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ABSTRACT 

   This paper presents a crack arrest depth analysis under cyclic thermal shock for an inner-surface circumferential 

crack in a finite-length thick-walled cylinder with rotation-restrained edges. The inside of the cylinder is cooled 

from a uniform temperature distribution. The effects of heat transfer conditions on the maximum transient SIF for 

the problem were investigated with systematical evaluation methods formerly developed. Then, under an 

assumption of a tentative threshold stress intensity range ΔKth together with the Paris law, the crack arrest depth 

under cyclic thermal stress was evaluated. The results suggested the existence of an upper limit for the normalized 

crack arrest depth, independent of the cylinder material in an engineering sense. Finally, the validity of applying 

ΔKmax ≤ ΔKth as a crack arrest criterion under cyclic thermal shock was confirmed by fatigue tests under mechanical 

loads equivalent to those induced by cyclic thermal shock. 
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INTRODUCTION 

   It is interesting that, in the absence of additional cyclic external loads, crack propagation under cyclic thermal 

loads may not always lead to a through-thickness fracture. For example, when a cylinder of uniform temperature 

with an axisymmetric circumferential surface crack was cyclically cooled on the inner surface, the crack seemed not 
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to propagate over a specific normalized crack depth, regardless of the cylinder material [1]. If the crack propagation 

rate in such a situation fits the Paris law [2], this tendency may be explained by investigating the characteristics of 

the stress intensity factor (SIF) range for each cycle. As the SIF for a uniform temperature distribution is zero [3], 

the SIF range of interest is the maximum transient SIF itself. For this problem the SIF is affected by various factors 

such as the cylinder configuration, edge restraints and the cooling rate, etc. The effects of these factors on the SIF 

should therefore be systematically evaluated to grasp the characteristics and to reach an understanding of the crack 

arrest tendency. 

   We have therefore previously proposed a method to systematically evaluate the maximum transient SIF of a 

circumferential crack in a finite-length thin-walled cylinder with rotation-restrained edges (Fig. 1), when the inside 

of the cylinder is cooled from a uniform temperature distribution [4]. The results obtained for cylinders of mean 

radius to wall thickness ratio Rm/W = 10.5 were as follows: i) The maximum transient SIF for the problem decreases 

monotonously when the crack depth becomes larger than a specific value, regardless of the heat transfer condition. 

ii) The SIF is strongly affected by the cylinder length. iii) The SIF for a specific finite cylinder length H = π/β  is 

larger than that for a cylinder of infinite length. Here, β = [3(1-ν2)/(RmW)2]1/4 is a quantity used in replacing the 

cylindrical shell by a beam on an elastic foundation [5], where ν is Poisson’s ratio. Assuming Paris law, the fact of i) 

shows that a circumferential crack in a thin-walled cylinder will show arrest tendency when the thermal cycle above 

is repeated. 

   In this paper the thick-walled cylinder problem similar to the experiments by Skelton and Nix [1] is dealt with. 

We tried to explain their experimental result analytically, i.e. that under cyclic thermal shock, a circumferential crack 

seems not to propagate over a specific normalized crack depth regardless of the cylinder material. For this purpose, 

we made a trial evaluation of the crack depth for crack arrest under cyclic thermal shock. We applied the SIF 

evaluation method which we had proposed for thin-walled cylinders [4] to thick-walled cylinders of Rm/W = 1, since 

the method based on the weight function for the crack [6] was recently shown to be applicable for cylinders of Rm/W 

≥ 1 with crack depths of a/W ≤ 0.7, if we permit up to 10% difference in the SIF result compared with that obtained 

by finite element analysis (FEA) [7]. We assumed that the crack is located at the midpoint of the cylinder length, 



 3

since we know that the SIF shows its maximum for this crack location [3]. In an engineering sense, the results 

suggested the existence of an upper limit for the normalized crack arrest depth, independent of the cylinder material. 

Finally, the validity of applying ΔKmax ≤ ΔKth as a crack arrest criterion under cyclic thermal shock was confirmed 

by fatigue tests under mechanical loads equivalent to those induced by cyclic thermal shock.  

 

CRACK ARREST ANALYSIS UNDER CYCLIC THERMAL SHOCK FOR AN INNER 

SURFACE CIRCUMFERENTIAL CRACK IN A FINITE-LENGTH THICK-WALLED 

CYLINDER 

   In the following, the problem of a hollow finite-length cylinder, which is adiabatically insulated at the outside 

and on the inside suddenly cooled from uniform temperature at time τ = 0 sec by a coolant of an initial coolant/wall 

temperature difference (-2ΔT) = -100 K with a heat transfer coefficient h kW/(m2⋅K), was considered. The maximum 

transient SIF (Kcyl)Max was calculated by our method [4]. As for the material constants, Young’s modulus E = 198 

GPa, coefficient of thermal expansion α = 16 x 10-6 /K, Poisson’s ratio ν = 0.3, coefficient of thermal conductivity Λ 

= 12.7 W/(m·K) and coefficient of diffusivity κ = 3.61 mm2/s were chosen, assuming austenitic steel. A cylinder 

length of H = π/β was chosen, because the maximum transient SIF peaked at a value close to this H [4]. For all cases, 

the cylinder wall thickness W was set to 10 mm. 

 

Effects of the heat transfer coefficient on the maximum transient SIF 

   In this section, effects of the heat transfer coefficient h on (Kcyl)Max were studied by taking h at 0.465, 1.16, 11.6 

and ∞ kW/(m2⋅K). As previously noted, (Kcyl)Max replaces ΔKmax in these cases. For each h, the crack length was set 

to a = 1, 2, 3, 4, 5, 6 and 7 mm. (Kcyl)Max normalized by KΔT defined by 

WTEK T π
ν

α
−
Δ

=Δ 1
 (1) 

is shown in Figs.2 and 3 in normal scale and logarithmic scale, respectively. The part of dotted line in Fig.2 is linear 

extrapolation. Note that (Kcyl)Max/KΔT is independent of the material constants E and α, the initial condition ΔT and 

the wall thickness W. 
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   Fig. 2 exhibits a decreasing tendency of the maximum transient SIF (Kcyl)Max for a deep crack for all heat transfer 

conditions. Furthermore, the gradient of the (Kcyl)Max/KΔT – a/W curve becomes steeper as h becomes larger (the peak 

in Fig. 2 turns out to be sharper). However, we see from Fig. 3 that the (Kcyl)Max/KΔT – a/W curves for each h are 

almost parallel. This indicates the fact that the increase-maximum-decrease pattern of the (Kcyl)Max/KΔT – a/W curve, 

which is important for the crack arrest tendency, is dominated by the structural parameters and not by h. 

 

Crack arrest depth under cyclic thermal stress 

   Since (Kcyl)Max showed a decreasing tendency for a deep crack under cyclic thermal shock for thick-walled 

cylinders, we made a trial calculation of the crack arrest depth (a/W)arrest for selected cases. Here, we assumed that 

the crack propagation rate fits the Paris law and that crack arrest occurs when the transient maximum SIF range 

ΔKmax (in our problem, = (Kcyl)Max) becomes smaller than the threshold stress intensity range ΔKth. 

   A cylinder of Rm/W = 1 and H = π/β was chosen, and the heat transfer coefficient value h was set to h=0.465, 

1.16, 11.6 and ∞ kW/(m2⋅K). Since we here explain the crack arrest phenomenon with the decrease of the transient 

maximum SIF range ΔKmax, we took (a/W)M (i.e. the a/W corresponding to the peak value of the maximum transient 

SIF) as the initial crack length. Though the specific value for austenitic steel is not known, ΔKth = 3 MPam1/2 was 

assumed here, because the value for a variety of steels is known to be about 3 [8]. Otherwise, the configuration, the 

material constants and the initial conditions are the same as those given at the beginning. The results are shown in 

Fig. 4. Here the heat transfer coefficients are normalized in the form of Biot No. = h/WΛ. Note that the minimum 

(a/W)arrest for each curve corresponds to (a/W)M in Fig. 2. The results corresponding to a linear extrapolation in Fig.2 

are shown by dotted lines for the range of a/W > 0.7. 

   For example, when h = 1.16 kW/(m2⋅K) (Biot No. = 0.92) and 2ΔT = 150 K, KΔT /ΔKth = 20 and the normalized 

crack arrest depth can be obtained as (a/W)arrest = 0.54 from Fig.4. If 2ΔT is smaller than 71 K (KΔT /ΔKth = 9.5), 

then crack will not propagate at all (this means that ΔKmax < ΔKth is satisfied from the beginning). It is very 

interesting that in case that h is larger than 11.6 kW/(m2⋅K) (Biot No. h/WΛ= 9.17), (a/W)arrest is hardly affected. 
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Discussion on the crack arrest depth under cyclic thermal stress 

   Keeping in mind the fact that (Kcyl)Max = ΔKmax is proportional to KΔT [4], the results in Fig. 4 remain valid for 

cylinders with different W and other values of E, α, ΔT and ΔKth, as long as the material constants ν, Λ and κ are 

held constant. In the case of h = ∞, the results in Fig. 4 also become independent of Λ and κ, since they affect Kcyl 

only through the normalized time (i. e. Fourier No.) [4]. 

   We see from Fig. 4 that the plots of (a/W)arrest converge to a limiting value with increasing KΔT /ΔKth. When we 

remember the foregoing discussion in the case of h = ∞, we can deduce that the limiting value of (a/W)arrest is 

independent of the material constants E, α, ΔT, ΔKth, Λ and κ. Thus the only remaining material constant is  ν. 

However, when we varied ν from 0 to 0.5 and recalculated (a/W)arrest in Fig. 4, the change in (a/W)arrest was less than 

10%. In addition, the (a/W)arrest - KΔT /ΔKth characteristics did not change and a limiting value of (a/W)arrest did exist. 

We therefore think that, in an engineering sense, the limiting value of (a/W)arrest is independent of material properties, 

as far as the material is a metal. This phenomenon is explained by the fact that the linear extrapolation part of the 

curves in Fig. 2 seems to intersect near (a/W, (Kcyl)Max/KΔT ) = ( 0.83, 0). 

   In the evaluation of Fig. 4, a crack length of a/W ≥ (a/W)M was assumed so that (Kcyl)Max (=ΔKmax) decreases 

monotonously with a/W. On the other hand, in the range of a/W < (a/W)M, there exists a possibility that from the 

beginning ΔKmax is less than ΔKth. This means that under Paris law, the initial crack will not propagate at all, 

although ΔKmax increases once the crack starts to propagate. However, in the short crack region there is a possibility 

for the initial crack to start to propagate, even if ΔKmax < ΔKth [9]. 

 

EXPERIMENTS 

   The crack arrest analysis in the previous section was based on the criterion ΔKmax ≤ ΔKth. The limiting value of 

(a/W)arrest corresponds to ΔKth = 0 and the existence of this limiting value suggests the fatigue crack to be arrested 

even in this extreme case. However in most cases, cracks do not propagate up to the limiting value and the predicted 

(a/W)arrest depends on the actual value of ΔKth. 

   The material resistance ΔKth is usually evaluated as the ΔK value that corresponds to da/dN = 10-7 mm/cycle 
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using measured da/dN - ΔK data [10], whose ΔK is controlled by the following equation. 

)(
0

0aaCeKK −Δ=Δ  (2) 

where ΔK0 is the ΔK for the initial crack length a0 and C = (d(ΔK)/da)/ΔK = constant is the normalized ΔK -gradient. 

On the other hand, C for thermal shock equivalent (TSE) loads is not constant. We can see this for example from the 

curve named Original in Fig. 5 (this Original corresponds basically to the case of Biot No. = ∞ in Fig. 2 and was 

scaled so as to satisfy ΔK = 3 MPam1/2 (ΔKth of many steels) at a/W = 0.7). Since there is no data to explain the 

effect of such a C history on the threshold stress intensity range (TSIR), we therefore measured TSIR data for TSE 

loads corresponding to Fig. 2. 

 

Experimental setup 

   We basically measured the TSIR for TSE loads according to ASTM E647 [10], with ΔK at da/dN = 10-7 

mm/cycle. A standard CT specimen of width W = 50 mm and thickness B = 12.5 mm was machined to have a notch 

of 15 mm. The specimen was precracked by an additional 3 mm so that a0 ≈ 18mm. The tests were conducted for 

SS400 steel (Tables 1 and 2) under Kmax = 18 MPam1/2 = constant and for 3 different loading conditions (Fig. 5). We 

chose the Kmax constant method [11] expecting to obtain the intrinsic TSIR. 

   We rescaled the horizontal axis in Fig. 2 to approximately realize the C - a characteristics of the Original case 

(Fig. 5) and obtained load curve 1 in Fig. 6. The expected difference due to the accuracy of the approximation was 

roughly checked by tests according to load curve 2 in Figs. 5 and 6. Curve 3 shows the standard ΔKth test load. All 

tests were conducted at room temperature. The results are shown in Fig. 7. 

 

Experimental results 

   The maximum difference between the intended ΔK (Fig. 6) and the measured ΔK was 5.4 %. We see from Fig. 7 

that ΔKth (TSIR for load 3) is smaller than the TSIR for TSE loads 1 and 2, although the differences in these three 

are small. We can at least say that the TSIR does not decrease by changing the load history in Figs. 5 and 6 from 

load curve 3 to 1 or 2, and thus our approach for judging fatigue crack arrest under TSE loads by ΔKth cannot be 
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very erroneous. 

 

Discussion of the experimental results 

   We see from Fig. 7 that the TSIR differences for the three loads are small. On the other hand, the differences in 

C for the three loads are large. In case C is constant, the TSIR is reported to increase with larger absolute values of C 

since “by decreasing ΔK too quickly, the crack may arrest prematurely, owing to the inability of the crack to grow 

through the plastic zone created by the prior loading cycles” [12]. Though the C for TSE loads 1 and 2 are not 

constant, Kmax and thus the crack tip plastic zone size ry are kept constant throughout the test. Therefore, considering 

the fact that the absolute C for long cracks increase in the sequence of load 3, 1 and 2, the TSIR will also increase in 

this sequence. The results in Fig. 7 do not contradict the predicted tendency, although the differences are small. We 

conclude that the change rate of C hardly affects the TSIR in case Kmax is kept constant. 

   Fatigue crack propagation tests under TSE loads were planned to realize the ΔK –a characteristics of a 

circumferential crack under cyclic thermal shock (paying attention to C - a characteristics) under Kmax = constant 

condition. We selected the Kmax = constant test method expecting to obtain the intrinsic TSIR, because the method 

eliminates crack closure near to the threshold. If we consider the fact that the minimum values of the actual TSE 

loads are zero, crack closure will apparently increase the ΔKth. Thus we concluded that the fatigue crack arrest 

criteria of ΔKmax ≤ ΔKth is a conservative evaluation. 

 

CONCLUSIONS 

   The crack arrest depth under cyclic thermal shock for an inner-surface circumferential crack in a finite-length 

thick-walled cylinder was studied by applying a formerly developed SIF evaluation method to the problem. First we 

systematically investigated the effects of the heat transfer condition on the maximum transient SIF of the crack 

under such transient temperature distributions for thick-walled cylinders. Then, assuming a tentative value for the 

threshold stress intensity range ΔKth and the Paris law, the crack depth for crack arrest under cyclic thermal shock 

was evaluated. We tried it for a cylinder of Rm/W = 1 and H = π/β under various heat transfer conditions. Finally, we 
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conducted crack propagation tests under equivalent thermal shock loads to confirm the validity of the criterion 

ΔKmax ≤ ΔKth for fatigue crack arrest under these loads. The results obtained are as follows: 

I) The maximum transient SIF for the problem shows a decreasing tendency of the SIF for a deep crack, regardless 

of the heat transfer condition. This tendency is dominated by the structural parameters. 

II) It seems that in an engineering sense, there exists a limiting value of (a/W)arrest independent of the cylinder 

materials. This suggests that circumferential cracks inside a hollow cylinder of Rm/W = 1 under cyclic thermal 

stresses will be arrested regardless of the heat transfer conditions or material properties. This phenomenon is 

explained by the fact that the increase-maximum-decrease pattern of the (Kcyl)Max/KΔT – a/W curve is dominated 

by structural parameters and not by heat transfer conditions nor by material properties. 

III) The threshold stress intensity range corresponding to a thermal shock equivalent load was approximately equal 

to the intrinsic ΔKth. The validity of applying ΔKmax ≤ ΔKth as a crack arrest criterion under cyclic thermal shock 

was confirmed. 
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Fig. 2. Effect of heat transfer coefficient h on maximum transient SIF (Rm/W = 1, H = π/β = 24.4 mm, ν = 0.3, Λ = 

12.7 W/(m·K) and κ = 3.61 mm2/s). 
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Fig. 3. Fig. 2 in double logarithmic scale. 

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 10 20 30 40 50 60 70 80 90 100

KΔT/ΔKth

(a
/W

) a
rr

es
t

Biot No.
hW/Λ =

◆　∞

 ■　9.17
▲　0.92
●　0.37

(20, 0.54)

(9.5, 0.15)

 

Fig. 4. Crack arrest depth (Rm/W= 1, H = π/β = 24.4 mm, ν = 0.3, Λ = 12.7 W/(m·K), κ = 3.61 mm2/s). 
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Fig. 5. Comparison of C-a relation for tests. 
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Fig. 7. Result of thermal shock equivalent ΔK test and ΔKth test. 

 

Table 1 Chemical composition of test material (SS400 steel) in wt. % 

C Si Mn P S Fe

0.12 0.23 0.57 0.014 0.015 Bal.
 

 

Table 2 Mechanical properties of test material (SS400) 

Yield Point Tensile Strength Elongation
MPa MPa ％

274 435 36
 


