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A method based on Monte Carlo calculations is developed to estimate the diffusion coefficient of unit cells. The method uses
a geometrical model similar to that used in lattice theory, but does not use the assumption of a separable fundamental mode
used in lattice theory. The method uses standard Monte Carlo flux and current tallies, and the continuous energy Monte Carlo
code MVP was used without modifications. Four models are presented to derive the diffusion coefficient from tally results
of flux and partial currents. In this paper the method is applied to the calculation of a plate cell of the fast-spectrum critical
facility ZEBRA. Conventional calculations of the diffusion coefficient diverge in the presence of planar voids in the lattice, but
our Monte Carlo method can treat this situation without any problem. The Monte Carlo method was used to investigate the
influence of geometrical modeling as well as the directional dependence of the diffusion coefficient. The method can be used to
estimate the diffusion coefficient of complicated unit cells, the limitation being the capabilities of the Monte Carlo code. The
method will be used in the future to confirm results for the diffusion coefficient obtained with deterministic codes.
KEYWORDS: Diffusion Coefficient, Benoist-formalism, Plate Cell, Critical Experiment, Directional Diffusion Coefficient,
Sodium Void Effect

I. Introduction

In cell calculations the diffusion coefficient is commonly calcu-
lated using the so-called Benoist-formalism1). In this formal-
ism, several approximations are used to derive at an expres-
sion which yields the so-called directional diffusion coefficient
Dk, k = x, y, z, as a function of the so-called directional colli-
sion probability Pij,k. This approach has been used in cell cal-
culation codes, e.g. ECCO2) and SLAROM-UF3). However,
the Benoist-style diffusion coefficient becomes infinite if there
are planar voids in the lattice. A planar void is a void region
of such a geometry that a slab with infinite lateral dimensions
and finite thickness can be fully contained in it4). Planar voids
occur naturally in one-dimensional slab cells, but also in rect-
angular and hexagonal lattices of pins, as illustrated in Fig. 1.

Investigations are presently going on to improve the calcu-
lation accuracy of the diffusion coefficient of voided unit cells.
The main focus is on lattice theory (also known as the funda-
mental mode approximation) for which the Method of Charac-
teristics has been selected. To provide confirmation of newly
developed models, a Monte Carlo based method to calculate
the diffusion coefficient of non-voided and voided unit cells
has been developed. The method is presented in this paper and
results for slab cells are reported. Results of the MOC-based
method applied to hexagonal LMFBR cells are reported else-
where5).

II. Theory

Monte Carlo calculations can be used to estimate the diffusion
coefficient of a unit cell, for which there appear to be three main
approaches:

• One approach is rooted in lattice theory and uses Monte
Carlo methods to calculate the average distance between
the points of birth and absorption of a neutron6).
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Fig. 1 Planar voids in an infinite lattice of pin cells. The planar void
occurs if P/D > 2/

√
3 ≈ 1.15, which is the case in many fast reac-

tors (P/D: pitch-to-diameter ratio).

• The second method is based on the calculation of the mean
square path lengths between neutron collisions and de-
rives a diffusion coefficient from the migration area and
diffusion length7).

• In our work, we follow the work by Milgram8), and use
standard Monte Carlo techniques to calculate the diffusion
coefficient with a method that is completely separate from
lattice theory.

The fundamental assumption of diffusion theory is that the
diffusion coefficient is the constant of proportionality between
the net current at a point and the gradient of the scalar flux at
that point8). By making an adequate geometrical model and



tallying the necessary quantities, one can use the fundamen-
tal definition of D directly to obtain a cell averaged diffusion
coefficient.

1. Unit cell geometry

Unit cells are assumed to be three-dimensional and symmetric.
A lattice is made by an infinite repetition of the unit cells. Unit
cells are not required to have any special shape, as long as they
can fill up the entire space. The flux is symmetric and periodic
with the lattice, while the net current is zero on the boundaries
of the cell. In classic lattice theory, the finite size of the sys-
tem is introduced through a buckling vector. Mathematically,
the system is then described as a slab with its boundaries per-
pendicular to the direction of the buckling. In Monte Carlo
calculations, one can simulate this situation by using a collec-
tion of unit cells, infinite in two directions and finite in the third
direction. It is convenient to choose the finite direction to be
along one of the principal axes of the cell, because the infinite
directions of the system are easily implemented by periodic (or
reflective) boundary conditions on the respective boundaries of
the cell. Furthermore, let the “bottom” boundary be reflective
as well, so that the model represents the half-thickness of a slab.
Consider a tally plane with its normal vector along the finite di-
rection, cutting through the entire cell. Because of symmetry,
the net current through the plane can only be oriented along
the finite direction, and the same holds for the gradient of the
flux. Furthermore, because the all the other boundaries except
the tally plane are reflective, the total leakage from the cell is
only through the tally plane. The diffusion coefficient at a tally
plane i may then be defined as8):

Di =
Jnet,i

dϕ(z)/dz|i
(1)

where z is considered to be the finite direction of the system.
Since the tally planes cuts through the entire cell, the diffusion
coefficient represents an “averaged” material at the tally plane
location.

2. Neutron tallies and modeling of the flux
gradient

The gradient of the flux cannot be tallied directly, and thus a
model is required. We have used four models to estimate the
flux gradient from the flux tallies. The homogenized version
of our geometry is really a homogeneous slab, and it is known
from diffusion theory that the flux obeys a cosine-shape in that
case. Also in lattice theory, the global flux shape is assumed to
be a cosine. Model 1 assumes that there is one, unique diffu-
sion coefficient for the lattice. Then, one infers that the current
should obey a sine-function:

ϕ(z) = A0 cos (Bzz)

J(z) = A1 sin (Bzz) (2)

The diffusion coefficient then reduces to just one value, i.e.

D =
A1

A0Bz
(3)

In this model, the bucklingBz is fitted using flux and current
tallies simultaneously, while the amplitudes A0 and A1 are fit-
ted individually. This estimator is very robust to the quality of
the flux and current tallies (any “erratic” behavior is smoothed
out in the fitting procedure). But the model makes the very
strong assumption that there is a unique diffusion coefficient.
Application of this model is illustrated later.

Model 2 assumes a cosine shape for the flux, to give

ϕ(z) = A0 cos(Bzz) ⇒
dϕ(z)

dz
= −A0Bz sin(Bzz) (4)

The parameters A0 and Bz are derived from the flux tallies.
This model is less robust than the first model. It is not very
sensitive to the quality of the flux tallies, but the current tallies
need to be well-behaved for use in equation (1).

Model 3 uses a cubic spline fit to the flux tally results. In
this case, the derivative di at each tally plane is obtained di-
rectly. This model is least robust, because it is sensitive to the
smoothness of the current and the flux tallies. A small error in
the flux tallies may cause a rather large error in the derivative
di, which in turn results in a poor estimation of the diffusion
coefficient. From a physical point of view this model may be
said to be the best, because the local flux gradient and the local
current tallies are used directly, with a minimum of modeling.

Model 4 relies on the definition of the diffusion coefficient
from lattice physics, where the diffusion coefficient is defined
as:

D =
Total leakage from cell
B2 × Total flux in cell

(5)

As discussed earlier, the total leakage from a (collection of)
unit cell(s) can only be through the tally plane. Model 4 can
thus be implemented by taking a current tally on the tally plane,
and a flux tally over all the volumes enclosed by the cell bound-
aries and the tally plane. The buckling can be found from a
cosine fit to scalar flux tallies at the tally planes.

(a) Discussion of tally plane location

If the symmetry axis of the unit cell is along the finite direc-
tion, such as a pin cell with the finite direction along the pin,
the location of the cross-cutting tally planes is never an issue.
This is the typical situation analysed by Milgram for CANDU
cells8) and also by us for LMFBR cells5). In the case of three-
dimensional plate cells the situation is more complicated. Con-
sider the case that the plates are perpendicular to the finite axis
(for example, plates oriented in the x, y plane, forming a finite
stack in the z-direction). The flux will show a global cosine
shape superimposed with a fine structure due to the individ-
ual plates in the cell. Thus, to properly tally the global flux
shape, it is critical that each tally plane is located at the same
location within a cell. To say differently: the tally planes must
be offset an integer times the cell dimension. However, this is
not enough. The current tallies will record the “local” currents
whereas the flux shape is global. To remove this inconsistency,
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the currents should be tallied on the boundary of the cell. If
the lattice is infinite, the current will exactly disappear on the
cell boundaries. Thus, in the finite system, the current on the
boundary of the cell is solely due to the “global” finiteness of
the system rather than the individual nature of the plates. Tak-
ing the tallies between the unit cells also implies that the total
flux used in model 4 is the cell-integrated flux.

3. Statistical considerations

At each tally plane, one should take tallies of the partial cur-
rents j+ and j−, and also the total current j+ + j−. For the
net current Jnet = j+ − j− , the standard deviation is:

σ2
x−y = σ2

x + σ2
y − 2σxy (6)

where x and y represent statistical quantities. The covari-
ance of the partial currents, σxy can be calculated from the
tally of the total current j+ + j−. For this sum, one finds:

σ2
x+y = σ2

x + σ2
y + 2σxy ⇒ σ2

x−y = 2σ2
x + 2σ2

y − σ2
x+y (7)

The standard deviation of the diffusion coefficient can be cal-
culated using:

σ2
x
y
=

x2

y2

(
σ2
x

x2
+

σ2
y

y2
− 2

σxy

xy

)
(8)

This last equation is somewhat problematic in that it requires
knowledge of the covariance between Jnet and ∇ϕ, and knowl-
edge of the error of ∇ϕ, both of which are unknown. As indi-
cated by Milgram8) it is possible to obtain estimates of the error
of the derivative of a fitted function, but a literature survey did
not yield any useful results. In the present research, only the
error on the current is taken into account in the calculation of
the diffusion coefficient, with the caveat that the resulting error
will be underestimated. If a total of I samples of the diffusion
coefficient are used, the average diffusion coefficient is calcu-
lated as:

D̄ =
1

I

I∑
i=1

Di (9)

The standard deviation is calculated as

σD̄ =

√√√√ 1

I − 1

I∑
i=1

(
Di − D̄

)2 (10)

The 95% confidence interval (CI) is calculated as:

D̄ − 1.96
σD̄√
I
≤ CI ≤ D̄ + 1.96

σD̄√
I

(11)

One faces the problem that some of the diffusion coefficients
Di can be considered to be “statistical outliers”. Rather than
using some ad-hoc procedure to discard these results, the fol-
lowing model was found to be helpful. The diffusion coeffi-
cient is calculated using equation (3). Results Di which are

more than 25% different from the diffusion coefficient calcu-
lated from equation (3) are discarded from further analysis, as
are any results with an estimated error of more than 25%.

It is common in Monte Carlo calculations to reduce as much
as possible the volume of the calculational domain, because
better statistics will be obtained for the same number of neutron
histories. However, in the case of the modelling of a three-
dimensional plate cell, the overall volume of the geometrical
model is determined by the dimensions of the unit cell and the
number of cells used in the calculation. Improved statistics can
only be obtained by increasing the number of neutron histories.

III. Calculations

1. Models

In the present study we have investigated plate cell C11 as
used in the MZA series of measurements of the MOZART pro-
gramme in the ZEBRA facility9). In ZEBRA assemblies were
used with sodium plates and void plates. The MZA C11 cell
is symmetric and consists of a stack of plates of various mate-
rials. Fuel and sodium plates have cladding, while bare plates
of stainless steel and graphite are inserted to obtain proper ma-
terial volume fractions and neutron spectrum. The analysis is
done with the continuous energy Monte Carlo code MVP10).
The dimensions of the ZEBRA cells are 5.4254 × 5.4254 ×
7.4958 (∆x × ∆y × ∆z) cm. In all calculations, the plates
are oriented horizontally. One model named c11 z consists of
15 cells stacked on top of each other, reflected on all sides ex-
cept the positive z-face, which is open to vacuum. The second
model named c11 x consists of 20 cells stacked left to right,
with all sides reflected except the positive x-face, which is open
to vacuum. The sizes are chosen to obtain B ≈ 1.5 × 10−2

cm−1 which is representative of the ZEBRA facility.
Commonly one replaces the 3D cell with a 1D equivalent

cell, but this introduces some non-physical approximations.
For example, a 3D void area surrounded by cladding is not the
same as its 1D equivalent (a low density slab). Furthermore,
in the 1D cell the background cross section for resonant iso-
topes is different from the actual 3D cell. Thus the question is
whether or not one can use a 1D equivalent model in the cal-
culation of the diffusion coefficient without and with voided
areas. Thus 2 geometrical descriptions are used in our Monte
Carlo calculations: a full 3D model, and a 1D model where
each plates is represented as a homogenized mixture. A-priori
homogenization is done with simple volume weighting. The
cells are illustrated in Fig. 2. Continuous energy calculations
mean that self-shielding issues do not arise. MVP settings are
reported in Table 1. Results are tallied in 7 energy groups, and
energy boundaries are given in Table 2.

In the conventional Benoist-formalism, the parallel diffu-
sion coefficient, i.e. the diffusion coefficient corresponding
to c11 x, becomes infinite if there are planar voids. Strictly
speaking, this situation can only occur in the 1D model. But
the 1D model has “smeared” plates, in which there are no true
void regions. With these low density regions the Benoist-style
parallel diffusion coefficient is not infinite, but likely to be er-
roneous. In practice, the perpendicular and parallel diffusion
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Fig. 2 Models of the ZEBRA C11 unit cell. Left: full 3D model,
right: simplified 1D model in which the materials of each plate are
homogenized.

Table 1 Settings used for MVP calculations.

MVP parameter Value

NHIST 36.000
KBATCH 20.000
NSKIP 200

Table 2 Energy boundaries used in the MVP tallies.

Group Upper energy boundary [eV]

1 1.00000× 107

2 3.67879× 106

3 1.35335× 106

4 86.5270× 103

5 4.30743× 103

6 2.03468× 103

7 214.454× 100

1.00000× 10−5

coefficients are often used to quantify directional streaming ef-
fects. Under void situations the question then arises whether
the “directionality” is due to physical effects or the divergence
of the parallel diffusion coefficient. In our work on hexago-
nal LMFBR pin cells5) it was found that the directional depen-
dence of the diffusion coefficient disappeared when the analysis
was performed with MOC or Monte Carlo.

2. Results

The figures and tables require a lot of space. To not interrupt
the text too much, figures and tables corresponding to this sec-
tion have been moved to the end of this paper. Only a few
results are illustrated here in graphs. A full set of results is
available from the authors.

We start the discussion of the results by comparison of the
3D z and x models with sodium present. Illustrated are the
diffusion coefficients obtained at each tally plane, using the

cosine-fit model (Fig. 3 for z and Fig. 6 for x), the cubic spline
fit (Fig. 4 for z and Fig. 7 for x), and the model of equation (5)
in Fig. 5 for z and Fig. 8 for x. A rather surprising find is the
very strong trends of the diffusion coefficient in the z-model.
Trends are not so strong in the x-model. The trends in the z-
model are much stronger than the errors associated with the in-
dividual diffusion coefficients, and are present in all z-direction
calculations, regardless of geometrical detail or the presence of
sodium. As a result of the trends the confidence intervals be-
come large, which means that discussions about whether sets
of results are statistically different or not becomes difficult.

The four different models to calculate the diffusion coeffi-
cient all result in similar results, as illustrated in Table 3 and
Table 4, providing confirmation that the Monte Carlo method
is valid. It is noted that model 4 leads to a systematicly lower
estimate of the diffusion coefficient. The confidence intervals
of the diffusion coefficient become very large in some cases.
This is due to trending (z-model) and in the low-energy groups
due to a low number of tally scores. Both these effects indicate
the limitations of the Monte Carlo analysis methods. In Ta-
bles 3 and 4 one can compare the diffusion coefficients between
the 3D cell and the simple 1D cell. In all cases, the simple 1D
model yields diffusion coefficients which are slightly smaller
than the 3D model. It seems reasonable to do the analysis with
the simple 1D model, and if desired one can define bias factors
for the diffusion coefficients. This confirms the physical ex-
pectation that the 1D model should be adequate. The decrease
of the diffusion coefficient between the 3D and 1D models is
physically reasonable. In the 3D model, a neutron traveling in a
void will only undergo attenuation between the voids, whereas
in the 1D model the neutron will always undergo attenuation. It
is expected that the distance the neutron travels while diffusing
through the media will thus be smaller in the 1D model.

The effect of directionality is similar between the 3D and the
1D cells. Diffusion coefficients show a directional dependence,
especially in the lower energy groups, as illustrated in Table 5.
This confirms the expectation that neutron diffusion parallel to
the plates is different from neutron diffusion perpendicular to
the plates. However, if the Benoist-formalism is used, the di-
rectional dependence can be overestimated for void conditions
due to the divergence of the parallel diffusion coefficient.

3. Discussion

In the course of the presented work a discussion arose about
what could be considered to be the “exact” value of the diffu-
sion coefficient, and whether or not the Monte Carlo method
is capable of calculating a “benchmark value” of the diffusion
coefficient. With “benchmark value” we mean some calculated
value which in the limit of an infinite number of neutron his-
tories converges to the “real” value. Unfortunately, this is im-
possible for the diffusion coefficient because the Monte Carlo
method cannot directly tally the diffusion coefficient. In fact,
one cannot tally the derivative of the flux. Thus, one always
needs some sort of model to obtain the diffusion coefficient
from the tally results. The resulting value cannot be consid-
ered a benchmark value, because if the model is wrong, then in
the limit of an infinite number of histories, the result will still

4



have a systematic error due to modeling error. Thus, one must
be satisfied with “best estimate” values of the diffusion coeffi-
cient within a certain theoretical framework, rather than “exact
values”.

IV. Conclusions

A model to calculate the diffusion coefficient for 3D plate cells
with Monte Carlo techniques was successfully developed. The
presented method relies solely on standard Monte Carlo tech-
niques, and no modifications were needed in the MVP code.
The model is unique in that it allows to calculate the diffu-
sion coefficient of complicated unit cells, and it allows to check
whether modeling assumptions are valid, and could be used to
define bias factors to be used in simplified analyses.

The strong trends seen in the z-model are surprising. The
trends are independent of modeling detail, flux gradient esti-
mation and presence of voids. It seems then that it is a physical
effect rather than an artifact of the calculation, and the diffusion
coefficients of the various cells are physically different. The
cause of the trends has not been identified and will be inves-
tigated in the future with deterministic multi-group methods.
One expects an influence of the neutron spectrum in the differ-
ent unit cells. The issue of the neutron spectrum is fundamental
to lattice theory, where one analyses a “deep interior” cell far
removed from any physical boundaries of the system.

It is found that the replacement of the full 3D model with the
simplest 1D model results in a slight reduction of the diffusion
coefficient (in the order of 1%), whether sodium is present or
not. Directional dependence is different between the 3D and
1D models, but a trend cannot be identified. It thus seems that
the classic analysis based on a simplified 1D cell description
is justified, where our new method can provide bias factors if
desired.

A final note on calculation time: since the volume of the
model in the Monte Carlo analysis cannot be made arbitrarily
small in the present work, the only way to improve statistics
is to run more neutron histories. This also applies to the low
energy region, which is always troublesome in the Monte Carlo
analysis of fast neutron systems. At present, computation times
are such that routine analysis on workstations is not feasible.

In the future our new method will be used for pin-type cell
calculations of LMFBRs, for instance to estimate the influence
on the diffusion coefficient of the explicit modeling of the wrap-
per tube, and to analyse the problem of fuel assemblies with a
so-called inner duct, which represents a strong streaming path
under both sodium flooded and sodium void conditions.
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Fig. 3 Model c11 z, diffusion coefficients estimated using the cosine model for the flux gradient.
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Fig. 4 Model c11 z, diffusion coefficients estimated using the cubic spline model for the flux gradient.
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Fig. 5 Model c11 z, diffusion coefficients estimated using model 4 (ratio of leakage rate to integrated flux).
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Fig. 6 Model c11 x, diffusion coefficients estimated using the cosine model for the flux gradient.
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Fig. 7 Model c11 x, diffusion coefficients estimated using the cubic spline model for the flux gradient.
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Fig. 8 Model c11 x, diffusion coefficients estimated using model 4 (ratio of leakage rate to integrated flux).
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Table 3 Diffusion coefficients for c11 z. Ds: model 1; Dcos: model 2; Dspline: model 3; DTL: model 4.

gr Ds Dcos Dspline DTL CI cos CI spline CI TL

c11 z, 3D model, Sodium present

1 3.858 3.856 3.860 3.625 3.829 ↔ 3.883 3.833 ↔ 3.887 3.600 ↔ 3.651
2 3.073 3.077 3.082 2.978 3.062 ↔ 3.091 3.073 ↔ 3.092 2.965 ↔ 2.992
3 1.851 1.870 1.870 1.870 1.842 ↔ 1.898 1.841 ↔ 1.899 1.842 ↔ 1.899
4 1.077 1.045 1.044 1.046 0.997 ↔ 1.092 1.004 ↔ 1.083 0.999 ↔ 1.093
5 0.335 0.332 0.328 0.292 0.272 ↔ 0.392 0.273 ↔ 0.384 0.221 ↔ 0.364
6 0.779 0.748 0.745 0.769 0.704 ↔ 0.792 0.711 ↔ 0.778 0.724 ↔ 0.814
7 0.507 0.539 0.532 0.498 0.431 ↔ 0.646 0.427 ↔ 0.637 0.367 ↔ 0.630

c11 z, 1D model, Sodium present

1 3.835 3.826 3.851 3.593 3.793 ↔ 3.860 3.796 ↔ 3.906 3.561 ↔ 3.625
2 3.065 3.068 3.066 2.968 3.054 ↔ 3.081 3.049 ↔ 3.083 2.955 ↔ 2.981
3 1.836 1.856 1.862 1.856 1.827 ↔ 1.884 1.822 ↔ 1.901 1.827 ↔ 1.885
4 1.069 1.036 1.037 1.038 0.989 ↔ 1.083 1.000 ↔ 1.074 0.991 ↔ 1.085
5 0.326 0.319 0.315 0.281 0.253 ↔ 0.384 0.255 ↔ 0.376 0.207 ↔ 0.354
6 0.768 0.737 0.734 0.762 0.692 ↔ 0.782 0.697 ↔ 0.771 0.715 ↔ 0.809
7 0.472 0.504 0.498 0.468 0.393 ↔ 0.614 0.401 ↔ 0.596 0.338 ↔ 0.598

c11 z, 3D model, Sodium void

1 4.339 4.345 4.332 4.159 4.310 ↔ 4.381 4.253 ↔ 4.411 4.125 ↔ 4.193
2 3.554 3.563 3.561 3.479 3.543 ↔ 3.583 3.544 ↔ 3.578 3.460 ↔ 3.499
3 2.228 2.245 2.246 2.250 2.220 ↔ 2.269 2.215 ↔ 2.277 2.225 ↔ 2.275
4 1.269 1.230 1.229 1.230 1.174 ↔ 1.285 1.187 ↔ 1.271 1.175 ↔ 1.285
5 0.803 0.760 0.753 0.760 0.699 ↔ 0.821 0.695 ↔ 0.811 0.699 ↔ 0.821
6 0.879 0.820 0.816 0.817 0.735 ↔ 0.905 0.738 ↔ 0.894 0.732 ↔ 0.903
7 0.552 0.581 0.564 0.532 0.448 ↔ 0.714 0.455 ↔ 0.672 0.386 ↔ 0.677

c11 z, 1D model, Sodium void

1 4.314 4.318 4.301 4.128 4.286 ↔ 4.351 4.234 ↔ 4.368 4.096 ↔ 4.159
2 3.545 3.553 3.558 3.465 3.532 ↔ 3.574 3.549 ↔ 3.568 3.445 ↔ 3.485
3 2.212 2.229 2.231 2.234 2.204 ↔ 2.255 2.198 ↔ 2.263 2.208 ↔ 2.260
4 1.256 1.217 1.215 1.218 1.163 ↔ 1.272 1.171 ↔ 1.259 1.164 ↔ 1.273
5 0.789 0.748 0.743 0.748 0.689 ↔ 0.806 0.692 ↔ 0.794 0.689 ↔ 0.807
6 0.864 0.804 0.798 0.803 0.717 ↔ 0.890 0.717 ↔ 0.880 0.716 ↔ 0.890
7 0.508 0.541 0.539 0.539 0.431 ↔ 0.650 0.439 ↔ 0.639 0.430 ↔ 0.648
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Table 4 Diffusion coefficients for c11 x. Ds: model 1; Dcos: model 2; Dspline: model 3; DTL: model 4.

gr Ds Dcos Dspline DTL CI cosine CI spline CI TL

c11 x, 3D model, Sodium present

1 3.847 3.847 3.818 3.667 3.834 ↔ 3.859 3.755 ↔ 3.880 3.656 ↔ 3.679
2 3.081 3.083 3.070 3.022 3.076 ↔ 3.091 3.045 ↔ 3.094 3.014 ↔ 3.030
3 1.846 1.846 1.848 1.849 1.846 ↔ 1.847 1.843 ↔ 1.853 1.848 ↔ 1.850
4 1.198 1.196 1.195 1.201 1.194 ↔ 1.198 1.189 ↔ 1.201 1.199 ↔ 1.203
5 0.477 0.472 0.469 0.488 0.461 ↔ 0.483 0.449 ↔ 0.488 0.476 ↔ 0.499
6 0.941 0.941 0.938 0.955 0.938 ↔ 0.944 0.933 ↔ 0.942 0.952 ↔ 0.958
7 0.901 0.902 0.896 0.941 0.884 ↔ 0.920 0.858 ↔ 0.934 0.922 ↔ 0.960

c11 x, 1D model, Sodium present

1 3.645 3.650 3.691 3.650 3.639 ↔ 3.660 3.580 ↔ 3.802 3.640 ↔ 3.660
2 3.005 3.002 3.010 3.002 2.996 ↔ 3.007 2.982 ↔ 3.039 2.996 ↔ 3.007
3 1.828 1.828 1.828 1.828 1.827 ↔ 1.829 1.824 ↔ 1.832 1.827 ↔ 1.829
4 1.184 1.183 1.184 1.183 1.182 ↔ 1.184 1.178 ↔ 1.189 1.183 ↔ 1.184
5 0.487 0.485 0.483 0.485 0.477 ↔ 0.494 0.475 ↔ 0.490 0.477 ↔ 0.494
6 0.928 0.925 0.924 0.925 0.919 ↔ 0.932 0.903 ↔ 0.944 0.918 ↔ 0.932
7 0.921 0.905 0.936 0.904 0.881 ↔ 0.929 0.837 ↔ 1.034 0.881 ↔ 0.928

c11 x, 3D model, Sodium void

1 4.469 4.471 4.477 4.276 4.463 ↔ 4.480 4.447 ↔ 4.507 4.268 ↔ 4.283
2 3.681 3.683 3.669 3.615 3.679 ↔ 3.686 3.635 ↔ 3.703 3.611 ↔ 3.618
3 2.367 2.368 2.369 2.370 2.367 ↔ 2.368 2.356 ↔ 2.382 2.369 ↔ 2.371
4 1.500 1.499 1.502 1.504 1.497 ↔ 1.501 1.494 ↔ 1.510 1.502 ↔ 1.506
5 1.002 0.998 0.991 1.015 0.993 ↔ 1.004 0.970 ↔ 1.013 1.009 ↔ 1.020
6 1.145 1.142 1.136 1.168 1.138 ↔ 1.147 1.104 ↔ 1.169 1.164 ↔ 1.172
7 1.046 1.041 1.050 1.086 0.991 ↔ 1.092 0.995 ↔ 1.104 1.033 ↔ 1.138

c11 x, 1D model, Sodium void

1 4.243 4.246 4.271 4.245 4.238 ↔ 4.253 4.189 ↔ 4.353 4.238 ↔ 4.253
2 3.577 3.575 3.583 3.575 3.571 ↔ 3.580 3.559 ↔ 3.606 3.571 ↔ 3.579
3 2.316 2.318 2.317 2.317 2.315 ↔ 2.320 2.313 ↔ 2.321 2.315 ↔ 2.319
4 1.452 1.450 1.452 1.450 1.447 ↔ 1.453 1.446 ↔ 1.457 1.448 ↔ 1.453
5 0.971 0.972 0.960 0.972 0.965 ↔ 0.978 0.934 ↔ 0.986 0.965 ↔ 0.978
6 1.122 1.120 1.124 1.120 1.115 ↔ 1.126 1.108 ↔ 1.141 1.115 ↔ 1.126
7 0.992 1.002 0.974 1.006 0.976 ↔ 1.027 0.910 ↔ 1.037 0.980 ↔ 1.032
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Table 5 Directional dependence of the diffusion coefficients. Diffusion coefficients based on model 4 are used. Directional dependence is
strong in the low energy groups. Note the unexpected result in group 5, where the directional dependence is smaller in the voided situation.
This is probably due to the change of the neutron spectrum upon voiding.

Group Dz Dx
Dx−Dz

Dz
[%] Dz Dx

Dx−Dz

Dz
[%]

3D model, sodium present 3D model, sodium absent

1 3.625 3.667 1.159 4.159 4.276 2.813
2 2.978 3.022 1.148 3.479 3.615 3.909
3 1.870 1.849 -1.123 2.250 2.370 5.333
4 1.046 1.201 14.82 1.230 1.504 22.28
5 0.292 0.488 67.23 0.760 1.015 33.55
6 0.769 0.955 24.19 0.817 1.168 42.96
7 0.498 0.941 88.96 0.532 1.086 104.1

1D model, sodium present 1D model, sodium absent

1 3.593 3.650 1.586 4.128 4.245 2.834
2 2.968 3.002 1.146 3.465 3.575 3.175
3 1.856 1.828 -1.509 2.234 2.317 3.715
4 1.038 1.183 13.97 1.218 1.450 19.05
5 0.281 0.485 72.60 0.748 0.972 29.95
6 0.762 0.925 21.39 0.803 1.120 39.48
7 0.468 0.904 93.16 0.539 1.006 86.64
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