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Abstract: This paper considered the test specimen thickness (TST) effect on the fracture toughness of a 
material Jc in the transition temperature region for 3 point bending (3PB) specimens. Fracture 
toughness tests and elastic-plastic finite element analyses (FEA) with non-standard test specimens, 
which are non-standard because the specimen thickness-to-width ratio B/W was varied in the range of 
0.25 to 1.5, were conducted. Based on these tests and the FEA results, it was demonstrated that the 
"planar" (4delta-t, sigma22c) failure criterion—which states that cleavage fracture after significant 
plastic deformation occurs when the crack opening stress sigma22 at a distance from the crack-tip that 
is equal to 4 times the crack-tip opening displacement delta-t exceeds a critical value sigma22c—was 
verified to effectively explain the TST effect. This (4delta-t, sigma22c) criterion also successfully 
predicted the tendency of Jc to saturate to some bounding value for B/W=1.0. This tendency was 
similar to that of the T33-stress, which is the out-of-plane elastic crack-tip constraint parameter. 
Because the (4delta-t, sigma22c) criterion could predict the TST effect on Jc and because the criterion 
could predict the bounded behavior of Jc for large B/W, the TST effect was concluded to be mainly 
mechanical in nature, which the weakest link model fails to predict. The mechanical cause of the TST 
effect on Jc was considered to be an out-of-plane crack-tip constraint, and one of its measures of 
magnitude is the T33-stress. 
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> The test specimen thickness (TST) effect on the fracture toughness Jc was considered. 

> The TST effect on Jc and bounded behavior of Jc was observed with the non-standard 3PB 

specimen.  

> A large-strain, elastic-plastic FEA reproduced the behaviors observed in the experiments.  

> The (4t, 22c) failure criterion effectively explained the TST effect. 

> The mechanical nature of the TST effect on Jc was demonstrated. 
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Abstract 

This paper considered the test specimen thickness (TST) effect on the fracture toughness of a 

material Jc in the transition temperature region for 3 point bending (3PB) specimens. Fracture 

toughness tests and elastic-plastic finite element analyses (FEA) with non-standard test specimens, 

which are non-standard because the specimen thickness-to-width ratio B/W was varied in the range 

of 0.25 to 1.5, were conducted. Based on these tests and the FEA results, it was demonstrated that 

the “planar” (4t, 22c) failure criterion—which states that cleavage fracture after significant plastic 

deformation occurs when the crack opening stress 22 at a distance from the crack-tip that is equal to 

4 times the crack-tip opening displacement t exceeds a critical value 22c—was verified to 

effectively explain the TST effect. This (4t, 22c) criterion also successfully predicted the tendency 

of Jc to saturate to some bounding value for B/W=1.0. This tendency was similar to that of the 

T33-stress, which is the out-of-plane elastic crack-tip constraint parameter. Because the (4t, 22c) 

criterion could predict the TST effect on Jc and because the criterion could predict the bounded 

behavior of Jc for large B/W, the TST effect was concluded to be mainly mechanical in nature, which 

the weakest link model fails to predict. The mechanical cause of the TST effect on Jc was considered 

to be an out-of-plane crack-tip constraint, and one of its measures of magnitude is the T33-stress. 

Key words: Fracture mechanics; Constraint effect, Fracture toughness, Cleavage fracture, 

Transition temperature, Thickness effect, 3PB specimen. 
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1. Introduction 

One of the difficulties in determining the cleavage fracture toughness Jc of a material over the 

ductile-to-brittle transition (DBT) temperature region, which is important in the assessment of aging 

steel structures and reactor pressure vessels, is that test specimen thickness (TST) has an effect on Jc, 

even though standardized test specimens are used [1]. The two most physically logical effects, in 

general, are the statistically weakest link size effect and the loss of crack-tip constraint, that is, the 

effect caused by the loss of stress triaxiality [2]. The weakest link size effect should affect only 

brittle fracture, whereas the loss of constraint should affect both ductile and brittle fracture. Both 

criteria lead to increasing toughness with decreasing TST. Another point of view is that the former 

criterion considers the TST effect on Jc to be a material issue and the latter to be a mechanical issue. 

This effect of TST on Jc, described as Jc ∝B
1/2

 (B ≡ TST) by Wallin [2], was reproduced by 

Dodds et al. [3] based on the weakest link model. ASTM E1921 [4] has adopted parts of this 

criterion, and it seems to be widely accepted. However, as Dodds et al. [3] admit, “fracture 

toughness does not decrease indefinitely with thickness.” 

The crack-tip constraint approach to the TST effect on Jc assumes that the effect is a result of the 

out-of-plane crack-tip constraint. Guo [5, 6] proposed a parameter Tz = 33/(11+22) to measure the 

magnitude of the out-of-plane crack-tip constraint, and has been extensively working with 

co-workers to express the crack-tip stress field with a stress intensity factor (SIF) K or J-T11-Tz 

[6-13]. Niemitz et al. [14] instead applied a J-Q-Tz approach to explain the difference in Jc. Whether 

explicitly expressed or not, Gao [15], Wang et al. [16-20], and Fernández-Sáez and 

Fernández-Canteli et al. [21] have focused their attention on the out-of-plane T-stress, T33, as a 

measure of the out-of-plane crack-tip constraint. Based on this general methodology to express the 

magnitude of the 3D (including out-of-plane) crack-tip constraint, one of the authors [22] assumed 

that the TST effect on Jc was mechanical in nature and conducted fracture toughness tests and 

elastic-plastic finite element analyses (FEA) with non-standard compact-tension (CT) test specimens, 

using specimen thickness-to-width ratios, B/W, of 0.25, 0.4 and 0.5. The planar configuration was 

identical for the three cases and it complied with ASTM E399 [23] for W = 25 mm (these three types 

of test specimens are designated as non-standard test specimens). The key idea of this non-standard 

CT specimen was that the normalized planar parameter, 11 = (a)
1/2

T11/K (a = crack depth), is kept 

nearly constant, but the out-of-plane parameter, 33 = (a)
1/2

T33/K, significantly changes for B/W. 

They successfully correlated the TST effect with a mechanical parameter as Jc ∝ |T33|
1/2

 for 0.55% 

carbon steel JIS S55C in the DBT temperature region. The result was accepted as evidence that the 

TST effect on Jc is mechanical in nature, and the TST effect can be quantitatively described by some 

failure criterion independent of the specimen structure. 

In this paper, as an extension of our previous work [22], the TST effect on Jc for a non-standard 3 

point bending (3PB) specimen was studied to show that this effect is mechanical in nature. For this 
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purpose, fracture toughness tests with non-standard 3PB specimens were conducted for 0.55% 

carbon steel JIS S55C, and the TST effect was reproduced by running a large-strain, elastic-plastic 

FEA. Finally, it was demonstrated that the “planar” failure criterion proposed by Dodds et al. [24], 

i.e., that the “crack opening stress 22c together with the distance from the crack-tip which equals 4 

times the crack-tip opening displacement t,” effectively explained the TST effect. 

 

2. Fracture Toughness Test 

2.1. Design of the non-standard 3PB specimens 

It is well known that the widely accepted ASTM E1921 [4] (or E399 [23]) standard 3PB 

specimen (Fig. 1(a)) has a proportionally specified configuration based on its width W; i.e., the 

standard thickness-to-width ratio B/W is specified as 0.5 and the target crack depth-to-width ratio 

a/W is specified as 0.5. Under this specification, the normalized planar T-stress 11 (k = 1 in Eq. (1)) 

evaluated at the specimen mid-plane is approximately constant for W and, thus, for B. The starting 

point of our research was the recognition that if 11 represents the magnitude of the crack-tip 

constraint, then the TST effect on Jc observed for the standard 3PB specimens is independent of the 

crack-tip constraint. The volume of the specimen changes in proportion to B
3
. When viewed in this 

manner, the explanation of the TST effect on Jc by the weakest link model, not by the loss of 

crack-tip constraint, is logical.  
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The key idea in the design of the non-standard 3PB specimens for different Bs was to design the 

planar configuration to be in accordance with the ASTM E1921 (i.e., W = const.) but to change B/W 

to realize specimens with different thickness. With this design, it was expected that 11 would remain 

approximately constant but, because |33| in Eq. (2) decreases with increasing B, there would be a 

significant change in 33 at the specimen mid-plane where the cleavage fracture initiates. Here, E 

and  in Eq. (2) are the material’s Young’s modulus and Poisson’s ratio, respectively. 

(1) 

(2) 
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If 33 represents the out-of-plane crack-tip constraint and the TST effect on Jc (TST effect) is 

observed for this non-standard 3PB specimen, then the out-of-plane crack-tip constraint might be a 

candidate to explain the TST effect. If Jc shows a saturation tendency with increasing B for this 

non-standard 3PB specimen and 33 also shows a similar tendency for an identical B, then the TST 

effect is likely to be dominated by the out-of-plane crack-tip constraint. 

In the following, an elastic FEA for the non-standard 3PB specimen with W = 25 mm (Fig. 3) 

was run for various B/Ws to determine B such that 33 at the specimen mid-plane saturated. The 

typical FEA model used in elastic analysis of the 3PB specimen is shown in Fig. 4. The crack length 

a was prescribed as a/W = 0.5 for all cases. One-quarter of the structure was analyzed, making use of 

symmetry (Fig. 4 (a)). Twenty-node hexahedral meshes were used. For all cases, the crack-tip was 

modeled by singular elements, whose size was l, and twenty equivalent rows of meshes were 

spaced inside the crack tube with radius Rs = 0.4 mm (Fig. 4 (b)). The details for the generated mesh 

are summarized in Table 1. The Young’s modulus, E = 206 GPa, and Poisson’s ratio,  = 0.3, were 

used in all cases. WARP3D [25] was used as the FEA solver. 

The SIF was evaluated by applying the domain integral method [26] to the FEA results. T11 was 

obtained by applying the domain integral [26] and interaction integral [27] methods to the FEA 

results. These methods for calculating various T11 solutions have been used widely in the past [12, 

18-20]. T33 was evaluated from Eq. (2). The results at the specimen mid-plane are summarized in the 

normalized form as K/K0, kk = Tkk(a)
1/2

/K0 (k = 1, 3) in Fig. 5, in which K0 is the nominal SIF 

calculated from the following equation in ASTM E1921 [4], corresponding to the load used for the 

calculation. 











W

a
f

BW

PS
K

23
                                                    (3) 

Here, S = 4W is the support span, and f is a function of a/W that is given in the standard. Attention 

was focused upon the values at the mid-plane because the cleavage fracture is expected to initiate at 

the specimen mid-plane. 

According to Fig. 5, the mid-plane K was not affected by B/W, as expected, and was close to the 

nominal 2D SIF K0. The normalized T11, where 11 = T11 (a)
1/2

/K0, was positive, showing negligible 

dependence on B/W. The in-plane parameters at the specimen thickness center showed a slight 

dependence on B/W, as expected. 

The dotted line represents 11, which denotes the case for B/W   and 33  0, i.e., T33  

T11 calculated from Eq. (2). The normalized T33, where 33 = T33(a)
1/2

/K0, showed a strong 

dependence on B/W. 33 was negative for B/W < 1.5, very close to 0 for B/W = 1.5, positive for B/W 

> 1.5 and approached 11 with increasing B/W. Because a negative T-stress corresponds to a loss in 

crack-tip constraint [28], it appears that T33 represents the well-known tendency for a larger 

out-of-plane crack-tip constraint to be expected for thick test specimens. If 33 represents the 
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out-of-plane crack-tip constraint and if Jc has some bounding value for B due to the bounding nature 

of the crack-tip constraint for large B, deviation from the relationship Jc  B
-1/2

 was expected to be 

observed for the non-standard 3PB specimen of B/W  1.5. Because the magnitude of the positive 

T-stress is known to be insensitive to the crack-tip constraint [28] and because the load capacity of 

the testing machines is limited, fracture toughness tests for non-standard 3PB specimens with B/W = 

0.25, 0.5, 1.0 and 1.5 were conducted. 

 

2.2. Fracture toughness tests with the non-standard 3PB specimens 

2.2.1. Material 

The tested material was 0.55% carbon steel JIS S55C, which is known to be in the transition 

temperature region at room temperature. From the Charpy test results shown in Fig. 6, the fracture 

toughness test temperature was chosen to be 20 
o
C. The material was quenched at 850 

o
C and 

tempered at 650 
o
C. Chemical composition and mechanical properties of the heat-treated specimens 

are summarized in Tables 2 and 3, respectively. Two tensile tests were conducted in accordance with 

JIS Z2241 [29]. The loading rates of the tensile tests were 10 MPa/sec below 0.2% strain and 

30 %/min (measured at the gage length) above 0.2%, which satisfies the JIS Z2241 [29] 

requirements of 3-30 MPa/sec below 0.2% strain and 20-50% /min (measured at the gage length) 

above 0.2%. The tensile test temperature was 20 
o
C. 

 

2.2.2. Test specimens 

As described in 2.1, the planar test specimen configurations were designed in accordance with 

ASTM E1921 [4] for width W = 25 mm, i.e., W was prescribed to be 25 mm for all specimens. In 

addition to the standard ASTM thickness-to-width ratio, B/W = 0.5, specimens with B/W = 0.25, 1.0, 

and 1.5 were prepared. After inserting a fatigue crack into the specimen, the crack length a satisfied 

ASTM’s requirement of a/W = 0.45-0.55; the crack length was in the range of 0.49 to 0.51. Fatigue 

precrack was inserted at 20 
o
C with loads corresponding to Kmax = 20 and 19 MPam

1/2
 for the 1st and 

2nd stages, respectively, which satisfied the requirement of the standard 25 and 20 MPam
1/2

. Fatigue 

crack growth was monitored by clip gage. Five tests were conducted for each test specimen 

geometry. 

 

2.2.3. Test results 

The fracture toughness test was conducted in accordance with ASTM E1921 [4]. The loading 

rate was controlled to be 1.1 MPam
1/2

/s, which is very small compared to the specification of  2.0 

MPam
1/2

/s. The test specimen temperature was maintained to be in the range of 20  1 
o
C for 

30/(25/B) minutes for B/W = 1.0 and 1.5, according to the standard. The hold time for the other cases 

of B/W = 0.25 and 0.5 was 30 minutes, which is longer than the standard hold time. 
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Typical fracture surfaces observed at the mid-plane for specimens of B/W = 0.25, 0.5 and 1.0 are 

shown in Fig. 8. It is clearly seen from Fig. 8 that cleavage fracture after plastic deformation was 

observed for all specimens with different B/Ws. Although not shown in this manuscript, a similar 

fractograph was observed for the case of B/W = 1.5. The difference observed in these three B/Ws was 

that the distance between the fatigue precrack and the river pattern decreased as B/W increased, 

corresponding to a decrease in the plastic zone.  

Test results are summarized in Table 4 and Fig. 9. Kc in the table was obtained from Eq. (3) and 

is the SIF K corresponding to the maximum load, Pc. KJc in the table is the fracture toughness in 

terms of the SIF, defined as KJc = [EJc/(1-2
)]

1/2
, as specified in ASTM E1921 [4].  and  are the 

average and standard deviation of each value, respectively. 2/ % is a reference value intended to 

represent the magnitude of data scatter. 

It is seen from Table 4 that 2/ of KJc were in the range of 20.7 to 39.9 % for all the specimens. 

Considering that the guideline for 2/ given in ASTM E1921 for KJc is 56(120/) % and was in 

the range of 45.0 to 49.5 % for the data in Table 4, it was concluded that the scatter in the KJc data 

summarized in the table is acceptable. In addition, if the datam for specimen number 1 with B/W = 

0.5 is excluded, it can be said that a very small scatter in KJc was realized from the current test data. 

One interesting fact was that the change in Kc, the SIF for the fracture load Pc, with B/W was 

very small, though a significant change in Jc was observed. The average Kc for each B/W was in the 

range of 61.1 to 64.0 MPam
1/2

. 

From Fig. 9, the TST effect on Jc was clearly observed for the non-standard 3PB specimens. The 

raw Jc tended to decrease as B/W increased in the range of 0.25 to 1.0 and seemed to saturate to a 

value around 46 N/mm for B/W = 1.5. If the relationship between the average values of Jc and B/W 

were fitted to Jc  (B/W)
n

, then n was large as 1 in the range of B/W = 0.25 to 0.5, decreased to 0.5 

in the range of B/W = 0.5 to 1.0 and was almost 0 in range of B/W = 1.0 to 1.5; it was thus concluded 

that Jc was bounded for B/W = 1.5, on the point of the average of Jc. 

In summary, by changing 33 for B/W of the non-standard 3PB, Jc displayed bounded behavior 

for large B and, thus, deviation from the relationship Jc  B
1/2

 was observed. This result was as 

expected under the assumptions that 33 represents the out-of-plane crack-tip constraint and that Jc is 

affected by this crack-tip constraint. 
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3. Failure Criterion to Account for the TST Effect on Jc 

3. 1 Reproduction of the experiments with a large-strain, elastic-plastic FEA 

First, a large-strain, elastic-plastic FEA for the non-standard 3PB test specimens was conducted 

to validate the assumption that the TST effect on Jc is mechanical in nature by reproducing the 

depicted experimental results without assuming the existence of micro-cracks in the material. After 

the assumption was validated, a failure criterion to explain the TST effect on Jc was proposed. 

The FEA model used in the elastic-plastic analysis of the 3PB specimen is fundamentally similar 

with the model used for the elastic analysis shown in Fig. 4. The width W was 25 mm and the crack 

length a was 12.5 mm (a/W = 0.5) for all the models. One-quarter of the structure was analyzed to 

make use of the symmetry of the specimen as shown in Fig. 10(a). Twenty node hexahedral meshes 

were used. To run this large-strain elastic-plastic analysis, an initial blunted notch was inserted at 

the crack-tip as shown in Fig. 10(b). Twenty rows of meshes were spaced around the notch and 

inside crack tube Rs = 0.8 mm. Equivalent elements were spaced in thickness direction. The details 

for the generated mesh are summarized in Table 5. In this case,  was validated by the relationship 

between the crack-tip opening displacement t measured at node A in Fig. 10(b); in particular, t/ 

was greater than 10. McMeeking and Parks [30] suggested that t/ should be greater than 5 to 

ensure that the results would not be affected by the initial blunt notch. In addition, the FEA results 

were considered sufficiently accurate with very refined meshes because the blunted crack tip was 

always defined by fairly regularly spaced nodes and the region around a crack tip up to a distance of 

a few crack-tip openings was always composed of elements that were very small compared to t. 

WARP3D [25] was used for the large-strain, elastic-plastic analysis. The material behavior was 

assumed to be governed by the J2incremental theory of plasticity, the isotropic hardening rule and 

the PrandtlReuss flow theory. The NewtonRaphson iterative method was used for the nonlinear 

convergence. The Young’s modulus E = 206 GPa and Poisson’s ratio  = 0.3 were used for all cases. 

Because S55C is a material with yield drop, the total true stress-total true strain curve in the range up 

to the true fracture stress obtained from the two tensile tests was approximated as a piecewise-linear 

stress-strain curve, as shown in Fig. 11. Note that WARP3D [25] allows this kind of material 

modeling. 

The maximum load for each B/W was selected as the average fracture load Pc obtained from the 

experiments, summarized in Table 4. Load P vs. crack-mouth opening displacement Vg curves (P-V 

diagrams) obtained from the FEA for each specimen type is compared with the experimental results 

in Fig. 12. J at the maximum load Pc was obtained from these FEA P-V diagrams in accordance with 

the ASTM E1921 [4] and designated as Jc FEA. This Jc FEA was compared with the experimental 

results in Fig. 13. 

It is seen in Fig. 12 that the large-strain, elastic-plastic FEA accurately reproduced the P-V 

diagrams observed from experiments, though a noticeable discrepancy was shown for the case B/W 
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= 0.25. The source of this discrepancy is examined in the Discussion. Although the fracture load Pc 

showed some scatter and the clip gage displacement at fracture also showed scatter, experimental 

P-V data for all the specimens were close to the curve drawn from the FEA results. 

From Fig. 13, it is seen that Jc FEA clearly reproduced the TST effect on Jc observed by the 

experiments. This was natural, because Jc FEA was evaluated from the P-V diagrams that were 

confirmed to be fairly close to the experimental data. In addition, Jc FEA displayed bounded behavior 

for large B. 

In summary, by assuming the average fracture load Pc for each B/W of the non-standard 3PB 

specimens, J obtained from large strain FEA results at this Pc reproduced the TST effect on Jc 

observed from experiments. Because this large strain FEA did not assume existence of micro-cracks, 

but 33 was designed to be changed with the B/W of the non-standard 3PB specimens, TST effect on 

Jc seemed to be mechanical in nature, under the assumptions that 33 is to represent the out-of-plane 

crack-tip constraint. 

 

3. 2 Failure criterion to explain the TST effect on Jc  

If the TST effect on Jc is mechanical in nature, it was thought that a failure criterion applicable to 

large-strain, elastic-plastic FEA results that explains the TST effect on Jc might exist. The key idea 

for this criterion was that Kc, which is the SIF calculated from the fracture load Pc and the specimen 

size, was slightly dependent on TST, though Jc was significantly dependent, as shown in Table 4. 

The hypothesis was that the (in-plane) crack opening stress 22 distribution for each specimen type 

at the critical load Pc may be similar, even though Jc shows noticeable effects from a change in B/W. 

This is because a change in B/W causes a negligible change in T11. Thus, the “planar” failure 

criterion, similar to the one that Dodds et al. [24] applied to explain the Jc-dependence on the test 

specimen crack depth (as shown in Fig. 14), might be applied to explain the out-of-plane TST effect 

on Jc. The critical values of this criterion (4t, 22c), in which t denotes the CTOD (crack-tip 

opening displacement) and 22c denotes the crack-opening stress, was evaluated as a first step. 

The distribution of the crack opening stress 22 ( = 0) at the specimen mid-plane ahead of the 

crack-tip with the fracture load Pc for all B/Ws are shown in Fig. 15. YS in the figure is the true 

yield stress. 22 ( = 0) for all B/Ws showed a similar tendency; specifically, 22 attained a maximum 

value approximately equal to 5YS at approximately 2t. This maximum was comparable with that 

for a material with a hardening component of 5 at plane-strain, approximately equal to 5YS [31]. 

The (4t, 22c) corresponding to the mid-plane Jc FEA for each B/W calculated in 3.1 is 

summarized in Table 6. It is seen from Table 6 that the critical stress 22c at 4t on the crack plane ( 

= 0) was very close for all B/Ws in an engineering sense, though Jc FEA for each B/W showed 

significant variation. The Jc FEA at the mid-plane of the specimen was focused upon because cleavage 

fracture initiated at the specimen mid-plane. Because the 22c values for all the B/Ws were very close 
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at the fracture load for each Pc and JcFEA at Pc reproduced the TST effect on Jc, it was concluded that 

the (4t, 22c) criterion successfully explained the TST effect on Jc. 

In summary, the “planar” failure criterion (4t, 22c), which was applied to explain the crack 

depth dependence on Jc by Dodds et al. [24], successfully reproduced the TST effect on Jc that is 

observed in fracture toughness tests, under the assumption that the TST effect on Jc is mechanical in 

nature. 



 

 10 

4. Discussion 

In this work, the TST effect on Jc observed for 0.55% carbon steel S55C in the transition 

temperature range was reproduced by large-strain FEA results. Neither the micro-crack density 

distribution nor the weakest link model was assumed to apply to the material, as Dodds et al. did to 

deduce the relationship Jc  B
1/2

 [3]. The idea to change the crack-tip volume proportionally to the 

specimen thickness is common for non-standard specimens and the Dodds et al. framework. In 

addition, the “planar” failure criterion successfully explained the TST effect. Thus, it seems that the 

mechanical nature of the TST effect on Jc cannot be denied. At least, the bounded behavior of Jc with 

increasing B seems to be dominated by the mechanical nature. One of the candidates for this 

mechanical cause is the change in the out-of-plane crack-tip constraint. The only assumption applied 

in this study was that the fracture initiates at the specimen mid-plane. 

In Fig. 12 (a), a noticeable discrepancy was shown for the P-V diagram of B/W = 0.25 obtained 

from both the experiments and FEA. The FEA was performed by assuming the crack length to be 

uniform in thickness direction and set as a/W = 0.5 (Fig. 10 (a)). However, after the fatigue pre-crack 

procedure, the crack length was, in fact, distributed along the thickness direction, especially for B/W 

= 0.25, as shown in Fig. 16 and Table 7. Thus, a large-strain, elastic-plastic FEA was performed for a 

case of B/W = 0.25, reflecting the fatigue crack length distribution for specimen id 4 as shown in Fig. 

17.  

The P-V diagram was compared with both the experiment and previous FEA results as shown in 

Fig. 18. It is seen from Fig. 18 that the P-V diagram from the FEA with a distributed length is closer 

to the experimental results. Jc FEA obtained from the current P-V diagram increased to 90.3 N/mm, 

which corresponds to a 21.4 % increase from the uniform crack model 74.4 N/mm. This Jc FEA for 

specimen id 4 became comparable to the minimum 93.4 N/mm of the experimental value, but is still 

smaller than the experimental result of 125.0 N/mm. Therefore, through-thickness crack length 

distribution was one noticeable source of discrepancy between JcFEA and Jc for relatively thin 

specimens. 

   There might be an opinion that the quantity of the micro-cracks might have contributed in the 

discrepancy still remaining between Jc FEA and Jc for this B /W. However, this discrepancy between 

Jc FEA and Jc here is due to the discrepancy of P-V diagrams for FEA and experiments as shown in 

Fig. 18. Though not numerically verified, it seems difficult that the micro-crack density significantly 

affects a gross deformation, such as the P-V diagram. Therefore, the calculated J value from the P-V 

diagram seems also not to be significantly affected by micro-cracks. 
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5. Conclusions 

This study investigated the TST effect on the fracture toughness Jc of a material in the transition 

temperature region for 3PB specimens. Fracture toughness tests and elastic-plastic FEA on 

non-standard test specimens, with thickness-to-width ratios B/W of 0.25, 0.5, 1.0 and 1.5, were 

conducted for 0.55% carbon steel. The conclusions are as follows. 

 The TST effect on Jc and bounded behavior of Jc for increasing specimen B/W was observed 

with the non-standard 3PB specimen, as intended. 

 Large-strain, elastic-plastic FEA reproduced the behavior observed in the experiments. 

 The (4t, 22c) criterion effectively explained the TST effect and the bounded behavior of Jc. 

 The bounded behavior of Jc for increasing B seems to be dominated by mechanical causes. One 

of the candidates for this mechanical cause is the change in out-of-plane crack-tip constraint. 
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Nomenclature 

B               Specimen thickness 

E               Young’s modulus 

J               J-integral 

Jc, Jc average           Fracture toughness and its average from experiments 

Jc FEA            J obtained for fracture load Pc by FEA 

KI              Local mode-I stress intensity factor  

KJc             Fracture toughness (KJc= [EJc/(1
2
)]

1/2
)  

Kc              SIF corresponding to fracture load Pc 

Kmax             Maximum SIF in fatigue precracking procedure 

K0               Nominal SIF for elastic analysis 

P, Pc                 Applied and fracture load 

Rs                      Crack tube radius 

S               Support span for 3PB specimen 

T11, T33          T-stresses 

Vg              Crack-mouth opening displacement 

W              Specimen width 

a        Crack length 

n        Exponent 

r,          In-plane polar coordinates 

xj         Crack-tip local coordinates (j = 1, 2, 3) 

l              Singular element size 

               Standard deviation 

11, 33           Normalized T-stresses 

t               Crack-tip opening displacement 

ij         Strain components (i, j =1, 2, 3) 

         Average value 

         Poisson’s ratio 

         Initial blunt notch radius 

ij         Stress components (i, j =1, 2, 3) 

22c         Critical crack opening stress 

B0         Tensile strength 

YSYS0 True and nominal yield stress 

 

 

EFM-D12-00366R1.nomenclature.docx



 

 

Table 1 Summary of the generated mesh for elastic analysis  

(W = 25 mm, Rs = 0.4 mm, a/W = 0.5, l/a = 0.0016) 

 

B/W 0.25 0.4 0.5 0.75 1.0 1.25 1.5 1.6 1.7 1.8 1.9 2.0 

na 15 20 25 30 35 

nodes 154197 203157 252117 301077 350037 

elements 35520 47360 59200 71040 82880 

 

  

EFM-D12-00366R1.table.docx



 

 

Table 2 Chemical compositions of the test specimens in weight % 

 

 C Si Mn P S Cu Ni Cr Fe 

Specified 0.52~0.58 0.15~0.35 0.60~0.90 ≤0.030 ≤0.035 ≤0.30 ≤0.20 ≤0.20 Balance 

 0.55 0.17 0.61 0.015 0.004 0.13 0.07 0.08 Balance 

 

 

 

  



 

 

Table 3 Mechanical properties of the test specimens 

 

Yield Stress 

YS0 MPa 

Tensile Strength 

B0 MPa 

Elongation 

% 

393, 394 703, 710 24.0, 23.3 

 

 

 

 

  



 

 

Table 4 Fracture toughness test results for S55C  

(3PB, W = 25 mm, 20 
o
C; : average, : standard deviation) 

 

B/W Serial No. 1 2 3 4 5   2/ % 

0.25 

a/W 0.51 0.50 0.50 0.50 0.50 0.50 0.00 1.3 

Pc kN 5.39 6.26 5.29 5.99 6.17 5.82 0.45 15.4 

Kc MPa m
1/2

 59.5 67.5 57.1 65.0 66.9 63.2 4.66 14.8 

Jc N/mm 93.4 152.9 106.7 125.0 197.9 135.2 41.6 61.5 

KJc MPa m
1/2

 145.4 186.1 155.4 168.2 211.6 173.3 26.3 30.3 

0.5 

a/W 0.50 0.50 0.50 0.50 0.50 0.50 0.00 0.9 

Pc kN 10.5 12.0 10.8 11.6 11.4 11.3 0.61 10.8 

Kc MPa m
1/2

 56.4 65.9 58.4 63.0 61.8 61.1 3.78 12.4 

Jc N/mm 30.5 93.6 50.9 70.6 67.7 62.7 23.5 75.2 

KJc MPa m
1/2

 83.1 145.6 107.3 126.4 123.8 117.2 23.4 39.9 

1.0 

a/W 

 

0.50 0.50 0.50 0.50 0.50 0.00 1.0 

Pc kN 22.7 22.4 24.1 23.8 23.2 0.84 7.3 

Kc MPa m
1/2

 60.5 59.8 65.4 63.6 62.3 2.64 8.5 

Jc N/mm 35.9 33.5 61.1 55.8 46.6 13.9 59.8 

KJc MPa m
1/2

 90.1 87.1 117.6 112.3 101.8 15.4 30.3 

1.5 

a/W 0.49 

 

0.50 0.50 0.50 0.50 0.01 2.4 

Pc kN 34.9 35.7 37.3 35.0 35.7 1.09 6.1 

Kc MPa m
1/2

 61.6 64.8 66.7 63.0 64.0 2.21 6.9 

Jc N/mm 37.1 46.7 59.3 41.0 46.0 9.68 42.1 

KJc MPa m
1/2

 91.6 102.8 115.8 96.3 101.6 10.51 20.7 

 

 

 

 

 

 

 

  



 

 

Table 5 Summary of the generated mesh for the elastic-plastic analysis 

(W = 25 mm, Rs = 0.8 mm, a/W = 0.5) 

 

B/W  mm na N_theta radial bias nodes elements 

0.25 0.006 5 24 2 73876 15555 

0.5 0.006 10 24 2 138146 31110 

1.0 0.004 15 12 15 213652 49620 

1.5 0.003 20 12 15 316632 74430 

 

 

 

 

 

 

 

 

 

 

 

 

  



 

 

Table 6 Characteristic distance 4t and crack opening stress 22c at the fracture load Pc  

(S55C, 3PB, W = 25 mm, a/W = 0.5) 

 

B/W 0.25 0.5 1.0 1.5 

Kc MPa m
1/2

 63.2 61.1 62.3 64.0 

Jc FEA N/mm 74.5 45.0 34.3 36.7 

4t mm 0.34 0.22 0.15 0.15 

22c MPa 1480 1540 1510 1490 

 

 

 

 

 

 

  



 

 

Table 7 Distributed crack length for B/W = 0.25 (specimen id 4) 

 

a1 

mm 

a2 

mm 

a3 

mm 

a4 

mm 

a5 

mm 

a6 

mm 

a7 

mm 

a8 

mm 

a9 

mm 

12.28 12.53 12.66 12.70 12.72 12.69 12.62 12.50 12.14 
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Fig. 1 (a) Standard and (b) non-standard 3PB specimens 
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Fig. 2 Three-dimensional coordinate system for the region along the crack front 
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Fig. 3 ASTM 3PB specimen 
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Fig. 4 Finite element model of 3PB specimen 
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5 Fig. 5 The TST effect on normalized T11 and T33 of a non-standard 3PB specimen 

 at the specimen mid-plane (n = 0.3) 
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Fig. 6 Charpy test results for S55C 
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Fig. 7 Non-standard 3PB specimens 
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Fig. 8 Fracture surface of the specimens of B/W = 0.25, 0.5 and 1.0 



9 Fig. 9 Fracture toughness test results for the non-standard 3PB specimens  

(S55C, 20 ºC, W = 25 mm) 
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Fig. 10 Large-strain, elastic-plastic FEA model 
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Fig. 11 Total true stress- total true strain curve for FEA (S55C) 
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Fig. 12 Comparison of P-V diagrams determined by FEA and experiments 
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Fig. 13 Comparison of Jc FEA and Jc for the non-standard 3PB specimens  

(S55C, 20 ºC, W = 25 mm; Jc FEA was obtained for average fracture load Pc in Table 4) 
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Fig. 14 “Planar” failure criterion [24] 
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Fig. 15 Crack opening stress distribution for the non-standard 3PB specimen at fracture load Pc  

(S55C, W = 25 mm, a/W = 0.5, specimen mid-plane,  = 0) 
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Fig. 16 Distributed crack length for B/W = 0.25 (specimen id 4) 



17 Fig. 17 Large-strain, elastic-plastic FEA model for B/W = 0.25 
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Fig. 18 Comparison of P-V diagrams determined by FEA  

(distributed crack length) and experiments 
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Abstract 

This paper considered the test specimen thickness (TST) effect on the fracture toughness of a 

material Jc in the transition temperature region for 3 point bending (3PB) specimens. Fracture 

toughness tests and elastic-plastic finite element analyses (FEA) with non-standard test specimens, 

which are non-standard because the specimen thickness-to-width ratio B/W was varied in the range 

of 0.25 to 1.5, were conducted. Based on these tests and the FEA results, it was demonstrated that 

the “planar” (4t, 22c) failure criterion—which states that cleavage fracture after significant plastic 

deformation occurs when the crack opening stress 22 at a distance from the crack-tip that is equal to 

4 times the crack-tip opening displacement t exceeds a critical value 22c—was verified to 

effectively explain the TST effect. This (4t, 22c) criterion also successfully predicted the tendency 

of Jc to saturate to some bounding value for B/W=1.0. This tendency was similar to that of the 

T33-stress, which is the out-of-plane elastic crack-tip constraint parameter. Because the (4t, 22c) 

criterion could predict the TST effect on Jc and because the criterion could predict the bounded 

behavior of Jc for large B/W, the TST effect was concluded to be mainly mechanical in nature, which 

the weakest link model fails to predict. The mechanical cause of the TST effect on Jc was considered 

to be an out-of-plane crack-tip constraint, and one of its measures of magnitude is the T33-stress. 

Key words: Fracture mechanics; Constraint effect, Fracture toughness, Cleavage fracture, 

Transition temperature, Thickness effect, 3PB specimen. 
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1. Introduction 

One of the difficulties in determining the cleavage fracture toughness Jc of a material over the 

ductile-to-brittle transition (DBT) temperature region, which is important in the assessment of aging 

steel structures and reactor pressure vessels, is that test specimen thickness (TST) has an effect on Jc, 

even though standardized test specimens are used [1]. The two most physically logical effects, in 

general, are the statistically weakest link size effect and the loss of crack-tip constraint, that is, the 

effect caused by the loss of stress triaxiality [2]. The weakest link size effect should affect only 

brittle fracture, whereas the loss of constraint should affect both ductile and brittle fracture. Both 

criteria lead to increasing toughness with decreasing TST. Another point of view is that the former 

criterion considers the TST effect on Jc to be a material issue and the latter to be a mechanical issue. 

This effect of TST on Jc, described as Jc ∝B
1/2

 (B ≡ TST) by Wallin [2], was reproduced by 

Dodds et al. [3] based on the weakest link model. ASTM E1921 [4] has adopted parts of this 

criterion, and it seems to be widely accepted. However, as Dodds et al. [3] admit, “fracture 

toughness does not decrease indefinitely with thickness.” 

The crack-tip constraint approach to the TST effect on Jc assumes that the effect is a result of the 

out-of-plane crack-tip constraint. Guo [5, 6] proposed a parameter Tz = 33/(11+22) to measure the 

magnitude of the out-of-plane crack-tip constraint, and has been extensively working with 

co-workers to express the crack-tip stress field with a stress intensity factor (SIF) K or J-T11-Tz 

[6-13]. Niemitz et al. [14] instead applied a J-Q-Tz approach to explain the difference in Jc. Whether 

explicitly expressed or not, Gao [15], Wang et al. [16-20], and Fernández-Sáez and 

Fernández-Canteli et al. [21] have focused their attention on the out-of-plane T-stress, T33, as a 

measure of the out-of-plane crack-tip constraint. Based on this general methodology to express the 

magnitude of the 3D (including out-of-plane) crack-tip constraint, one of the authors [22] assumed 

that the TST effect on Jc was mechanical in nature and conducted fracture toughness tests and 

elastic-plastic finite element analyses (FEA) with non-standard compact-tension (CT) test specimens, 

using specimen thickness-to-width ratios, B/W, of 0.25, 0.4 and 0.5. The planar configuration was 

identical for the three cases and it complied with ASTM E399 [23] for W = 25 mm (these three types 

of test specimens are designated as non-standard test specimens). The key idea of this non-standard 

CT specimen was that the normalized planar parameter, 11 = (a)
1/2

T11/K (a = crack depth), is kept 

nearly constant, but the out-of-plane parameter, 33 = (a)
1/2

T33/K, significantly changes for B/W. 

They successfully correlated the TST effect with a mechanical parameter as Jc ∝ |T33|
1/2

 for 0.55% 

carbon steel JIS S55C in the DBT temperature region. The result was accepted as evidence that the 

TST effect on Jc is mechanical in nature, and the TST effect can be quantitatively described by some 

failure criterion independent of the specimen structure. 

In this paper, as an extension of our previous work [22], the TST effect on Jc for a non-standard 3 

point bending (3PB) specimen was studied to show that this effect is mechanical in nature. For this 
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purpose, fracture toughness tests with non-standard 3PB specimens were conducted for 0.55% 

carbon steel JIS S55C, and the TST effect was reproduced by running a large-strain, elastic-plastic 

FEA. Finally, it was demonstrated that the “planar” failure criterion proposed by Dodds et al. [24], 

i.e., that the “crack opening stress 22c together with the distance from the crack-tip which equals 4 

times the crack-tip opening displacement t,” effectively explained the TST effect. 

 

2. Fracture Toughness Test 

2.1. Design of the non-standard 3PB specimens 

It is well known that the widely accepted ASTM E1921 [4] (or E399 [23]) standard 3PB 

specimen (Fig. 1(a)) has a proportionally specified configuration based on its width W; i.e., the 

standard thickness-to-width ratio B/W is specified as 0.5 and the target crack depth-to-width ratio 

a/W is specified as 0.5. Under this specification, the normalized planar T-stress 11 (k = 1 in Eq. (1)) 

evaluated at the specimen mid-plane is approximately constant for W and, thus, for B. The starting 

point of our research was the recognition that if 11 represents the magnitude of the crack-tip 

constraint, then the TST effect on Jc observed for the standard 3PB specimens is independent of the 

crack-tip constraint. The volume of the specimen changes in proportion to B
3
. When viewed in this 

manner, the explanation of the TST effect on Jc by the weakest link model, not by the loss of 

crack-tip constraint, is logical.  
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The key idea in the design of the non-standard 3PB specimens for different Bs was to design the 

planar configuration to be in accordance with the ASTM E1921 (i.e., W = const.) but to change B/W 

to realize specimens with different thickness. With this design, it was expected that 11 would remain 

approximately constant but, because |33| in Eq. (2) decreases with increasing B, there would be a 

(1) 

(2) 
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significant change in 33 at the specimen mid-plane where the cleavage fracture initiates. Here, E 

and  in Eq. (2) are the material’s Young’s modulus and Poisson’s ratio, respectively. 

If 33 represents the out-of-plane crack-tip constraint and the TST effect on Jc (TST effect) is 

observed for this non-standard 3PB specimen, then the out-of-plane crack-tip constraint might be a 

candidate to explain the TST effect. If Jc shows a saturation tendency with increasing B for this 

non-standard 3PB specimen and 33 also shows a similar tendency for an identical B, then the TST 

effect is likely to be dominated by the out-of-plane crack-tip constraint. 

In the following, an elastic FEA for the non-standard 3PB specimen with W = 25 mm (Fig. 3) 

was run for various B/Ws to determine B such that 33 at the specimen mid-plane saturated. The 

typical FEA model used in elastic analysis of the 3PB specimen is shown in Fig. 4. The crack length 

a was prescribed as a/W = 0.5 for all cases. One-quarter of the structure was analyzed, making use of 

symmetry (Fig. 4 (a)). Twenty-node hexahedral meshes were used. For all cases, the crack-tip was 

modeled by singular elements, whose size was l, and twenty equivalent rows of meshes were 

spaced inside the crack tube with radius Rs = 0.4 mm (Fig. 4 (b)). The details for the generated mesh 

are summarized in Table 1. The Young’s modulus, E = 206 GPa, and Poisson’s ratio,  = 0.3, were 

used in all cases. WARP3D [25] was used as the FEA solver. 

The SIF was evaluated by applying the domain integral method [26] to the FEA results. T11 was 

obtained by applying the domain integral [26] and interaction integral [27] methods to the FEA 

results. These methods for calculating various T11 solutions have been used widely in the past [12, 

18-20]. T33 was evaluated from Eq. (2). The results at the specimen mid-plane are summarized in the 

normalized form as K/K0, kk = Tkk(a)
1/2

/K0 (k = 1, 3) in Fig. 5, in which K0 is the nominal SIF 

calculated from the following equation in ASTM E1921 [4], corresponding to the load used for the 

calculation. 











W

a
f

BW

PS
K

23
                                                    (3) 

Here, S = 4W is the support span, and f is a function of a/W that is given in the standard. Attention 

was focused upon the values at the mid-plane because the cleavage fracture is expected to initiate at 

the specimen mid-plane. 

According to Fig. 5, the mid-plane K was not affected by B/W, as expected, and was close to the 

nominal 2D SIF K0. The normalized T11, where 11 = T11 (a)
1/2

/K0, was positive, showing negligible 

dependence on B/W. The in-plane parameters at the specimen thickness center showed a slight 

dependence on B/W, as expected. 

The dotted line represents 11, which denotes the case for B/W   and 33  0, i.e., T33  

T11 calculated from Eq. (2). The normalized T33, where 33 = T33(a)
1/2

/K0, showed a strong 

dependence on B/W. 33 was negative for B/W < 1.5, very close to 0 for B/W = 1.5, positive for B/W 

> 1.5 and approached 11 with increasing B/W. Because a negative T-stress corresponds to a loss in 
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crack-tip constraint [28], it appears that T33 represents the well-known tendency for a larger 

out-of-plane crack-tip constraint to be expected for thick test specimens. If 33 represents the 

out-of-plane crack-tip constraint and if Jc has some bounding value for B due to the bounding nature 

of the crack-tip constraint for large B, deviation from the relationship Jc  B
-1/2

 was expected to be 

observed for the non-standard 3PB specimen of B/W  1.5. Because the magnitude of the positive 

T-stress is known to be insensitive to the crack-tip constraint [28] and because the load capacity of 

the testing machines is limited, fracture toughness tests for non-standard 3PB specimens with B/W = 

0.25, 0.5, 1.0 and 1.5 were conducted. 

 

2.2. Fracture toughness tests with the non-standard 3PB specimens 

2.2.1. Material 

The tested material was 0.55% carbon steel JIS S55C, which is known to be in the transition 

temperature region at room temperature. From the Charpy test results shown in Fig. 6, the fracture 

toughness test temperature was chosen to be 20 
o
C. The material was quenched at 850 

o
C and 

tempered at 650 
o
C. Chemical composition and mechanical properties of the heat-treated specimens 

are summarized in Tables 2 and 3, respectively. Two tensile tests were conducted in accordance with 

JIS Z2241 [29]. The loading rates of the tensile tests were 10 MPa/sec below 0.2% strain and 

30 %/min (measured at the gage length) above 0.2%, which satisfies the JIS Z2241 [29] 

requirements of 3-30 MPa/sec below 0.2% strain and 20-50% /min (measured at the gage length) 

above 0.2%. The tensile test temperature was 20 
o
C. 

 

2.2.2. Test specimens 

As described in 2.1, the planar test specimen configurations were designed in accordance with 

ASTM E1921 [4] for width W = 25 mm, i.e., W was prescribed to be 25 mm for all specimens. In 

addition to the standard ASTM thickness-to-width ratio, B/W = 0.5, specimens with B/W = 0.25, 1.0, 

and 1.5 were prepared. After inserting a fatigue crack into the specimen, the crack length a satisfied 

ASTM’s requirement of a/W = 0.45-0.55; the crack length was in the range of 0.49 to 0.51. Fatigue 

precrack was inserted at 20 
o
C with loads corresponding to Kmax = 20 and 19 MPam

1/2
 for the 1st and 

2nd stages, respectively, which satisfied the requirement of the standard 25 and 20 MPam
1/2

. Fatigue 

crack growth was monitored by clip gage. Five tests were conducted for each test specimen 

geometry. 

 

2.2.3. Test results 

The fracture toughness test was conducted in accordance with ASTM E1921 [4]. The loading 

rate was controlled to be 1.1 MPam
1/2

/s, which is very small compared to the specification of  2.0 

MPam
1/2

/s. The test specimen temperature was maintained to be in the range of 20  1 
o
C for 
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30/(25/B) minutes for B/W = 1.0 and 1.5, according to the standard. The hold time for the other cases 

of B/W = 0.25 and 0.5 was 30 minutes, which is longer than the standard hold time. 

Typical fracture surfaces observed at the mid-plane for specimens of B/W = 0.25, 0.5 and 1.0 are 

shown in Fig. 8. It is clearly seen from Fig. 8 that cleavage fracture after plastic deformation was 

observed for all specimens with different B/Ws. Although not shown in this manuscript, a similar 

fractograph was observed for the case of B/W = 1.5. The difference observed in these three B/Ws was 

that the distance between the fatigue precrack and the river pattern decreased as B/W increased, 

corresponding to a decrease in the plastic zone.  

Test results are summarized in Table 4 and Fig. 9. Kc in the table was obtained from Eq. (3) and 

is the SIF K corresponding to the maximum load, Pc. KJc in the table is the fracture toughness in 

terms of the SIF, defined as KJc = [EJc/(1-2
)]

1/2
, as specified in ASTM E1921 [4].  and  are the 

average and standard deviation of each value, respectively. 2/ % is a reference value intended to 

represent the magnitude of data scatter. 

It is seen from Table 4 that 2/ of KJc were in the range of 20.7 to 39.9 % for all the specimens. 

Considering that the guideline for 2/ given in ASTM E1921 for KJc is 56(120/) % and was in 

the range of 45.0 to 49.5 % for the data in Table 4, it was concluded that the scatter in the KJc data 

summarized in the table is acceptable. In addition, if the datam for specimen number 1 with B/W = 

0.5 is excluded, it can be said that a very small scatter in KJc was realized from the current test data. 

One interesting fact was that the change in Kc, the SIF for the fracture load Pc, with B/W was 

very small, though a significant change in Jc was observed. The average Kc for each B/W was in the 

range of 61.1 to 64.0 MPam
1/2

. 

From Fig. 9, the TST effect on Jc was clearly observed for the non-standard 3PB specimens. The 

raw Jc tended to decrease as B/W increased in the range of 0.25 to 1.0 and seemed to saturate to a 

value around 46 N/mm for B/W = 1.5. If the relationship between the average values of Jc and B/W 

were fitted to Jc  (B/W)
n

, then n was large as 1 in the range of B/W = 0.25 to 0.5, decreased to 0.5 

in the range of B/W = 0.5 to 1.0 and was almost 0 in range of B/W = 1.0 to 1.5; it was thus concluded 

that Jc was bounded for B/W = 1.5, on the point of the average of Jc. 

In summary, by changing 33 for B/W of the non-standard 3PB, Jc displayed bounded behavior 

for large B and, thus, deviation from the relationship Jc  B
1/2

 was observed. This result was as 

expected under the assumptions that 33 represents the out-of-plane crack-tip constraint and that Jc is 

affected by this crack-tip constraint. 
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3. Failure Criterion to Account for the TST Effect on Jc 

3. 1 Reproduction of the experiments with a large-strain, elastic-plastic FEA 

First, a large-strain, elastic-plastic FEA for the non-standard 3PB test specimens was conducted 

to validate the assumption that the TST effect on Jc is mechanical in nature by reproducing the 

depicted experimental results without assuming the existence of micro-cracks in the material. After 

the assumption was validated, a failure criterion to explain the TST effect on Jc was proposed. 

The FEA model used in the elastic-plastic analysis of the 3PB specimen is fundamentally similar 

with the model used for the elastic analysis shown in Fig. 4. The width W was 25 mm and the crack 

length a was 12.5 mm (a/W = 0.5) for all the models. One-quarter of the structure was analyzed to 

make use of the symmetry of the specimen as shown in Fig. 10(a). Twenty node hexahedral meshes 

were used. To run this large-strain elastic-plastic analysis, an initial blunted notch was inserted at 

the crack-tip as shown in Fig. 10(b). Twenty rows of meshes were spaced around the notch and 

inside crack tube Rs = 0.8 mm. Equivalent elements were spaced in thickness direction. The details 

for the generated mesh are summarized in Table 5. In this case,  was validated by the relationship 

between the crack-tip opening displacement t measured at node A in Fig. 10(b); in particular, t/ 

was greater than 10. McMeeking and Parks [30] suggested that t/ should be greater than 5 to 

ensure that the results would not be affected by the initial blunt notch. In addition, the FEA results 

were considered sufficiently accurate with very refined meshes because the blunted crack tip was 

always defined by fairly regularly spaced nodes and the region around a crack tip up to a distance of 

a few crack-tip openings was always composed of elements that were very small compared to t. 

WARP3D [25] was used for the large-strain, elastic-plastic analysis. The material behavior was 

assumed to be governed by the J2incremental theory of plasticity, the isotropic hardening rule and 

the PrandtlReuss flow theory. The NewtonRaphson iterative method was used for the nonlinear 

convergence. The Young’s modulus E = 206 GPa and Poisson’s ratio  = 0.3 were used for all cases. 

Because S55C is a material with yield drop, the total true stress-total true strain curve in the range up 

to the true fracture stress obtained from the two tensile tests was approximated as a piecewise-linear 

stress-strain curve, as shown in Fig. 11. Note that WARP3D [25] allows this kind of material 

modeling. 

The maximum load for each B/W was selected as the average fracture load Pc obtained from the 

experiments, summarized in Table 4. Load P vs. crack-mouth opening displacement Vg curves (P-V 

diagrams) obtained from the FEA for each specimen type is compared with the experimental results 

in Fig. 12. J at the maximum load Pc was obtained from these FEA P-V diagrams in accordance with 

the ASTM E1921 [4] and designated as Jc FEA. This Jc FEA was compared with the experimental 

results in Fig. 13. 

It is seen in Fig. 12 that the large-strain, elastic-plastic FEA accurately reproduced the P-V 

diagrams observed from experiments, though a noticeable discrepancy was shown for the case B/W 
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= 0.25. The source of this discrepancy is examined in the Discussion. Although the fracture load Pc 

showed some scatter and the clip gage displacement at fracture also showed scatter, experimental 

P-V data for all the specimens were close to the curve drawn from the FEA results. 

From Fig. 13, it is seen that Jc FEA clearly reproduced the TST effect on Jc observed by the 

experiments. This was natural, because Jc FEA was evaluated from the P-V diagrams that were 

confirmed to be fairly close to the experimental data. In addition, Jc FEA displayed bounded behavior 

for large B. 

In summary, by assuming the average fracture load Pc for each B/W of the non-standard 3PB 

specimens, J obtained from large strain FEA results at this Pc reproduced the TST effect on Jc 

observed from experiments. Because this large strain FEA did not assume existence of micro-cracks, 

but 33 was designed to be changed with the B/W of the non-standard 3PB specimens, TST effect on 

Jc seemed to be mechanical in nature, under the assumptions that 33 is to represent the out-of-plane 

crack-tip constraint. 

 

3. 2 Failure criterion to explain the TST effect on Jc  

If the TST effect on Jc is mechanical in nature, it was thought that a failure criterion applicable to 

large-strain, elastic-plastic FEA results that explains the TST effect on Jc might exist. The key idea 

for this criterion was that Kc, which is the SIF calculated from the fracture load Pc and the specimen 

size, was slightly dependent on TST, though Jc was significantly dependent, as shown in Table 4. 

The hypothesis was that the (in-plane) crack opening stress 22 distribution for each specimen type 

at the critical load Pc may be similar, even though Jc shows noticeable effects from a change in B/W. 

This is because a change in B/W causes a negligible change in T11. Thus, the “planar” failure 

criterion, similar to the one that Dodds et al. [24] applied to explain the Jc-dependence on the test 

specimen crack depth (as shown in Fig. 14), might be applied to explain the out-of-plane TST effect 

on Jc. The critical values of this criterion (4t, 22c), in which t denotes the CTOD (crack-tip 

opening displacement) and 22c denotes the crack-opening stress, was evaluated as a first step. 

The distribution of the crack opening stress 22 ( = 0) at the specimen mid-plane ahead of the 

crack-tip with the fracture load Pc for all B/Ws are shown in Fig. 15. YS in the figure is the true 

yield stress. 22 ( = 0) for all B/Ws showed a similar tendency; specifically, 22 attained a maximum 

value approximately equal to 5YS at approximately 2t. This maximum was comparable with that 

for a material with a hardening component of 5 at plane-strain, approximately equal to 5YS [31]. 

The (4t, 22c) corresponding to the mid-plane Jc FEA for each B/W calculated in 3.1 is 

summarized in Table 6. It is seen from Table 6 that the critical stress 22c at 4t on the crack plane ( 

= 0) was very close for all B/Ws in an engineering sense, though Jc FEA for each B/W showed 

significant variation. The Jc FEA at the mid-plane of the specimen was focused upon because cleavage 

fracture initiated at the specimen mid-plane. Because the 22c values for all the B/Ws were very close 
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at the fracture load for each Pc and JcFEA at Pc reproduced the TST effect on Jc, it was concluded that 

the (4t, 22c) criterion successfully explained the TST effect on Jc. 

In summary, the “planar” failure criterion (4t, 22c), which was applied to explain the crack 

depth dependence on Jc by Dodds et al. [24], successfully reproduced the TST effect on Jc that is 

observed in fracture toughness tests, under the assumption that the TST effect on Jc is mechanical in 

nature. 
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4. Discussion 

In this work, the TST effect on Jc observed for 0.55% carbon steel S55C in the transition 

temperature range was reproduced by large-strain FEA results. Neither the micro-crack density 

distribution nor the weakest link model was assumed to apply to the material, as Dodds et al. did to 

deduce the relationship Jc  B
1/2

 [3]. The idea to change the crack-tip volume proportionally to the 

specimen thickness is common for non-standard specimens and the Dodds et al. framework. In 

addition, the “planar” failure criterion successfully explained the TST effect. Thus, it seems that the 

mechanical nature of the TST effect on Jc cannot be denied. At least, the bounded behavior of Jc with 

increasing B seems to be dominated by the mechanical nature. One of the candidates for this 

mechanical cause is the change in the out-of-plane crack-tip constraint. The only assumption applied 

in this study was that the fracture initiates at the specimen mid-plane. 

In Fig. 12 (a), a noticeable discrepancy was shown for the P-V diagram of B/W = 0.25 obtained 

from both the experiments and FEA. The FEA was performed by assuming the crack length to be 

uniform in thickness direction and set as a/W = 0.5 (Fig. 10 (a)). However, after the fatigue pre-crack 

procedure, the crack length was, in fact, distributed along the thickness direction, especially for B/W 

= 0.25, as shown in Fig. 16 and Table 7. Thus, a large-strain, elastic-plastic FEA was performed for a 

case of B/W = 0.25, reflecting the fatigue crack length distribution for specimen id 4 as shown in Fig. 

17.  

The P-V diagram was compared with both the experiment and previous FEA results as shown in 

Fig. 18. It is seen from Fig. 18 that the P-V diagram from the FEA with a distributed length is closer 

to the experimental results. Jc FEA obtained from the current P-V diagram increased to 90.3 N/mm, 

which corresponds to a 21.4 % increase from the uniform crack model 74.4 N/mm. This Jc FEA for 

specimen id 4 became comparable to the minimum 93.4 N/mm of the experimental value, but is still 

smaller than the experimental result of 125.0 N/mm. Therefore, through-thickness crack length 

distribution was one noticeable source of discrepancy between JcFEA and Jc for relatively thin 

specimens. 

   There might be an opinion that the quantity of the micro-cracks might have contributed in the 

discrepancy still remaining between Jc FEA and Jc for this B /W. However, this discrepancy between 

Jc FEA and Jc here is due to the discrepancy of P-V diagrams for FEA and experiments as shown in 

Fig. 18. Though not numerically verified, it seems difficult that the micro-crack density significantly 

affects a gross deformation, such as the P-V diagram. Therefore, the calculated J value from the P-V 

diagram seems also not to be significantly affected by micro-cracks. 
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5. Conclusions 

This study investigated the TST effect on the fracture toughness Jc of a material in the transition 

temperature region for 3PB specimens. Fracture toughness tests and elastic-plastic FEA on 

non-standard test specimens, with thickness-to-width ratios B/W of 0.25, 0.5, 1.0 and 1.5, were 

conducted for 0.55% carbon steel. The conclusions are as follows. 

 The TST effect on Jc and bounded behavior of Jc for increasing specimen B/W was observed 

with the non-standard 3PB specimen, as intended. 

 Large-strain, elastic-plastic FEA reproduced the behavior observed in the experiments. 

 The (4t, 22c) criterion effectively explained the TST effect and the bounded behavior of Jc. 

 The bounded behavior of Jc for increasing B seems to be dominated by mechanical causes. One 

of the candidates for this mechanical cause is the change in out-of-plane crack-tip constraint. 
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