A high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet

<table>
<thead>
<tr>
<th>URL</th>
<th>http://hdl.handle.net/10098/1603</th>
</tr>
</thead>
</table>

言語: eng
出版者:
公開日: 2008-02-14
キーワード (Ja):
キーワード (En):
作成者: IDEHARA, Toshitaka, OGAWA, Isamu, MITSUDO, Seitaro, IWATA, Yousuke, WATANABE, Satoru, ITAKURA, Yutaka, OHASHI, Ken, KOBAYASHI, Hideki, YOKOYAMA, Tomonori, ZAPEVALOV, Vladimir E, GLYAVIN, Mikhail Yu, KUFTIN, Andrey N, MALYGIN, Oleg V, SABCHEVSKI, Svilen P
メールアドレス:
所属:

≡ 2004 Institute of Electrical and Electronics Engin
A High Harmonic Gyrotron With an Axis-Encircling Electron Beam and a Permanent Magnet

Toshitaka Idehara, Isamu Ogawa, Seitaro Mitsudo, Yousuke Iwata, Satoru Watanabe, Yutaka Itakura, Ken Ohashi, Hideki Kobayashi, Tomonori Yokoyama, Vladimir E. Zapevalov, Mikhail Yu. Glyavgin, Andrey N. Kuftin, Oleg V. Malygin, and Svilen P. Sabchevski

Abstract—A gyrotron with an axis-encircling electron beam is capable of high-frequency operation, because the high-beam efficiency is kept even at high harmonics of the electron cyclotron frequency. We have designed and constructed such a gyrotron with a permanent magnet. The gyrotron has already operated successfully at the third, fourth, and fifth harmonics. The frequencies are 89.3, 112.7, and 138 GHz, respectively, and the corresponding cavity modes are TE_{311}, TE_{411}, and TE_{511}. The permanent magnet system is quite novel and consists of many magnet elements made of NbFeB and additional coils for controlling the field intensities in the cavity and electron gun regions. The magnetic field in the cavity region can be varied from 0.97 to 1.18 T. At the magnetic field intensities, the output powers at the third and the fourth harmonics are 1.7 and 0.5 kW, respectively. The gyrotron is pulsed, the pulse length is 1 ms and the repetition frequency is 1 Hz. The beam energy is 40 kV and the beam current is 1.2–1.3 A. Beam efficiencies and emission patterns have also been measured. In this paper, the experimental results of the gyrotron are described and compared with computer simulations.

Index Terms—Axis-encircling electron beam, gyrotron, high harmonic, permanent magnet.

I. INTRODUCTION

The development of gyrotrons is being advanced in two ways. One is the development of high-power, millimeter-wave gyrotrons. At the present time, a gyrotron with a diamond window has achieved 2 MW output power at 170 GHz in a pulse several seconds long [1]. Such high-power gyrotrons are being used for the electron cyclotron heating of fusion plasmas. The other is the development of high-frequency, medium-power gyrotrons as millimeter-to-submillimeter-wave radiation sources for a broad range of applications.

Our gyrotrons developed in the Research Center for Development of Far-Infrared Region at Fukui University (FIR FU) belong to the second type. In FIR FU, we have developed the Gyrotron FU Series which consists of nine gyrotrons. The gyrotron series has achieved frequency tunability over a wide range (from 38 to 889 GHz). With output powers ranging from several tens of watts to several tens of kilowatts. The highest frequency corresponds to a wavelength of 337 μm. This is a current record for high-frequency operation of gyrotron [2].

In order to develop such high-frequency gyrotrons, we usually require high magnetic fields generated by superconducting magnets [3] and/or operation at high harmonics of the electron cyclotron frequency [4], [5]. For FU IVA, for example, [6] a 17 T superconducting magnet is used. Operation with a superconducting magnet is complicated, because we need to transfer liquid helium from a container to cryostat, recover the evaporated helium, and liquefy it and so on.

Recently, we have developed a high harmonic gyrotron with an axis-encircling electron beam and a permanent magnet instead of a superconducting magnet. Operation is much simplified [7], but the field intensity is quite low compared with a superconducting magnet. It is only around 1 T. We have to use higher harmonic operation in order to obtain high frequencies. A gyrotron with an axis-encircling electron beam [a so-called large orbit gyrotron (LOG)] is capable of nth harmonic operation, employing the TE_{n11} cavity mode. In this case, the frequency of electromagnetic wave \(f \) is equal to \(n \) times the electron cyclotron frequency \(f_c \) and the axis-encircling electron beam feels \(n \) cycles of alternating electric field during one electron gyration, and the interaction between an electron and electromagnetic wave is optimized and highly efficient operation is expected. In addition, the mode competition is minimal, because only the TE_{n11} cavity mode is excited when \(f = nf_c \) [8].

In the case of the conventional gyrotron, higher harmonic operation is difficult to realize. The Gyrotron FU Series easily achieved second harmonic operations but third harmonic operation was very rare [9]. Efficiency decreases with harmonic number. On the other hand, in the case of LOG, higher harmonic operation (\(n = 3, 4, 5 \)) is easily excited [10], [11].

In this paper, the design of a LOG with a permanent magnet, construction and the results of preliminary tests are described.

II. OPERATION MECHANISM AND ADVANTAGES OF LOG

The LOG is characterized by the trajectory of the electron beam in the cavity it is known as an “axis-encircling electron
A. Magnet System

The permanent magnet consists of many elements of NdFeB as shown in more detail in Fig. 2. The structure is carefully designed to generate an appropriate profile of magnetic field on the center axis of the magnet system. Each NdFeB layer is divided into 12 elements in the azimuthal direction. An arrow indicates the direction of magnetization of each layer. The resulting field profile along the center axis is shown in Fig. 3. The measured maximum field intensity is 1.0729 T and the uniformity in the region indicated by “A,” the cavity region, is better than 2%. The magnet system has an additional coil in the electron gun region to control the profile of magnetic field there. The coil consists of ten layers, each of ten turns. The coil current can be fixed at values between -13 A and +13 A. The additional field intensity near the cathode is 7×10^{-4} T/A.

B. Gyrotron Tube

Fig. 4 shows the structure of the LOG tube. Electrons are emitted from a circular area on the cathode surface made of LaB$_6$ and accelerated by the potential difference between the cathode and the body of the gyrotron. Electrons feel gradually increasing magnetic field and get vertical energy. Finally, an axis-encircling electron beam is formed and injected into the cavity. This may of producing the axis-encircling beam is quite
different from other LOGs [13], [14]. The whole tube is demountable, so, we can change every component including the cavity, window, and electron gun.

For μth harmonic operation, the cavity should be designed so that the resonant frequency of the $\text{TE}_{\mu 11}$ cavity mode is equal to n times the electron cyclotron frequency. Fig. 5 shows the detailed dimensions of the cavity, cavity I, which was optimized for fourth harmonic operation. In this cavity, TE_{411} cavity mode is excited near the field intensity of 1 T.

An additional coil is installed in the cavity region to control the field intensity there. The coil consists of 7 layers and a total of 74 windings. This coil is pulsed. The pulse width is 18 ms and repetition rate is 1 Hz. The coil current can be changed from -20 A to $+20$ A and the additional field intensity at the cavity is 6.98×10^{-3} T/A.

The inside of the tube is pumped out by an ion pump and a turbo molecular pump. The pressure is kept at 10^{-7} torr. The electromagnetic wave generated in a cavity is transmitted along a circular and is emitted from a boron nitride vacuum window.

C. Experimental Procedure and Conditions

The gyrotron operation is in pulsed. The typical pulse width is 1 ms and the used repetition frequency in abstract is 1 Hz. The maximum acceleration voltage and beam current are 40 kV and 1.5 A, respectively.

A pyroelectric detector is used to monitor the gyrotron output. In order to observe an emission pattern, an array of pyroelectric detectors is mechanically swept over an area about one meter above the output window.

The absolute value of output power is measured calorimetrically by a water load, in which a comparison is made with heating by a 1 W electric heater. Frequency measurement is by a cylindrical cavity frequency meter or a Fabry–Perot interferometer.

IV. EXPERIMENTAL RESULTS

We have already completed the preliminary tests of two cavities. Cavity I was optimized for fourth harmonic operation using the TE_{411} mode, while cavity 2 was optimized for third harmonic using the TE_{311} mode. The test results are as follows.

A. Cavity I for Fourth Harmonic Operation

As described in the previous section, in the TE_{411} cavity made cavity I was designed for the fourth harmonic operation. In Fig. 6, computed efficiency as a function of magnetic field intensity at the cavity is presented. [15] The parameter θ is the pitch factor of the beam electrons. From these results, it is expected that the fourth harmonic operation will be optimized near 1.08 T. The efficiency should be less than 1%.

In Fig. 7, a set of typical experimental results are shown. It is seen that the operation is stable throughout the pulse. The pulse length is about 1 ms and repetition rate is 1 Hz. The acceleration voltage is 40 kV and the beam current is around 1.2 A. The output power was 0.47 kW. The corresponding efficiency is about 0.98%. The frequency measured by a frequency meter was 112.696 GHz.

The output power is plotted in Fig. 8 as a function of acceleration voltage V and in Fig. 9 as a function of the magnetic field intensity B. The parameter is the current I_{PE} in one of the coil layers installed at the electron gun. When I_{PE} is changed, the pitch factor of the beam electron θ changes. This results in a change of efficiency. In the both figures, the corresponding electron cyclotron frequency f_{ce} is indicated above the graphs. Both results are similar to the computer simulation results shown in Fig. 6.

Fig. 10 shows an emission pattern measured 1030 mm above the output window. A kind of standing wave structure in the azimuthal direction is seen. This means a counterrotating TE_{411}
mode coexists with a rotating mode TE_{441}^+. From the observed emission pattern, the fractions of the counterrotating and rotating modes were estimated to be 5% and 95%. The appearance of the counterrotating mode was not expected and we are studying why the mode is present.

Third harmonic operation in the TE_{311} mode has also been achieved by cavity I at a slightly higher field intensity. Fig. 11 shows the output power P as a function of magnetic field intensity B. There are several peaks of output power. The three peaks appearing from 1.15 to 1.2 T are third harmonic operation due to excitation of the TE_{311}, TE_{313}, and TE_{333} cavity modes. The measured frequency for the TE_{311} mode is 89.3 GHz. Frequencies for TE_{312} and TE_{313} are slightly higher. The two peaks appearing below 1.1 T correspond to the fourth harmonic operation due to excitation of the TE_{411} and TE_{412} modes.

The output power for the mode TE_{311} was 1.7 kW. The efficiency was is 3.3%.
Cavity mode. Where the fourth harmonic operation occurs, the fifth harmonic operation appears in the emission pattern. It is shown with the current in one cavity mode. Delivered output power of 2.5 kW, changes as well.

B. Cavity 2 for Third Harmonic Operation

Cavity 2 was designed for third harmonic operation in the TE$_{311}$ cavity mode. The radius and length were 2.36 and 50 mm, respectively.

In Fig. 13, the output power P of third harmonic as a function of the acceleration voltage V_b is shown with the current in one of the electron gun coil layers I_{gc} as a parameter. When V_b is changed, the electron cyclotron frequency f_c changes as well. The range of f_c where the fourth harmonic operation occurs broadens as I_{gc} is increased. The maximum power is 2.5 kW and the corresponding efficiency is 6.25%. The increase of the pitch factor as I_{gc} is increased affects the efficiency and the output power. The measured frequency is 84.88 GHz.

Fig. 14 shows an emission pattern for this mode. A feature of pure TE$_{311}$ mode appears in the emission pattern. It is a manifestation of good mode selection in LOG. This is one of important advantages of LOG for development of high harmonic gyrotron.

V. CONCLUSION

We have constructed a large orbital gyrotron (LOG) with a permanent magnet system. The electron gun and the profile of the magnetic field were optimized for the generation of a high-quality axis-encircling electron beam with a small ripple and large pitch factor.

Experimental tests of two cavities were carried out successfully. Cavity 1 which was optimized for the fourth harmonic operation in the TE$_{411}$ cavity mode, delivered output power of 0.47 kW, corresponding to an efficiency of 0.96% and a frequency of 112.7 GHz. We have cavity 1 also operated at the third harmonic with output power is 1.7 kW, corresponding to an efficiency of 3.3% and a frequency of 89.3 GHz. Cavity 2 which was optimized for the third harmonic operation in the TE$_{311}$ cavity mode. Delivered output power of 2.5 kW, corresponding to an efficiency of 6.25% and a frequency of 84.88 GHz was typically in 40 kW. Operation was pulsed. The pulse width was 1 ms and repetition rate was 1 Hz. Acceleration voltage and beam current are 1.2 to 1.3 A.

Cavity 1 also operated at fifth harmonic in the TE$_{511}$ cavity mode. With rather low output power, of the order of 10 W and a frequency of 138 GHz.

Operations at the third, the fourth, and the fifth harmonics were achieved under acceleration voltage of only 40 kV. At the present, the frequency is ranged in millimeter-wave length region. In the future, we plan to construct a LOG with a superconducting magnet system in order to increase the frequency beyond 1 THz.

REFERENCES

their applications to plasma diagnostics and material physics.

Since 1999, his research interests include development of frequency tunable, submillimeter wave gyrotrons, and their applications to plasma diagnostics and material physics.

Seitaro Mitsu
d was born in Okayama, Japan, on April 17, 1965. He received the B.S., M.S., and D.S. degrees in physics from Okayama University, Okayama, Japan, in 1989, 1991, and 1994, respectively.

After graduating from Okayama University, he joined the Institute for Materials Research, Tohoku University, Sendai, Japan. From 1994 to 1998, he was a Research Associate. During this term, he worked in high-field magnetism. From 1998 to 1999, he was with the Applied Physics Department, Fukui University, Fukui, Japan, as an Associate Professor. Since 1999, he has been an Associate Professor with the Research Center for Development of Far-Infrared Region, Fukui University. His current research interests include development of frequency tunable, submillimeter wave gyrotrons, and their application for submillimeter wave ESR.

Yousuke Iwata was born in Aichi, Japan, on January 8, 1979. He received the B.S. and M.S. degrees in engineering from Fukui University, Fukui, Japan, in 2001 and 2003, respectively.

After graduating from Fukui University, he joined Mitsubishi Electric Company, Hyogo-ken, Japan, as a Researcher. His research interests include the development of submillimeter-wave gyrotrons.

Satoru Watanabe was born in Aichi, Japan, on July 28, 1980. He received the B.S. degree in engineering from Fukui University, Fukui, Japan, in 2003, where he is working toward the M.S. degree in engineering.

His research interests include the development of submillimeter-wave gyrotrons.

Yutaka Itakura was born in Iwami, Japan, on November 23, 1980. He received the B.S. degree in engineering from Fukui University, Fukui, Japan, in 2003, where he is working toward the M.S. degree in engineering.

His research interests include the development of submillimeter-wave gyrotrons.

Tositaka Idehara was born in Ibara, Japan, on April 15, 1940. He received the B.S. degree in mathematics and the M.S. and D.S. degrees in physics from Kyoto University, Kyoto, Japan, in 1963, 1965, and 1968, respectively.

After graduating from Kyoto University, he joined Fukui University, Fukui, Japan, and was a Lecturer from 1968 to 1970 and an Associate Professor from 1970 to 1990. During this term, he worked in fundamental plasma physics. After 1979, his interest was directed toward the development of high-frequency gyrotrons. From 1990 to 1999, he was a Professor in the Applied Physics Department, Fukui University, and from 1992 to 1999, he was the Head of the Laboratory for Application of Superconducting Magnet, Fukui University. Since 1999, he has been a Professor and the Director of the Research Center for Development of Far-Infrared Region, Fukui University. His current research interests include development of frequency tunable, submillimeter wave gyrotrons, and their applications to plasma diagnostics and material physics.
nuclear fusion plasma heating and technological gyrotrons for material processing.

Hideki Kohayashi was born in Japan in 1967. He received the B.E. and M.E. degrees from Kanazawa University, Kanazawa, Japan, in 1990 and 1992, respectively. In 1992, he joined Shin-Etsu Chemical Company, Ltd., and works at the Magnetic Materials Research Center, Fukui, Japan. He has been engaged in research on magnetic circuit applications and magnetic field analysis.

Tomonori Yokoyama was born in Japan in 1975. He received the B.S. and M.S. degrees from Hokkaido University, Sapporo, Japan, in 1997 and 1999, respectively. He joined Shin-Etsu Chemical Company, Ltd., and works at the Magnetic Materials Research Center, Fukui, Japan. He has been engaged in research on magnetic circuit applications and magnetic field analysis.

Vladimir E. Zapevalov was born in Bor, Russia, on November 30, 1949. He received the degree in radiophysics and the Ph.D. degree in physics from the Lobachevsky State University, Gorky, U.S.S.R., in 1972 and 1985, respectively. His dissertation concerned the study of mode interaction processes in gyrotrons. Since 1972, he has been with the Lobachevsky State University, and since 1985, he has been with the Institute of Applied Physics of Russian Academy of Sciences. In particular, his interest is concentrated on the theoretical and experimental investigation of the problem of mode interaction and mode competition in gyrotrons and also on the study of gyrotron helical electron beam properties. In 1995, he became Head of the Gyrotron Laboratory, Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, where the current research projects are the development of high-power gyrotrons for nuclear fusion plasma heating and material processing.

Mikhail Yu. Glyavin was born in Nizhny Novgorod (former Gorky), Russia, on February 14, 1965. He received the degree in microwave electronics and the Ph.D. degree in physics from the Gorky Polytechnical Institute, Gorky, U.S.S.R., in 1988 and 2000, respectively. Since 1988, he has been working at the Institute of Applied Physics of the Academy of Sciences of the U.S.S.R. (from 1991—Russian Academy of Sciences), where he is engaged in the development of high-power gyrotrons for nuclear fusion. His dissertation was focused on studies of gyrotrons and more specifically on methods for increasing the efficiency. From 1999 to 2002, he was a Visiting Researcher at the FIR FU Center, Fukui, Japan. His research interests are in the field of the theoretical and experimental investigations of various gyro-device, including gyrotrons and their application to materials processing.

Andrey N. Kuftin was born in Kstovo, Gorky region, Russia, on August 1, 1963. He received the degree in radiophysics from the Lobachevsky State University, Gorky, U.S.S.R., in 1985. Since 1985, he has been with the Institute of Applied Physics of the Academy of Sciences of the U.S.S.R. (from 1991—Russian Academy of Sciences), where he is engaged in the development of high-power gyrotrons for nuclear fusion plasma heating and technological gyrotrons for material processing.

Oleg V. Malygin was born in Gorky, Russia, on October 2, 1935. He received the degree in radiophysics from the Lobachevsky State University, Gorky, U.S.S.R., in 1958. From 1958 to 1965, he was a Member of the Technical Staff at the Gorky Radio Physical Research Institute. He joined the Gorky Research Institute "Salyut" in 1965 and the Institute of Applied Physics, Russian Academy of Sciences, in 1977. From 1985 to 1986, he was Head of the Short-Wavelength Devices Laboratory. Since 1986, he has been a Senior Researcher and is currently engaged in the development of high-power gyrotrons for nuclear fusion plasma heating and technological gyrotrons for material processing, especially in technical investigations.

Svilen P. Sabchevski was born in Popovo, Bulgaria, on August 20, 1958. He received the M.Sc. degree in electronic engineering from Saint Petersburg State Electrotechnical University, Saint Petersburg, Russia, in 1984, and the Ph.D. degree in physics from the Bulgarian Academy of Sciences, Sofia, Bulgaria, in 1991. After his graduation, he joined the Institute of Electronics, Bulgarian Academy of Sciences, where he is an Associate Professor in the Electron Beam Technologies Laboratory. From 1999 to 2000, he was an Associate Professor and in 2002–2003 a Visiting Professor in the Research Center for Development of Far-Infrared Region, Fukui University, Fukui, Japan. His current research interests are in the fields of physics and applications of intense electron beam, computer-aided design of electron-optical systems, and vacuum electron devices. In recent years, he has been involved in several research projects for development of millimeter- and submillimeter-wave gyrotrons.