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Activation of FOX01 by Cdk1 in Cycling
Cells and Postmitotic Neurons

Zenggiang Yuan,'*t Esther B. E. Becker,™* Paola Merlo,* Tomoko Yamada," Sara DiBacco,"
Yoshiyuki Konishi,> Erik M. Schaefer,? Azad Bonni't

Activation of cyclin-dependent kinase 1 (Cdk1) has been linked to cell death of postmitotic neurons

in brain development and disease. We found that Cdk1 phosphorylated the transcription factor FOXO1
at Ser?*? in vitro and in vivo. The phosphorylation of FOXO1 at Ser®*® disrupted FOXO1 binding with
14-3-3 proteins and thereby promoted the nuclear accumulation of FOXO1 and stimulated FOXO1-
dependent transcription, leading to cell death in neurons. In proliferating cells, Cdk1 induced FOXO1

S er249

phosphorylation at the G,/M phase of the cell cycle, resulting in FOXO1-dependent expression

of the mitotic regulator Polo-like kinase (Plk). These findings define a conserved signaling link
between Cdk1 and FOXO1 that may have a key role in diverse biological processes, including

the degeneration of postmitotic neurons.

of neuronal cell death that is relevant to

brain development and degeneration (/-6).
As a major apoptotic kinase, Cdkl might be
expected to orchestrate a program of gene ex-
pression that activates the cell death machinery.
Because Cdk1 resides in the cytoplasm in neu-
rons (1, 5, 6), we reasoned that Cdk1 might regu-
late gene expression through proteins that shuttle
between the cytoplasm and nucleus. The FOXO
transcription factors undergo nucleocytoplasmic
shuttling and control cell death (7, 8). We there-
fore investigated the role of FOXO proteins in
propagating the Cdkl cell death signal to the
nucleus in postmitotic neurons.

FOXOL1 contains a conserved putative Cdk1
phosphorylation site within the forkhead domain
at Ser”® (fig. S1A). Cdk1 catalyzed the phospho-
rylation of FOXO1 in vitro (Fig. 1A) (9). Cdkl
also phosphorylated the FOXO1 forkhead do-
main (FOXO1FD) in vitro, but failed to phos-
phorylate a FOXO1FD mutant in which Ser**’
was replaced with alanine (FOXOI1FD S249A)
(fig. S1B). We generated an antibody that spe-
cifically recognizes FOXOI1 that is phosphoryl-
ated at Ser**® (9). The phosphoS249-FOXO1
antibody recognized recombinant FOXO1 or
FOXOI1FD that was phosphorylated by Cdk1 in
vitro but did not recognize unphosphorylated
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FOXO1 or the FOXO1FD S249A mutant that
was incubated with Cdkl1 in vitro (Fig. 1B and
fig. SIC). We expressed cyclin B and Cdk1 in
293T cells together with FOXO1 or a S249A
FOXO1 mutant. Immunoblotting of total lysates
or FOXO1 immunoprecipitates of transfected cells
revealed that Cdk1 increased the amount of phos-
phorylated FOXO1 at Ser*® in cells (Fig. 1C and
fig. S1D). In other experiments, depletion of endog-
enous Cdk1 by RNA interference (RNA1) reduced
the FOXO1 phosphorylation in cells (Fig. 1D
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and fig. S1E), which suggested a requirement for
endogenous Cdkl in the FOXO1 phosphoryl-
ation at Ser** in cells.

We tested whether the activation of endoge-
nous Cdk1 induced the phosphorylation of endog-
enous FOXO1 at Ser*® in neurons. Endogenous
Cdkl is activated in cerebellar granule neurons
upon inhibition of membrane depolarization (7, 3).
We found that the amount of FOXO1 Ser**
phosphorylation was higher in neurons deprived
of membrane-depolarizing concentrations of KCl
(5 mM KCI) than in neurons maintained in de-
polarizing medium (30 mM KCl) (Fig. 1E). The
Cdk1 inhibitor roscovitine reduced the FOXO1
Ser’® phosphorylation in neurons deprived of
depolarization (Fig. 1E). Thus, endogenous Cdk1
appears to mediate activity deprivation—induced
phosphorylation of endogenous FOXO1 at Ser**’
in neurons.

The identification of Cdk1-induced phospho-
rylation of FOXO1 at Ser**” led us to test wheth-
er the FOXO1 phosphorylation mediated the
ability of Cdk1 to trigger cell death in neurons.
Because endogenous Cdk1 is required for apo-
ptosis of activity-deprived neurons (7, 3), we de-
termined the role of FOXO!1 in apoptosis of
neurons deprived of activity. We transfected
neurons with the U6/foxo RNAI or control U6
plasmid. FOXO RNA! reduced the expression of
FOXO1 in primary granule neurons and
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Fig. 1. Cdk1 phosphorylates
FOXO01 at Ser®*. (A) Recom-
binant cyclin B, Cdk1, and full-
length glutathione S-transferase
(GST)-FOX01 were subjected
to an in vitro kinase assay (9).
(B) Recombinant GST or GST-
5 FOXO01, together with cyclin B
¥ and Cdk1, were subjected to
an in vitro kinase assay and
were immunoblotted with the
phosphoS249-FOX01 or GST
antibody. Asterisks indicate GST-

FOXO1 degradation products. (C) Lysates of 293T cells transfected with cyclin B and Cdk1 or the control
vector, together with the green fluorescent protein (GFP) fusion protein GFP-FOXO1 or the GFP-FOX0S249A
mutant, were immunoblotted with the phosphoS249-FOXO1 antibody or a mouse monoclonal FOXO1
antibody. (D) Lysates of Neuro2A cells transfected with the control U6 or U6/cdk1 RNAi plasmid and GFP-
FOX01 were immunoprecipitated with the GFP antibody and immunoblotted with the phosphoS249-
FOXO01 antibody. Lysates were also immunoblotted with the GFP or Cdk1 antibody. (E) Lysates of granule
neurons maintained in membrane-depolarizing medium (30 mM KCl) or in which depolarization was
inhibited (5 mM KCl) in the presence of the Cdk1 inhibitor roscovitine (10 uM) or its vehicle [dimethyl
sulfoxide (DMSO)] were immunoblotted with the phosphoS249-FOXO1 or FOXO1 antibody.
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Fig. 2. Cdk1-FOXO01 signaling mediates activity deprivation—induced neuronal ~ A 45 B &0
death. (A) Granule neurons transfected with the Ué/foxo RNAi or control U6 T =
plasmid were placed in membrane-depolarizing medium (30 mM KCl) or > 9}
deprived of membrane depolarization (5 mM KCl) for 30 hours and subjected to F gg E
analysis of cell death (9). FOXO RNAi attenuated activity deprivation—induced §- 20 5
neuronal cell death [mean + SEM, n = 4; P < 0.005, analysis of variance g 5 g
(ANOVA) followed by Fisher's PLSD post hoc test] but not cell death in 10
depolarized neurons (see also fig. 52C). (B) Granule neurons transfected with 5
the Ué6/foxo RNAi or control U6 plasmid, together with cyclin B and Cdk1 orthe (mM‘; 30 5 30 5
control vector, were analyzed as in (A). FOXO RNAi inhibited cyclin B and Cdk1— U6 U6/foxo
induced cell death (mean + SEM, n = 3; P < 0.005, ANOVA followed by Fisher’s 0
PLSD post hoc test). (C) Lysates of COS cells transfected with the U6/foxo RNAi ¢ D 45
or control U6 plasmid together with FOXO1 or an RNAi-resistant rescue form of = 40
FOXO1 (FOXO1-Res) were immunoblotted with a FOXO1 or 14-3-3 antibody FOXO1 FOXO1-Res s\w, 35
(9). (D) Granule neurons transfected with the Ué/foxo RNAi plasmid together ue + - + - % 30
with FOXO1-Res or the FOXO1-ResS249A mutant were analyzed as in (A). V& SR g %
FOXO1-Res, but not FOXO1-ResS249A, induced cell death in activity-deprived -FO><O1 §. fg
neurons in the background of FOXO RNAi (mean + SEM, n = 3; P < 0.05, [E==-]-1433 10
ANOVA followed by Fisher’s PLSD post hoc test). 5
KCl (ml\(/)l)
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Fig. 3. FOXO1 Ser**® phospho-
rylation disrupts the FOXO1-14-
3-3 interaction and promotes
nuclear accumulation of FOXO1,
leading to activation of transcrip-
tion. (A) Lysates of 293T cells
transfected with GFP-FOXO1 or
GFP-FOX01S249A, together with
cyclin B and Cdk1 or the control
vector, were immunoprecipitated
with the GFP antibody and im-
munoblotted with the 14-3-3 or
phosphoS249-FOX01 antibody.
Lysates were also immunoblotted
with the GFP or 14-3-3 antibody.
(B) Lysates of granule neurons
maintained in depolarizing medi-
um (30 mM KCl) or deprived of
depolarization (5 mM KCl), in the
presence of the Cdkl inhibitor
roscovitine (10 uM) or its vehicle
(DMSO0), were immunoprecipitated
with the FOXO1 antibody and im-
munoblotted with the 14-3-3 an-
tibody. Lysates were immunoblotted
with the phosphoS249-FOX01 or
14-3-3 antibody. (C) Granule neu-
rons transfected with GFP-FOXO1
together with the U6/cdk1 RNAi or
control U6 plasmid maintained in
depolarizing medium (30 mm KCl)
or deprived of depolarization (5
mM KCl) were analyzed by fluo-
rescence microscopy. Represent-

ative images are shown (left, GFP-FOXO1; center, Hoechst;
right, merged). Arrowheads indicate neurons displaying nu-
clear localization of GFP-FOXO1. Scale bar, 10 um. (D)
Lysates of granule neurons transfected with GFP-FOXO01,
GFP-FOX01S5249A, or the control vector and depolarized
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(30 mM KCl) or deprived of depolarization (5 mM KCl) were

immunoblotted with the BIM, Erk1/2, or FOXO1 antibody. (E) Granule neurons
transfected with the U6/cdkl RNAi or control U6 plasmid together with the
3xIRS-luciferase (left) or BIM-luciferase (right) reporter gene and tk-renilla were
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BIM-luciferase
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deprived of depolarization and subjected to luciferase assays. Cdk1 knockdown
reduced the expression of the 3xIRS (mean + SEM, n = 3; P < 0.001, t test) and
BIM-luciferase (mean + SEM, n = 3; P < 0.005, t test) reporter gene.
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protected neurons against cell death induced by
suppression of depolarization (Fig. 2A and fig.
S2A) (9). FOXO RNAI also suppressed the
ability of expression of cyclin B and Cdkl to
induce cell death in neurons (Fig. 2B). To
determine the importance of the phosphorylation
of FOXO1 at Ser™ in activity deprivation—
induced neuronal apoptosis, we constructed an
expression plasmid encoding an RNAi-resistant
form of FOXO1 (FOXOI1-Res) (9). Whereas
FOXO RNAI induced depletion of FOXO1 en-
coded by wild-type cDNA, FOXO RNA:I failed
to induce efficient depletion of FOXO1-Res
(Fig. 2C). Expression of FOXO1-Res triggered
apoptosis in FOXO-depleted neurons deprived of
activity (Fig. 2D). By contrast, a FOXO1-Res
mutant in which Ser**” was replaced with alanine
(FOXO1-ResS249A) failed to effectively induce
neuronal cell death in the background of FOXO
RNAI (Fig. 2D). Thus, the Ser** phosphoryl-
ation appears to be required for the ability of
FOXOL1 to mediate activity deprivation—induced
neuronal apoptosis.

We characterized the mechanism by which
the Cdk1-induced phosphorylation of FOXOT1 at
Ser”® stimulates FOXO1-dependent neuronal cell
death. Ser* lies within a conserved short FOXO1
peptide motif that includes the Akt site of phos-
phorylation, Ser”® (fig. S1A). Because Ser”-
phosphorylated FOXO1 interacts with 14-3-3
proteins, leading to FOXO1’s cytoplasmic seques-
tration and inhibition (7, &), we tested whether
phosphorylation of FOXO1 at Ser** might reg-
ulate FOXO1’s interaction with 14-3-3 proteins.
Although FOXO1 or its forkhead domain in-
teracted efficiently with 14-3-3 proteins, expres-

A NIH3T3 B ¢

Noc Cc

sion of Cdk1 reduced these interactions (Fig. 3A
and fig. S3A). However, Cdkl1 failed to inhibit
the interaction of FOXO1S249A with 14-3-3 pro-
teins (Fig. 3A). Cdk1 did not affect Ser*® phos-
phorylation in FOXO1 or its forkhead domain
(fig. S3, A and B), which suggests that the Ser**’
phosphorylation inhibits the interaction of Ser**°-
phoshorylated FOXO1 with 14-3-3 proteins.

To ascertain whether endogenous Cdk1 might
regulate the interaction of endogenous FOXOI
with 14-3-3 proteins in neurons, we assayed the
association of these proteins in granule neurons
in the presence or absence of membrane depo-
larization. In depolarized neurons, endogenous
FOXOL interacted with endogenous 14-3-3 pro-
teins (Fig. 3B). However, withdrawal of depolar-
ization, which stimulates the activity of endogenous
Cdk1 in neurons (/, 3), reduced the interaction
(Fig. 3B). The Cdk1 inhibitor roscovitine blocked
the ability of activity deprivation to disrupt FOXO1’s
association with 14-3-3 proteins (Fig. 3B). These
findings suggest that endogenous Cdk1-induced
phosphorylation of FOXO1 at Ser**® releases
FOXO1 from sequestration by 14-3-3 proteins in
neurons.

Because 14-3-3 proteins sequester FOXO
proteins in the cytoplasm (7, 8), we characterized
the consequences of the Ser** phosphorylation
on the subcellular localization of FOXO1. Whereas
FOXO1 was localized predominantly in the cyto-
plasm in depolarized neurons, FOXO1 accumu-
lated in the nucleus in neurons deprived of
activity (Fig. 3C and fig. S4, A to C). Depletion
of endogenous Cdkl by RNAi reduced the nu-
clear accumulation of FOXOL1 in activity-deprived
neurons (Fig. 3C and fig. S4, A to C). In other
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experiments, expression of cyclin B and Cdk1
triggered the nuclear accumulation of wild-type
FOXOI but not FOXO1S249A in neurons (fig. S5).
These results suggest that Cdkl-induced phos-
phorylation of FOXO1 Ser*® stimulates the nu-
clear accumulation of FOXO1 in neurons.

The finding that Ser’*’-phosphorylated
FOXO1 accumulates in the nucleus led us to test
whether Cdk1-FOXO1 signaling might activate
FOXO-dependent transcription. Overexpression
of Cdkl augmented the ability of FOXO1, but
not of FOXO1S249A, to stimulate the expression
of a luciferase reporter gene controlled by a
FOXO-responsive promoter (3xIRS-luciferase) in
granule neurons (fig. S6) (9). Withdrawal of mem-
brane depolarization induced the endogenous
expression of the FOXO-responsive apoptotic
gene BIM in granule neurons (Fig. 3D). Expres-
sion of FOXO1S249A, but not of FOXO1, reduced
the induction of endogenous BIM expression
upon activity deprivation (Fig. 3D). Depletion
of endogenous Cdkl by RNAIi in neurons re-
duced the expression of both the 3xIRS-luciferase
reporter gene and a reporter gene controlled by
the BIM promoter (Fig. 3E). Together, these
results suggest that endogenous Cdkl1-induced
phosphorylation of FOXO1 at Ser**® stimulates
FOXO1-dependent transcription, leading to BIM
expression and consequent neuronal cell death.

Overexpression of the Cdk1-related protein
kinase Cdk2 was reported to phosphorylate FOXO1
at Ser**, thereby inducing the nuclear exclusion
and inhibition of FOXO1 in prostate cancer cells
(10). We found that overexpression of Cdk2 or
Cdk1 stimulated FOXO1-dependent transcription
and failed to promote the nuclear export of
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Fig. 4. Endogenous Cdk1-FOXO1 signaling stim-
ulates Plk expression in proliferating cells. (A to F)
NIH 3T3 fibroblast cells were synchronized by
contact inhibition (Cl) or treatment with nocoda-
zole (Noc) as described (9) and were analyzed for
DNA content by flow cytometry. (A) Representative
profiles. (B) Lysates of synchronized NIH 3T3 cells
were immunoblotted with phosphoS249-FOX01,

Plk1, cyclin B, FOXO1, or Erk1/2 antibody. (C) Lysates of NIH 3T3 cells synchronized in G,/M were fractionated into cytoplasmic and nuclear components and
immunoblotted with the FOXO1, phosphoS249-FOX01, SP1, or 14-3-3 antibody. The 14-3-3 and SP1 proteins indicate the cytoplasmic and nuclear
compartments, respectively. (D) NIH 3T3 cells transfected with 3xIRS-luciferase reporter gene and synchronized as in (A) were subjected to luciferase assay.
FOXO-dependent reporter expression was increased in Gy/M-enriched relative to Gyo/Gy-enriched NIH 3T3 cells (mean = SEM, n = 5; P < 0.01, ¢ test). (E) The
amount of Plk mRNA was induced in G,/M-enriched relative to Gg/G;-enriched NIH 3T3 cells (mean + SEM, n = 3; P < 0.001, t test). (F) Chromatin
immunoprecipitation analysis of synchronized NIH 3T3 cells, using a rabbit immunoglobulin G control or a FOXO1 antibody. (G) NIH 3T3 cells transfected with
U6-GFP/foxo RNAi or U6-GFP control RNAi plasmid were sorted on the basis of GFP expression. Lysates of sorted cells were immunoblotted with the Plk, FOXO1,
or ERK1/2 antibody. (H) NIH 3T3 cells transfected with U6-GFP/foxo RNAi plasmid and FOXO1-Res or FOXO1-ResS249A were sorted on the basis of GFP
expression. Lysates of sorted cells were analyzed as in (G).
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FOXOL1 in diverse cell types, including prostate
cancer cells (figs. S7 and S8) (9). We confirmed
that overexpression of Cdk2 induced phospho-
rylation of FOXO1 at Ser”* (fig. S9A). However,
the FOXO1 Ser** phosphorylation was not re-
duced in Cdk2-deficient fibroblasts (fig. S9, B
and C) (9), which suggests that endogenous Cdk2
may not be uniquely required for the FOXO1
Ser** phosphorylation in proliferating cells.

To determine the consequences of endoge-
nous FOXO1 Ser**® phosphorylation in pro-
liferating cells, we characterized the FOXO1
phosphorylation in distinct phases of the cell
cycle in which Cdk1 activity is low (Gg or G;) or
high (G/M) in synchronized DU145 prostate
cancer cells (fig. S10), NIH 3T3 fibroblasts (Fig. 4),
and murine embryonic fibroblasts (MEFs) (fig. S11).
Endogenous FOXO1 phosphorylation was low
in cells enriched for the G or G, phase and high
in cells enriched for the G,/M transition of the
cell cycle (Fig. 4B and figs. S10B, S11B, and
S12). These findings suggest that phosphoryl-
ation of endogenous FOXO1 at Ser™* coincides
with endogenous Cdk1 activity in the cell cycle.

We assessed the effect of phosphorylation of
endogenous FOXO1 at Ser** on the subcellular
localization of FOXO1 in proliferating cells. In
subcellular fractionation assays, endogenous FOXO1
and Ser***-phosphorylated FOXO1 in particular
were associated with the nuclear fraction in Go/M-
enriched cells (Fig. 4C and figs. S10C and S11C).
We also assessed the effect of phosphorylation of
endogenous FOXOL1 at Ser**® on FOXO-dependent
transcription in proliferating cells. Expression of

the FOXO-responsive reporter gene was higher
in Gy/M-enriched cells than in Gy/G;-enriched
cells (Fig. 4D and figs. S10D and S11D).

The gene promoter of the mitotic regulator
Polo-like kinase (Plk) harbors conserved FOXO
binding sites, and Plk transcription is induced by
FOXO3 at the Go/M transition (/7). We therefore
tested whether the gene encoding Plk might rep-
resent a direct target of FOXOLI in proliferating
cells. Plk mRNA and protein levels were higher
at the Go/M transition than in the Go/G; phase of
the cell cycle (Fig. 4, B and E, and figs. S10, B
and E, and S11, B and E). In addition, FOXO1
occupied the Plk gene promoter at G,/M but not
at Go/G, (Fig. 4F and fig. SI0F). FOXO RNAIi
reduced endogenous Plk levels in cells (Fig. 4G).
Expression of the RNAi-resistant FOXO1-Res,
but not FOXO1-ResS249A, restored Plk expres-
sion in cells in the background of FOXO RNAi
(Fig. 4H and fig. S13). These results suggest that
the gene encoding Plk represents a G,/M-specific
target gene of Ser”*’-phosphorylated FOXO1 in
proliferating cells.

Our study reveals an intimate and conserved
signaling link between the protein kinase Cdkl
and the transcription factor FOXO1. Cdk1 phos-
phorylates FOXO1 at Ser**® and thereby disrupts
FOXO1’s interaction with 14-3-3 proteins, driv-
ing FOXO1 into the nucleus to activate a cell
death program of gene expression in neurons.
Cdk1-FOXOT1 signaling also operates at the Go/M
transition of the cell cycle in proliferating cells
and thereby stimulates the expression of the mi-
totic regulator Plk. The Cdk1-FOXO1 signaling

pathway may thus have diverse functions in
cellular homeostasis, including regulation of neu-
ronal death and degeneration in brain develop-
ment and disease.
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