.9 28.5

100 FastSLAM 47.5 57.9 0.019 74.9 52.0 45.6 69.2
100 PF-SLAM 20.3 37.1 0.003 42.3 13.6 23.4 27.1

The error data generated by using PF-SLAM and FastSLAM on the random

trajectory are listed in Table 3.2. The errors obtained by FastSLAM increase ob-

viously than the results on the predetermined trajectory. The average distance

errors of the robot localization and tag locations are 70 mm in the environment

set with the density of 100 tags/m2. Moreover, the distance errors of the robot

and tag localization utilizing FastSLAM increase to 140 and 160 mm in the en-

vironment set with the density of 16 tags/m2, respectively. However, compar-

ing with the errors obtained by FastSLAM, the errors obtained by PF-SLAM

are much smaller. PF-SLAM method also presents a better performance than

FastSLAM on the random trajectory. Especially, comparing with the results on

the predetermined trajectory, the accuracy of the tag locations are improved

which sustains the hypothesis that the uncertainty of the estimation could be

decreased by detecting the tag in more different locations when using the par-

ticle filter to estimate the tag location.

3.4.3 Kidnapping Experiment

We also tested the proposed SLAM with the kidnapping experiment which

evaluates the ability to recover the accurate estimation from failures. The robot

is moved to another place where the tags have been detected during the move-

ment without the update of the motion model. The procedure of the kid-

napping is shown in Figure 3.12. Figure 3.12(b) shows the error of the self-

localization of the robot during this procedure. According to Figure 3.12(a),

before kidnapped at point B, the robot moved from point A to B. The robot is
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kidnapped to point C where the robot has been without any information. Fig-

ure 3.12(b) shows a drastic increase in the robot localization error. This happens

at the time when the robot is kidnapped. Figure 3.12(a) shows some incorrect

estimations happened at the beginning when the robot kidnapped to point C.

These incorrect estimations are marked by the black coils. However, the robot is

capable of recognizing the kidnapping and supporting an accurate estimation

rapidly as presented in Figure 3.12(a). Then, the robot obtains an accurate lo-

calization as before the kidnapping and moved from point C to D successfully.

This result demonstrates the validity of PF-SLAM for the kidnapping problem.

The performance of the proposed SLAM in this experiment indicates its ability

to deal with the kidnapping problem.

3.5 Real Environment Experiment

PF-SLAM was also evaluated by a mobile robot in the real environment set with

the RFID tags. The mobile robot and the RFID system used in the experiments

are introduced in Section 3.1. The experimental environments are set with two

types of HF-band RFID tag with densities of 100 tags/m2 and 16 tags/m2. PF-

SLAM is also tested on two types of trajectories: the predetermined trajectory

and unpredetermined trajectory. The movement of the robot on the trajecto-

ries is manual control. FastSLAM is also tested in the same experiments and

compared with our proposed SLAM method. Especially, the validity of the

proposed SLAM is also tested under different speeds of the mobile robot on the

predetermined trajectory. The number of the particles used in FastSLAM is set

at 500. PF-SLAM utilizes 500 robot particles to estimate the self-localization of

the mobile robot and 100 tag particles to estimate the location of each detected

tag.

3.5.1 Predetermined Trajectory Experiment

The predetermined trajectories in the environments with densities of 16 tags/m2

and 100 tags/m2 are shown in Figure 3.13(a) and 3.13(b), respectively. The robot
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runs on each predetermined trajectory three times. The velocity of the robot is

set at 100 mm/s. The estimated path of the robot and locations of the detected

tags by the proposed SLAM method and FastSLAM in the environment with 16

tags/m2 are shown in Figure 3.14. Figures 3.14(a) and 3.14(b) show the path of

the robot and positions of the tag estimated by our proposed method basically

coincide with the predetermined trajectory and the actual positions of the tags.

However, the path of the robot estimated by FastSLAM deviated from the pre-

determined trajectory, and the tag localization also incurred some inaccurate

estimation.

It is difficult to compare the estimated position of the mobile robot at every

position with the predetermined trajectory in the real experiment. To obtain

the quantified evaluation, we set eight predetermined points on each trajec-

tory to evaluate the accuracy for the robot localization by using the proposed

SLAM method and FastSLAM. The eight points for two predetermined trajec-

tories are presented in Figures 3.15(a) and 3.15(b), respectively. The robot run

on the predetermined trajectory and remained at each of the eight points for 5

seconds when it passed by to record adequate estimated position data. The es-

timated position and orientation of the robot are compared with the positions

of the eight points. The average errors of the self-localization of the robot at

eight points and tag locations by using PF-SLAM and FastSLAM are listed in

Table 3.3. Because the noise in the real environment, the errors also happened

in the ground truth. Therefore, the error of the orientation in real environment

is account to two decimal places. The proposed SLAM obtained good perfor-

mances on the predetermined trajectories. The average distance errors of the

mobile robot and tag localization are about 20 mm and 40 mm in the environ-

ment with 16 tags/m2, respectively. The results of PF-SLAM in the environment

with 100 tags/m2 become more accurate. The distance errors of the localization

of the robot and tag are about 15 mm and 38 mm. However, the errors gener-

ated by FastSLAM are twice times than that achieved by PF-SLAM in the same

experimental situations. In the real experimental environment, the proposed

PF-SLAM method also achieved more accurate estimations than FastSLAM.
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Both of our proposed SLAM method and FastSLAM obtained a better self-

localization performance in the experimental environment with 100 tags/m2

than 16 tags/m2. In the real environment, the noise mostly comes from the

motor which is accumulated during the movements of the robot. The error

accumulated by the motor can be reduced by using the measurements of the

tags. Running in the environment with 100 tags/m2, the tags can be frequently

detected by the robot. The accumulated motor errors are modified frequently.

However, more motor errors are accumulated during the movements of the

robot in the environment with 16 tags/m2. Therefore, the accuracy of the self-

localization of the robot becomes better in the environment with 100 tags/m2.

TABLE 3.3: Errors of the robot and tag localization utilizing two
SLAM methods on the predetermined trajectory in a real environ-

ment.

Density Method Robot localization Tag localization
tags/m2 x [mm] y [mm] θ [rad] dr [mm] x [mm] y [mm] dt [mm]

16 FastSLAM 49 28 0.06 56 72 56 91
16 PF-SLAM 17 12 0.01 21 35 23 42

100 FastSLAM 28 40 0.03 49 55 45 71
100 PF-SLAM 10 10 0.01 15 26 27 38

3.5.2 Predetermined Trajectory Experiment with Different ve-

locities

In Section 3.5.1, the velocity of the robot is set at 100 mm/s. We also evaluated

the performance of PF-SLAM with faster velocities in this study. The speeds

are set from 200 mm/s to 400 mm/s. The robot runs on the predetermined

trajectory in the environment with 16 tags/m2. Figures 3.16(a) to 3.16(f) show

the results achieved by PF-SLAM with different velocities of the robot. The

estimated paths of the robot and tag positions with three faster robot velocities

overlap with the ground truth. The accuracy of PF-SLAM is not affected by the

faster velocities. The proposed SLAM method is capable of using for a faster

velocity of the robot.
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3.5.3 Random Trajectory Experiment

The accuracy of the tag locations can be improved by letting the robot run on a

random trajectory by using the proposed SLAM which has been demonstrated

in the simulated environment. We also evaluated PF-SLAM on a random tra-

jectory to make the robot detect the tags in more locations in the real environ-

ment,. Moreover, FastSLAM is also tested on a random trajectory to make a

comparison with the proposed SLAM. The results obtained by FastSLAM and

our proposed SLAM in the environment with 16 tags/m2 are presented in Fig-

ure 3.17. The path of the robot and the tag locations estimated by PF-SLAM

are shown in Figures 3.17(a) and 3.17(b), respectively. The orientation of the

robot is set at 0 deg during the movements. The path of the robot estimate

by PF-SLAM remains straight indicates that the estimation of the robot orien-

tation is accurate. The tag locations estimated by PF-SLAM overlap with the

actual tag positions as shown in Figure 3.17(b). Therefore, the proposed SLAM

method obtains a good performance on the random trajectory. Figure 3.17(c)

shows the path estimated by FastSLAM and the curved path indicates some er-

rors incurred in the orientation estimation. Furthermore, the range of the actual

trajectory in Y direction is 2000 mm to 4000 mm. However, the path estimated

by FastSLAM has a large deviation in Y direction. The positions of the tags

estimated by FastSLAM also greatly deviate from the actual positions as shown

in Figure 3.17(d).

To evaluate the proposed SLAM method on the random trajectory, we also

used the eight marked points in the real experimental environment to calculate

the accuracy of robot self-localization. The robot also remained at each point

5 seconds when the robot passed by and collected the position and orienta-

tion data as Section 3.5.1. The collected data is compared with the positions

of the marked points. Table 3.4 lists the errors obtained by PF-SLAM and Fast-

SLAM in the robot and tag localization. The average distance errors of the robot

self-localization by utilizing PF-SLAM are 25 mm in the environment with 16

tags/m2 and 100 tags/m2. The average distance errors of the tag position by

using PF-SLAM method are 26 mm and 22 mm, respectively. The accuracy of
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the tag location by using the proposed SLAM is improved on the random trajec-

tory. However, FastSLAM achieves large errors in the localization of the robot

and tag on a random trajectory.

TABLE 3.4: Errors of the robot and tag localization utilizing two
SLAM methods on the random trajectory in a real environment.

Density Method Robot localization Tag localization
tags/m2 x [mm] y [mm] θ [rad] dr [mm] x [mm] y [mm] dt [mm]

16 FastSLAM 24 115 0.03 117 26 141 143
16 PF-SLAM 15 19 0.01 25 14 22 26

100 FastSLAM 31 56 0.01 64 30 46 55
100 PF-SLAM 17 17 0.02 24 14 18 22

According to the results obtained by using the proposed SLAM method in

the real environment, the accuracy of PF-SLAM is sufficient to the self-localization

of the robot and the tag locations. Especially, the RFID tags are installed in the

carpets. The tag positions used as the ground truth are measured by hand in

the case of invisible so that there are also some inevitable errors in the measure-

ments. Comparing with the results obtained by FastLSAM, the superiority of

PF-SLAM is demonstrated in the real environment.

3.6 Summaries

In this study, we attempted to use the RFID system for realizing the localization

of the mobile robot. However, a large amount of preliminary works are needed

for the RFID system based localization, for instance, the recording of the RFID

tag ID and the measurements of the tag coordinates. SLAM technology is ca-

pable of reducing these preliminary works and finishing the self-localization

of the robot and building a map of the RFID tags. The non-Gaussian detec-

tion model of the RFID reader makes the classical FastSLAM with kalman filter

based landmark updating is not suitable. Therefore, a novel SLAM method

using the independent particle filters for estimating the position and orienta-

tion of the mobile robot and the tag locations was proposed in this study. The
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algorithm of the proposed SLAM method was explained in detail. The dif-

ference between the proposed SLAM and FastSLAM was also discussed. The

proposed SLAM method and FastSLAM were evaluated in simulated and real

experimental environments. The validity of PF-SLAM and superiority to Fast-

SLAM were demonstrated in the experiments by using the RFID system with

the non-Gaussian detection model.
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(a) First detection

(b) Second detection

(c) Third detection

FIGURE 3.4: Procedure of the PF-SLAM based on the RFID sys-
tem.
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FIGURE 3.5: Tag location error versus the detection time.
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FIGURE 3.6: Time cost of an updating of the SLAM methods as
the number of robot particles increase.
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(a) Errors of the robot localization
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(b) Errors of the tag localization

FIGURE 3.7: Average errors of the robot and tag localization with
different numbers of robot particles: average errors of the (a) robot
localization and (b) tag localization against the number of the

robot particles.
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FIGURE 3.8: Time cost of an updating of the SLAM methods along
with the increase of the detected tags.

(a) 100 tags/m2 (b) 16 tags/m2

FIGURE 3.9: Simulated experimental environments: the RFID tags
are indicated by the purple points, and the predetermined trajec-

tories are indicated by the blue lines.
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FIGURE 3.10: Results obtained by PF-SLAM and FastSLAM on a
predetermined trajectory in the simulated environment. (a) and
(c) show the path of the robot estimated by PF-SLAM and Fast-
SLAM (red lines), respectively. (b) and (d) show the tag loca-
tions estimated by PF-SLAM and FastSLAM (green points), re-

spectively.
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FIGURE 3.11: Results obtained by PF-SLAM and FastSLAM on a
random trajectory in the simulated environment. (a) and (c) show
the path of the robot estimated by PF-SLAM and FastSLAM, re-
spectively. (b) and (d) show the tag locations estimated by PF-

SLAM and FastSLAM, respectively.
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(a) Path estimated by PF-SLAM

(b) The robot localization error

FIGURE 3.12: Results achieved by PF-SLAM in the kidnapping
experiment.
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(a) Experimental environment with 16
tags/m2

(b) Experimental environment with 100 tags/m2

FIGURE 3.13: Experimental environments with 16 tags/m2 and
100 tags/m2 (green lines are the predetermined trajectory).
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FIGURE 3.14: Results obtained by PF-SLAM and FastSLAM on
a predetermined trajectory in the real environment. (a) and (c)
show the path of the robot estimated by PF-SLAM and FastSLAM,
respectively. (b) and (d) show the tag locations estimated by PF-

SLAM and FastSLAM, respectively.
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(a) Assignment of the predetermined trajectory
and tags

(b) Assignment of the predetermined trajectory and tags

FIGURE 3.15: Eight points used in experimental environments
with 16 tags/m2 and 100 tags/m2 (eight selected spots are indi-

cated by the red points).



Chapter 3. SLAM Method utilizing Particle Filter for Landmark Updating on
RFID System 45

 1000

 2000

 3000

 4000

 5000

 0  1000  2000

Y
[m

m
]

X[mm]

(a)

 1000

 2000

 3000

 4000

 5000

 0  1000  2000

Y
[m

m
]

X[mm]

(b)

 1000

 2000

 3000

 4000

 5000

 0  1000  2000

Y
[m

m
]

X[mm]

(c)

 1000

 2000

 3000

 4000

 5000

 0  1000  2000

Y
[m

m
]

X[mm]

(d)

FIGURE 3.16: Results obtained by PF-SLAM at different velocities.
(a), (c) and (e) show the estimated path of the robot at velocities of
200 mm/s, 300 mm/s and 400 mm/s, respectively. (b), (d) and (e)
present the estimated tag locations at velocities of 200 mm/s, 300

mm/s and 40 mm/s, respectively.
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FIGURE 3.16: Results obtained by PF-SLAM at different velocities.
(a), (c) and (e) show the estimated path of the robot at velocities of
200 mm/s, 300 mm/s and 400 mm/s, respectively. (b), (d) and (e)
present the estimated tag locations at velocities of 200 mm/s, 300

mm/s and 400 mm/s, respectively.
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FIGURE 3.17: Results obtained by PF-SLAM and FastSLAM on a
random trajectory in the real environment. (a) and (c) show the
path of the robot estimated by PF-SLAM and FastSLAM, respec-
tively. (b) and (d) show the tag locations estimated by PF-SLAM

and FastSLAM, respectively.
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Chapter 4

SLAM Method utilizing Particle

Smoother for Landmark Updating

on RFID System

PF-SLAM is suitable to the RFID system used for an indoor mobile robot [84].

However, the accuracy of PF-SLAM is affected by the degeneracy problem of

the particle filter for estimating tag locations. Especially, the effect increases

with the detection range of RFID reader increases. Therefore, a particle smoother

is proposed to estimate the tag location to avoid the influence of the degeneracy

problem. The details of the SLAM method with particle smoother based land-

mark updating is explained in this chapter. We refer to it as PS-SLAM in the

following description. Self-localization of PS-SLAM is based on MCL method,

and the estimation of each landmark is based on a particle smoother. The fixed

lag smoothing method is used to estimate the landmark location. PS-SLAM was

evaluated in a simulated environment. The results of the experiments show the

validity and superiority of PS-SLAM in the case of utilizing the large detection

ranges. This chapter is organized as follows. Section 4.1 introduces the parti-

cle fixed lag smoother. The algorithm of PS-SLAM is explained in Section 4.2.

Then, the computation cost of PS-SLAM is discussed in Section 4.3. The results

of PS-SLAM in the simulated experimental environment are shown in Section

4.4. Summaries of PS-SLAM are drawn in Section 4.5.
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4.1 Particle fixed lag smoother

The smoothing distribution of the particles in a sequential way is able to repre-

sent as:

p(x0:t|z1:t) ∝ p(x0:t−1|z1:t−1)h(zt|xt)f(xt|xt−1), (4.1)

where x0:t is the path of the robot, and z1:t means the observations obtained

during the robot movements. f(xt|xt−1) and h(zt|xt) are specified state func-

tion and observation function. The sequential character appears clearly when

this equation is decomposed into a predict step,

p(x0:t|z1:t−1) = p(x0:t−1|z1:t−1)f(xt|xt−1), (4.2)

and an analysis step,

p(x0:t|z1:t) ∝ p(x0:t|z1:t−1)h(zt|xt). (4.3)

The particle fixed lag smoother was proposed by Kitagawa which can be

achieved from a simple extension to the particle filter as shown in [54]. The

difference lies in the size of the state vector to be estimated is kept stationary of

last L time steps. Consequently, the oldest state is ruled out from the estimation

process at each predict step. The predict step becomes:

p(xt−L:t|z1:t−1) = f(xt|xt−1)

∫
p(xt−L−1:t−1|z1:t−1)dxt−L−1, (4.4)

This smoother is straightforward to implement, exhibits a negligible CPU cost

which almost the same as the particle filter. However, The diversity of the par-

ticles in the state vector representing the smoothing distribution decreases with

a large L which leads to the smoothing distribution can not be approximated

correctly. In order to avert this problem, L is constantly set at 20 to 30 based on

[85].
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4.2 Particle Smoother for Landmark Mapping of SLAM

PS-SLAM utilizes one particle filter to estimate the pose of the robot and N

particle smothers to estimate the positions of the RFID tags. The form of the

robot particle is the same as Equation (3.4). Each detected RFID tag is estimated

by an independent particle smoother. Each tag particle in particle smoother is

of the form

m
[j]
n,t =<w m

[j]
n,t, Ŝ

[j]
n,t, ω

[j]
n.t > (4.5)

The form of the particle in particle smoother is similar to Equation (3.5) excepts

an addition element Ŝ[j]
n,t. Ŝ

[j]
n,t is the set which records the value from wm

[j]
n,t−L+1

to wm
[j]
n,t. The Equation (3.7) is also utilized as the likelihood function for the

weight updates of both the robot particles and tag particles.

The algorithm of PS-SLAM is presented in Algorithm 2. The difference of

the Algorithm 2 with Algorithm 1 is the updates of the detected tags. For

instance, when the robot detects a RFID tag n, if the detection of the tag is

the first time, a particle smoother set is initialized. The particles in the novel

particle set are assigned with the importance weight 1, and these particles are

distributed in the detection area of the reader that detected the tag. Especially,

the initial state of each particle is also restored in Ŝj
n,1 of each particle for the

smoothing procedure with the following step. Otherwise, the states of the tag

particles are updated by adding a Gaussian random value based on m
[j]
n,t−1. The

importance weights of the updated robot particles are calculated by utilizing

Equation (3.7). After the resampling step, the smoothed distribution of the tag

particles is achieved by calculating the mean of m[j]
n from t + 1 − L to t which

restored in Ŝj
n of each particle. The position of the detected tag is updated based

on the smoothed distribution S̃n,t. Then, the robot particles for estimating the

robot self-localization is updated as Algorithm 1.
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Algorithm 2: PS-SLAM:

1: Initialization of the robot particle set Sr,t = (x
[1]
t ,x

[2]
t , · · · ,x[I]

t )
2: for i = 1 to I do
3: Robot particles are updated by the motion model:

wx
[i]
t = MotionModel(wx

[i]
t−1)

4: end for
5: if landmark n is detected then
6: if landmark n never seen before then
7: Initialize a new tag particle set Sn,t = (m

[1]
n,t,m

[2]
n,t, · · · ,m

[J ]
n,t)

8: Store m
[j]
n,t in Ŝj

n,t

9: else
10: for from j = 1 to J do
11: Obtain m

[j]
n,t based on m

[j]
n,t−1 with a Gaussian random number

12: Update ω
[j]
n,t for each particle in Sn,t

13: Store m
[j]
n,t in Ŝj

n,t

14: end for
15: end if
16: for from j = 1 to J do
17: Create particle [k] with probability ∝ w

[j]
n,t

18: Add m
[k]
n,t to Sn,t

19: end for
20: for From j = 1 to J do
21: m

[j]
n,t =

∑t
i=t+1−L m

[j]
n,i/L

22: Add m
[j]
n,t to S̃n,t

23: end for
24: Update wxn based on S̃n,t

25: for from i = 1 to I do
26: Update ω

[i]
r,t based on the likelihood function

27: end for
28: end if
29: for from i = 1 to I do
30: Create particle o with probability ∝ w

[i]
r,t

31: Add x
[o]
r,t to Sr,t

32: end for
33: Return Sr,t, Sn,t
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4.3 Computation cost of the proposed SLAM

To demonstrate the computational efficiency of the proposed PS-SLAM, it was

compared with FastSLAM and PF-SLAM in a simulation environment. The

RFID tags with a density of 4 tags/m2 are set in the environment. PS-SLAM

and PF-SLAM use 100 tag particles for estimating each detected tag position.

By utilizing three SLAM methods, the mobile robot runs along a predetermined

trajectory. The average time costs of the SLAM procedures are calculated after

the movements. The average time costs of an update utilizing PS-SLAM and

the other two SLAM methods with different numbers of the robot particles are

shown in Figure 4.1(a). The robot particles are set from 100 to 5000. The time

costs of three SLAM methods increase as the number of robot particles increase.

However, the increase rate of the time cost utilizing FastSLAM is much larger

than the increased rates obtained by our proposed PS-SLAM and PF-SLAM.

Even PS-SLAM utilizes the particle smoother which needs more memory, the

time cost is almost the same as PF-SLAM. We also surveyed the time cost by

using these three SLAM methods with an update against the increase of the

number of detected tags. Figure 4.1(b) shows the results of the average time

costs of using three methods with an updating with different detected tag num-

bers. The time cost by utilizing FastSLAM increase obviously with the increase

of the detected tags. The time costs of PS-SLAM and PF-SLAM are substan-

tially unchanged and much smaller than that of FastSLAM. Although PS-SLAM

needs additional memory to store the tag particle states in sequence, PS-SLAM

also presents almost the same time cost as PF-SLAM. These data is capable of

demonstrating the efficiency of PS-SLAM.

4.4 Experiment

The proposed SLAM method utilizes particle smoother for updating the land-

mark locations was evaluated in a simulated environment set with RFID tags.

We tested PS-SLAM on the RFID detection model with two types of running
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(a)

(b)

FIGURE 4.1: Average Time cost of the PS-SLAM, PF-SLAM and
FastSLAM with an update along with the increase of (a) the robot

particles and (b) the detected tags.
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trajectories: predetermined trajectory and random trajectory. We also evaluate

PF-SLAM and FastSLAM in the same experimental environment to compare

with PS-SLAM. Moreover, five different trajectories are utilized in the predeter-

mined trajectory experiments. The average errors of the robot and tag location

are used to evaluate these three SLAM methods mentioned above. We em-

ployed 500 robot particles to these three SLAM methods and 100 tag particles

to each detected RFID tag by using PS-SLAM and PF-SLAM.

Eight RFID readers are installed on the bottom of the mobile robot which

is same as Chapter 3. The detection range of RFID reader is set at 300 by 300

mm2 firstly. To prove the superiority of PS-SLAM, the performance of the pro-

posed SLAM methods with different detection ranges are also evaluated. The

RFID tags are arranged in the experimental environment with the density of 4

tags/m2.

4.4.1 Predetermined Trajectory Experiment

TABLE 4.1: Errors of the robot and tag localization utilizing three
SLAM methods on the predetermined trajectory.

Method Robot location Tag location
x [mm] y [mm] θ [rad] dr [mm] x [mm] y [mm] dt [mm]

PS-SLAM 25.4 45.1 0.006 53.8 50.3 51.2 79.0
PF-SLAM 41.4 66.6 0.003 82.1 66.1 80.1 110.5

FastSLAM 315.1 204.5 0.182 420.8 296.6 210.1 412.1

The robot equipped with RFID readers moved along five predetermined

trajectories to estimate the robot self-localization and tag locations to evalu-

ate the PS-SLAM, PF-SLAM, and FastSLAM. The robot runs on each predeter-

mined trajectory three loops. We only show figures of the results of three SLAM

methods on one predetermined trajectory here to avoid a lengthy article. The

results on a predetermined trajectory generated by PS-SLAM, PF-SLAM, and

FastSLAM are shown in Figure 4.2. Figure 4.2 shows that the path of the robot

estimated by PS-SLAM is more accurate than that estimated by PF-SLAM and
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FIGURE 4.2: Results obtained by PS-SLAM, PF-SLAM and Fast-
SLAM on a predetermined trajectory. (a) shows the results ob-
tained by FastSLAM. (b) shows results obtained by PF-SLAM. (c)

shows the results obtained by PS-SLAM.



Chapter 4. SLAM Method utilizing Particle Smoother for Landmark Updating
on RFID System 57

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

-200  0  200  400  600  800  1000  1200  1400  1600  1800

Y
 [

m
m

]

X [mm]

Ground truth of route
PS-SLAM

Ground truth of tag
PS-SLAM

(c)

FIGURE 4.2: Results obtained by PS-SLAM, PF-SLAM and Fast-
SLAM on a predetermined trajectory. (a) shows the results ob-
tained by FastSLAM. (b) shows results obtained by PF-SLAM. (c)

shows the results obtained by PS-SLAM.

FastSLAM. The path of the robot estimated by FastSLAM has incorrect esti-

mations both on the position and orientation, as shown in Figure 4.2(a). The

positions of the detected tags are also incorrectly estimated by the FastSLAM.

Figure 4.2(b) presents the path of the robot and the tag locations estimated by

PF-SLAM offsets to the right. Figure 4.2(c) shows the robot path estimated by

the PS-SLAM almost coincides the trajectory and most of the tags overlap with

the ground truth.

Table 4.1 lists the average errors of the robot self-localization and tag loca-

tions obtained by PS-SLAM, PF-SLAM, and FastSLAM on the five predeter-

mined trajectories. The results obtained by PS-SLAM is sufficiently precise for

the robot self-localization and the tag locations according to the detection range

and the interval of the RFID tags. The average distance errors of the robot self-

localization and tag locations are 54 mm and 79 mm by using PS-SLAM. The

estimation errors generated by PF-SLAM are smaller than that generated by

FastSLAM. However, comparing the result data with PS-SLAM, the errors gen-

erated by PF-SLAM are larger than that generated by PS-SLAM in the same
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situation. PS-SLAM exhibits a better performance based on the RFID system

with a large detection range.

4.4.2 Random Trajectory Experiment

As discussed in last chapter, by using PF-SLAM, the robot needs to detect a

tag in additional locations to reduce the feasible region of the tag location to

improve the accuracy of estimation for the localization of the robot and tag.

The results become better when the robot moves along a random trajectory in

Chapter 3. Particle smoother is also capable of narrowing the feasible region

of the tag location by letting the robot detect the tag at more different loca-

tions. Due to the tag particles are updated by a pseudorandom value when a

tag detected by plural times, the feasible region of the detected tag cannot be

narrowed to a point through detecting the detected tag at different locations.

However, this also preserves the possibility of a correct estimation when er-

rors occur and avoids all of the particles convergence to unrecoverable wrong

estimation.

We tested these three SLAM methods by moving the robot on a random

trajectory to verify this hypothesis. Figure 4.3 shows the results obtained by

FastSLAM, PF-SLAM and PS-SLAM. The localization results obtained by Fast-

SLAM present a large deviation from the trajectory and tag real locations as

shown in Figure 4.3(a). Figure 4.3(b) shows the comparisons of the results of

PF-SLAM with the ground truth. Figure 4.3(c) presents the comparisons of the

path of the robot and tag locations estimated by PS-SLAM with a random tra-

jectory and the real tag positions. The estimations by PS-SLAM and PF-SLAM

became better on a random trajectory than that on a predetermined trajectory

according to Figures 4.3(b) and 4.3(c). However, the path of the robot and tag

locations estimated by PS-SLAM got better overlaps than PF-SLAM.

Table 4.2 lists the errors of the localization of the robot and tags acquired by

utilizing PS-SLAM, PF-SLAM and FastSLAM on the random trajectory. Fast-

SLAM obtains a large error relative to the other two methods. PF-SLAM got

a better result than that on the predetermined trajectory as proved in Chapter
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FIGURE 4.3: Results obtained by PS-SLAM, PF-SLAM and Fast-
SLAM for the RFID detection model on a random trajectory. (a)
shows the results obtained by FastSLAM. (b) shows results ob-
tained by PF-SLAM. (c) shows the results obtained by PS-SLAM.
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FIGURE 4.3: Results obtained by PS-SLAM, PF-SLAM and Fast-
SLAM for the RFID detection model on a random trajectory. (a)
shows the results obtained by FastSLAM. (b) shows results ob-
tained by PF-SLAM. (c) shows the results obtained by PS-SLAM.

TABLE 4.2: Errors of the robot and tag localization utilizing three
SLAM methods on the random trajectory.

Method Robot localization Tag localization
x [mm] y [mm] θ [rad] d [mm] x [mm] y [mm] d [cm]

PS-SALM 21.0 15.1 0.010 29.1 31.9 32.9 50.4
PF-SLAM 61.0 25.3 0.007 66.7 67.5 38.5 82.3

FastSLAM 110.4 198.6 0.131 245.7 122.5 234.1 280.0
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3. The average distance errors of the robot and tag localization generated by

utilizing PS-SLAM are about 30 mm and 50 mm. Both the results of the robot

and tag locations obtained by PS-SLAM on the random trajectory are better

than the results on the predetermined trajectory. Furthermore, our proposed

PS-SLAM method also obtained a better performance on the random trajectory

than PF-SLAM. This proves the validity of the hypothesis mentioned above.

Although the particles for estimating the detected tag cannot be converged to

a small range by using the smoothing method, the accuracy and stability are

improved.

4.4.3 Performance of SLAM work with different detection range

To verify the superiority of the PS-SLAM method with the large detection range,

PS-SLAM, PF-SLAM and FastSLAM were tested on the RFID detection model

with different detection range. The robot moved on five predetermined tra-

jectories with different detection ranges. The robot moved on each trajectory

with three loops. The detection range was set from 100 to 500 mm. Figure

4.4 shows the average errors of robot and tag locations obtained by these three

SLAM methods on the five predetermined trajectories with different detection

ranges. The accuracy of the robot and tag locations reduces with the increase of

the detection range. Because of the detection model of RFID is not belong to a

Gaussian model, large detection range means a large uncertainty and noise. Ac-

cording to the results, the errors obtained by FastSLAM are much larger than

the other two methods. Especially when the detection range increases. The

accuracy of PS-SLAM and PF-SLAM is very similar when the detection range

less than 180 mm. However, the performance of PS-SLAM becomes better than

PF-SLAM as the detection range continues to increase. This proves PS-SLAM

more suitable for the non-Gaussian detection model sensors with large detec-

tion range. By using the particle filter to estimate the tag location, particles eas-

ily converge to a wrong place with fast degeneracy. Particle smoother makes

the particles converge slowly and obtains a stable estimation which improves

the accuracy of full SLAM work.
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(a)

(b)

FIGURE 4.4: Localization errors as the detection range increases.
(a) errors of the robot self-localization. (b) errors of the tag local-

ization.
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4.5 Summaries

SLAM method based on the particle smoother for the landmark mapping and

particle filter for the self-localization of a mobile robot is proposed in this chap-

ter. Although the particle filter is capable of processing the non-Gaussian de-

tection model of the RFID system, the degeneracy problem becomes serious

over time by using a particle filter to update the tag position. Therefore, the

proposed PS-SLAM method utilizes particle smoother to update the position of

the RFID tag and particle filter to update the position and orientation of the mo-

bile robot. The particle smoother method reduces the degeneracy of particles,

preserves the possibility of the correct estimation when errors occur and avoids

all of the particles convergence to unrecoverable wrong estimation. The parti-

cle smoother improves the accuracy and stability of the estimation of the SLAM

work. PS-SLAM is evaluated by the experiments based on the RFID detection

model. Furthermore, PS-SLAM is compared with PF-SLAM and FastSLAM in

the same experimental environments. The experimental results show the valid-

ity and superiority of the PS-SLAM method.
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Chapter 5

A Low-cost IR-sensor-based

Positioning System

The proposed IR-sensor-based positioning system is introduced in this chapter.

The devices of the IR system used in our study is exhibited in Section 5.1. In

Section 5.2, the algorithm of the self-localization method based on the proposed

IR system is explained in detail. The performances of the robot self-localization

by utilizing the proposed positioning system in the real experimental environ-

ment are shown in Sections 5.4. Last, we summarize this chapter in Section

5.5.

5.1 Proposed IR System

The illustration of the proposed IR-sensor-based positioning system is presented

in Figure 5.1. The main components of the IR positioning system used in this

study are the IR emitters and receivers. The IR emitters are installed on the

ceiling used as landmarks. Different with RFID positioning system, the posi-

tions of the IR landmarks are known in advance for the IR positioning system.

The proposed IR self-localization system consists of two types of emitters: the

unique ID encoding emitter and repeated ID encoding emitter. The emitters are

installed in a lattice pattern. One type of emitter is in the center of four the other

type emitters. Two same type of emitters are separated by 80 cm. The robot is

capable of frequently detecting the emitter and detecting one emitter at each

time based on this interval. Two receivers equipped with an IR photodiode are

65
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FIGURE 5.1: Illustration of the proposed IR-sensor-based position-
ing system

set on both sides of the robot top. The robot uses the receiver to obtain the sig-

nal transmitted from the IR emitter and recognize the detected IR emitter. Then,

the self-localization of the robot can be achieved by using the location data of

the detected emitters.

We use the frequency of the modulated signal as the IDs of the emitters.

Because of the limitation of the available frequencies used as the IDs for the

emitters, the mathematical combination method is utilized for generating the

unique ID of the IR array. The IDs of the IR array in this type is obtained

by a combination of different frequencies. The emitter encoded with unique

ID is made up of an IR LED array which transmits the IR signals with multi-

ple frequencies. One unique ID encoding emitter with four IR LEDs is shown

in Figure 5.2(a). Four LEDs transmit the signal simultaneously and each LED

transmits an independent signal with a frequency. The ID of this emitter is en-

coded by the four frequencies. In addition to using the combination method

for solving the limited available IDs, the repeated ID encoding emitters are also

applied in the system. The emitter encoded with repeated ID is just made up

of a single LED which transmits the IR signals with a single frequency. Figure

5.2(b) shows a repeated ID encoding emitter. The IR LED with the part number

OSI5LA5113A is used in the proposed system.
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(a) (b)

FIGURE 5.2: Two types of the emitters: (a) unique ID encoding
emitter with a LED array consists of four IR LEDs; (b) repeated ID

encoding emitter with a single LED.

The modulated IR signals transmitted from the emitter are driven by a mi-

crocontroller connects with the IR LEDs. The on-off Keying (OOK) modulator

is stored in the memory of the microcontroller for generating the IR signals

with different frequencies. The circuit of the emitter is shown in Figure 5.3.

Arduino UNO R3 is linked with the IR LEDs for generating the modulated op-

tical signals. In this study, the IDs of the emitter are obtained by nine different

frequencies. The nine frequencies with their corresponding code are listed in

Table 5.1. The combination of the code generates the IDs of the emitters shown

in Figure 5.1. For example, the emitter with ID 39 expresses that one of the

LEDs transmits the IR signal with a frequency of 0.25 kHz and the other one is

modulated by the frequency of 1.15 kHz.

TABLE 5.1: ID code and its corresponding frequency

Code 1 2 3 4 5 6 7 8 9
Frequency(kHz) 0.10 0.15 0.25 0.35 0.55 0.65 0.85 0.95 1.15

Two receivers with the photodiode and the configure of the receiver are

shown in Figure 5.4. The receiver converts the detected IR signals to the elec-

trical signal by utilizing the reverse bias circuit shown in Figure 5.5. A non-

inverting amplifier is used in the receiver circuit to amplify the electrical signal
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FIGURE 5.3: Emitter circuit.

to make the change of the signal more obvious. The photodiode with part num-

ber TPS 705 is used in the circuit of the receiver.

5.2 Self-localization of The Robot utilizing The IR-

sensor-based Positioning System

MCL method is utilized to estimate the self-localization of the robot based on

IR-sensor-based positioning system. A belief function is utilized to the MCL

function for recognizing the emitter encoded with repeated ID. Algorithm 3

shows the self-localization algorithm based on the positioning system. The

form of the particles used to estimate the position and orientation of the robot

is the same with Equation (3.4). The particles are initialized by randomly dis-

tributing in the environment. During the movement of the robot, these parti-

cles are updated based on the motion model which defined by Equation (3.6).

Because the robot starts without known initialized position and orientation val-

ues, the belief of the repeated ID encoding emitters cannot be calculated at the
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(a) (b)

FIGURE 5.4: The receiver: (a) top view of the receivers on the mo-
bile robot; (b) the configuration of the receivers in 2D space.

beginning. The estimation of the robot localization starts when a unique ID

encoding emitter is recognized.

As presented in line 6 of Algorithm 3, if an emitter is detected, we first deter-

mine whether it is encoded with a repeated ID. The recognition of the detected

emitter is realized by analyzing the optical signals transmitted from the emitter.

The ID of each emitter is encoded by using the frequencies of the transmitted

IR signals. Therefore, we used the fast Fourier transform (FFT) method [86] to

transform the signals obtained by the receiver in the time domain into the fre-

quency domain. Figures 5.6(a) and 5.6(b) show the signals transmitted from a

unique ID encoding emitter in the time domain and frequency domain, respec-

tively. Figures 5.6(c) and 5.6(d) show the signals transmitted from a repeated ID

encoding emitter in the time domain and frequency domain, respectively. The

ID of the detected emitter can be obtained by resolving the frequencies of the

received signals. If the detected emitter is encoded by a repeatedly used ID, a

belief function is utilized to judge which emitter encoded with this repeated ID

is being detected. This belief function is defined as:

bel[p]n = exp(− 1

2σ2
(wx[p]

n − wxr)
T(wx[p]

n − wxr)). (5.1)

Each emitter with the detected repeated ID obtains a belief value. The belief
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Algorithm 3: Self-localization method based on the IR-sensor-based posi-
tioning system:

1: Initialization of the particle set Sr,t = (x
[1]
r,t,x

[2]
r,t, · · · ,x

[M ]
r,t )

2: for i = 1 to I do
3: Particles are updated by the motion model: wx

[i]
r,t = MotionModel(wx

[i]
r,t−1)

4: end for
5: if emitter n is detected then
6: if emitter n is encoded with a repeated ID then
7: for p = 1 to P do
8: bel

[p]
n is calculated by utilizing the belief function

9: end for
10: xe is equal to the location of the emitter that obtained the largest bel[l]n
11: end if
12: for i = 1 to I do
13: ω

[i]
n is updated by utilizing the likelihood function

14: end for
15: end if
16: for i = 1 to I do
17: Create k with probability ∝ w

[i]
r,t

18: Add x
[k]
r,t to Sr,t

19: end for
20: Sr,t← Sr,t

21: Return S,tr
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FIGURE 5.5: Receiver circuit consists of the reverse bias circuit and
non-inverting amplifier. C1, C2, C3, and CF : 0.01 µF, R1 : 10 kΩ,

R2 and R3 : 1 kΩ, RF : 680 kΩ, Vo : 8 V.

value of bel[p]n is calculated by substituting the position value wx
[p]
n of the emit-

ter into the formula and comparing with the robot position wxr. σ is set at 30

in this study. The emitter obtains the largest bel value is considered as the de-

tected emitter and assign its location to xe which is used for calculating the

observation value.

The particles are updated after the detected emitter determined. The im-

portance weight of each particle is updated by the likelihood function which is

defined as:

ω = α exp(−(V − V )2

2σ2
), (5.2)

where α is a constant value. V is the actual voltage obtained by the receiver. V

is calculated by a function that expresses the relationship of the horizontal dis-

tance between the receiver and the detected emitter with the voltage obtained

by the receiver. This function is obtained based on the experiment by keeping

the distance between the receiver and the emitter at 1.2 m in the vertical direc-

tion and moving the receiver from the position right under the emitter to the

300 mm away in the horizontal direction. The voltage got from the receiver

is recorded with 10-mm intervals. The approximation function is learned by
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(a) Signals in time domain

(b) Signals in frequency domain

(c) Signals in time domain

(d) Signals in frequency domain

FIGURE 5.6: Signals detected by receiver in the time and fre-
quency domains: (a) and (b) signals transmitted from the unique
ID encoding emitters; (c) and (d) signals transmitted from the re-

peated ID encoding emitters.
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FIGURE 5.7: Experimental data (red points) recorded to obtain
the observation function for the MCL method and the approxi-
mation function (blue line) achieved by utilizing the least-squares

method.

using the least-square method. The learned function is defined as:

V = −3.27× 10−5e2d + 2.855× 10−3ed + 1.81997, (5.3)

ed =
√

(wxp − wxe)2 + (wyp − wye)
2. (wxp,

wyp) presents the position of the re-

ceiver in the world coordinate. (wxe,
wye) is the position of the emitter with the

largest bel. Figure 5.7 shows the learned function and the experimental data.

Then, the particles with the updated importance weights are resampled.

The location and orientation of the robot are calculated by the resampled par-

ticles. The particles with larger important weights have a greater impact on

the estimation of the robot self-localization. The function using the particles to

estimate the position and orientation is expressed as:

wxr,t =

(
ΣI

i=1
wx

[i]
r,tω

[i]

ΣI
i=1ω

[i]

)
(5.4)
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5.3 Advantage of The Proposed IR System

The novel arrangement of emitter consists of utilizing the mathematical combi-

nation method to generate more unique IDs and the repeated ID encoding LED

to make the proposed system suitable to a larger environment. To prove the

validity of using the combination method, we assume that 30 frequencies are

available to generate the IDs of the emitters, and six digital output pins of the

microcontroller are provided. By using the combination method,
∑6

n=1 30Cn

= 768,211 unique IDs which is approximately 25,000 times than the raw fre-

quencies numbers can be obtained. In this study, 9 frequencies are applied to

generate the IDs of the emitters. The proposed system is capable of obtaining∑9
n=1 9Cn = 511 IDs by using 9 digital output pins of the microcontroller. Espe-

cially, the advantage of using the combination method for generating the IDs

of the emitters becomes more obvious with the increase of the number of the

available frequencies and the digital output pins of the microcontroller.

The validity of using the repeated ID encoding emitters as the landmarks

in the environment for the self-localization of indoor mobile robot was demon-

strated in [87]. In this study, we propose to combine the repeated ID encoding

emitters and unique ID encoding emitters. By using this method, the limited

IDs can be used to a larger environment. For instance, imaging 10 IDs are avail-

able to encode the emitters. The configurations of using the repeated ID en-

coding emitters and only using the unique ID encoding emitters are shown in

Figures 5.8(a) and 5.8(b), respectively. The scale of the configuration combining

the repeated ID encoding emitters and unique ID encoding emitters is approx-

imate twice times more than the configuration which only uses the unique ID

encoding emitters. Moreover, the production cost of the IR system is also re-

duced because of the emitter with the same ID driven by one microcontroller.

By using the emitter encoded by repeated ID, the memory size required for

the system is fewer than only using the unique ID encoding emitter. Assuming

Lr by Wr (Lr lines in the X-direction and Wr lines in the Y-direction) repeated ID
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(a)

(b)

FIGURE 5.8: Available scale provided by two different emitter
configurations: (a) utilizing the combination of the unique ID and
repeated ID encoding emitters; (b) only utilizing the unique ID

encoding emitters.
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encoding emitters are used in the proposed system. According to the configu-

ration shown in Figure 5.1, (Lr− 1) by (Wr− 1) unique ID encoding IR emitters

are set in the proposed system. If 9 repeated IDs are used to the proposed sys-

tem, the memory size of (Lr − 1)(Wr − 1)+ 9 is needed. In the same scale of the

environment, the system only uses the unique ID encoding emitters needs the

memory size of (Lr − 1)(Wr − 1) + LrWr. For instance, let Lr = 600 and Wr =

400, memory sizes of (Lr−1)(Wr−1)+9 = 239,010 and (Lr−1)(Wr−1)+LrWr

= 479,001 are needed for the proposed system and the system with unique ID

encoding emitter only, respectively. The memory needed by the positioning

system only using the unique ID encoding emitters is more than twice times

than that of the proposed positioning system. Moreover, this superiority of the

proposed positioning system becomes more obvious with the increase of Lr and

Wr.

5.4 Experiment

The proposed IR-sensor-based positioning system was installed in the real en-

vironment and evaluated by several types of experiments. The experimental

environment is shown in Figure 5.9(b). To make it clear, the illustration of the

experimental environment is also presented in Figure 5.9(a). Because of the lim-

itation of the real experimental environment, four IDs were repeatedly used in

the experimental environment which is different with the emitter arrangements

shown in Figure 5.1. The emitter encoded by the repeated ID was installed with

a single LED. The unique ID encoding emitters were set in the center of four re-

peated ID encoding emitter. An LED array with four LEDs was used as the

emitter encoded by the unique ID. The interval between two same type emit-

ter was 80 cm. The height between the emitter and the receiver was 120 cm.

Two receivers were set on two sides of the top of the robot. The emitter can be

detected by the receiver within 280 cm from the center of the emitter in the hor-

izontal direction. Seven microcontrollers were used for the emitters to generate

the modulated IR signals. The emitters encoded by a same ID were driven by
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(a)

(b)

FIGURE 5.9: The IR-sensor-based positioning system in the Ex-
perimental environment: (a) illustration of positioning system and
the experimental environment; (b) the real positioning system and

experimental environment.
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FIGURE 5.10: Experimental environment for estimating the real-
time localization on a trajectory (represented by the blue line).

one microcontroller. One microcontroller was used for the receivers to analyze

the received signals.

The proposed IR sensor based self-localization system was evaluated by a

mobile robot in the experimental environment. We compared the performance

of the robot self-localization utilizing the proposed emitter arrangement with

that based on other arrangements. Moreover, the robot were performed at dif-

ferent speeds by using the proposed positioning system. At last, the proposed

system was also evaluated in some special situations: the failure of some emit-

ters and the change of the height between the receiver and the emitter. The

number of particles used for the estimation of the robot self-localization is 1,000

in the environments.

5.4.1 Experiment with Different Emitter Configurations

The self-localization performances based on the proposed system and other two

configurations of the emitters are evaluated on a predetermined trajectory. The

predetermined trajectory is shown in Figure 5.10. The proposed system com-

bines 3 unique ID encoding emitters and 8 repeated ID encoding emitters as

shown in Figure 5.9. The other two configurations use 11 unique ID encoding

emitters and no emitters, respectively. In the case of no emitters, the estima-

tion of the position and orientation of the robot only rely on the odometry. The

speed of the robot moved on the predetermined trajectory is set at 200 mm/s.
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(a)

(b)

(c)

FIGURE 5.11: Results of the self-localization based on differ-
ent configurations: (a) configuration of combining the unique ID
and repeated ID encoding emitters; (b) configuration of using 11

unique ID encoding emitters; (c) no emitter.
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Figure 5.11 presents the results obtained on the three configurations on the

predetermined trajectory. The robot stated from the position of (300, 800) and

moved along the trajectory 3 times. Figure 5.11(a) shows the result of the path

estimated by the proposed positioning system on the predetermined trajectory.

Most of the path estimated by using the proposed positioning system is consis-

tent with the actual trajectory. Figure 5.11(b) shows the result of the path es-

timated by utilizing the configuration of 11 unique ID encoding emitters. The

estimation based on the configuration with 11 emitters encoded by the unique

IDs is accurate as the estimation obtained by the proposed system. The con-

figuration of utilizing 11 unique ID encoding emitters has the same interval

between the emitters as the proposed system. The robot is capable of detecting

the emitters frequently during the movements on the predetermined trajectory

with both configurations so that the calculated motor errors can be modified

effectively. However, the result only relies on the odometry seriously deviates

from the actual trajectory in the X direction as shown in Figure 5.11(c). The

errors generated by the motors are accumulated without the adjustment based

on the landmarks.

Comparing the results obtained by the three configurations, the accuracy

of the self-localization of the robot based proposed positioning system and the

configuration applies 11 unique ID encoding emitters much better than only

relies on odometry. However, 11 IDs and microcontrollers are needed for the

self-localization system only utilizes the unique ID encoding emitters. The pro-

posed system only utilizes 7 IDs and microcontrollers for supporting an accu-

rate performance. Therefore, the proposed system combines the repeated and

unique ID encoding emitters reduces the ID and production costs than the ex-

isted IR self-localization system.

5.4.2 Experiment at The Marked Spots

To obtain the quantitative precision of the proposed system, 70 spots are marked

in the experimental environment as shown in Figure 5.12. The performances of

positioning by utilzing the configuration with 11 unique ID encoding emitters
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FIGURE 5.12: Experimental environment for estimating the loca-
tion accuracy at 70 spots (the white points are the chosen posi-

tions).

and odometry are also verified at the 70 marked spots. The robot stays 5 sec-

onds at the marked spot when passing by to record the estimated position and

orientation data of the robot. The orientation of the robot was maintained at

0 [rad] during the experiments. The errors are calculated by comparing the

recorded data with the ground truth of the marked spots.

TABLE 5.2: Errors of the self-localization at the 70 spots

Emitter configuration Average error Maximum error
x [mm] y [mm] θ [rad] dr [mm] x [mm] y [mm] θ [rad] dr [mm]

Proposed system 22 29 0.06 36 69 79 0.23 105
11 unique IDs 30 25 0.04 39 87 91 0.10 126

Odometery 94 55 0.03 108 161 99 0.08 189

Table 5.2 lists the errors of the robot self-localization obtained by three dif-

ferent configurations at the 70 marked spots. The average distance error of the

self-localization based on the proposed system is 36 mm and the orientation

error is 0.06 [rad]. The accuracy of the estimation based on the configuration

with 11 unique ID encoding emitters is close to that obtained by the proposed

system. However, the error generated by the odometery is three times more

than the proposed system. The performances of the robot self-localization on

the discrete spots are same with the performances on the predetermined tra-

jectory. The proposed system obtained an accurate estimation with fewer IDs

and microcontrollers. Figure 5.13 shows the results of the self-localization at

the 70 marked spots by utilizing the proposed positioning system. Considering
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FIGURE 5.13: Results at 70 spots based on the proposed system.

the interval and installation errors in the emitters, the results obtained by the

proposed system are accurate.

5.4.3 Experiment on Trajectory with Rotation

The proposed system supported an precise estimation for the robot self-localization

on the trajectory without rotation. The path will obviously deviate with the tra-

jectory when the orientation of the robot incorrectly estimated. To prove the

validity of the system for the orientation estimation of the robot, we also tested

the proposed system on a predetermined trajectory with rotations. The pre-

determined trajectory with different rotations is shown in Figure 5.14(a). The

robot moved from E point to K point. The orientation of the robot changed five

times at the marked points during the movements.

The path of the robot estimated by utilizing the proposed system on the

predetermined trajectory with rotations is shown in Figure 5.14(b). The robot

started without prior known initial position and orientation information so that

the estimation at the beginning possibly cannot overlap with E point. However,

the estimation was modified during the movements and the estimated path

almost coincides with the trajectory. The validity of the proposed positioning

system for the estimation of the robot orientation is proved by the experiment

result.
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(a)

(b)

FIGURE 5.14: Result of the robot self-localization on the trajectory
with orientations: (a) experimental environment and the trajec-
tory (blue line) with different orientations; (b) Path of the robot

estimated by utilizing the IR-sensor-based positioning system.
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5.4.4 Experiment with Different Robot Speeds

The proposed system for the self-localization of the mobile robot also tested

in the experimental environment by setting the robot at different speeds. The

robot moved on the predetermined trajectory three times at speeds of 100, 150,

250, and 300 mm/s, respectively. The routes estimated by using the proposed

system at these speeds are shown in Figure 5.15. All of the estimated routes

almost overlap with the predetermined trajectory. The increase or decrease of

the robot speed does not affect the accuracy of the robot self-localization by

using the proposed system. The rapid communication property of the IR sensor

makes the proposed system is capable of supporting an accurate estimation at

a high speed.

5.4.5 Performances of The Proposed System with Emitter Fail-

ure and Height Alteration

Some particular cases possibly occur during the utilization of the proposed sys-

tem. For instance, the light decay of the IR LED with a long utilization, the sig-

nals of some emitters obscured by some obstacles, and the bumps and depres-

sions on the floor lead to the height between the receiver and emitter changed.

In this section, the proposed system was evaluated in the situations of emitter

failure and height alterations between the receiver and emitter.

The electricity of different ID encoding emitters is provided by independent

powers in the proposed system so that there will not be a lot of emitter failures.

Therefore, we removed the power of the two emitters encoded with the same

ID to simulate the emitter failure. The configuration of the rest emitter is shown

in Figure 5.16. Comparing with Figure 5.11(a), two emitters are eliminated in

the configuration. The robot also moved on the predetermined trajectory with-

out rotation three times. Figure 5.16 shows the path of the robot estimated in

this particular situation. Although the instability increases, the accuracy of the

estimation is acceptable for the indoor mobile robot.
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(a)

(b)

(c)

(d)

FIGURE 5.15: Real-time self-localization at different speeds: (a)
100 mm/s; (b) 150 mm/s; (c) 250 mm/s; (d) 300 mm/s.
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FIGURE 5.16: Path of the robot estimated by the proposed system
with two emitter failures.

The undulation of the floor and the installation errors of the emitter in verti-

cal direction occur in indoor environments. Equation (5.3) used for calculating

the observation value is obtained based on the experimental data by keeping

the height between the receiver and the emitter at a fixed value of 1.2 m. The

undulation of the floor and the installation errors in emitter change the height

between the receiver and the emitter. To evaluate the effect of the height change

on the estimation of the positioning system, the height between the receiver and

the emitter is adjusted from 1.1 to 1.3 m in the experiments. The performances

of the self-localization under these heights are evaluated at the 70 marked spots

shown in Figure 5.12. The robot stayed 5 seconds at each marked spot when

passing by and recorded the estimated position and orientation of the robot.

Table 5.3 presents the average and maximum errors of the self-localization at

the marked spots under different heights. The errors of the robot self-localization

becomes larger with the increase of the height alteration. The average distance

error of the robot is approximately 50 mm when the height alteration within

60 mm. If the height alteration exceeds 60 mm, the accuracy of the proposed

system is not suitable for the indoor mobile robot self-localization. The prop-

agation model of IR LED in 3D space makes Equation (5.3) will not lose its

function immediately, but become less precise with the increase of the height

alteration. Therefore, the alteration of the height between the emitter and re-

ceiver affects the accuracy of the proposed system. However, the accuracy is

acceptable when the alteration within 60 mm. Especially, the undulation of the
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floor and the installation errors of the emitters in the vertical direction are com-

monly less than 60 mm, in which case the proposed system is unaffected by

these conditions.

TABLE 5.3: Errors of the robot self-localization with different
heights

Average error Maximum error
Height [m] x [mm] y [mm] θ [rad] dr [mm] x [mm] y [mm] θ [rad] dr [mm]

1.10 54 60 0.20 80 129 216 0.22 251
1.12 74 42 0.12 85 141 96 0.16 171
1.14 38 30 0.10 49 103 76 0.16 128
1.16 29 38 0.11 47 56 88 0.15 105
1.18 25 26 0.04 36 45 38 0.08 59
1.20 22 29 0.07 36 69 79 0.23 105
1.22 26 28 0.05 39 53 47 0.07 70
1.24 36 30 0.01 47 63 74 0.02 97
1.26 22 36 0.06 42 50 72 0.08 88
1.28 87 21 0.04 90 122 39 0.05 128
1.30 56 51 0.07 76 98 77 0.11 124

5.5 Summaries

In this study, an low-cost IR sensor based positioning system utilizing a novel

emitter arrangement is proposed. The IR LED arrays used as the unique ID en-

coding emitters and the single LEDs used as the repeated ID encoding emitters

are installed on the ceiling. The ID of the emitter is encoded by the frequency

values of the signals transmitted from the emitter. The mathematical combina-

tion method is used for obtaining more available IDs for unique ID encoding

emitters. With same number of available IDs, using the repeated ID encoding

emitters makes the system can be used for larger environment. Two receivers

are set on two sides of the robot top to scan the signals transmitted from the

emitters.

The self-localization of the robot is estimated by the MCL method embed-

ded with a belief function. Because the multiple applied ID encoding emitters

used in the environment, this belief function is utilized to recognize the de-

tected emitters. The IR-sensor-based positioning system is evaluated in several
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types of experimental environments. The validity of this positioning system is

also tested in some particular situations. The proposed IR system is capable of

supporting an accurate estimation in the experiments.



Chapter 6

Conclusions and Future works

The self-localization systems for an indoor mobile robot based on the HF-band

RFID system and IR system were proposed in this paper. RFID system based

positioning system commonly needs the map of the RFID tags as a prior knowl-

edge. However, the preparation work for recording the ID and measuring the

positions of the RFID tags by human takes a long time. To solve this problem,

the SLAM method is chosen to replace human labor. The non-Gaussian detec-

tion model of the RFID reader makes the classical FastSLAM with the Kalman

filter based landmark updating is not suitable. Especially, RFID self-localization

system always needs to set a huge amount of tags in the environment to real-

ize an accurate performance for the self-localization of the robot. However,

the time cost of FastSLAM increase obviously with the increase of the detected

tags. Therefore, two novel SLAM methods: PF-SLAM and PS-SLAM respec-

tively using the particle filter and particle smoother for the tag localization were

proposed in this paper. Particle filter and particle smoother do not need any

parametric model so that they are suitable to the HF-band RFID system with

the non-Gaussian detection model.

PF-SLAM utilizes the particle filter for both the self-localization of the robot

and the tag localization. By using the independent particle filter for each tag

localization makes the update of the tag localization less affected by the increase

of the detected tags. The superiority of PF-SLAM was proved in time cost with

the increases of the numbers of the particles and the detected tags by comparing

with FastSLAM in a simulation. The accuracy of PF-SLAM and FastSLAM were

also evaluated in the simulated and real experimental environments by using

89
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the RFID reader with the detection range of 60 × 60 mm2. PF-SLAM showed a

better performance than FastSLAM in both environments, and the accuracy of

the PF-SLAM is enough to a real environment.

PF-SLAM is suitable to the RFID system for an indoor mobile robot by us-

ing the RFID reader with the detection range of 60 × 60 mm2. However, the

degeneracy of the particle filter for estimating the tag location becomes serious

with the increase of the detection range which is capable of reducing the num-

ber of the RFID readers so that reduces the production cost. PS-SLAM utilizes

the particle filter for the self-localization of the robot and particle smoother for

the tag localization. By utilizing the particle smoother, novel states of the parti-

cles are generated by adding a Gaussian random value during the update and

the tag localization relies on the sequential states of the particles which makes

the estimation much more smoothing. Comparing with PF-SLAM, PS-SLAM

only needs a slightly larger memory size. The time cost of PS-SLAM almost the

same with PF-SLAM. However, the accuracy of PS-SLAM is much better than

PF-SLAM and FastSLAM when using an RFID reader with a large detection

range according to the results of the experiments in a simulated environment.

The algorithms of the two proposed SLAM methods are analyzed in Chap-

ter 3 and Chapter 4. The superiority and validity of the two SLAM methods

are discussed and evaluated in kinds of experiments. PF-SLAM is capable of

using for the RFID self-localization system with a small detection range within

180 mm. Exceeding this range, PS-SLAM shows a better performance.

Chapter 5 introduced the proposed IR sensor based self-localization system

for the indoor mobile robot. Most current IR sensor based self-localization tech-

niques only use unique IDs to encode the emitters. Because the limited avail-

able IDs, some systems are not suitable for a large environment. To solve this

problem, we proposed to utilize the mathematical combination method to ob-

tain more available IDs and use the repeated ID encoding emitters and unique

ID encoding emitters simultaneously in the environment. An IR LED array

and a single LED are applied as the unique ID encoding emitter and repeated

ID encoding emitter, respectively. The proposed system with the novel emitter
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arrangement was evaluated in the real experimental environment. The exper-

iments results confirm that the proposed system reduces the ID, storage, and

production costs. Moreover, the proposed arrangement can be also used to the

arrangement of the landmarks based on other sensors for the self-localization

of the robot.

Comparing with the conventional positioning system based on RFID and

IR sensors, the proposed methods improve the accuracy and reduce the calcu-

lation and production costs. The proposed PS-SLAM is tested in a simulated

environment. In the future, this method is expected to be evaluated in the real

experimental environment with the RFID system. The production of the RFID

system also can be reduced by setting the configuration of the RFID tags and

readers based on the proposed method with particle smoother based landmark

updating. Especially, we plan to evaluate the two proposed SLAM methods on

other sensors, for instance, the range and bearing sensor. We also intend to ob-

tain the prior knowledge of the proposed IR self-localization system by using

the SLAM method. The proposed SLAM methods are considered to combine

with the received signal strength fingerprints method for a more accurate esti-

mation. Especially, by using this method, the proposed IR system is capable of

supporting the self-localization of the robot in a 3D space and the effect by the

height alteration also can be solved. In addition to the estimation for the robot

self-localization, the proposed IR system is also expected to the positioning of

the people in the indoor environment.
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