

Three-dimensional T-stresses for three-point-bend specimens with large thickness variation

メタデータ	言語: English
	出版者:
	公開日: 2014-04-08
	キーワード (Ja):
	キーワード (En):
	作成者: Lu, Kai, Meshii, Toshiyuki
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10098/8209

Three-dimensional *T*-stresses for three-point-bend specimens with large thickness variation

Kai Lu^{1*}, Toshiyuki Meshii²

¹ Graduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui, Japan ² Faculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui, Japan * Corresponding author: kai_lu@u-fukui.ac.jp FAX : +81-776-27-9764

Abstract

Three-point-bend (3PB) test specimens are useful for the systematic investigation of the influence of statistical and constraint loss size effects on the cleavage fracture toughness of a material in the ductile-to-brittle transition temperature range. Because the in- and out-of-plane elastic *T*-stresses (T_{11} and T_{33}) are a measure of the crack-tip constraint and even the in-plane T_{11} exhibits three-dimensional (3D) effects, the 3D *T*-stresses solutions were obtained by running finite element analyses (FEA) for 3PB specimens with wide ranges of the crack depth-to-width ratio (a/W = 0.2 to 0.8) and the specimen thickness-to-width ratio (B/W = 0.1 to 40). The results show that the 3D T_{11} at the specimen mid-plane tended to deviate from the 2D T_{11} as B/W increased, with the deviation saturating for $B/W \ge 2$. The mid-plane T_{33} increased with B/W and was close to the plane strain value T_{11} for $B/W \ge 2$.

Keywords: Elastic *T*-stress, Three-point-bend specimen, Finite element analysis, Fracture toughness, Constraint effect

Nomenclature

В	Specimen thickness
E	Young's modulus
F	Unit magnitude (see Eq. (2))
Ι	Interaction integral
K _I	Local mode I stress intensity factor (SIF)
K_0	2D SIF for elastic analysis
$R_{\rm s}$	Crack tube radius
S	Support span for 3PB specimen
T_{11}, T_{33}	T-stresses

W	Specimen width
a	Crack length
r, θ	In-plane polar coordinates
x_j	Crack-tip local coordinates $(j = 1, 2, 3)$
∕∆	Singular element size
β₁, β₃	Normalized T-stresses
E 3	Out-of-plane strain
v	Poisson's ratio
Ģ	Stress components $(i, j = 1, 2, 3)$

1. Introduction

Three-point-bend (3PB) test specimens are useful for the systematic investigation of the statistical and constraint loss size effects on the cleavage fracture toughness of a material in the ductile-to-brittle transition temperature range [1, 2]. Because the in-plane and out-of-plane *T*-stresses (T_{11} and T_{33}) are a measure of the crack-tip constraint and even the in-plane T_{11} exhibits three-dimensional (3D) effects [2-4], the 3D *T*-stresses solutions were obtained by running finite element analyses (FEA) for 3PB specimens with wide ranges of the crack depth-to-width ratio (a/W = 0.2 to 0.8) and the specimen thickness-to-width ratio (B/W = 0.1 to 40). The 2D T_{11} solutions have been provided for 3PB specimen in many numerical studies [5-10].

JUS CRIF

The results show that the 3D T_{11} at the specimen mid-plane tended to deviate from the 2D T_{11} as *B/W* increased, with the deviation saturating for *B/W* \geq 2. The mid-plane 3D T_{11} for *B/W* = 0.1 to 40 was high as 54% when a/W = 0.2, suggesting that 3D effects should be properly considered for cases of short crack length, especially when T_{11} is negative. The mid-plane T_{33} increased with *B/W* and was close to the plane strain value T_{11} for *B/W* \geq 2.

2. T-stress

In an isotropic linear elastic body containing a crack subjected to symmetric (mode I) loading, the Williams series expansion [11] of the 3D stress components near the crack tip field can be written as [3]

$$\begin{cases} \sigma_{11} \\ \sigma_{22} \\ \sigma_{33} \\ \tau_{12} \\ \tau_{23} \\ \tau_{31} \end{cases} = \frac{K_1}{\sqrt{2\pi}r} \begin{cases} \cos\frac{\theta}{2} \left(1 - \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right) \\ \cos\frac{\theta}{2} \left(1 + \sin\frac{\theta}{2}\sin\frac{3\theta}{2}\right) \\ 2\nu\cos\frac{\theta}{2} \\ \sin\frac{\theta}{2}\cos\frac{\theta}{2}\cos\frac{3\theta}{2} \\ 0 \\ 0 \\ 0 \end{cases} + \begin{cases} T_{11} \\ 0 \\ T_{33} \\ 0 \\ 0 \\ 0 \\ 0 \end{cases}$$
(1)

where *r* and θ are the in-plane polar coordinates of the plane normal to the crack front shown in Fig. 1, $K_{\rm I}$ is the local mode I stress intensity factor (SIF) and *v* is Poisson's ratio. Here, $x_{\rm I}$ is the direction formed by the intersection of the plane normal to the crack front and the plane tangential to the crack plane. $T_{\rm 11}$ and $T_{\rm 33}$ are the amplitudes of the second-order terms in the three-dimensional series expansions of the crack front stress field in the $x_{\rm 1}$ and $x_{\rm 3}$ directions, respectively.

Different methods have been applied to compute the elastic *T*-stress for test specimens, as summarized by Sherry et al. [10]. In this study, an efficient finite element method developed by Nakamura and Parks [11] based on an interaction integral was used to determine the elastic *T*-stresses.

The crack tip T_{11} -stress on the crack front is related to the interaction integral by

$$T_{11} = \frac{E}{1 - v^2} \left\{ \frac{I}{F} + v\varepsilon_{33} \right\}$$
(2)

where *E* is Young's modulus, *v* is Poisson's ratio and g_3 identifies the out-of-plane strain at the crack tip in the direction tangential to the crack front. *I* represents the interaction integral, and *F* indicates the unit magnitude (*F* = 1).

Once the T_{11} -stress is obtained, the T_{33} -stress can be obtained using the following relationship: $T_{33} = E\varepsilon_{33} + vT_{11}$ (3)

More details of this method can be found in Nakamura and Parks [11] and Qu and Wang [12].

3. Finite Element Analysis (FEA)

3.1 Description of the finite element model

In the present study, 3D elastic FEA was conducted to calculate the elastic *T*-stresses (T_{11} and T_{33}) for a 3PB test specimen with a straight crack. Fig. 2 shows a sketch of the loads and geometry. In this figure, *a*, *B*, *W* and *S* are the crack length and the specimen thickness, width and support span,

respectively. For all current calculations, the specimen width was set as W = 25 mm, with a support span of S = 4W.

To systematically quantify the out-of-plane crack-tip constraint effect of the 3PB specimen, the thickness-to-width ratios B/W = 0.1, 0.25, 0.5, 1, 1.5, 2 and 40 were considered to cover the B/W range studied experimentally by Rathbun et al. [1]. For each B/W, the crack depth-to-width ratios a/W = 0.2, 0.3, 0.4, 0.45, 0.5, 0.55, 0.6, 0.7 and 0.8 were considered to investigate the in-plane constraint.

The material is assumed to be linearly elastic (isotropic and homogeneous). Young's modulus E = 206 GPa and Poisson's ratio v= 0.3 were set based on ferritic steel, which is the most widely used material in engineering. 3D finite elements were used to build a one-quarter symmetric model of the 3PB specimen, as shown in Fig. 3(a). The finite element model used 20-noded isoparametric 3D solid elements with reduced (2×2×2) Gauss integration. Sixteen singular elements were used around the crack tip for all cases in this study. Twenty equivalent rows of meshes were spaced inside the crack tube with radius $R_s = 0.4$ mm (Fig. 3(b)). In the present FEA models, 365740 to 393194 nodes with 86912 to 93840 elements were used, and the details for the generated mesh are summarized in the Appendix.

WARP3D [13] was used as the FEA solver. The load set for the elastic FEA corresponded to the 2D SIF $K_0 = 1$ MPa m^{1/2} calculated from the following equation from the ASTM standard [14].

$$K = \frac{PS}{BW^{3/2}} f(a/W) \tag{4}$$

where f is a function of a/W and is defined in the standard.

3.2 T-stresses for 3PB specimens

 T_{11} was evaluated as the average of the values of T_{11} obtained from domain 2 to domain 20. Good independence of the *T* value on the choice of domain was obtained, as the differences in the *T*-stress results from domain 2 to domain 20 were within 1% of one another, except for the values in the vicinity of the free surface. The obtained mid-plane T_{11} and T_{33} stresses are summarized in Tables 1 and 2, respectively, in the normalized form of $\beta_k = T_{kk}(\pi)^{1/2}/K_0$ (k = 1 or 3). The *T*-stresses at the specimen mid-plane received special attention because fracture initiation occurs at this location (e.g., [1, 2]).

First, the obtained mid-plane β_1 values were compared with the 2D β_1 solutions obtained by different authors [5-9] as a validity check. Sherry et al. reported that these 2D solutions varied significantly [10] and compiled them as a polynomial function of a/W. However, in this work, Kfouri's plane-strain solutions [6] were chosen for comparison with our 3D β_1 solutions based on the expectation that the 3D β_1 will approach the plane-strain values, as shown in Fig. 4(a). The midplane β_1 exhibited 3D effects and monotonously decreased with increasing B/W but saturated to

values very close to the plane-strain solutions, as shown in Fig. 4(b). This tendency was similar to that observed by Nakamura and Parks for a single edge-cracked plate under pure bending [3].

Another finding was that β_1 was a monotonously increasing function of a/W, regardless of B/W. The results showed that negative β_1 , and thus loss of the in-plane crack-tip constraint, was anticipated for cases of $a/W \le 0.3$.

Fig. 5 shows the mid-plane β_3 solutions for various thicknesses and crack depths. In Fig. 5(a), it is observed that β_3 is a monotonously increasing function of B/W, as expected. The bounding value of β_3 for each a/W was close to the plane strain value ψ_1 , and a relative thickness of B/W = 40 was sufficient for β_3 to saturate to the bounding value, as shown in Fig. 5(b).

 β_3 for the ASTM standard 3PB specimen [14], for which B/W = 0.5 and $0.45 \le a/W \le 0.55$, was negative. This finding seemed to support the fact that J_c was not bounded in the case of increasing B/W for 3PB specimens [1].

Interestingly, in Fig. 5(b), β_3 was not always a monotonously increasing function of a/W, as observed for the thin specimens of B/W = 0.1, 0.25 and 0.5. For example, β_3 for B/W = 0.1 was a monotonously decreasing function of a/W and thus might lead to the incorrect conclusion that deep cracks lose the out-of-plane crack-tip constraint. However, by normalizing T_{33} in terms of $T_{33}(\pi V)^{1/2}/K_0$ (*W* was constant for all cases in this study) as shown in Fig. 6, it is clearly seen that T_{33} increased monotonously as a/W increased for all B/Ws, which means that the out-of-plane crack-tip constraint level was strengthened due to the increase in crack depth, although the increase rate was smaller than $a^{1/2}$.

4. Discussion

In addition to the mid-plane *T*-stresses, the variations of the β_1 and β_3 solutions in the thickness direction were also plotted for various thicknesses for a/W = 0.5 in Fig. 7 and 8, respectively. Note that the mid-side node values were omitted in this figure. As observed in the left part of Fig. 7, the in-plane β_1 distributions changed little overall compared with the mid-plane value in the range of $x_3/(B/2) = 0$ to 0.8. Specifically, these differences were in the range of 4.1 to 15.3%. The differences were less than 5% if $x_3/(B/2)$ was in the range of 0 to 0.5, regardless of *B/W*.

On the other hand, the out-of-plane β_3 distributions in Fig. 8 showed a visible decrease in the thickness direction, considering that the ordinate of this figure ranges from -14 to 2. However, the rate of decrease became small as *B/W* increased, as is clear for the case of *B/W* = 40. Note that both T_{11} and T_{33} diverged significantly in the vicinity of the free surface $(x_3/(B/2) = 0.8 \text{ to } 1.0)$ because β_3 tends to be singular near the free surface and is not well calculated using FEA [3, 4]. Thus, the *T*-stresses near the free surface calculated by the present FEA method are known to be unreliable [12] and require further study.

5. Summary

In the present study, the *T*-stress solutions for 3PB specimens with a wide range of the crack depth-to-width ratio (a/W = 0.2 to 0.8) and the specimen thickness-to-width ratio (B/W = 0.1 to 40) were calculated using 3D elastic FEA. The results showed that 3D T_{11} at the specimen mid-plane tended to deviate from the 2D T_{11} as B/W increased, with the deviation saturating for $B/W \ge 2$. The mid-plane 3D T_{11} between cases of B/W = 0.1 and 40 was large as 54% for a/W = 0.2 and suggested that the 3D effects should be properly considered for cases of short crack length, especially when T_{11} is negative. The mid-plane T_{33} increased with B/W and was close to the plane strain value (T_{11} for $B/W \ge 2$.

Acknowledgments

This work was supported in part by JSPS KAKENHI Grant Number 24561038. Their support is greatly appreciated.

Appendix

C

~

List of figures

Fig. 1 Three-dimensional coordinate system for the region along the crack front Fig. 2. Sketch of the loads and geometry of the 3PB specimens Fig. 3. Typical finite element model of a 3PB specimen (W = 25 mm, S/W = 4, a/W = 0.5, B/W = 0.5) Fig. 4 Normalized T_{11} solutions (β_1) at the specimen mid-plane for 3PB specimens ($\nu = 0.3$) Fig. 5 Normalized T_{33} solutions (β_3) at the specimen mid-plane for 3PB specimens ($\nu = 0.3$) Fig. 6 Normalized T_{33} solutions ($T_{33}(\pi V)^{1/2}/K_0$) at the specimen mid-plane for 3PB specimens ($\nu = 0.3$) Fig. 7 Variations of β_1 in the thickness direction along the crack front for various thicknesses when a/W = 0.5 ($\nu = 0.3$)

Fig. 8 Variations of β_3 in the thickness direction along the crack front for various thicknesses when a/W = 0.5 (v = 0.3)

References

[1] Rathbun HJ, Odette GR, Yamamoto T, Lucas GE. Influence of statistical and constraint loss size effects on cleavage fracture toughness in the transition-A single variable experiment and database. Engineering Fracture Mechanics. 2006;73:134-58.

[2] Meshii T, Lu K, Takamura R. A failure criterion to explain the test specimen thickness effect on fracture toughness in the transition temperature region. Engineering Fracture Mechanics. 2013;104: 184-197.

[3] Nakamura T, Parks DM. Determination f elastic *T*-stress along three-dimensional crack fronts using an interaction integral. International Journal of Solids and Structures. 1992;29(13):1597-1611.

[4] Fernández-Canteli A, Giner E, Fernández-Sáez J, Fernández- Zúñiga. A unified analysis of the inplane and out-of-plane constraints in 3-D linear elastic fracture toughness, Proceedings of the 19th European Conference on Fracture. Kazan, Russia. 2012; p.1-8.

[5] Leevers PS, Radon JC. Inherent stress biaxiality in various fracture specimen geometries. International Journal of Fracture. 1982;19:311-325.

[6] Kfouri AP. Some evaluations of the elastic *T*-term using Eshelby's method. International Journal of Fracture. 1986;30(4):301-315.

[7] Cardew GE, Goldthorpe MR, Howard IC, Kfouri AP. On the Elastic *T*-term. In: Bibly BA, Miller KJ, Willis JR, editors. Fundamentals of Deformation and Fracture. Cambridge: Cambridge University Press; 1984. p. 465-476.

[8] Fett T. *T*-stresses in rectangular plates and circular disks. Engineering Fracture Mechanics. 1998;60(5-6):631-652.

[9] Yang B, Ravi-Chandar K. Evaluation of elastic *T*-stress by the stress difference method. Engineering Fracture Mechanics. 1999;64(5):589-605.

[10] Sherry AH, Moran B, Nakamura T. Compendium of *T*-stress solutions for two and three dimensional cracked geometries. Fatigue and Fracture of Engineering Materials and Structures. 1995;18:141-155.

[11] Williams ML. On the stress distribution at the base of a stationary crack. Journal of Applied Mechanics. 1957;24:111-114.

[12] Qu J, Wang X. Solutions of *T*-stresses for quarter-elliptical corner cracks in finite thickness plates subject to tension and bending. International Journal of Pressure Vessels and Piping. 2006;83(8):593-606.
[13] Gullerud A, Koppenhoefer K, Roy Y, RoyChowdhury S, Walters M, Bichon B, et al. WARP3D Release 15 Manual. Civil Engineering, Report No UIUCENG-95-2012, University of Illinois at Urbana-Champaign. 2004.

[14] ASTM. E1921-10 Standard test method for determination of reference temperature, T_0 , for ferritic steels in the transition range. Annual Book of ASTM Standards. Philadelphia PA: American Society for Testing and Materials; 2010.

 $\boldsymbol{\wedge}$

Tab	ole 1. Norm	alized T_{11}	solutions ((β_1) at the sp	ecimen mi	d-plane for	3PB speci	mens ($v=0$.3).
al W									
<i>B/</i> <i>W</i>	0.2	0.3	0.4	0.4 5	0.5	0.5 5	0.6	0.7	0.8
0.1	- 0.158	- 0.022	0.11 5	0.18 5	0.25 8	0.33 4	0.41 5	0.60 5	0.87 6
0.2 5	- 0.182	- 0.055	0.07 9	0.14 9	0.22 1	0.29 7	0.37 9	0.57 6	0.86 6
0.5	- 0.188	- 0.059	0.07 3	0.14 3	0.21 6	0.29 4	0.37 9	0.57 4	0.82 0
1	- 0.220	- 0.078	0.06 3	0.13 3	0.20 4	0.27 5	0.34 8	0.50 8	0.72 2
1.5	.236	- 0.107	0.02 8	0.09 5	0.16 3	0.23 1	0.30 2	0.46 4	0.69 6
2	0.240	0.122	0.00 5	0.07	0.13 6	0.20 5	0.27 7	0.44 7	0.68 8
40	- 0.244	0.125	0.00 01	0.06 5	0.13 3	0.20 4	0.26 7	0.44 0	0.68 4

D

										$\boldsymbol{\triangleleft}$
Tal	hla 2 Nama	olized T	alutions (/	3) at the em		d plana far	2DD anaai	mana (11-0	2)	,
a/ W		alized 1 ₃₃ s		₇₃) at the sp			SPB speci			
B/ W	0.2	0.3	0.4	0.4 5	0.5	0.5 5	0.6	0.7	0.8	
0.1	- 0.861	- 1.041	- 1.184	- 1.245	- 1.301	-	- 1.395	- 1.461	- 1.458	
0.2 5	- 0.530	- 0.617	- 0.682	0.708	0.728	- 0.742	- 0.749	- 0.725	- 0.587	
0.5	0.353	- 0.388	- 0.404	- 0.405	- 0.399	- 0.386	- 0.362	- 0.262	- 0.041	
1	- 0.246	- 0.206	- 0.168	- 0.144	- 0.115	- 0.079	- 0.036	0.07	0.20 5	
1.5	0.216	- 0.142	0.072	- 0.038	0.003	0.03	0.07 0	0.14 7	0.23 0	
2	- 0.197	- 0.118	- 0.040	- 0.004	0.03 1	0.065	0.09 7	0.15 9	0.23 2	
40	- 0.059	- 0.024	0.01 1	0.03 0	0.04 9	0.06 9	0.11 4	0.16 6	0.23 6	

			8		- (==	,	- 73	•••••			_
B/W	a/W	0.2	0.3	0.4	0.4 5	0.5	0.5 5	0.6	0.7	0.8	
0.1	∆la	4.0	2.7	2.0	1.8	1.6	1.5	1.3	1.1	1.0	8
	CD	12	16	20	26	30	34	40	48	56	
	NR	61	53	45	41	37	33	29	21	13	
	na (na_bias)	189 ((2)					5			
0.25	∆la	4.0	2.7	2.0	1.8	1.6	1.5	1.3	1.1	1.0	
	CD	12	16	20	26	30	34	40	48	56	
	NR	61	53	45	41	37	33	29	21	13	
	na (na_bias)	189 ((2)								
0.5	∆la	4.0	2.7	2.0	1.8	1.6	1.5	1.3	1.1	1.0	
	CD	12	16	20	26	30	34	40	48	56	
	NR	61	53	45	41	37	33	29	21	13	
4	na (na_bias)	18 9 (2)									
1	ß√a	4.0	2.7	2.0	1.8	1.6	1.5	1.3	1.1	1.0	
	CD	12	16	20	26	30	34	40	48	56	

Table A.1 Summary of the generated mesh (W = 25 mm, S/W = 4, $R_s = 0.4 \text{ mm}$)

	NR	61	53	45	41	37	33	29	21	13	
	na (na_bias)	189	(2)								~
1.5	∆la	4.0	2.7	2.0	1.8	1.6	1.5	1.3	1.1	1.0	
	CD	12	16	20	26	30	34	40	48	56	
	NR	61	53	45	41	37	33	29	21	13	
	na (na_bias)	189	(2)				~				
2	∆la	4.0	2.7	2.0	1.8	1.6	1.5	1.3	1.1	1.0	
	CD	12	16	20	26	30	34	40	48	56	
	NR	61	53	45	41	37	33	29	21	13	
	na (na_bias)	189	(2)								
40	∆la	4.0	2.7	2.0	1.8	1.6	1.5	1.3	1.1	1.0	
	CD	12	15	24	20	20	24	30	40	45	
	NR	50	50	36	36	36	32	28	20	12	
P	na (na_bias)	18 9 (2)	24 3(1)								

Highlights

ACC

- *T*-stress solutions 3PB specimens with various crack depths and thicknesses were obtained.
- Mid-plane T_{11} and T_{33} were reported for 3PB specimens with $a/W = 0.2 \sim 0.8$ and $B/W = 0.1 \sim 40$.
- T_{11} showed 3D effect, and approached 2D plane strain solutions for large thickness.
- T_{33} increased with thickness, and saturated to V_{11} for $B/W \ge 2$.

 x_2 Leading edge σ_{1} of the crack x_1 σ_{11} θ x_3

Fig. 1 Three-dimensional coordinate system for the region along the crack front

Fig. 2 Sketch of the loads and geometry of the 3PB specimens

3

Fig. 4 Normalized T_{11} solutions (β_{11}) at the specimen mid-plane for 3PB specimens ($\nu = 0.3$)

Fig. 6 Normalized T_{33} solutions $(T_{33}(\pi W)^{1/2}/K_0)$ at the specimen mid-plane for 3PB specimens ($\nu = 0.3$)

Fig. 7 Variations of β_{11} in the thickness direction along the crack front for various thicknesses when a/W = 0.5 (v = 0.3) ⁷

Fig. 8 Variations of β_{33} in the thickness direction along the crack front for various thicknesses when d/W = 0.5 (v = 0.3)