
Performance analysis of mobile robot
self-localization based on different configurations
of RFID  system

言語: eng

出版者: 

公開日: 2015-08-25

キーワード (Ja): 

キーワード (En): 

作成者: Mi, Jian, Takahashi, Yasutake

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10098/8850URL
(c)2015 IEEE. Personal use of this material is
permitted. Permission from IEEE must be obtained
for all other uses, in any current or future media,
including reprinting/republishing this material for
advertising or promotional purposes, creating new
collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted
component of this work in other works.



Performance Analysis of Mobile Robot Self-Localization based on

Different Configurations of RFID System

 Tian  Mil and  Yasutake  Takahashi)

 Abstract—  This paper analyzes the MCL (Monte Carlo Lo-
calization) performances of an omnidirectional vehicle based on 
an RFID system with multiple readers at the bottom of a vehicle 
and the tags on the floor with different configurations of RFID 
system. This paper also proposes a method of reinitializing 
of the particles in the MCL and a likelihood function as the 
measurement model that are specialized to the RFID based self-
localization. The simulations demonstrate that how accurately 
the self-localization works according to the changes of the 
RFID system's configuration and how the definition of the 
likelihood function affects the accuracy. The results show that 
the self-localization based on MCL works accurately enough for 
realistic situation even using less RFID readers on the vehicle 
and lower density IC tag textiles on the floor.

1.INTRODUCTION

 Conventional methods using vision sensors and/or laser 
range finders for indoor autonomous robot self-localization 
are not robust against the changes of environment. Transpar-
ent walls, which are popularly used in houses and hospitals 
for example, make it  difficult for a robot to  self-localize itself 
using a laser range finder. In addition, the self-localization 
becomes unstable if unexpected obstacles occlude landmarks 
that are important to estimate the position of the robot. There 
are so many factors, even the door opening and closing 
condition, will affect the  self-localization performance. As 
an RFID (Radio Frequency IDentification) system uses radio 
waves, unlike visual sensors, it is robust against change of 
lighting condition or obstacles. 

 RFID is a wireless non-contact system that uses radio-
frequency electromagnetic  fields to transfer data from a tag 
for automatic identification and/or tracking. There are two 
types of communication of RFID system. One uses radio 
waves and the other uses electromagnetic induction for com-
munication between reader/writer and IC tags. An RFID sys-
tem based on radio wave communication using  UHF[1][2][3] 
or SHF band realizes long distance  communication[4][5][6]. 
However, in general, the radio wave communication based 
RFID system often suffers from obstacles between IC tags 
and antennas so that it is hard to have stable localization in 
an environment with many obstacles, especially, humans. 

 On the other hand, RFID systems based on 
 HF[7][8][9][10][11] or  LF[12] band use electromagnetic 

induction. The communication distance is short and less than 
several hundred  [mm]. It is hard to estimate the distance 
between one antenna and a tag but it is quite accurate and
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reliable to detect the tag if the tag is within the range of the 

antenna. It rarely suffers from obstacles between IC tags 

and antennas. Therefore, the position estimation is more 

accurate than the ones based on radio wave communication 

with UHF or higher frequency bands. 

 Generally, the accuracy of the RFID self-localization is 

easily affected by the configuration of IC tags or RFID 

readers. Increasing the number of RFID readers and/or the 

density of IC tags, in general, improves the accuracy of 

self-localization effectively, however, it increases production 

cost. It is necessary to find out an effective configuration 

of RFID readers and IC tags. In this paper, we build a 

simulator investigating the self-localization performances of 

different arrangements of RFID readers and IC tag textiles: 

two different arrangements of RFID readers and three types 

of IC tag textile in the simulation. The simulation results 

suggest that it is possible to  localize the robot with less 

RFID readers accurately enough to navigate a robot in the 

environment.  Experimental results also suggest that the  self-

localization system can quickly and accurately localize the 

robot itself with the proposed particle reinitializing method. 

Additionally, we analyze the performances of three different 

types of likelihood functions for a measurement model of 

the MCL. This paper shows three contributions as follows:

1) We analyze the performances of robot self-localization 
  with different configurations of RFID system where 

  the MCL based self-localization uses multiple RFID 
  readers at the bottom of the vehicle and IC tags 

  embedded into the floor. 
2) We propose a particle reinitializing method specific to 

  the RFID system based self-localization so that the 
  robot  localizes  itself quickly and accurately. 

3) We analyze three types of likelihood functions for a 
  measurement  model of the MCL based on the RFID 

   system.

 This paper is organized as follows. We give an overview 

of the RFID based self-localization system in Section II. The 

MCL based self-localization method including our simulator 

of the RFID system in Section III. The particle reinitializing 

method and three likelihood functions are also illustrated 

in the section. Then we introduce the configuration of the 

RFID readers and IC tags and all the parameters we use in 

the simulation. Finally, we present experimental results and 

illustrate how the  self-localization varies along changes of the 

configuration of the of RFID system and different likelihood 

functions.
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II. SELF-LOCALIZATION BASED ON MULTIPLE 
       RFID READERS AND IC TAGS 

 Figure 1 shows the indoor mobile robot self-localization 
system based on the multiple RFID readers and IC tags that 
we designed and  built[111. The 96 RFID readers are installed 
at the bottom of the robot as Figs.1(b) and 1(c) shows. IC 
tags are installed into the floor and the robot reads the tags 
with the RFID readers to localize itself as shown in  Fig.1(d). 
The detailed configurations are shown in Section IV.

III. SELF-LOCALIZATION USING MCL METHOD 
         BASED ON RFID SYSTEM 

A. Monte Carlo Localization for Omni-directional Vehicle 

 We use a Monte Carlo Localization method, one 
of the probabilistic  approaches[13], as Takahashi and 

 Hashiguchi[I 1] use. We define the robot position and orienta-
tion in world coordinate at time t as  'get =  (wxt,w  gt,'  Bt). 

 zt =  (rt,  tagt) is measurement output at time t while tagt 
is the detected tag with RFID reader rt. A motion model 

 xt±i =  MotionModel(wxt) is defined as it estimates 
the next robot position and orientation  wxt±i from the 

current one  wxt. A measurement model  p(ztrxt) is also 
defined to calculate the posterior probability to receive the 

measurement output  zt if the robot position and orientation 

 is  wxt. A set of particles is defined as a set of hypotheses 

of the robot position and orientation denoted at time t as 

Xt = (wxi1],w x[t2] , • • • ,w x[t1\41), where M is the number of 
particles. The algorithm of the Monte Carlo Localization is 

shown as algorithm 1. 

 The motion model of the omni-directional vehicle is given

Algorithm 1 Monte-Carlo Localization

1: 

2: 

 3:

 4:

5: 

6: 

7: 

8: 

9: 

10: 

11:

Initialize particles Xt = xi2] , • • • ,w xr]) 
 for  m  =  1  to  M  do                                      

i  U
pdate particles with the motion model:wx'im+1]  _ 

 MotionModelrxr  ) 
 Calculate the belief of each particle with the measure-

 ment model :  w[m] =  p(ztrxt) 
 Update the set of particles  Xt with probability  w[m] 

end for 
 for  m  =  1  to  M  do 

 draw m from  Xt with probability  oc  w[m] 
 add wxr  to  Xt+i 

end for 

return  Xt+i

by  Eqs.(1)(2)(3). 

 xt+i  =  xt  +  N(0,  ax)At  vxAt (1) 

 Yt+i  =  yt  +  N(0,  a2)  At  +  vyAt (2) 
       Ot+i =  Bt +  N(0,  cro)At +  wzt (3) 

where V =  (vx,  vg, w),  At and  N(0, a) indicate the velocity 
of the robot, period between time t + 1 and t, Gaussian 

distribution with standard deviation a, respectively. 

 Here we assume that tag  tagi is detected by RFID reader 

 Ti. The position of tag  tag3 detected by RFID reader antenna 

 Ti in world coordinate  w  Xtag3  (w  Xtag3  Ytag3  ,u)  Ztag3)I 
The position of RFID reader  ri at time t in world coordinate 
wx

, =  (wx,,w  y,,w  z,  )T, which can be estimated by 
Eq.(4).

 wxr,  (  cos  wet sin wet) Tx„) (wxt) 
                              (4)  w  Y

rt  — sin wOt cos wOt ryri w Yt 

where we assume                  w-z                   tag, and  wz, are constant. 
 Then the belief of each particle  w[m] is calculated with 

the measurement model  p(ztlw  xt).  p(ztw  xt) is one of 
the likelihood functions that are defined in Section III-D. 

In general, belief is function of the distance between the 

detected tag and the reader that detects it.

wE

r E

Fig. 2.

 readenr, 'xr rxr , 
tag:  tag,  wx.9

1

World coordinate system  w E and robot coordinate system r E



 After the beliefs of particles  w[m] are calculated, it es-

timates the position of the robot as weighted mean of the 

particles. 
                      Mrmi 

              Emw- [m] 

                          x 

 Xt =t                                (5)  E
m  w[m] 

Then the set of the particles is updated from  Xt to  Xt±i 
with probability proportional to the belief  w  [m] 

B. Reinitializing of particles 

 Particles  wxt  =  ("1  xt,"'yt,"'  Bt) are resampled by Eq.(6) 

 (ID/wxtag,  cos w Ot — sin w Ot    wYt wyt a .93                           S                       WeCOSWetr 
                              (6) 

where  wOt is generated with uniform random function from 
 —7F to  71. The reinitializing indicates that the robot on 

the position where the RFID reader  T., is just above the 
detected tag  tam, and the position of the robot  (w  xt,w  gt) 
is distributed over the orientation  w  Ot under the constraint. 
The proposed reinitializing leads the self-localization system 
to localize the robot itself quickly and stably because it can 
eliminate unnecessary particles distributed over the possible 
exploration space. 

C. RFID tag detection model 

 Actually, a HF-band RFID reader detects a tag reliably 
if the tag is in the detection range. We model the detection 
range as follows.

Antenna of 
RFID reader

 /  /

R

 /  /

Tags

tic
 ho

 /  /

/ /

/ /

Detected tags

      Fig. 3. Definition of Tag Detection Range for Simulation 

 Figure 3 shows the area where one reader detects the 
tag. The sphere drawn with solid black line stands for the 

detection range of one RFID reader. The radius of detection 
range is R. The red point represents the center of the 
detection range which is just below the RFID reader antenna 
with the distance of  hc. The hight of one RFID reader 
antenna is ha. A tag is detected if and only if the tag 
is within the detection range of one RFID reader antenna. 
Eq.(7) shows the condition of the tag detection.

(Wxri_wxtag )2+(wyri,agj                    _wyt)2±(ha_k_wzt)2 < R2 
                              (7)

D. Likelihood functions 
 Figure 4 shows three types of likelihood function model. 

Model 1 uses a Gaussian distribution function  N(0, a) to 
calculate the likelihood of a particle.  Model  2 uses the digital 
type, the beliefs of particles only have two values, 0 and  1; 
The likelihood is 1 if the tag is within the range of a, else 0, 
otherwise. Model 3 is defined by the combination of Model 
1 and 2, as Eq.(8) shows. 

 1  if  p,  —  6/2  <  d  <  It  ±  012 
 p(tag3,7-,)  = (8)  /3 

cxp 2,12 d2) else 
where d  =           v (w -tam —w  xr,)2 and is a constant. 

 Model 1, as Fig.4(a) shows, the particles tend to gather 
around ,u with beliefs calculated by Gaussian distribution 
function, because the more closer, the higher probability is. 
Model 2, all particles are distributed in the range of a and 

particles are not going to gather around. The belief is 1 if 
a particle is within the range of a, or 0 if it is out of the 
range of a. Model 3, within the range of  a/2, particles are 
distributed as likelihood function 2. The difference is that 

there are also particles gathering around out the range of  a/2. 
As mentioned before, the position of the robot is estimated 
by Eq.(5) by the weighted mean of the particles. We try to 
figure out which model is more suitable for the system. 

      IV. SIMULATIONS AND ANALYSIS 

 Figure 5(a) shows the arrangement of the 96 RFID readers. 
Antennas are divided into four parts and the intervals of every 
two antennas are  11 = 44.5 and 12 = 37.5 [mm]. The antenna 
size of one reader is by 30 x 30 [mm]. The height of the 
antenna ha is set to 20 [mm]. The detecting radius R = 15 
[mm]. The center of the detecting region of a reader antenna 
is just below the antenna with  h7' = 8 [mm]. 

 Figure 5(b) shows another arrangement of the RFID read-
ers. We reduce 96 RFID readers to 24 RFID readers to cut 
down the cost of the system.  /1 x  /2 are set as 70 x 90 [mm]. 
The antenna size of one reader is 60 x 60 [mm]. R, ha, and 

 he shown in Fig.3 are 30 [mm], 45 [mm], and 24 [mm], 
respectively. 
 The size of an IC tag is 10 x 20 [mm]. The IC tags 

are uniformly distributed in a square pattern with various 
densities of IC tags,  100tags/m2, 25tags/m2,  16tags/m2. 
The interval of every two tags of the 3 ideal textiles are 100, 
200, 250 [mm], respectively. 

 Figure 6 shows the ground truth of the robot trajectories. 
The robot runs following these paths with different orienta-
tions, 0,  7/6, and  7/4 [rad]. As Fig.6(a) shows, the interval 
of every two paths is presented by d, where d is 1/5 of the 
interval of every two tags. 

 Tables I to IV show the mean, maximum and variance of 
localization errors according to different configurations. We 
ignore the initial data of the localization to calculate the data 
of the tables in order to eliminate the poor estimation result 
at the initial situation. The proposed particle reinitializing 
method enables to localize the robot quickly and reach a 
stable estimation state. From the simulation results, we easily
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figure out that the performance of the one with the density 

of  100tags/m2 is the best no matter which configuration of 
RFID system we use among the three different types of IC 

tag textiles. This result suggests that if the IC tag density is 

 100tags/m2, we can use much less number of RFID readers 
within a certain range of estimation error. 

A. Experimental results with the configuration of 96 RFID 
reader antennas 

 First, Model  1 is tested as the likelihood function as Table 
I shows the statistical data. In condition of IC tag textile 

 100tags/m2, Table I illustrates that position estimation error 
is quite small under the configuration of 96 RFID readers. 

It localizes itself very precisely even in the beginning stage

7r/6 

with different orientation

(c) 7r/4

The average position errors of five paths are less 5  [mm] for 
both x and y axises, and the orientation error is less than 
0.01 [rad]. Even max errors are less than 10[mm] and the 
orientation error is less than  0.05[rad]. The system is very 
stable as variances are less than 3  [mm]. 

 For conditions of IC textiles 25tags/m2 and  16tags/m2, 
the experimental results are also good, but as the variances 
in Table I show self-localization with IC tag textile of 

 100tags/m2 is the most stable. The variances of IC textiles 
25tags/m2 and  16tags/m2 are much bigger than the ones 
of IC tag textile  100tags/m2, especially in case of IC tag 
textile  16tags/m2 . 

 Table I shows that the experimental results of textile 

25tags/m2 are better than ones of textile  l6tags/m2 in



the conditions of orientation  7/6 and  7/4. But in condition 
of orientation 0, the simulation result of IC tag textile 

 16tags/m2 is better than the one of textile 25tags/m2. 
This is because the IC tags and the RFID readers are both 
arranged in a square pattern. On one side, sometimes, the 
system can not detect any tags, particularly, when the robot 
moves forward along x or y direction. On the other side, 
the detecting range of one reader with this configuration is 
very narrow and small. Most importantly, we can not ensure 
that the paths we choose is suitable for all textiles we use. 
Those factors lead to the result that the self-localization with 

 16tags/m2 textile is better than the one with 25tags/m2 
textile betweentimes. The difference between  16tags/m2 
textile and  25tags/m2 textile is not as much as  25tags/m2 
textile and  100tags/m2 textile.

B. Experimental results with the configuration of 24 RFID 
reader antennas 

 1) Configuration with likelihood function: Model 1: The 
experimental results is shown in Table II. Compared with 
the experimental results of 96 RFID readers, the estimated 

position errors are little bigger than the ones of 96 RFID 
readers for all the three types of IC tag textiles. But the 
self-localization results are still good enough for robot self-
localization with configuration of 24 RFID readers while the 
number of readers reduced to 1/4 of the 96 RFID readers. 

 In condition of textile  100tags/m2, the average position 
errors are still less than  10[mm] and max errors are less 
than  20[mm]. There is no doubt that the performance with 

 100tags/m2 textile is better than the performances of the 
other two textiles. The difference is that under the configu-

ration of 24 RFID readers with likelihood function model 1, 

the performances of IC tag textile  16tags/m2 are better than 
the ones of textile 25tags/m2. Actually, the performance of 

 25tags/m2 should be better than the one of  16tags/m2. 
Besides the factors we described in the configuration os 

96 RFID reader antennas, there is also another reason lead 

to this result. As we mentioned previously, we can not 

ensure that the paths we choose is suitable for all textiles 

we use. Here, we reduce the number of RFID readers, 

which aggravates that the system detect less RFID readers 

in the paths under the condition of  25tagslm2 textile than 
the situation of  16tags/m2 textile. Table III and Table IV 

prove that. When we change the likelihood function model, 
the performance of  25tags/m2 are better than the one of 

 16tags/m2. 
 2) Configuration with likelihood function: Model 2: The 

simulation results are shown in Table III. Nearly the same 
as the configuration of 96 RFID readers, the localization 
errors are less than 10  [mm] in x and y axes with three 
different types of tag textiles. The performances in case 
of IC tag textile  100tags/m2 is the best. The one of 
textile 25tags/m2 is better than the performance of textile 

 16tags/m2. Compared with the results of the configuration 
with likelihood Model 1, the performance of the one with 

likelihood Model 2 is much better.

 3) Configuration with  likelihood  function: Model 3: Table 
III shows the experimental results of the configuration with 
likelihood Model 3. The performances of the configuration 
with likelihood Model 3 is not better than the ones of config-
urations with likelihood Model  1 and 2. But the performance 
of the configuration with likelihood Model 3 is also good 
enough for mobile robot self-localization. 

 From the simulation results, we find that all the configu-
rations we use in the simulation can localize the robot itself 
well. The average position errors are less than 20  [mm], 
which are good enough for a robot self-localization. Among 
the different configurations of RFID system, the performance 
of the configuration with 96 RFID readers is good, however, 
the cost is high, relatively. For the three different types of IC 
tag textiles, the performance of the one with the density of 
 100tags/m2 is the best. The variances shown in Tables III 
and IV illustrate that the RFID system is much stable with 

the configuration of 25tags/m2 textile than the configuration 
of  16tags/m2 textile. 

 It is very necessary to figure out efficient configuration 

to develop a low cost RFID system. We enlarged the RFID 

antennas and developed a new RFID system with 24 RFID 

readers. The simulations show it localizes a robot well. In 

the simulations of configuration with 24 RFID readers, we 

apply three types of likelihood functions, Model 1, 2, and 

3. The experimental results illustrate that the performance of 

likelihood function Model 2 is better than the other two. 

            V. CONCLUSIONS 

 In this paper, we first developed a computational sim-

ulation based on RFID system using MCL method, and 

analyzed the performances of different configurations of 

RFID system including different arrangements of RFID 

readers and different types of IC textiles. Then, we improved 

the self-localization with the proposed particle reinitializing 

method. The proposed particle reinitializing method enables 

the system to reach the stable localization state quickly and 

it also makes the self-localization more accurate and stable. 

Additionally, we applied three types of likelihood functions 

to the RFID system to optimize the self-localization. Finally, 

we presented the experimental results illustrating how the 

self-localization accuracy varies along changes of the differ-

ent configurations of RFID system. The experimental results 

illustrate that with the configuration of 24 RFID readers the 

system can also self-localize well. The results show that the 

self-localization based on MCL works accurately enough for 

realistic situation even using 24 RFID readers on the vehicle 

and lower density IC tag textiles on the floor, which could 

greatly reduce the cost compared with 96 RFID readers. 

          ACKNOWLEDGMENT 

 We thank Art Finex Co. Ltd. for development of 96 RFID 

Multi-reader and the experiment equipment. 

                 REFERENCES 

 111 T. Nick, J. Gotze, W. John, and G. Stoenner, "Localizaiton of uhf 
    rfid labels with reference tags and unscented kalman filter," in Pro-

    ceedings of IEEE International Conference on RFID-Technologies and 
   Applications (RFID-TA 2011), 2011, pp. 163-178.



121

131

141

151

161

171

181

96  RFID

                                    TABLE I 

       PERFORMANCES OF SELF-LOCALIZATION WITH THE CONFIGURATION OF 96  RFID READER ANTENNAS 

                                   error by Mean error by Max 
reader antennas likelihood orientation [rad] x [mm]  y [mm]  9 [rad] x [mm] y [mm]  9 [rad] x [mm]

 100tags/m2

 25tags/m2

 16tags/m2

Model 1

  0 
 7r/6 

 7r/4

Model  1

 0 
7r/6 
 7r/4

1.9 

2.4 

 3.4

1.4 

1.9 

 3.3

0.007 

0.008 

0.008

7.3 

4.5 

4.0

10.2 

4.4 

4.3

0.047 

0.021 

 0.018

6.0 

8.8 

9.2

5.5 

7.6 

9.0

0.022 

0.029 

0.025

43.4 

19.3 

14.1

26.3 

13.3 

12.7

0.078 

0.048 

 0.045

variance 
y  [mm] 9  [rad]

1.4 

2.5 

 2.7

1.2 

1.6 

 2.6

0.000 

0.000 

 0.000

37.7 

12.8 

 6.6

30.6 

 9.7 

 6.5

0.000 

0.000 

 0.000

24  RFTD reader

                  O 4.8 1.9 0.019 11.4 6.3 0.044 4.7 
      Model 1  7r/6 6.9 7.5 0.068 36.9 66.6 0.648 58.1 

                   7r/4 4.1 4.2 0.022 15.0 21.3 0.147 14.3 

                                TABLE II 

  PERFORMANCES OF SELF-LOCALIZATION WITH THE CONFIGURATION OF 24 RFID READER ANTENNAS 

                                error by Mean error by Max 
antennas  likelihood orientation [rad]  x [mm] y [mm]  0 [rad]  x [mm] y [mm]  0  [rad]  x [mm]

  2.0 

429.6 

 89.2

variance 

y  [mm]

0.000 

0.081 

 0.016

 100tags/m2

 25tags  /m2

 16tagsim2

 Model  1

  0 
 7r/6 

7r/4

Model 1

 0 
 7r/6 

 7r/4

3.9 

3.3 

7.5

3.3 

2.5 

4.8

0.016 

0.016 

0.026

9.9 

8.5 

 12.7

2.9 

5.2 

 101

0.014 

0.024 

0.046

9.5 

12.0 

14.6

7.1 

9.4 

11.7

0.038 

0.048 

0.052

15.8 

26.1 

 28.3

 9.4 

14.1 

 304

0.030 

0.061 

 0.079

 0  [rad]
3.7 

4.7 

4.6

2.2 

2.8 

4.3

0.000 

0.000 

 0.000

 3.9 

30.0 

32.2

 3.7 

 8.8 

 56.4

0.000 

0.000 

 0.000

24  RFID reader

                   O 9.5 4.6 0.020 14.1 10.5 0.029 3.0 
      Model  1 7r/6 6.9 4.6 0.021 21.6 13.9 0.055 18.1 

 7174 8.1 7.9 0.010 17.5 15.4 0.030 7.9 

                               TABLE III 

  PERFORMANCES OF SELF-LOCALIZATION WITH THE CONFIGURATION OF 24 RFID READER ANTENNAS 

                               error by Mean error by Max 
antennas  likelihood orientation [rad]  x [mm]  y [mm]  0 [rad]  x [mm]  y [mm]  0 [rad]  x [mm]

3.1 

8.1 

6.5

variance 
 'Y

0.000 

0.000 

 0.000

 100tags/m2

25tags/m2

 16tags/m2

Model 2

 0 
7r/6 
 7r/4

Model 2

  0 
 7r/6 

7r/4

2.8 

2.7 

6.4

2.7 

2.3 

5.9

0.008 

0.009 

 0.010

9.5 

6.9 

8.1

4.6 

4.6 

7.9

0.020 

 0.021 

 0.010

8.6 

11.7 

14.5

8.0 

9.0 

12.9

0.022 

0.028 

 0.027

14.1 

21.6 

17.5

10.5 

13.9 

15.4

0.029 

0.055 

0.030

 0  [rad]
2.8 

3.6 

4.2

2.4 

2.4 

4.6

0.000 

0.000 

 0.000

3.0 

18.1 

7.9

3.1 

8.1 

6.5

0.000 

0.000 

 0.000

24  RFTD reader

                    O 9.6 4.3 0.014 15.5 11.4 0.027 5.6 
 Model  2  7r/6 8.3 6.2 0.014 23.9 16.8 0.041 22.7 

 7174 7.8 7.7 0.018 20.0 16.5 0.040 13.9 

                               TABLE IV 

  PERFORMANCES OF  SELF-LOCALIZATION WITH THE CONFIGURATION OF 24 RFID READER ANTENNAS 

                               error by Mean error by Max 
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