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Abstract— This paper describes recent technological advances
on IlI-nitride-based transistors for power switching applications.
Focuses are placed on the progress toward enhancing the
breakdown voltage, lowering the ON-resistance, suppressing
current collapse, and reducing the leakage current in AlGaN/GaN
high-electron mobility transistors (HEMTs). Recent publications
revealed that the tradeoff relation between ON-resistance and
breakdown voltage in AlGaN/GaN HEMTs exceeded the SiC
limit and was getting close to the GaN limit; however, the
breakdown voltage achieved was still lower than the theoretical
impact ionization limit. A novel process featuring strain-
controlled annealing with a metal stack, including Al gave rise
to significant reduction in the sheet resistance in AlGaN/GaN
heterostructures, suggesting the possibility of dramatic reduction
in ON-resistance of GaN-based power devices. Some of the
interesting approaches to suppress current collapse indicated
that surface trapping effects must be controlled by the
optimization of surface processing as well as by the reduction
of bulk traps in the epitaxial layers. Close correlation between
the local gate leakage current and point defects exposed on the
free-standing GaN substrate demonstrated that further reduction
of defects on bulk GaN substrates is truly required as future
challenges.

Index Terms—Breakdown voltage, current collapse, field
plate (FP), GaN, gate leakage, high-electron mobility transistor
(HEMT), ON-resistance.

I. INTRODUCTION

-NITRIDE-BASED transistors represented by
IIIAlGaN/GaN high-electron mobility transistors
(HEMTs) are promising as low-loss and high-voltage
switching devices to be utilized for a variety of power
conversion circuits. Since GaN is a material having a wide
bandgap of 3.4 eV with a direct transition band structure, it
inherently shows a high critical electric field, low intrinsic
carrier concentration, high-electron mobility, and high-drift
velocity. In addition, capability of growing high-quality
heterojunctions, such as AlGaN/GaN and InAIN/GaN, has
enabled us to achieve high-density 2-D electron gas (2-DEG)
of >10'3 cm™? with a high-electron mobility of exceeding
2000 cm?/V's.
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Fig. 1. Present status of specific ON-resistance versus breakdown voltage.
Referred data can be found in [1]-[18].

Great efforts have been made over the last decade to
improve the tradeoff relationship between breakdown voltage
and specific ON-resistance of nitride-based transistors.
In AlGaN/GaN HEMTs, the progress has been achieved by
optimizing the device geometry, reducing the defect density
in the epitaxial layers, improving the quality of buffer layers,
and introducing newly developed process technologies. Fig. 1
shows reported values of specific ON-resistance as a function
of breakdown voltage for GaN-based HEMTs, including our
developed AlGaN/GaN HEMTs with varied gate-to-drain
spacing [1]-[18]. It is evident that the power switching
capability of AlGaN/GaN HEMTs is already far beyond the
Si limit, partly exceeds the SiC limit, and is getting close to
the GaN limit.

In this paper, technological advances on AlGaN/GaN
HEMTs have been described, including our recent results for
improving dc and pulsed performance of AIGaN/GaN HEMTs.
Focuses are placed on the progress toward enhancing the
breakdown voltage, lowering the ON-resistance, suppressing
current collapse, and reducing the leakage current by
introducing free-standing GaN substrates. Section II discusses
experimental and simulated results performed to increase
breakdown voltages of AlGaN/GaN HEMTs. Section III
presents several technologies to reduce the ON-resistance of
AlGaN/GaN HEMTs by lowering contact resistances and
access resistances. In Section IV, experimental attempts are
presented for the suppression of current collapse. Section V
reports the advantage of using free-standing GalN substrate to
reduce gate leakage current in AIGaN/GaN HEMTs. Finally,
the conclusion is drawn in Section VI.
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Fig. 2. Breakdown voltage plotted as a function of gate-to-drain distance.

Referred data can be found in [19]-[24].

II. BREAKDOWN VOLTAGE

A large number of experimental results have been reported
on the measured three-terminal breakdown voltage for
AlGaN/GaN HEMTs. Fig. 2 shows examples of measured
results plotted as a function of the distance between gate and
drain (Lgq) for AlIGaN/GaN HEMTs. The results indicate that
the breakdown voltage is linearly proportional to Lgq in the
breakdown voltage range up to at least 2000 V [19]-[24].
The averaged breakdown electric field ranges from 0.6 to
1.6 MV/cm [10]-[13], [25], which is still much lower than
the expected impact ionization limit of 3 MV/cm. In general,
the electric field concentrates at the gate edge in the drain
side, as calculated by the 2-D computer simulation [26]. Such
nonuniform electric field distribution does not guarantee the
linear increase in the breakdown voltage, but is more likely
to exhibit gradually saturated characteristics. Thus, the results
shown in Fig. 2 imply that the lateral electric field along gate-
to-drain direction is not concentrated at the gate edge, but more
widely distributed or almost constant [27], [28].

Provided that magnitudes of positive and negative
polarization charges (including spontaneous and piezoelectric
charges), located at the interface and the surface of the
AlGaN barrier layer, respectively, are mutually balanced, more
uniform lateral electric field distributions could be accom-
plished along gate-to-drain. By applying strong drain voltages,
2-DEG charges in the channel are almost totally depleted,
accompanied by the reduction in the ionized surface donor
charge [29]. Hence, remaining charges between gate and
drain would be a pair of balanced positive and negative
polarization charges, resulting in constant electric field dis-
tribution, which is similar to the superjunction concept used
in Si MOSFETs [30] and GaN-based diodes [31].

Fig. 3(a) and (b) shows the electric field distribution
between gate and drain, based on 2-D computer simulation
by assuming balanced polarization charges and depletion of
2-DEG charges. When positive and negative polarization
charges are balanced, the electric field distribution in the
channel becomes almost constant throughout the gate-to-drain
region regardless of drain bias voltages assumed. However,
since passivation films and/or GaN cap layer are formed in the
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Fig. 3. Simulated electric field distribution between gate and drain
in AlGaN/GaN HEMT at drain voltage of (a) 500 and (b) 1500 V.
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Fig. 4. Simulated equipotential contour lines in AIGaN/GaN HEMTs for
(a) without FP, (b) single FP, (c) multistep FP, and (d) graded FP. The applied
drain voltage is 100 V.

actual AlIGaN/GaN HEMTs, further study is needed whether
the net surface negative charges balance with the positive
polarization ones at the AlGaN/GaN interface. It is also an
open question why the experimentally estimated lateral critical
electric field is much lower than the theoretical limit. To solve
such discrepancy, it would be of importance to investigate
undesirable leakage current mechanisms related to the high
density of crystal defects.

In addition, to make a gate-to-drain spacing longer, intro-
ducing field plate (FP) is also an effective way for increasing
the breakdown voltage. The validity of FP has been recognized
since early 2000s [32]-[34], and HEMTs with multi-FP were
also reported [35], [36]. The simulation results on how the
electric field distribution are modified by the number of
FP steps are shown in Fig. 4(a)-(d), where equipotential
contour lines are depicted. By increasing the number of
step [Fig. 4(b) and (c)], the peak electric field along the
gate-to-drain direction is decreased and the field distribu-
tion spreads, resulting in improved breakdown characteristics.
The most suitable structure is the graded FP [Fig. 4(d)],
although a special process is required for fabricating such
a structure [19], [37].

It is known that AlGaN/GaN HEMTs tend to suffer
from a high-gate leakage current originating from the leaky
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Fig. 5. Two-terminal reverse gate [V characteristics of AlGaN/GaN
MIS-HEMTs with gate insulator of composite ZrO2/Al; O3 and single Al O3
measured at room temperature and 200 °C.

Schottky barrier at the metal-semiconductor interface. One of
the effective ways to suppress such a high-gate leakage is the
use of metal-insulator—semiconductor (MIS) structure for the
gate. As a gate insulator, material properties of high resistivity,
high-breakdown field, low-interface state density, and high
permittivity are required. A large number of insulators, such
as SiO3, SiN, Al, O3, ZrO,, HfO,, and AIN, have been devel-
oped for fabricating MIS-HEMTs [38]-[43], and have been
deposited with a variety of methods, including chemical vapor
deposition (CVD), atomic layer deposition (ALD), sputtering,
electron beam evaporation, and in situ SiN growth by metal—
organic CVD [44]-[48]. Using ALD, we have developed a
ZrO,/Al,03 double layered gate insulator with Al,O3 being
the bottom and have shown that the composite insulator is
advantageous in terms of low leakage current even at high
temperatures. As shown in Fig. 5, a composite ZrO,/Al,O3
insulator resulted in a reduced gate leakage current by two
orders of magnitude at 200 °C, as compared with those with
a single-layered insulator of ZrO, or Al,O3 [49].

III. ON-RESISTANCE

Lowering the ON-resistance is an important challenge for
achieving high-efficiency operation in power switching circuits
with AIGaN/GaN HEMTs. The ON-resistance between source
and drain is expressed as the sum of contact resistance
of source/drain electrodes, access resistance between source
and gate, channel resistance beneath the channel, and access
resistance between gate and drain.

Various kinds of metal stacks and corresponding annealing
conditions have been attempted to obtain lower contact resis-
tances in AlIGaN/GaN HEMTs [50]-[54]. The commonly used
metal stacks are Ti/Al/Ni/Au and Ti/Al/Mo/Au, and a contact
resistance of 0.2-0.5 Qmm has been typically reported. Gold-
free ohmic metals have also been developed to ensure compati-
bility with the Si fabrication process [15], [55], [56]. Although
good ohmic contact behaviors are obtained for an AlGaN
barrier with relatively a low-Al composition of 0.15-0.3,
it becomes rather difficult to obtain a reasonable contact
resistance for AlGaN barriers with a high-Al composition

15 | T |
[~ Alg55Gag 45N/Al, 3Ga, ;N 3
- 950 °C =
Z 10 - 900 °C ]
E | 850 °C . 85{’0 i
5 | zoamoAu 900 °C e
3 5 95{:0 ]
o WS Y AU T
0 1 2 3 4 5

Voltage (V)

Fig. 6. I-V characteristics of Algy 55Gag45N/Aly3Gag7N HEMT with
ohmic metals of Zr/Al/Mo/Au and Ti/Al/Mo/Au annealed at different
temperatures.
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Fig. 7. Temperature dependences of drain current for AlGaN-channel
HEMTSs (AIN/Alg ¢Gag 4N and Alg g6 Gag 14N/Algy 51Gag.49N) and conven-
tional AIGaN/GaN HEMT.

of >0.5. For such HEMTs having a barrier layer with
high-Al composition, Yafune et al. [57] have introduced a
new metal stack of Zr/Al/Mo/Au and reported a relatively
low value in contact resistance. Fig. 6 shows current—voltage
(I-V) characteristics measured between ohmic metals on
Al 55Gag 45N/Alp3Gag7N HEMTs, in which ohmic metal
stacks composed of Zr/Al/Mo/Au and Ti/Al/Mo/Au were
annealed at 850 °C, 900 °C, and 950 °C. Almost linear
I-V characteristics were observed for Zr/Al/Mo/Au annealed
at 950 °C, while only nonlinear characteristics were noticed for
Ti/Al/Mo/Au. The reason for the better ohmic characteristics
with Zr/Al/Mo/Au is that metals (presumably Zr and Al) in
Zr/Al/Mo/Au penetrate more deeply into the AlyssGagasN
barrier layer than those in Ti/Al/Mo/Au, as reported in [57].

Two kinds of AlGaN-channel HEMTs, composed of
AIN/Alg 6Gag4N and AlggeGag.14/Alg.51Gag 49N, have been
fabricated using Zr/Al/Mo/Au as ohmic electrodes [58], [59].
Fig. 7 shows the temperature dependence of drain current
measured at temperatures up to 300 °C. The drain current was
normalized with the values measured at room temperature. It is
evident that the AlGaN-channel with a higher Al composition
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Fig. 8. (a) Cross-sectional and (b) top view of samples for measuring sheet
electron density and mobility.

(>0.5) exhibits extremely stable drain current behaviors with
respect to the device temperature up to 300 °C. Although
further improvements, such as lowering the contact resistance
are needed, the AlGaN-channel HEMT is promising in terms
of stable operation at elevated temperatures with sufficiently
high-breakdown voltages [14].

Access resistances of HEMTs are determined by the product
of 2-DEG density (n5) and electron mobility (). Since those
values measured at room temperature in AlGaN/GaN het-
erostructures are typically in the range of 8—10 x 10'? cm™2
and 1500-2000 cm?/V s, respectively, the corresponding sheet
resistance turns out to be ~300-500 Q/sq. If one could
increase both ny and u, the sheet resistance would be sig-
nificantly reduced, leading to extremely low-access resistance.
Regarding the 2-DEG mobility at low temperatures, theoretical
and experimental studies have been extensively made to under-
stand the dominant transport mechanisms at the AlGaN/GaN
interface. As a result, a mobility of 7500 cm?/Vs at 10 K
was reported in [60], and it was increased year by year,
reaching 167 000 cm?/Vs at 0.3 K in [61]. Meanwhile, the
room temperature mobility in AlIGaN/GaN heterostructure has
not been increased over the last decade, even though significant
progress has been achieved in epitaxial growth technologies.
This is because, the room temperature electron mobility is
mainly governed by polar-optical phonon scattering [62], [63],
which is almost independent of the epitaxial layer quality.
A room temperature electron mobility of 2019 ¢cm?/V's has
been reported in [64], and it was increased to 2200 cm?/Vs
in [65], corresponding to an increase by only 9%.

An interesting method to increase room temperature
electron mobility is to introduce an additional tensile strain in
an AlGaN layer. Azize and Palacios [66] reported a mobility
increase by etching a Si substrate from the backside for
controlling the tensile strain in AlGaN. Fehlberg er al. [67]
reported a high mobility of 2380 cm?/Vs by depositing SiN
films with varied deposition conditions, resulting in introduc-
tion of strain in an AlGaN layer. In addition, Im et al. [68]
controlled the tensile strain by varying the buffer layer
thickness and fabricated an AlGaN/GaN HEMT with
increased n; of 1 x 10" cm™2, though the mobility was low.

Our group have reported significant increases in both
ng and u by annealing an AIGaN/GaN heterostructure
in vacuum with deposited metals composed of Ti/Al
or Ni/Al [69]-[71]. Fig. 8 shows cross-sectional and
top views of the measured AlGaN/GaN sample with
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Fig. 9. Temperature dependences of (a) sheet electron density and (b) electron
mobility of AlIGaN/GaN heterostructure deposited with Ni/Al. Arrows indicate
temperature change directions.

van der Pauw configuration. Ohmic electrodes were formed
in the four corners and an additional metal consisting of
double layered metal stack, center metal, was evaporated.
The sample was set to the Hall measurement system and
the temperature dependence of ng and x was measured with
increasing and decreasing sample temperatures ranging from
300 (room temperature) to 1020 K. All the measurements
were carried out in vacuum (~1 x 1073 torr). An example
of the measured temperature dependences in ng and u is
shown in Fig. 9(a) and (b). With increasing temperature from
300 K, ny; showed a sudden increase at ~650 K and had a
peak at 820 K followed by a slight decrease. By decreasing
temperature from 1020 K, ny was slightly increased and then
decreased. Meanwhile, ¢ showed a hump at ~650 K with
increasing temperature from 300 K. It is to be noted that both
ns and u did not take the same paths in the cycle of heating
and cooling, resulting in an increase in ng; by one order of
magnitude and an increase in x4 by 70% at room temperature.
The amount of increased u depended on the thickness of Ni/Al
and a value of over 3000 cm?/V's was achieved by optimizing
the thickness [72].

The microstructure of the annealed metals with Ti/Al
(Bottom: Ti, Top: Al) and with AUTi (Bottom: Al, Top: Ti)
was investigated by Auger electron spectroscopy [70], where
the increases in ng and u were only observed for Ti/Al and
not for Al/Ti. The results indicate that the top Al layer diffuses
into the bottom Ti layer for Ti/Al, whereas Ti does not diffuse
into Al for AI/Ti, suggesting that the diffusion of top Al layer
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into the bottom metal plays a key role for the increases in
ng and x. One might think that the measured ny and p did
not correspond to those of 2-DEG, but those of center metal.
However, such possibilities are excluded by the experimental
results [69]-[71]. The increases in ng and y were not observed
when the center metal was a monolayer of Ti or Al, and also
the amount of increase in ny; was independent of the total
thickness of Ni/Al, indicating that the measured ng and u
were not dependent on the center metal resistivity. In addition,
u never exceeds 2000 cm?/V s if electrons flow in the metallic
layer.

Further experiments showed that 4 also depended on the
species of the bottom metal and had a close correlation with
the thermal expansion coefficient of the bottom metal, as
shown in Fig. 10, where the top metal was Al [73]. It was
found that # was more increased with a metal having larger
thermal expansion coefficient and a value of over 3000 cm?/V s
was obtained with Cu/AL

From a series of experiments, a model was proposed for
the increases in ng and x by annealing as follows. The center
metal, expanded with the temperature increase, induces a
tensile strain in AIGaN/GaN layer, resulting in the increase
in ng due to the increase in piezoelectric charge. The key
of this process is that the induced tensile strain brings about
inelastic deformation at high temperatures and maintains it
after cooling the sample to room temperature. The increase
in u is accompanied by the increase in ng, presumably due
to the reduced effective mass [66], and/or increased electron
screening [74]. The larger thermal expansion coefficient of
Cu and Ni induces a stronger tensile strain at high tem-
peratures, and thus, higher u is observed with Cu and Ni.
To confirm the validity of the model, Raman microprobe
spectroscopy measurements have been performed. An Ar laser
with a wavelength of 496.5 nm was used as an incident beam
and the Raman shift was measured on the AlGaN surface close
to the Ni/Al metal (1 xm apart from the metal edge). Fig. 11
shows the measured stress for three samples, i.e., bare AlGaN
surface without Ni/Al, as-deposited Ni/Al (100/100 nm), and
annealed Ni/Al (100/100 nm) at 1020 K. Note that the stress
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Fig. 11. Stress values measured by Raman spectroscopy for AlIGaN/GaN bare
surface, as-deposited Ni/Al (100/100 nm), and annealed Ni/Al (100/100 nm).
Inset: Raman signal.

value is plotted as the deviation from that for the bare surface.
The increased tensile stress was 7 and 20.6 MPa for samples of
as-deposited Ni/Al and annealed Ni/Al, respectively, indicating
the evidence that an additional tensile stress was introduced
by metal deposition and annealing.

The thermal annealing technique with a metal stack men-
tioned above is effective to increase both n; and u, and hence
to reduce sheet resistance drastically. For example, the sheet
resistance of AlGaN/GaN heterostructure after annealing with
Ni/Al was as low as 10 Q/sq, which is fifty times lower than
that before annealing. The decreased sheet resistance will be
useful to reduce the access resistance between source and gate,
leading to improvement in transconductance and reduction in
ON-resistance in AlIGaN/GaN HEMTs.

IV. CURRENT COLLAPSE

It is widely known that applying high drain biases into
GaN-based HEMTs frequently gives rise to the decrease in
drain current accompanied by the increase in the dynamic
ON-resistance. This undesirable phenomenon is known as
current collapse and must be eliminated before pushing
GaN-based HEMT devices into market. Since the pioneering
work on the fabrication of AlIGaN/GaN HEMTs [75], extensive
efforts have been made to suppress current collapse and to
elucidate the origin of it. It is widely recognized that current
collapse can be effectively mitigated by surface passivation,
especially with a SiN film [76]. The proper surface treatment
before depositing surface passivation films is also reported to
be effective to reduce current collapse. One such example
is the surface treatment by oxygen plasma exposure. The
results are shown in Fig. 12, where the dynamic ON-resistance
of AlGaN/GaN HEMTs after oxygen plasma treatment with
an RF power of 100 W for 60 s is dramatically reduced
after passivation with either SiN, SiO;, or AIN [77]. The
oxygen termination of unbonded Ga and Al atoms near the
AlGaN surface may be responsible for the reduced current
collapse, and the evidence of reduced trap levels after oxygen
plasma exposure has been identified by analyzing transients
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of ON-state drain current assuming Shockley-Read-Hall
statistics [77].

The use of FP is another way for the suppression of current
collapse. The comprehensive study on the effect of FP on
the dynamic ON-resistance has been performed by preparing
a series of AIGaN/GaN HEMTs with different FP lengths and
gate-to-drain distance [78]. The results indicated that current
collapse was dramatically improved by the introduction of
gate FP, and the improvement was more enhanced using a
longer FP length. It was also found that the current collapse
reduction was more pronounced when the gate bias during
ON-state was chosen at more positive values, suggesting
that the gate FP is capable of instantly supplying additional
electrons into the channel access region [78].

Although current collapse is recognized as closely related
to carrier trapping phenomenon, its origin is not yet fully
understood. Since current collapse was found to be affected
by surface passivation, surface treatment, and the use of FP, it
must be at least ascribed to trapping and detrapping of carriers
at the semiconductor surface. However, several reports also
suggested that the collapse was likely to be brought about from
bulk traps in the buffer layer [79], [80]. Therefore, more work
is definitely needed for the elimination of current collapse,
including further optimization of surface processing and the
reduction of bulk traps in the epitaxial layers.

V. FREE-STANDING GaN SUBSTRATE

AlGaN/GaN heterostructures have been commonly grown
on various substrates, such as sapphire, SiC, and Si. However,
a large lattice mismatch between GaN and a foreign substrate
leads to generation of high density of threading dislocations
on the orders of 103-10'% cm~2 in the epitaxial layer. Hence,
the development of free-standing GaN substrates with low-
dislocation densities becomes extremely important. Several
groups have reported that a free-standing GaN substrate
grown by hydride vapor phase epitaxy (HVPE) is effective to
obtain ideal Schottky or p-n diode characteristics [81], [82].
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Fig. 13.  (a) Top view image of AlGaN/GaN HEMTs fabricated on 2-in
diameter Na-flux bulk GaN substrate. (b) Gate leakage characteristics for 1000
HEMTs.
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Fig. 14. Top view images of (a) device with metal electrodes and (b) device
after etching off metal electrodes.

Although the dislocation density in the epitaxial layers can
be significantly reduced by the use of HVPE-grown GaN
substrate, the current dislocation density still stays as high
as 10® cm~2, and further reduction is required. A melt-grown
method, such as Na-flux liquid phase epitaxy, has recently
attracted significant attention to further reduce the dislocation
density in a bulk GaN substrate [83], [84].

Using a free-standing GaN substrate with a dislocation
density of less than 10® cm™2 grown by Na-flux method, our
group have studied the detailed correlation between the gate
leakage current in AlIGaN/GaN HEMTs and point defects in
the starting GaN substrate [85]. The epitaxial layers consisted
of an undoped GaN channel layer and a 25-nm undoped
AlGaN barrier layer with an Al composition of 0.25. Fig. 13(a)
shows a top view of the whole 2-in wafer after device
fabrication.

The statistical data of the reverse gate leakage current
were taken from randomly selected 1000 devices fabricated
on a same wafer with a gate length of 3 um. As shown
in Fig. 13(b), there observed a large scatter by more than five
orders of magnitude in the reverse gate leakage characteristics
measured at a gate voltage of —20 V. The leakage characteris-
tics were divided into two groups showing low- and high-gate
leakage currents, i.e., almost all the devices (983 pcs.) showed
a leakage current of < 10~/ A/mm, whereas only 17 devices
exhibited rather high leakage of >107°% A/mm.



After electrical measurements, device areas were immersed
in hot H3PO4 solution for 60 min to expose the surface of
the GaN substrate. As shown in Fig. 14(a) and (b), there
was a clear correspondence between locations of the gate
electrode and the exposed hexagonal etch-pit defect with a
size of several micrometers, indicating that the gate electrode
of the leaky HEMT was formed in direct contact with the
location of the etch-pit defect. These results suggest that the
reverse gate leakage characteristics of GaN-based HEMTs are
strongly influenced by the density of threading dislocations
propagating through the substrate material, and thus continued
efforts are of particular importance to reduce the density of
point defects, and/or threading dislocations in free-standing
GaN substrates.

VI. CONCLUSION

Technological advances for increasing the breakdown
voltage, reducing the ON-resistance, suppressing current
collapse, and reducing the gate leakage current in AIGaN/GaN
HEMTs have been described. Comprehensive characterization
on breakdown voltages in AlGaN/GaN HEMTs suggested that
balancing of net positive and negative charges in the AlIGaN
barrier was likely to account for the experimentally observed
linear dependence of breakdown voltage on the gate-to-drain
distance. However, the measured lateral critical electric field
was still much lower than the theoretical limit. Attempts
to achieve lower contact resistances for an AlGaN-channel
HEMT indicated that a new metal stack of Zr/Al/Mo/Au was
effective and resulted in improved device stability at tempera-
tures up to 300 °C. Extremely, low sheet resistance as well as
high room temperature mobility exceeding 2500 cm?/V s were
achieved for an AlGalN/GaN heterostructure deposited with a
metal stack, such as Ti/Al, Ni/Al, and Cu/Al. A model was
proposed in which inelastic tensile strain plays a key role.
Effects of oxygen plasma treatment and providing FP were
presented to reduce current collapse in AlGaN/GaN HEMTs
and their mechanisms were discussed. The results strongly
suggested the need for essential reduction in trapping states
located on the surface or the bulk of the semiconductors.
Finally, issues associated with the high-defect density in
currently available AIGaN/GaN epitaxial layers are presented
and the strong demand for the development of low-defect
density bulk GaN substrates were pointed out.
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