
Walking Motion Model based on
Quaternion-valued Recurrent Neural Network for
Powered Exoskeleton

言語: eng

出版者: 

公開日: 2019-01-09

キーワード (Ja): 

キーワード (En): 

作成者: Murata, Fumihito, Takahashi, Yasutake

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10098/10533URL



Walking Motion Model based on Quaternion-valued
Recurrent Neural Network for Powered Exoskeleton

Fumihito Murata
Graduate School of Engineering

University of Fukui
3-9-1, Bunkyo, Fukui-shi,

Fukui, 910-8507, Japan

fmurata@ir.his.u-fukui.ac.jp

Yasutake Takahashi
Faculty of Engineering

University of Fukui
3-9-1, Bunkyo, Fukui-shi,

Fukui, 910-8507, Japan

yasutake@ir.his.u-fukui.ac.jp

Abstract—In this paper, we studied a quaternion neural net-
work model for a pattern of human walking. Recently, the field
of machine learning, including neural networks, has been devel-
oped remarkably. Multiple-dimensional neural networks, such
as complex-valued and quaternion-valued, have been actively
studied as well. A quaternion can handle information of multiple
variables naturally. We propose a quaternion-based recurrent
neural network. In robotics research, modeling a motion is useful
for various applications such as avoidance of danger, detection of
abnormal motion, generation of motion trajectory in a powered
exoskeleton. In this experiment, we focus on a motion of a
powered exoskeleton. The sequence of the angles of the hip and
the knee of the powered exoskeleton was recorded when a human
operator walked wearing the powered exoskeleton. The proposed
quaternion-valued recurrent neural network learns the data. We
verified the prediction accuracy of the walk motion to investigate
the usefulness.

Index Terms—motion prediction, quaternion neural network,
self-organizing maps, neural network, recurrent neural network

I. INTRODUCTION

Currently, researches on machine learning to realize human-

like learning functions on a computer are actively conducted in

the field of artificial intelligence. In particular, the realization

of general purpose artificial intelligence in ”Deep Learning”

which is a multi-layered neural network is greatly expected.

On the other hand, many high-dimensional neural networks

that handle numerical values with high dimensional values,

for example, complex values or quaternions, have also been

proposed. Their application to the information processing

capability, learning performance, applications, etc. have been

studied so far. Md.Faijul.Amin et al. adopt the complex-

valued neural network to real-valued classification problems

[1]. Hata et al. devised a Fuzzy-rule based learning method for

a quaternion-valued neural network(QVNN) [2]. Kusamichi

et al. suggests that a QVNN restores a dark image brightly

[3]. A quaternion is an extension of a complex number.

It consists of one real part and three imaginary parts and

called quaternion unit. Quaternions are often used to calculate

rotation in three dimensions, especially in 3D graphics and

computer vision. Complex values are used in various applica-

tions such as control in robotics and mechanical engineering,

circuit analysis in electronic engineering, vibration and wave

phenomena in physics. There are many useful scenes where

one variable is expressed using high dimensional numbers in

the real environment. In other words, it is reasonable to process

information and signals expressed in higher dimensions with

a higher dimensional number.

A recurrent neural network model is good at handling

time-series data. Unlike a feedforward neural network system,

recurrent neural networks have a closed structure inside. This

recurring structure enables to learn sequential information. It is

used in forecasting the future from current or past information

such as natural language processing and speech recognition.

Another type of recurrent neural networks called LSTM that

can hold long-term information has been proposed and studied

in recent years.

We propose a Quaternion-Valued Recurrent Neural Net-

work(QVRNN) combining the quaternion and the recurrent

neural network and evaluate the network with a walk motion

of a powered exoskeleton. The powered exoskeleton has four

joints, then, it has four joint angles. Therefore, it is reasonable

to represent the four joint angles of the powered exoskeleton

with a quaternion. Since the walk motion is circular time-series

data, compression is performed using the Self-organizing

maps(SOM) for its circulating part, then QVRNN is learned.

We predict the future joint angle of the wearer using the

network model and investigate the prediction accuracy of the

model and verify the effectiveness of the QVRNN.

II. QUATERNION-VALUED

RECURRENT NEURAL NETWORK

A. Quaternion

Quaternion is a number system extended from complex

number. It is represented as follow:

Q = qR + iqI + jqJ + kqK (1)

where qR and qI ,qJ ,qK are real numbers. R denotes a real

part, I , J , K denote imaginary parts, and the quaternion

1354

2018 Joint 10th International Conference on Soft Computing and Intelligent Systems and 19th International Symposium
on Advanced Intelligent Systems



consists of the four numbers in total. The three imaginary

parts, i, j, k, follow the equations below:

i2 = j2 = k2 = −1
ij = −ji = k

jk = −kj = i

ki = −ik = j (2)

Addition and subtraction of A = aR + iaI + jaJ + kaK and

B = bR + ibI + jbJ + kbK are defined follows:

A±B = (aR±bR)+i(aI±bI)+j(aJ±bJ)+k(aK±bK) (3)

As shown in Eq.2, the product of quaternions doesn’t hold the

Commutative property (A × B �= B × A), so it is defined to

satisfy Eq.2 and Distributive property. The quaternion product

is shown follow:

A×B = (aRbR − aIbI − aJbJ − aKbK)

+ i(aRbI + aIbR + aJbK − aKbJ)

+ j(aRbJ − aIbK + aJbR + aKbI)

+ k(aRbK + aIbJ − aJbI + aKbR) (4)

The conjugate quaternion is defined as follow:

A∗ = aR − iaI − jaJ − kaK (5)

A×A∗ = A∗ ×A = (aR)2 + (aI)2 + (aJ)2 + (aK)2 (6)

B. Quaternion Neuron

Before explaining Quaternion-Valued Recurrent Neural Net-

work (QVRNN), we first briefly explain Quaternion Neurons

(QNs). QN expresses all the parameters (weights, input, out-

put, and bias) of the real-valued neural network by quaternions,

and calculates based on quaternion operation such as Eqs.3

and 4. Figure1 shows a quaternion neuron model. where i is

Fig. 1: Quaternion Neuron Model

the index of the input neuron, j is the index of the output

neuron, Xi = xR
i + ixI

i + jxJ
i + kxK

i is quaternion-valued

inputs, Wji = wR
ji + iwI

ji + jwJ
ji + kwK

ji is quaternion-valued

weights, and Bj = bRj + ibIj + jbJj +kbKj is quaternion-valued

bias. The internal state of the neuron Mj and its output Hj

are calculated as follows:

Mj =
∑
i

WjiXi +Bj

=

{∑
i

(
wR

jix
R
i − wI

jix
I
i − wJ

jix
J
i − wK

jix
K
i

)
+ bRj

}

+ i

{∑
i

(
wR

jix
I
i + wI

jix
R
i + wJ

jix
K
i − wK

jix
J
i

)
+ bIj

}

+ j

{∑
i

(
wR

jix
J
i − wI

jix
K
i + wJ

jix
R
i + wK

jix
I
i

)
+ bJj

}

+ k

{∑
i

(
wR

jix
K
i + wI

jix
J
i − wJ

jix
I
i + wK

jix
R
i

)
+ bKj

}

= mR
j + imI

j + jmJ
j + kmK

j (7)

Hj = fQ (Mj)

= f
(
mR

j

)
+ if

(
mI

j

)
+ jf

(
mJ

j

)
+ kf

(
mK

j

)
(8)

For output of the neuron, many activation functions have

been proposed. As shown in Eq.8, we used an activation

function that separately inputs the real part and the imaginary

part (divided into three imaginary parts in the quaternion)

separately called split-type of activation function in this study.

The split-type of activation function is introduced in [4]. Using

the teaching data Tj = tRj + itIj + jtJj +ktKj , the loss function

was defined as follows. It should be noted that this is an loss

function in the case of a single-layer QVNN.

E =
1

2

∑
j

(Tj −Hj)
2

=
1

2

∑
j

(ej)
2

=
1

2

∑
j

(
eje

∗
j

)
(9)

where ej = (tRj −hR
j )+ i(tIj−hI

j )+j(tJj −hJ
j )+k(tKj −hK

j ),
and e∗j is indicates a quaternion conjugata as Eq.5. We used

the stochastic gradient descent (SDG) to update learning

parameters. In this paper, only the derivation of the basic

gradient by the quaternion is shown.

ΔWji =
∂E

∂wR
ji

+ i
∂E

∂wI
ji

+ j
∂E

∂wJ
ji

+ k
∂E

∂wK
ji

(10)

ΔBj =
∂E

∂bRj
+ i

∂E

∂bIj
+ j

∂E

∂bJj
+ k

∂E

∂bKj
(11)

The gradient for each weights and biases can be written as

follows.

∂E

∂wA
ji

=
∂E

∂hR
j

∂hR
j

∂mR
j

∂mR
j

∂wA
ji

+
∂E

∂hI
j

∂hI
j

∂mI
j

∂mI
j

∂wA
ji

+
∂E

∂hJ
j

∂hJ
j

∂mJ
j

∂mJ
j

∂wA
ji

+
∂E

∂hK
j

∂hK
j

∂mK
j

∂mK
j

∂wA
ji

(12)

∂E

∂bAj
=

∂E

∂hA
j

∂hA
j

∂mA
j

∂mA
j

∂bAj
(13)

1355



where A = R, I, J,K. Considering the gradient calculation

when adding the number of layers, we define the δ as follows.

δAj =
∂E

∂hA
j

∂hA
j

∂mA
j

(14)

Therefore, the gradient can be rewritten as follows using

Eqs.12, 13, and 14.

∂E

∂wA
ji

= δRj
∂mR

j

∂wA
ji

+ iδIj
∂mI

j

∂wA
ji

+ jδJj
∂mJ

j

∂wA
ji

+ kδKj
∂mK

j

∂wA
ji

(15)

By using Eq.15, it is possible to introduce from normal

quaternion Back-propagation into Back-propagation through

time (BPTT) which is one of update methods of the real-

valued recurrent neural network.

C. Recurrent Neural Network based on Quaternion Neurons

The QVRNN that we proposed is a network composed of

three layers; an input layer, a hidden layer, and an output

layer. We adopted a Jordan network in this work. The recurrent

paths are connected from the output units to the hidden units.

The obtained output is feedback as a weighted sum to the

hidden units, and it predicts taking into account the past joint

angles information. Figure.2 shows the process of the forward-

propagation of the model. As for the activation function, we

Fig. 2: Progress of Quaternion forward-propagation

used a sigmoid function f(x) = 1/(1 + e−x) in the hidden-

layer, an identity function f(x) = x or sigmoid function in

the output layer.

We used a method suitable for time series data called BPTT

as learning method with reference to the following papers

[5]. We briefly explain BTPP. In the forward-propagation

calculation of the recurrent neural network, the output (from

the hidden layer or the output layer) at the step t− 1 is taken

into consideration, so it is necessary to consider the error at

the step t − 1 also in the back-propagation calculation. The

forward-propagation calculation of the model is shown below:

M t
j =

∑
i WjiX

t
i +

∑
k WjkY

t−1
k (16)

Ht
k = fhid

Q

(
Ht

j

)
(17)

Zt
k =

∑
j WkjH

t
k (18)

Y t
k = fout

Q (Zt
k) (19)

Since the internal state of the hidden layer includes the output

of 1 step before as in Eq.16, Eq.17, Eq.18, it must also be taken

into consideration in the back-propagation. It is necessary to

calculate the gradient including the δt at the previous step in

addition to the δt−1 at back-propagating at step t. The process

of BPTT is shown in the following equations.

∂E

∂Whid
kj

=
τ∑
t

∂E

∂Zk

∂Zk

∂Whid
kj

=

τ∑
t

δout,tk Ht
j (20)

∂E

∂W rec
jk

=
τ∑
t

∂E

∂Hj

∂Hj

∂Wjkrec

=

τ∑
t

δhid,tj Y t−1
k (21)

∂E

∂W in
ji

=
τ∑
t

∂E

∂Hj

∂Hj

∂W in
ji

=
τ∑
t

δhid,tj Xt
i (22)

δout,t−1
k = δout,tk f

′out
Q

(
Zt
k

)
+ δhid,t−1

j W rec
jk (23)

δhid,tj = δout,tk Whid
kj f

′hid
Q

(
M t

j

)
(24)

We can update the weight corresponding to the time series by

using the above Eq.20, 21, 22, 23, 24. The above equations are

all expressed in quaternions. The hyperparameter τ is adjusted

to control the size of previous steps to be affected. In this

experiment, we set τ = 5 concerning the gradient elimination

problem.

III. POWERED EXOSKELETON

We choose an experiment with a powered exoskeleton to

validate the performance of the proposed quaternion-valued

recurrent neural network. We apply the proposed model to

learn a walk motion of the powered exoskeleton and evaluate

the performance. We used a powered exoskeleton originally

developed by ActiveLink Co., Ltd., Japan, PLL-01 [6]. We

have replaced the motor drivers of the powered exoskeleton

with PID controllers provided by Maxon motor ag [7]. Figure

3 shows a model of our powered exoskeleton. This powered

exoskeleton has four geared motors with encoders for detecting

the joint angles at the left and right hip, knee joints. There is

no motor on the ankle joints. It also has force sensors on

the back and both feet respectively. These force sensors can

measure the load on the shoulder and both feet of the wearer

from the powered exoskeleton.
Figure 4 shows the powered exoskeleton lifted by a gantry.

The gantry enables the wearer to walk without the load

of the powered exoskeleton because the gantry lifts up the

exoskeleton accordingly. The sequential data on each joint

angle was acquired during the walk. Figure 5 shows a user

who wears the powered exoskeleton. Conventional powered

exoskeletons bind both upper limbs and lower limbs of the

wearer. But our powered exoskeleton has no binding on the

limbs. The data used this experiment uses numerical value

measured in real time for each joint angle using the encoder

mounted on the motor.

1356



Fig. 3: Model of the powered exoskeleton

(a) front view (b) side view

Fig. 4: Powered exoskeleton

Figure 6 show the QVRNN model that we used in the

experiment.

IV. WALK MOTION LEARNING BASED ON QVRNN

We conducted experiments of learning walk motion of the

powered exoskeleton based on the proposed QVRNN. The

data of the experiment consist of the sequential joint angles

of the powered exoskeleton during a walk. The data were

normalized; the joint angle values were regularized in the

range from 0.2 to 0.8. The input to the QVRNN is the joint

angles based on quaternion representation, that is, the real part

represents one of the joint angles and the three imaginary part

represent the other joint angles. The output from the QVRNN

was designed in two types. The one type of the output is the

quaternion that represents the joint angles at one future step

t+1 while the input is the one representing the joint angles of

the current step t. The activation function of the output layer

was a standard sigmoid function which output range is [01]
for the former type and a hyperbolic tangent function which

output range is [−11] in the latter type. The number of units

in the hidden-layer is 50.

Fig. 5: User wearing Powered Exoskeleton

Fig. 6: Proposed the Quaternion-Valued Recurrent Neural

Network model

Figure 7 shows the training data and the learning results of

the QVRNN which output is the joint angles of the next step.

The one step predictions with the learned model based on the

QVRNN are plotted in Figure 7((b)). The figure indicates that

the QVRNN model somehow shrinks the training data into the

center although the shape is similar as shown in Figure 7((c))

that is enlarged the map.

Figure 8 shows the training data and the learning results of

the QVRNN which output is the difference of the joint angles

of the current and previous steps. Actually, Figure 8((b)) plots

the data that sum of the angle of current step and the predicted

one of the difference of the angles of the current and previous

step. The figure indicates that the QVRNN model shrinks the

training data into the center although the shape about 90 %

however it maintain the shape of the trajectory very well.

Figure 9 shows the training data and the learning results of

QVRNN which output is the joint angles of the next step and

horizontal and vertical axes indicates the step and left and right

angles of hip and knee joint. This learning results of QVRNN

1357



(a) training data

(b) one step prediction: original display

(c) one step prediction: enlarge display

Fig. 7: Learning Result of QVRNN which output is the joint

angles of the next step t + 1: horizontal and vertical axes

indicate the left and right angles, respectively, of the hip and

knee joints.

is that output is too small value, and therefore predicted joint

angles are shown vertical right axis and original joint angles

are shown vertical left axis.

Figure 10 shows the training data and the learning results

of QVRNN which output is the difference of the joint angles

of current and previous steps and horizontal and vertical axes

indicates the step and left and right angles of hip and knee

joint.

V. CONCLUSION AND FUTURE WORK

In this work we proposed a quaternion-valued recurrent

neural network (QVRNN) that is a recurrent neural network

(RNN) based on quaternion. We extends the Back-Propagation

Though Time (BPTT) that updates of the weights of the

QVRNN so that it handles the quaternion calculation. The

proposed QVRNN is evaluated with the case of walk motion of

the powered exoskeleton. The preliminary experiments suggest

that the QVRNN has some capability of the learning a periodic

trajectory but there is room to improve the performance.

(a) training data

(b) one step prediction

Fig. 8: Learning Result of QVRNN which output is the joint

angles difference between t and t+ 1: horizontal and vertical

axes indicate the left and right angles, respectively, of the hip

and knee joints.

Although the prediction accuracy is not so good, the output

is approximated to the teaching data. Better prediction might

be performed by adjusting hyper-parameters such as number

of units, learning rate, number of epoch, and so on. It is also

possible to introduce a new learning method such as Real

Time Recurrent Learning (RTRL). Since RTRL is a method of

propagating error to later time, it is suitable for online learning

with emphasis on processing in real time. The method might

be suitable for actually applying to the powered exoskeleton.

REFERENCES

[1] M. F. Amin and K. Murase, “Single-layered complex-valued neural net-
work for real-valued classification problems,” Neurocomputing, vol. 72,
no. 4-6, pp. 945–955, 2009.

[2] R. Hata, M. M. Isiam, and K. Murase, “Quaternion neuro-fuzzy learning
algorithm for generation of fuzzy rules,” Neurocomputing, vol. 216, pp.
628–648, 2016.

[3] H. Kusamichi, T. Isokawa, and N. Matsui, “A New Scheme for Color
Night Vision by Quaternion Neural Network,” Proc. of the 2nd Interna-
tional Conference on Autonomous Robots and Agents, 2004.

[4] H. Akira, Complex-Valued Neural Networks. Saiensusha(in Japanese),
2005.

[5] P. Werbos, “Backpropagation through time: what it does and how to do
it,” PROCEEDINGS OF THE IEEE, vol. 78, no. 10, pp. 1550–1560, 1990.

[6] A. C. Ltd. POWERLOADER Linght ”PLL”. http://activelink.co.jp/doc/
668.html.

[7] maxon motor ag. Dc motors and drive system by maxon motor. www.
maxonmotor.com.

1358



(a) Left hip angles

(b) Right hip angles

(c) Left knee angles

(d) Right knee angles

Fig. 9: Learning Result of QVRNN which output is the joint

angles of the next step t + 1: horizontal and vertical axes

indicate the step and left and right angles, respectively, of the

hip and knee joints.

(a) Left hip angles

(b) Right hip angles

(c) Left knee angles

(d) Right knee angles

Fig. 10: Learning Result of QVRNN which output is the joint

angles difference between t and t+ 1: horizontal and vertical

axes indicate the step and left and right angles, respectively,

of the hip and knee joints.

1359


