

Experimental on scattering of slush due to vehicle passage Second report

メタデータ	言語: jpn
	出版者:
	公開日: 2013-08-09
	キーワード (Ja):
	キーワード (En):
	作成者: 藤本, 明宏, 渡邊, 洋, 内藤, 知照, 福原, 輝幸
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10098/7691

第22回 寒地技術シンポジウム

2006年11月29,30,12月1日

藤	本	19]	宏	(福井大学大学院 工学研究科)	
渡	邊		iř	(福井大学 特別研究員)	
内	藤	知	Rt	(福井大学大学院 工学研究科)	
褶着	原	輝	蓉	(*)	

Experimental on scattering of slush due to vehicle passage - Second report -

A Fuilmata	(IIniuonaity of Fulmi)
A. Fujimoto	(Oniversity of Fukul)
H. Watanabe	(University of Fukui)
T. Naito	(University of Fukui)
T. Fukuhara	(University of Fukui)

1. はじめに

従来,消雪散水量は路面消・融雪施設等設計要領¹⁾を基 に算定されてきた.この散水量は路面雪氷の融解熱量に換 算して決定されるが,通過車両に伴う飛散は必ずしも適切 に評価されているとは言い難い.そのため,特に低温度の 河川水を利用した散水消雪区間では過剰散水になる場合が あり²⁾,図-1のように散水は表面水となって道路上を流れ る.これより対向車,歩行者および民家への水はね,道路 沿道環境への塩害などの問題が生じている.このような背 景から適切な散水量の決定には,飛散のより正確な評価が 必要となる.

飛散はシャーベットのように粒径が大きく氷粒子間の結 合が弱い雪氷で起こる(図-2)が,飛散量や飛散距離を詳 しく調べた報告は見当たらない.

筆者らは平成17年よりシャーベットの飛散について研究 を行っており,普通車の通過に伴う飛散量とその空間分布 を前報³⁾で述べた.しかしながら,前報では限られた雪氷 条件下での結果に留まっており,定量的評価までには至ら なかった.本論文では,前報の研究成果に昨冬実施した中 型車による飛散実験を加えて,シャーベットの飛散を定量 的に評価したので,ここにその成果を報告する.

2. 飛散実験と評価方法

2.1 概要

普通車による飛散実験(Exp-Nv)は平成17年3月1日に、 中型車による飛散実験(Exp-Nv)は平成18年1月18日お よび19日の2日に亘り、それぞれ福井市で実施した.以下 に Exp-Mvの概要について述べる.なお、Exp-Nvの概要に ついては前報³を参照されたい.Exp-Mvは図-3に示すよう に助走区間150m、シャーベット区間5m、制動区間80mの アスファルト道路(計235m)で2tトラックを用いて行っ

図-1 福井県敦賀市国道 161 号線地先における散水路面状況 (2006年1月11日5:30,山中雪寒基地前)

図-2 シャーベット路面における車両通過後の路面雪氷状況 (2006年2月15日12:00,福井県運動公園)

た. 2t トラックは長さ 5.2m, 幅 2.2m, 高さ 2.3m および重 量 3.5tで, そのタイヤは TOYO 製の 7.50R16 (スタッドレス

^{藤本}明宏/福井大学大学院工学研究科システム設計工学専攻 (^{〒910-8507} 福井県福井市文京 3-9-1 TEL 0776-27-8595 FAX 0776-27-8746 E-mail:<u>afujimot@anc.anc-d.fukui-u.ac.jp</u>)

- 239 -

第22回寒地技術シンポジウム(2006)

図-3 飛散実験(Exp-Mv)の概要

測定面日一階

末 1

20 1	MACAH S				
測定項目		目 使用機器		測点	収集
気温・湿度		1	5分每		
厚	ノギス	6	JIK HLAL		
含水率	含水率計	2	九百又日小		
厚	ノギス	3			
含水率	含水率計	1	JIK HLAN		
飛散量		【量計 8 ⁹			
最大飛散距離		1			
	度 厚 含水率 厚 含水率 巨離	取用 取用 重 使用機器 度 TRHセンサー 厚 ノギス 含水率 含水率計 厚 ノギス 含水率 含水率計 電子重量計 巨離 メジャー	取用機器 測点 度 TRHセンサー 1 厚 ノギス 6 含水率 含水率計 2 厚 ノギス 3 含水率 含水率計 1 電子重量計 8 巨離 メジャー 1		

タイヤ)である.実験1日目の天候は晴れ,気温は3.5~7.3℃,実験2日目は曇り,気温は0.5~2.0℃であった.

実験手順は以下のとおりである.

- (i) アスファルト舗装上にシャーベットの規定区間(5.0m×1.5m)を作成する(図-4(a)).
- (ii) シャーベット厚および質量含氷率を測定する.
- (iii) 速度 50km/h で試験車を走らせ、シャーベットを飛散 させる(図-4(b)).
- (iv) シャーベットの飛散量および飛散距離,並びに残留 シャーベット質量含氷率を測定する(図-4(c)).

なお、シャーベットは密度≒400kg/m³の雪を規定区間に 均一に敷き詰めた後、水道水を加えて作成した.

表-1 は測定項目一覧を示す. 飛散前のシャーベット厚は ノギスを用いて6地点(図-3中の△)で,シャーベット質 量含氷率は2地点(図-3中の◎)で,それぞれ測定し平均 値を採用した. 飛散後にはわだちのシャーベット質量含氷 率を1点および飛散量と飛散距離をそれぞれ測定した.な お,飛散量と飛散距離の測定方法については本論 2.2 で詳

述する.また,シャーベット質量含氷率の測定方法については前報³⁾を参照されたい.

実験はシャーベット厚と質量含氷率を変えて,計19ケ スとした.

2.2 飛散量と飛散距離の測定

実験に際して、シャーベット端から車両進行方向と直交 に 8.0m までビニールシート(幅 1.0m)を敷き(図-4(c)参 照)、飛散シャーベットを収集する.飛散量は最小目盛0.1g の電子重量計で測定した.飛散距離はわだち外縁からの距 離とした. 第22回寒地技術シンポジウム(2006)

3. 飛散実験結果

3.1 シャーベット質量含氷率

Exp-Nv の質量含氷率(0e)の頻度分布は図-5 に示すと おりであり, 0.25~0.35が1, 0.35~0.45が3, 0.45~0.55が4 であった. 他方, Exp-Mvの頻度は 0.35~0.45 が 1, 0.45~0.55 が9, 0.55~0.65 が3, 0.75~0.85 が5, 0.85~0.95 が1 であっ た.

図-6はExp-Mvの車両通過前と通過後のGeの関係を示す. これより, θ_αは車両通過によって殆ど変化しないことが分 る.

3.2 飛散密度の空間分布

図-7 は飛散密度の空間分布を示す. 飛散密度 m。(kg/m²) は飛散収集ビニールシート単位面積(1m²)当りの飛散量 を意味し、同図の縦軸に示す. 横軸は飛散距離 L_s(m) で ある.同図は中型車による 19 ケースの実験の中で, Casel (θ_{av} =0.51, シャーベット厚 (H_s) =20mm), Case2

 $(\theta_{ke}=0.55, H_s=41 \text{ mm})$ および Case3 $(\theta_{ke}=0.59, H_s=55 \text{ mm})$ の3つの結果を示す.

CaselおよびCase2のm。はLs=0~1.0mの範囲で極大値(第

1ピーク)をとり、その後 Lの増大に伴って一旦減少した 後,再び極大値(第2ピーク)をとり、ゼロに向かう.こ うしたダブルピーク型に対して、Case3のmsはLs≦3mまで は徐々に減少し、それ以降急減するためにシングルピーク となる.

80

0.8

40.0

50.0

1.0

飛散量と飛散距離の定量的評価 4.

4.1 最大飛散距離

図-8 はシャーベット厚(Hs)と最大飛散距離(Lmax)の 関係を示す.中型車のLma は θae=0.61~0.75を境として,大 きく変化する. Bee<0.61の Lmax は中型車(○)と普通車(●) に関係なく、H_s (mm) に比例して次式のように非線形に増 大する.

$$L_{max} = 2.6 + 1.2 \ln(H_s) \begin{pmatrix} Exp - Mv, 0.44 \le \theta_{ice} \le 0.61 \\ Exp - Nv, 0.30 \le \theta_{ice} \le 0.52 \end{pmatrix}$$
(1)

一方, θ_{ke}≧0.75 では L_{max} (△) は 2.0m 以内に留まる.

第22回寒地技術シンポジウム(2006)

図-9 シャーベット厚と単位幅飛散量の関係

4.2 飛散量

図-9 はシャーベット厚 (H_s) と単位幅飛散量 M_{sa} (kg/m) の関係を示す. M_{sa} は図-7 に示した飛散密度 (m_s) を積算 した値である.中型車のデータに限られるが, M_{sa} と H_s の 関係は L_{max} と H_s の関係と同様に, θ_{ke} =0.61~0.75 で大きく 異なる. θ_{ke} <0.61 では中型車 (O) と普通車 (\bigcirc) に関係 なく, M_{sa} は H_s の増加に伴い次式のように線形的に増加す る.

$$M_{sq} = 0.11 H_s \left(Exp - Mv, 0.44 \le \theta_{ice} \le 0.61 \right)$$
 (2)

$$M_{sa} = 0.08H_s (Exp - Mv, 0.30 \le \theta_{ice} \le 0.52)$$
 (3)

 M_{sa} は同じ H_s の場合,中型車の方で相対的に大きい. 一 方, $\theta_{ae} \ge 0.75$ では飛散し難いことから M_{sa} (Δ)は, H_s に 依存せず $\theta_{ee} < 0.61$ の M_{sa} (O)に比べて小さい. 木下ら⁴ は含水率 30%以上,すなわち $\theta_{ee} \le 0.7$ で飛散が生じると定義 しており,これは本結果と概ね一致する.

4.3 飛散密度の空間分布の無次元評価

飛散密度の空間分布を統一的に表現する目的で無次元化 を試みた. 無次元化は図-7 の飛散密度 m_s (kg/m²) を M_{sa} (kg/m) で除して行われ,これを無次元飛散密度 (M_s) と 称する. また L_sを L_{max}で除したものを無次元飛散距離 (L_s) とする. 図-10 に示すように,データのばらつきはあるが, M_s は H_sに係りなく L_s の 4 次関数で与えられる.

$$M_s^* = \sum_{n=0}^{4} a_n \left(L_s^* \right)^n \tag{4}$$

ここに,式(4)中の係数*a_i~a_i*は表-2に示す値で与えられる. なお,中型車における重相関係数は 0.87,普通車では 0.83 であった.また,中型車での*M*,の標準偏差は 0.10 で,普 通車では 0.05 であり,普通車より中型車でばらつきが大き

表-	2 式(4)中の係数	

10	ao	a	a_2	<i>a</i> 3	a4
Exp-Mv	0.48	-2.39	7.84	-10.57	4.65
Exp-Nv	0.59	-4.10	11.59	-13.13	5.06

61.

4.4 飛散量の算出方法

車両通過に伴う飛散量は次のように求める.

- (i) 式(1)より最大飛散距離(L_{max})を求める.
- (ii) 式(2)あるいは式(3)より単位幅飛散量(M_{sa})を求める.
- (iii) 式(4)より飛散密度の無次元空間分布 (Ms[•]と Ls[•]との関係) が得られる.
- (iv) 以上より, 任意区間 (*L₁~L₂*) への飛散量 (*M_a*) は次 式により求まる.

$$A_{a} = M_{sa} \times \frac{\int_{L_{1}}^{L_{2}} M_{s}^{*} dL_{s}^{*}}{\int_{0}^{I} M_{s}^{*} dL_{s}^{*}}$$

(5)

ここに、
$$L_1'=L_1/L_{max}$$
, $L_2'=L_2/L_{max}$ である.

5. おわりに

飛散実験を実施し、シャーベット厚および質量含氷率と 飛散量の関係や飛散分布を普通車と中型車でそれぞれ調べた.

その結果,以下の結論を得た.

- (1) 路面上のシャーベット質量含氷率は飛散前と飛散後^で 殆ど変化しない.
- (2) 飛散密度の空間分布は式(4)のように無次元表示が可能 である.
- (3) 最大飛散距離は 4.0~7.0m の範囲にあり,シャーベッ ト質量含氷率が0.61未満ではシャーベット厚さに伴っ

- て対数関数的に増加し,普通車と中型車で大差はない. ただし、質量含氷率が 0.75 以上になると最大飛散距離 は2m以内に留まる.
- (4) 飛散量はシャーベットが厚くなるにつれて線形的に増
- 加し、その増加率は中型車で大きい、例えば、同じシャー ベット厚さであれば、中型車の飛散量は普通車のそれ の約1.4倍となる.
- (5) 飛散量と飛散距離を無次元評価することで、わだち外 縁から車両進行方向と直行方向の任意区間への飛散量 を求めることが可能となった.

今後はさらに実験データを追加するとともに、飛散の空 間分布であるダブルピークのメカニズムおよび走行速度と 飛散量の関係についてより詳しく調べる. Accele F (1-) 5A(3/28-21.7mm, P)

謝辞:最後に本研究を実施するに当たり,試験場所の提供 に関して福井県に多大なご協力を頂いた. ここに記して謝 意を表す.

参考文献

- 1) 建設省北陸地方建設局監修:路面消·融雪施設等設計 要領、(社)日本建設機械化境界北陸支部, 2000.
- 2) 淡中明子,藤本明宏,渡邊洋,福原輝幸:散水消雪設 備におけるシャーベット塊に作用する路面表流水の流 体力,寒地技術論文・報告集,北海道開発技術センター, Vol. 21, pp. 642-646, 2005.
- 3) 内藤知照,藤本明宏,渡邊洋,福原輝幸:車両通過に 伴うシャーベットの飛散実験 ~その1~,寒地技術 論文・報告集,北海道開発技術センター, Vol.21, pp. 679-682, 2005.
- 4) 木下誠一,秋田谷英次,田沼邦雄:道路上の雪氷の調 查 II, 低温科学物理篇, Vol. 28, pp. 311-323, 1970.

Mar and a star