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Abstract

Fractional derivative DYf(z) (0 < ¢ < 1,0 <z <1) of a function f(z) is defined in
terms of an indefinite integral involving f(z). For functions of algebraic singularity
f(z) = z%g(x) (@« > —1) with g(z) being a well-behaved function, we propose
a quadrature method for uniformly approximating D{x%g(z)}. Present method
consists of interpolating g(x) at abscissae in [0,1] by a finite sum of Chebyshev
polynomials. It is shown that the use of the lower endpoint z = 0 as an abscissa is
essential for the uniform approximation, namely to bound the approximation errors
independently of x € [0,1]. Numerical examples demonstrate the performance of
the present method.

Key words: fractional derivative, algebraic singularity, uniform approximation,
quadrature rule, Chebyshev interpolation, automatic quadrature, error analysis,
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1 Introduction

The fractional derivative and integral equations including fractional deriva-
tives have a long history and have often appeared in science, engineering and
finance, see, say Gorenflo and Mainardi [9], while approximation methods
have been developed recently. Let f(s) be a given function for s € [0, 1]. The
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fractional derivative in the Riemann-Liouville version DY f(s) and the Caputo
version DIf(s) (0 < g < 1) are defined by, respectively, with a relation be-
tween them [16]

qu(s):ﬁ-%O/f(t)(s—t)_th, 0<s<1, 0<g<l1l, (1)
O O/f’(t)(s ) vdt = Df(s) - m—f_“’q)) @)

There is comprehensive literature on the numerical methods for solving equa-
tions involving fractional derivatives and integrals [2-6,12,14,15]. In contrast,
it appears that little literature exists on automatic quadratures for the frac-
tional derivative except for our recent scheme [16] for D7f(s) (0 < ¢ < 1) of a
well-behaved function f(s). In practical applications, however, it is required to
approximate the fractional derivatives of badly-behaved functions of various
types or functions with singularities [1,8] such that f(s) = s%g(s), a > —1,
where g(s) is assumed to be a well-behaved function, see Piessens [15].

The purpose of this paper is to extend our previous paper [16] to approximate
D{s%g(s)} given by, with the required tolerance ¢

D s%(s)} = T(i—q

0<qg<l, a>q—1, 0<s< 1.

L 3 % [ oty (s — e, (3)

We approximate g(t) in (3) by a sum of the shifted Chebyshev polynomials
T (2t — 1),

n

g(t) = pa(t) =D 'a Tp(2t — 1), 0<t <1 (4)
k=0

where the prime denotes the summation whose first term is halved. Then we
have an approximation D2{s%g(s)} to D?{s%g(s)} as follows,

D39} = DU} = ey 42 [ paOE (s =) (5)

The coefficients ay, are determined so that p,(t) interpolates g(t) at the points
t; = {1+cos(mj/n)}/2 (0 < j < n),namely ap = (20x/n) X5_,"g(t;) cosmjk/n,



where 6y =1 (0 < k <n-—1), §, = 0.5 and the double prime denotes the sum-
mation whose first and last terms are halved, and can be efficiently evaluated
by using the FFT [7,11,18]. Note that p,(0) = ¢(0) and p,(1) = g(1).

Let h,—1(t) be a polynomial of degree n — 1 defined by

Pu(t) = thn1(8) + pa(0) = Lhna(t) + 9(0). (6)

Then since pl,(t) = hn_1(t) + th,_,(t) and t*"'h, 1(t) = 0 when ¢t = 0,
substituting p,, (%) above in (5) we have

DH{s"pu(s)} — g(0)D?s™ = D"y (s)} = DI o (s)}

_P(T/{ (@ 4 Doy () + th!_ ()} (s — £)"dt

= = n— t%(s —t)"dt, 7
F(l_q/{ah () + P} (s = 1) (7)
where D4{s*"'h,_1(s)} denotes the Caputo fractional derivative (2). To eval-

uate the integral in the rightmost hand of (7) we need the following lemma.

Lemma 1.1 For the polynomial h,_1(t) (6) there exist polynomials F,,_5(t)
of degree n — 2 and G,_1(s) of degree n — 1 such that

S

[aha () + 0}t 2, s (x) . o
/ (s — 1y dt = T + G )$/ = t)th. (8)

x

Proof Let yj = [Jt"7®(s — t)~%dt. Then, since d[t**(s —t)179]/dt = {(k +
a)s—(k+a—q+1)t}"o" (s — )79, we have

=2 (s = 2) 2" (ko) sl [(k+ a— g+ 1), (9)

The repeated use of the recurrence relation (9) yields

pe = 2 (s — ) () + Ags"po, (10)

where () is a polynomial of degree k and Ay is a constant independent of
x and s. We define ¢_;(z) = 0. Noting that the left hand side of (8) can be
written in the form 3725 Bupx, where (3, are constants, and using (10), we can
establish (8). O



The function F,,_»(t) in (8) is also expanded in terms of the shifted Chebyshev
polynomials, see (14) and (15) in section 2. From (8) we have

[{ahua®) + B0} (5 — )7t = Gos(9) s Bla + 1,1~ q), (1)

since [jt%(s — )77 = s*"'79B(a + 1,1 — q) where B(a + 1,1 — q) is the
beta integral. Since B(a 4+ 1,1 —¢q) = I'(a + 1)I'(1 — ¢)/T'(a — ¢ + 2) and
Dis* = s* 1T (a+ 1)/T'(a+ 1 — q), from (5), (7) and (11) we have

s Ia+1)

Di{s®g(s)} ={Gn-1(s)s+ (@ —q+1) 9(0)}m‘

(12)

This paper is organized as follows. In section 2 we express the derivative
F!_,(t) of F,,_o(z) in (8) by a sum of the Chebyshev polynomials whose co-
efficients satisfy a five-term inhomogeneous recurrence relation. In section 3
the stability analysis of the recurrence relation is given. We show that a non-
dominant solution of the recurrence relation gives the required Chebyshev
coefficients of F! ,(t) as well as the value of G,,_1(s) and is obtained in a
numerically stable way by the computation of the recurrence relation in the
backward direction. In section 4 we estimate the error of the approximation
Di{s%g(s)} (12) and show that the use of the lower endpoint ¢ = 0 as an
abscissa in the integration rule is essential to uniformly bound the errors of
Di{s%g(s)} for 0 < s < 1. Section 5 shows numerical examples to demonstrate
the performance of the present method.

2 Evaluation of F,_»(t) and G,_(s)
From the differentiated result of both sides of (8) with respect to z we have

ah, 1(x) +p,(x)={(a+2—q)r — (o + 1)s} F,,_2(x)
+x(z — 8)F._o(z) + Gn_1(s). (13)

To evaluate F,,_5(z) and G,_1(s) in (13) we expand F_,(x) in terms of the
shifted Chebyshev polynomials

n—3
F ,(z) = Z "o T2z — 1), 0<xz<1, (14)
k=0



where we have omitted the dependency of b, on s. In the sequel we define
by =0 (k > n — 2) for convenience. Integrating both sides of (14) gives

n—2 b

1—0b
k=1

with some constant  independent of  and s. By using the relation Tjj1q|(u)+
Tk-1)(u) = 2uTjg(u), w = 22 — 1, in (14) and (15) we have

n—1
16:L'(l‘ - S)FT,Z_Q(‘I) = Z ! {bk+2 + 4(1 - 8)(bk+1 + b‘k,”)
k=0
n—1
bi—2 bp—1 — brt1 2by, b2
162F, _,(z) = 9 _ _ T (22 — 1
Orfn-ale) ;{k—fr k R S S AT
by — b
+(8y+ = 5 2 2by — 2by) T1(22 — 1) + 8y + b — by (17)

By inserting in (13), F,—o(z) (15), x(z — s)F,_5(x) (16) and zF,_o(z) (17),
and p! (z) and h,,_1(x) written by

n—1 n—1
P (z) = Z "o T2z — 1), hypq(x) = Z "dp Tp (22 — 1), (18)
k=0 k=0

we have the followings. Let § = a+2—q and L(by) (2 < k < n—1) be defined
by

L(by) = (1 - kL—il)ka + 2{2 — 25+ W}bkﬂ
+2(3 — 45 %)bk +2{2 25 - W}bk_1 (19)
+(1+ %)bm,
then we have
(1—05/2)bs +2(2— B+ 2as)by+ (7T—8s+ [5/2)by

+2{2 + 5 - 2(Oé + 2)8}50 + 86’}/ = 16<C¥d1 + Cl), (21)

(1 —B)by +4(1 — s)by + (3 —4s+ B)bo + 8{5 — 2(a + 1)s},
+16Gn_1(8) = 8(ad0 + Co). (22)



The coefficients ¢ of p/,(x) (18) can be evaluated by the relation [13, p.34]
Ck,1:Ck+1+4k’ak, k:n,n—l,...,l,

with starting values ¢,, = ¢,+1 = 0, where a; are the Chebyshev coefficients of
pn(z) in (4). The coefficients dj, of h,_1(t) are computed by the relation

dk+1+2dk+dk_1:4ak, k:n,n—l,...,l, (23)

with starting values d, 1 = d,, = 0. The relation (23) is derived by using (4)
and (18) in (6). Computing the recurrence relation (20), (21) and (22) in the
backward direction with starting values b, o = b,y = b, = b,11 = 0 in a
stable way as shown below gives the required value of G,_1(s) (12).

3 Stability analysis of the solution by the recurrence relation

The required solution by, of the fourth-order inhomogeneous difference equation
(20) is a particular solution wy which is dominated by a fundamental set [19,

p.266] {y,(:) 4 ., of the homogeneous difference equation L(y;) = 0, where
L(by) is defined by (19). In fact, the characteristic equation [19, p.270] for
L(b,) = 0 is given by

0=t"+4(1—s)(t* +1t) +2(3 — 4s)t* + 1 (24)
4
=(t+ 1) {*+201—2s)t+ 1} = [J(t —¢)),
j=1
wheret; =ty = —1,t3 = e and t, = e~ and we defined § = arctan{2,/s(1 — s)
/(2s —1)}.

Lemma 3.1 Let t; be zeros of (24) and L(by) be defined by (19). Then each
y,(j) of the fundamental set for L(by) = 0 has the property

lim y ) =t 1<i<a4
—00

Proof. See Theorem B.2 in Wimp [19, p.270]. O

Since the required solution wy of (20) goes to 0 when k& — oo, it follows from
Lemma 3.1 that '

lim wi/yl) =0, 1<i<4,

—00



which implies that the backward recursion of (20), (21) and (22) is numerically
stable to compute wy.

4 Error estimate

We estimate the error of the approximation D4{s%g(s)} (12). We shall use
the notation that for n >> 1, a(n) ~ b(n) and a(n) < b(n) mean that lim,,
a(n)/b(n) =1 and lim,, ., a(n)/b(n) < 1, respectively.

Let wyy1(t) be defined by

W1 (t) = Ty (2t — 1) = Tpy (2t — 1) = 8t (t — YU,y (2t — 1), (25)

where U, (x) is the Chebyshev polynomial of the second kind, then p,,(t) agrees
with g(t) at the zeros of w,1(t), namely {1 + cos(mj/n)}/2, 0 < j < n. Let
&, denote the ellipse in the complex plane z = z + iy,

E: z=(w+w+2)/4, w=pe? 0<0<2m, (26)

with foci at z = 0,1 and the sum of its major and minor axes equal to p(> 1).
Assume that g(z) is single-valued and analytic inside and on &£,. Then the
error of p,(t) can be expressed in terms of contour integral as follows [16]

g(z)dz
- t) wn—f—l('z) '

g(t) = pa(t) = Wi (t)Va(t), Valt) = L% (z

T 2m
P

(27)

The following lemma shows that the abscissa at endpoint ¢ = 0 in (25) plays
an important role in the uniform bound of the errors of the approximations

Di{s%g(s)}.

Lemma 4.1 Let L, = maxo<i<1 |Vo(t)| and L, = maxo<i<1 |V,/(t)|. Then the
error of the approxzimation Di{s*g(s)} to D{s%g(s)} for0 < q < 1 is bounded
independently of s for 0 < s <1 and fora+1—q >0, as follows,

['a+1)

[D1{79(5)} = Di{s"g(s)}] < 2{dmla+ Dl + L} — s

(28)

Proof Recalling that DZ{s%g(s)} = D¥{s*p,(s)} and from (27) we have

D'{s%g(s)} — Di{s"g(s)} = DU[s*{g(s) — pn(s)}]



= Dq{sawm( Wal(s)} = Di{s"wni1(s)Va(s)}

where ¢(t) := t7*{t* w,11(t) Va(t)} is given as follows by using (25)

P(t) = 8a(t — 1) Up—1(2t — 1)V, (t) + wy, 1 () Vi (t) + wura (Vi (2).  (30)

In (29) the third equality is seen to hold by using in the relation (2) the fact
that t*wy,41(t)V,(t) = 0 for t = 0. From (29) we have

ID1{s9(5)) = Do)} < el / s (@)

The sum in magnitude of the second and last terms in the right hand side
of (30) is less than 8nL,, + 2Ly, see the proof of Lemma 3.1 in [16]. Further
noting that |U,_1(2t — 1)| < n for 0 <t <1 in (30) we have

max |¢(t)| < 8n(a + 1)L, + 2L),. (32)

0<t<1

We see that Lemma 4.1 is established by using above relation (32) and [ t*(s—
t)~4dt = s*T T (a + 1T(1 — ¢q)/T(a + 2 — q) in (31) and by noting that
a+l—g>0and 0<s<1 0O

Theorem 4.2 Suppose that g(z) is single-valued and analytic inside and on &€,
defined by (26) and let K = max.c¢, |g(2)|. Then the approzimation DI{s*g(s)}
uniformly converges to D{s%g(s)} as n — oo as follows,

|D{s%g(s)} — Da{s"g(s)}|
Na+1) nla+1)(p-1)72%+p
SR PTG 2= g =D (= )

=O0(mp™), p>1.  (33)

Proof. The theorem is established in the same line as the proof of Theorem
3.2 in [16]. O

Since our goal is to construct an automatic quadrature method, we wish to
estimate the error of the approximation DZ{s“g(s)} (12) in terms of the
available coefficients ay of p,(t), particularly |V, (¢)| in terms of |ay|. Sup-
pose that g(z) is a meromorphic function which has only simple pole at the
point z = (3+ 71 +2)/4 in an ellipse &,, 1 < p < o, where 1 < p < || < 0.
Let 7 = |f], then in the way similar to the (26)~(30) in [16] we have



_Tlet+1)
I'a+2—-gq)

=: E,(9). (34)

|Ds%g(s)} — Di{sg(s)} < 2{4n(a+ 1) Ln + Ly}

8n(a+ 1)L, T'(a+1) _ 8nl(a+2)ra
IMNa+2-q) “T(a+2—q)(r—1)2

Remark 1 The constant » may be estimated from the asymptotic behavior
of {ax} [10].

Incidentally, an automatic quadrature of nonadaptive type is constructed from
the sequence of the approximations Di{s%g(s)} converging to D{s%¢(s)},
until a stopping criterion is satisfied. It is an usual and simple way to double
the degree n of p,(t) (4) for generating the sequence DZ{s%g(s)} (12), see [7].
In order to make an automatic quadrature efficient, however, it is advantageous
to have more chance of checking the stopping criterion than doubling n. To
this end, as is shown in [11] we may generate the sequence of {p,}, increasing
the degree n more slowly as follows:

n==6,810,...,3x2"4x2"5x2 ..., (i=1,23,..))
and by using the FFT.

Stopping rule. We compute the sequence of {p,} until E,(g) (34) is less
than or equal to the required tolerance e for D9{s%g(s)}.

5 Numerical examples

Examples in this section were computed in double precision; the machine
precision is 2.22... x 10716,

Table 1
Approximations to D%1{s7%9/(s + 0.05)} with the required tolerance ¢ = 10~ for
0 < s < 1. The number n + 1 of function evaluations required to satisfy ¢ is 65.

s approximation error

0.0005 | —376.397867398 11 | 2.2E-10
0.05 | —177.52833096 211 | 1.6E—10
0.25 | —53.0193366622 8§ | 3.3E—11
0.45 | —30.2273911052 81 | 3.2E—12
0.85 | —15.834374405 900 | 2.3E—12
0.95 | —14.101576574655 3 | 1.5bE—13




Table 2

Approximations to D9(s™""sinas), 0 < s < 1. The numbers n + 1 of function
evaluations required to satisfy the tolerances ¢ = 1076 and 107 are listed in the
third and fifth columns, respectively. The actual maximum errors F,, in magnitude
of approximations for 0 < s <1 are listed in the fourth and sixth columns.

e=10"6 e=10"Y

-0.7

q a n+1 E, n+1 E,

0.1 2.0 11 2.9E-10 17 49E-15
12.0 25 5.4E-12 25 54E-12

0.5 2.0 13 2.0E-11 17 7.5E-14
12.0 25 1.1E-10 33 8.5E—12

Table 3

Approximations to (B1) D%{s?/(s + a)} and to (B2) D{s?1/(s + a)} with the
required tolerances ¢ = 10~% and 107

e=10"° e=10""

q a n+1 E, n+1 E,

0.1 0.05 65 1.2E—11 81 b58E—-14
(B1) 0.5 21 1.5E-11 25 88E-14
0.5 0.05 65 3.8E—11 81 1.4E-13

0.5 21 3.6E-11 25 28E-13

0.1 0.05 65 3.9E-9 81 b5.5E—-11
(B2) 0.5 21 6.0E-10 25 8.3E-12
0.5 0.05 65 3.5E-9 81 4.7E—-11

0.5 21 5.4E-10 25 T7.5E-12

We compute the following test problems (A)~(D) with exact values in the
right hand sides,

(A) D(s*sinas) = D{s*"'a Z (as)®/(2k + 1)1}

_ gotl—q Z ]‘T(a—i—2k—i—2)( 5)**
2k + D)IT(a+2k+2—q)
¢=01,05 a=-07 a=212,
s1 ) _a'l'(g+1) st 1 ) _ a”'T(g+1)
s+a (s +a)rtl’ s+a (s +a)itt
q=0.1,0.5, a=0.05,0.5,

(B1) D?( (B2) D*( :

10



Table 4
Approximations to (C1) D{s?/(s? +a?)} and to (C2) DI{s?1/(s%+a?)} with the
required tolerances ¢ = 10~% and 107

01 005| 81 15E-8 129 1.1E—12
(C1) 0.5 21 7.4E-9 33 7.3E—15
05 0.05| 97 1.3E—-10| 129 4.3E—12

0.5 25 4.2E—-10| 33 2.9E-14

0.1 0.05 81 1.0E—6 129 2.2E-10

(C2) 0.5 21 22E-7 33 4.8E-13
0.5 0.05 97 1.1E-8 129 1.6E—-10
0.5 25 6.1E-9 33 4.3E-13
s1 a? (g +1) s
q — —
(C1)D (32 n aQ) BEETATE cos {(¢ + 1) arctan a},

s a’’T(g+1) . s
s2 & a2) - (% + @)@+ /2 sin {(q¢ + 1) arctan a},

¢=0.1,0.5, a=0.050.5,
(D) DY2{s" 401 p(2v/5)} = D22 {7401 o (2V/5)}] = Jo(2/5):

(C2) D*(

Table 1 shows the approximations D%1{s7%9/(s + 0.05)} and actual errors
|D%{s799 /(s + 0.05)} — D¥{s7%9/(s + 0.05)}| with the required tolerance
e = 1077 for various values of s € (0,1). The number n + 1 of function
evaluations required is 65. Table 2 also shows the result for the problem (A)
with varied values of ¢ and a, namely the numbers n + 1 required to satisfy
the tolerances ¢ = 107% and 107 and the actual maximum errors E,, defined
by

E, = 1%8%}7{71‘qu(8” —Dif(s;)], s;=(—05)/m, j=1,2,...,m,
where f(s) = s%g(s) and we choose large m, say, m = 2000. Tables 3~4
show the results for the problems (B)~(C), respectively. For the problem (D)
including the Bessel function J; 5(2+/s) we choose f(s) = s'/?g(s) where g(s)
is a smooth function [17, p.227] given by

[e%S) -5 k

Then the problem is very easy to approximate, indeed n + 1 = 9 for the

11



tolerance ¢ = 1072 with E,, = 1.2 x 10~12.

From Tables 2~4 we see that the present automatic method could approximate
successfully the fractional derivatives (A)~(C) with varied values of ¢ and a as
well as s € [0, 1] for functions f(s) = s%g(s) where a > g—1 and g(s) are well-
behaved functions. The present scheme could give an uniform approximation
to D?{s%g(s)}, namely a set of approximations for various values of s satisfying
the required tolerance €.

It appears that we have no other automatic methods to be compared in perfor-
mance with the present method although some computational schemes exist.
One of the remaining problems is to approximate fractional derivatives with
a non-integer ¢ such that 1 <m < ¢ < m+1 for a positive integer m, namely
4 DI~ Ls%g(s)}, a > —1.

ds™
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