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Abstract

Fractional derivative Dqf(x) (0 < q < 1, 0 ≤ x ≤ 1) of a function f(x) is defined in
terms of an indefinite integral involving f(x). For functions of algebraic singularity
f(x) = xαg(x) (α > −1) with g(x) being a well-behaved function, we propose
a quadrature method for uniformly approximating Dq{xαg(x)}. Present method
consists of interpolating g(x) at abscissae in [0, 1] by a finite sum of Chebyshev
polynomials. It is shown that the use of the lower endpoint x = 0 as an abscissa is
essential for the uniform approximation, namely to bound the approximation errors
independently of x ∈ [0, 1]. Numerical examples demonstrate the performance of
the present method.
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1 Introduction

The fractional derivative and integral equations including fractional deriva-
tives have a long history and have often appeared in science, engineering and
finance, see, say Gorenflo and Mainardi [9], while approximation methods
have been developed recently. Let f(s) be a given function for s ∈ [0, 1]. The
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fractional derivative in the Riemann-Liouville version Dqf(s) and the Caputo
version Dq

∗f(s) (0 < q < 1) are defined by, respectively, with a relation be-
tween them [16]

Dqf(s)=
1

Γ(1 − q)
· d
ds

s
∫

0

f(t)(s− t)−q dt, 0 ≤ s ≤ 1, 0 < q < 1, (1)

Dq
∗f(s)=

1

Γ(1 − q)

s
∫

0

f ′(t)(s− t)−q dt = Dqf(s) − s−qf(0)

Γ(1 − q)
. (2)

There is comprehensive literature on the numerical methods for solving equa-
tions involving fractional derivatives and integrals [2–6,12,14,15]. In contrast,
it appears that little literature exists on automatic quadratures for the frac-
tional derivative except for our recent scheme [16] for Dqf(s) (0 < q < 1) of a
well-behaved function f(s). In practical applications, however, it is required to
approximate the fractional derivatives of badly-behaved functions of various
types or functions with singularities [1,8] such that f(s) = sαg(s), α > −1,
where g(s) is assumed to be a well-behaved function, see Piessens [15].

The purpose of this paper is to extend our previous paper [16] to approximate
Dq{sαg(s)} given by, with the required tolerance ε

Dq{sαg(s)}=
1

Γ(1 − q)
· d
ds

s
∫

0

g(t) tα(s− t)−qdt, (3)

0 < q < 1, α ≥ q − 1, 0 ≤ s ≤ 1.

We approximate g(t) in (3) by a sum of the shifted Chebyshev polynomials
Tk(2t− 1),

g(t) ≈ pn(t) =
n

∑

k=0

′ ak Tk(2t− 1), 0 ≤ t ≤ 1. (4)

where the prime denotes the summation whose first term is halved. Then we
have an approximation Dq

n{sαg(s)} to Dq{sαg(s)} as follows,

Dq
n{sαg(s)} := Dq{sαpn(s)} =

1

Γ(1 − q)
· d
ds

s
∫

0

pn(t) tα(s− t)−q dt. (5)

The coefficients ak are determined so that pn(t) interpolates g(t) at the points
tj = {1+cos(πj/n)}/2 (0 ≤ j ≤ n), namely ak = (2δk/n)

∑n
j=0

′′g(tj) cosπjk/n,
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where δk = 1 (0 ≤ k ≤ n−1), δn = 0.5 and the double prime denotes the sum-
mation whose first and last terms are halved, and can be efficiently evaluated
by using the FFT [7,11,18]. Note that pn(0) = g(0) and pn(1) = g(1).

Let hn−1(t) be a polynomial of degree n− 1 defined by

pn(t) = t hn−1(t) + pn(0) = t hn−1(t) + g(0). (6)

Then since p′n(t) = hn−1(t) + th′n−1(t) and tα+1hn−1(t) = 0 when t = 0,
substituting pn(t) above in (5) we have

Dq{sαpn(s)} − g(0)Dqsα = Dq{sα+1hn−1(s)} = Dq
∗{sα+1hn−1(s)}

=
1

Γ(1 − q)

s
∫

0

{(α+ 1)hn−1(t) + th′n−1(t)}tα(s− t)−qdt

=
1

Γ(1 − q)

s
∫

0

{αhn−1(t) + p′n(t)}tα(s− t)−qdt, (7)

where Dq
∗{sα+1hn−1(s)} denotes the Caputo fractional derivative (2). To eval-

uate the integral in the rightmost hand of (7) we need the following lemma.

Lemma 1.1 For the polynomial hn−1(t) (6) there exist polynomials Fn−2(t)
of degree n− 2 and Gn−1(s) of degree n− 1 such that

s
∫

x

{αhn−1(t) + p′n(t)} tα
(s− t)q

dt =
xα+1Fn−2(x)

(s− x)q−1
+Gn−1(s)

s
∫

x

tα

(s− t)q
dt. (8)

Proof Let µk =
∫ s
x t

k+α(s− t)−q dt. Then, since d[tk+α(s− t)1−q]/dt = {(k +
α) s− (k + α− q + 1) t}tk+α−1(s− t)−q, we have

µk = [{xα+1(s− x)1−q} xk−1 + (k + α) s µk−1]
/

(k + α− q + 1). (9)

The repeated use of the recurrence relation (9) yields

µk = xα+1(s− x)1−qψk−1(x) + Aks
kµ0, (10)

where ψk(x) is a polynomial of degree k and Ak is a constant independent of
x and s. We define ψ−1(x) = 0. Noting that the left hand side of (8) can be
written in the form

∑n−1
k=0 βkµk, where βk are constants, and using (10), we can

establish (8). 2
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The function Fn−2(t) in (8) is also expanded in terms of the shifted Chebyshev
polynomials, see (14) and (15) in section 2. From (8) we have

s
∫

0

{αhn−1(t) + p′n(t)} tα(s− t)−qdt = Gn−1(s) s
α−q+1B(α + 1, 1 − q), (11)

since
∫ s
0 t

α(s − t)−q = sα+1−qB(α + 1, 1 − q) where B(α + 1, 1 − q) is the
beta integral. Since B(α + 1, 1 − q) = Γ(α + 1)Γ(1 − q)/Γ(α − q + 2) and
Dqsα = sα−q Γ(α + 1)/Γ(α+ 1 − q), from (5), (7) and (11) we have

Dq
n{sαg(s)} = {Gn−1(s) s+ (α− q + 1) g(0)}s

α−q Γ(α + 1)

Γ(α− q + 2)
. (12)

This paper is organized as follows. In section 2 we express the derivative
F ′

n−2(t) of Fn−2(x) in (8) by a sum of the Chebyshev polynomials whose co-
efficients satisfy a five-term inhomogeneous recurrence relation. In section 3
the stability analysis of the recurrence relation is given. We show that a non-
dominant solution of the recurrence relation gives the required Chebyshev
coefficients of F ′

n−2(t) as well as the value of Gn−1(s) and is obtained in a
numerically stable way by the computation of the recurrence relation in the
backward direction. In section 4 we estimate the error of the approximation
Dq

n{sαg(s)} (12) and show that the use of the lower endpoint t = 0 as an
abscissa in the integration rule is essential to uniformly bound the errors of
Dq

n{sαg(s)} for 0 ≤ s ≤ 1. Section 5 shows numerical examples to demonstrate
the performance of the present method.

2 Evaluation of Fn−2(t) and Gn−1(s)

From the differentiated result of both sides of (8) with respect to x we have

αhn−1(x) + p′n(x)= {(α+ 2 − q)x− (α + 1)s}Fn−2(x)

+x(x− s)F ′
n−2(x) +Gn−1(s). (13)

To evaluate Fn−2(x) and Gn−1(s) in (13) we expand F ′
n−2(x) in terms of the

shifted Chebyshev polynomials

F ′
n−2(x) =

n−3
∑

k=0

′ bk Tk(2x− 1), 0 ≤ x ≤ 1, (14)
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where we have omitted the dependency of bk on s. In the sequel we define
bk = 0 (k ≥ n− 2) for convenience. Integrating both sides of (14) gives

Fn−2(x) =
n−2
∑

k=1

bk−1 − bk+1

4k
Tk(2x− 1) + γ, (15)

with some constant γ independent of x and s. By using the relation T|k+1|(u)+
T|k−1|(u) = 2uT|k|(u), u = 2x− 1, in (14) and (15) we have

16x(x− s)F ′
n−2(x) =

n−1
∑

k=0

′ {bk+2 + 4(1 − s)(bk+1 + b|k−1|)

+2(3 − 4s)bk + b|k−2|}Tk(2x− 1), (16)

16xFn−2(x) =
n−1
∑

k=2

{ bk−2

k − 1
+ 2

bk−1 − bk+1

k
− 2bk
k2 − 1

− bk+2

k + 1

}

Tk(2x− 1)

+
(

8γ +
b1 − b3

2
+ 2b0 − 2b2

)

T1(2x− 1) + 8γ + b0 − b2. (17)

By inserting in (13), Fn−2(x) (15), x(x − s)F ′
n−2(x) (16) and xFn−2(x) (17),

and p′n(x) and hn−1(x) written by

p′n(x) =
n−1
∑

k=0

′ ck Tk(2x− 1), hn−1(x) =
n−1
∑

k=0

′ dk Tk(2x− 1), (18)

we have the followings. Let β = α+2−q and L(bk) (2 ≤ k ≤ n−1) be defined
by

L(bk) =
(

1 − β

k + 1

)

bk+2 + 2
{

2 − 2s+
2(α + 1)s− β

k

}

bk+1

+2
(

3 − 4s− β

k2 − 1

)

bk + 2
{

2 − 2s− 2(α+ 1)s− β

k

}

bk−1 (19)

+
(

1 +
β

k − 1

)

bk−2,

then we have

L(bk) = 16(αdk + ck), 2 ≤ k ≤ n− 1, (20)

(1 − β/2)b3 + 2(2 − β + 2αs)b2 + (7 − 8s+ β/2)b1
+2{2 + β − 2(α + 2)s}b0 + 8βγ = 16(αd1 + c1), (21)

(1 − β)b2 + 4(1 − s)b1 + (3 − 4s+ β)b0 + 8{β − 2(α+ 1)s}γ,
+16Gn−1(s) = 8(αd0 + c0). (22)
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The coefficients ck of p′n(x) (18) can be evaluated by the relation [13, p.34]

ck−1 = ck+1 + 4 k ak, k = n, n− 1, . . . , 1,

with starting values cn = cn+1 = 0, where ak are the Chebyshev coefficients of
pn(x) in (4). The coefficients dk of hn−1(t) are computed by the relation

dk+1 + 2dk + dk−1 = 4ak, k = n, n− 1, . . . , 1, (23)

with starting values dn+1 = dn = 0. The relation (23) is derived by using (4)
and (18) in (6). Computing the recurrence relation (20), (21) and (22) in the
backward direction with starting values bn−2 = bn−1 = bn = bn+1 = 0 in a
stable way as shown below gives the required value of Gn−1(s) (12).

3 Stability analysis of the solution by the recurrence relation

The required solution bk of the fourth-order inhomogeneous difference equation
(20) is a particular solution wk which is dominated by a fundamental set [19,

p.266] {y(i)
k }4

i=1, of the homogeneous difference equation L(yk) = 0, where
L(bk) is defined by (19). In fact, the characteristic equation [19, p.270] for
L(bk) = 0 is given by

0 = t4 + 4(1 − s)(t3 + t) + 2(3 − 4s)t2 + 1 (24)

= (t+ 1)2{t2 + 2(1 − 2s)t+ 1} =
4

∏

j=1

(t− tj),

where t1 = t2 = −1, t3 = eiθ and t4 = e−iθ and we defined θ = arctan{2
√

s(1 − s)

/(2s− 1)}.

Lemma 3.1 Let tj be zeros of (24) and L(bk) be defined by (19). Then each

y
(i)
k of the fundamental set for L(bk) = 0 has the property

lim
k→∞

y
(i)
k+1/y

(i)
k = ti, 1 ≤ i ≤ 4.

Proof. See Theorem B.2 in Wimp [19, p.270]. 2

Since the required solution wk of (20) goes to 0 when k → ∞, it follows from
Lemma 3.1 that

lim
k→∞

wk/y
(i)
k = 0, 1 ≤ i ≤ 4,
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which implies that the backward recursion of (20), (21) and (22) is numerically
stable to compute wk.

4 Error estimate

We estimate the error of the approximation Dq
n{sαg(s)} (12). We shall use

the notation that for n >> 1, a(n) ∼ b(n) and a(n) <∼ b(n) mean that limn→∞

a(n)/b(n) = 1 and limn→∞ a(n)/b(n) ≤ 1, respectively.

Let ωn+1(t) be defined by

ωn+1(t) = Tn+1(2t− 1) − Tn−1(2t− 1) = 8t (t− 1)Un−1(2t− 1), (25)

where Un(x) is the Chebyshev polynomial of the second kind, then pn(t) agrees
with g(t) at the zeros of ωn+1(t), namely {1 + cos(πj/n)}/2, 0 ≤ j ≤ n. Let
Eρ denote the ellipse in the complex plane z = x + iy,

Eρ : z = (w + w−1 + 2)/4, w = ρ eiθ, 0 ≤ θ < 2π, (26)

with foci at z = 0, 1 and the sum of its major and minor axes equal to ρ(> 1).
Assume that g(z) is single-valued and analytic inside and on Eρ. Then the
error of pn(t) can be expressed in terms of contour integral as follows [16]

g(t) − pn(t) = ωn+1(t)Vn(t), Vn(t) ≡ 1

2πi

∮

Eρ

g(z) dz

(z − t)ωn+1(z)
. (27)

The following lemma shows that the abscissa at endpoint t = 0 in (25) plays
an important role in the uniform bound of the errors of the approximations
Dq

n{sαg(s)}.

Lemma 4.1 Let Ln = max0≤t≤1 |Vn(t)| and L′
n = max0≤t≤1 |V ′

n(t)|. Then the
error of the approximation Dq

n{sαg(s)} to Dq{sαg(s)} for 0 < q < 1 is bounded
independently of s for 0 ≤ s ≤ 1 and for α + 1 − q ≥ 0, as follows,

|Dq{sαg(s)} −Dq
n{sαg(s)}| ≤ 2{4n(α+ 1)Ln + L′

n}
Γ(α + 1)

Γ(α + 2 − q)
. (28)

Proof Recalling that Dq
n{sαg(s)} = Dq{sαpn(s)} and from (27) we have

Dq{sαg(s)} −Dq
n{sαg(s)} = Dq[sα{g(s) − pn(s)}]

7



= Dq{sαωn+1(s)Vn(s)} = Dq
∗{sαωn+1(s)Vn(s)}

=
1

Γ(1 − q)

s
∫

0

φ(t) tα(s− t)−qdt, −1 < α, (29)

where φ(t) := t−α{tα ωn+1(t)Vn(t)}′ is given as follows by using (25)

φ(t) = 8α(t− 1)Un−1(2t− 1)Vn(t) + ω′
n+1(t)Vn(t) + ωn+1(t)V

′
n(t). (30)

In (29) the third equality is seen to hold by using in the relation (2) the fact
that tαωn+1(t)Vn(t) = 0 for t = 0. From (29) we have

|Dq{sαg(s)} −Dq
n{sαg(s)}| ≤ max0≤x≤1 |φ(x)|

Γ(1 − q)

s
∫

0

tα(s− t)−qdt. (31)

The sum in magnitude of the second and last terms in the right hand side
of (30) is less than 8nLn + 2L′

N , see the proof of Lemma 3.1 in [16]. Further
noting that |Un−1(2t− 1)| ≤ n for 0 ≤ t ≤ 1 in (30) we have

max
0≤t≤1

|φ(t)| ≤ 8n(α+ 1)Ln + 2L′
n. (32)

We see that Lemma 4.1 is established by using above relation (32) and
∫ s
0 t

α(s−
t)−qdt = sα+1−qΓ(α + 1)Γ(1 − q)/Γ(α + 2 − q) in (31) and by noting that
α + 1 − q ≥ 0 and 0 ≤ s ≤ 1 2.

Theorem 4.2 Suppose that g(z) is single-valued and analytic inside and on Eρ

defined by (26) and let K = maxz∈Eρ
|g(z)|. Then the approximationDq

n{sαg(s)}
uniformly converges to Dq{sαg(s)} as n→ ∞ as follows,

|Dq{sαg(s)} −Dq
n{sαg(s)}|

≤ 16Kρ
Γ(α + 1)

Γ(α + 2 − q)
· n(α + 1)(ρ− 1)2 + ρ

(ρ− 1)4 (ρn − ρ−n)
= O(nρ−n), ρ > 1. (33)

Proof. The theorem is established in the same line as the proof of Theorem
3.2 in [16]. 2

Since our goal is to construct an automatic quadrature method, we wish to
estimate the error of the approximation Dq

n{sαg(s)} (12) in terms of the
available coefficients ak of pn(t), particularly |Vn(t)| in terms of |ak|. Sup-
pose that g(z) is a meromorphic function which has only simple pole at the
point z = (β + β−1 + 2)/4 in an ellipse Eσ, 1 < ρ < σ, where 1 < ρ < |β| < σ.
Let r = |β|, then in the way similar to the (26)∼(30) in [16] we have
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|Dq{sαg(s)} −Dq
n{sαg(s)}| ≤ 2{4n(α+ 1)Ln + L′

n}
Γ(α + 1)

Γ(α + 2 − q)

∼ 8n(α + 1)Ln Γ(α + 1)

Γ(α+ 2 − q)
<∼

8nΓ(α+ 2) r |an|
Γ(α+ 2 − q) (r − 1)2

=: En(g). (34)

Remark 1 The constant r may be estimated from the asymptotic behavior
of {ak} [10].

Incidentally, an automatic quadrature of nonadaptive type is constructed from
the sequence of the approximations Dq

n{sαg(s)} converging to Dq{sαg(s)},
until a stopping criterion is satisfied. It is an usual and simple way to double
the degree n of pn(t) (4) for generating the sequence Dq

n{sαg(s)} (12), see [7].
In order to make an automatic quadrature efficient, however, it is advantageous
to have more chance of checking the stopping criterion than doubling n. To
this end, as is shown in [11] we may generate the sequence of {pn}, increasing
the degree n more slowly as follows:

n = 6, 8, 10, . . . , 3 × 2i, 4 × 2i, 5 × 2i, . . . , (i = 1, 2, 3, . . .)

and by using the FFT.

Stopping rule. We compute the sequence of {pn} until En(g) (34) is less
than or equal to the required tolerance ε for Dq{sαg(s)}.

5 Numerical examples

Examples in this section were computed in double precision; the machine
precision is 2.22 . . .× 10−16.

Table 1
Approximations to D0.1{s−0.9/(s + 0.05)} with the required tolerance ε = 10−7 for
0 ≤ s ≤ 1. The number n + 1 of function evaluations required to satisfy ε is 65.

s approximation error

0.0005 −376.397867398 11 2.2E−10

0.05 −177.52833096 211 1.6E−10

0.25 −53.0193366622 88 3.3E−11

0.45 −30.2273911052 81 3.2E−12

0.85 −15.834374405 900 2.3E−12

0.95 −14.101576574655 3 1.5E−13
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Table 2
Approximations to Dq(s−0.7 sin as), 0 ≤ s ≤ 1. The numbers n + 1 of function
evaluations required to satisfy the tolerances ε = 10−6 and 10−9 are listed in the
third and fifth columns, respectively. The actual maximum errors En in magnitude
of approximations for 0 ≤ s ≤ 1 are listed in the fourth and sixth columns.

ε = 10−6 ε = 10−9

q a n + 1 En n + 1 En

0.1 2.0 11 2.9E−10 17 4.9E−15

12.0 25 5.4E−12 25 5.4E−12

0.5 2.0 13 2.0E−11 17 7.5E−14

12.0 25 1.1E−10 33 8.5E−12

Table 3
Approximations to (B1) Dq{sq/(s + a)} and to (B2) Dq{sq−1/(s + a)} with the
required tolerances ε = 10−6 and 10−9

ε = 10−6 ε = 10−9

q a n + 1 En n + 1 En

0.1 0.05 65 1.2E−11 81 5.8E−14

(B1) 0.5 21 1.5E−11 25 8.8E−14

0.5 0.05 65 3.8E−11 81 1.4E−13

0.5 21 3.6E−11 25 2.8E−13

0.1 0.05 65 3.9E−9 81 5.5E−11

(B2) 0.5 21 6.0E−10 25 8.3E−12

0.5 0.05 65 3.5E−9 81 4.7E−11

0.5 21 5.4E−10 25 7.5E−12

We compute the following test problems (A)∼(D) with exact values in the
right hand sides,

(A) Dq(sα sin as) = Dq{sα+1a
∞
∑

k=0

(−1)k(as)2k/(2k + 1)!}

= sα+1−qa
∞
∑

k=0

(−1)kΓ(α + 2k + 2) (as)2k

(2k + 1)! Γ(α+ 2k + 2 − q)
,

q = 0.1, 0.5, α = −0.7, a = 2, 12,

(B1)Dq
( sq

s+ a

)

=
aqΓ(q + 1)

(s+ a)q+1
, (B2)Dq

( sq−1

s+ a

)

= −a
q−1 Γ(q + 1)

(s+ a)q+1
,

q = 0.1, 0.5, a = 0.05, 0.5,
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Table 4
Approximations to (C1) Dq{sq/(s2 +a2)} and to (C2) Dq{sq−1/(s2 +a2)} with the
required tolerances ε = 10−6 and 10−9

ε = 10−6 ε = 10−9

q a n + 1 En n + 1 En

0.1 0.05 81 1.5E−8 129 1.1E−12

(C1) 0.5 21 7.4E−9 33 7.3E−15

0.5 0.05 97 1.3E−10 129 4.3E−12

0.5 25 4.2E−10 33 2.9E−14

0.1 0.05 81 1.0E−6 129 2.2E−10

(C2) 0.5 21 2.2E−7 33 4.8E−13

0.5 0.05 97 1.1E−8 129 1.6E−10

0.5 25 6.1E−9 33 4.3E−13

(C1)Dq
( sq

s2 + a2

)

=
aq−1Γ(q + 1)

(s2 + a2)(q+1)/2
cos {(q + 1) arctan

s

a
},

(C2)Dq
( sq−1

s2 + a2

)

= − aq−2 Γ(q + 1)

(s2 + a2)(q+1)/2
sin {(q + 1) arctan

s

a
},

q = 0.1, 0.5, a = 0.05, 0.5,

(D) D1/2{s1/4J1/2(2
√
s)} = D1/2[s1/2 · {s−1/4J1/2(2

√
s)}] = J0(2

√
s).

Table 1 shows the approximations D0.1
n {s−0.9/(s + 0.05)} and actual errors

|D0.1{s−0.9/(s + 0.05)} − D0.1
n {s−0.9/(s + 0.05)}| with the required tolerance

ε = 10−7 for various values of s ∈ (0, 1). The number n + 1 of function
evaluations required is 65. Table 2 also shows the result for the problem (A)
with varied values of q and a, namely the numbers n + 1 required to satisfy
the tolerances ε = 10−6 and 10−9 and the actual maximum errors En defined
by

En = max
1≤j≤m

|Dqf(sj) −Dq
nf(sj)|, sj = (j − 0.5)/m, j = 1, 2, . . . , m,

where f(s) = sαg(s) and we choose large m, say, m = 2000. Tables 3∼4
show the results for the problems (B)∼(C), respectively. For the problem (D)
including the Bessel function J1/2(2

√
s) we choose f(s) = s1/2g(s) where g(s)

is a smooth function [17, p.227] given by

g(s) = s−1/4J1/2(2
√
s) =

∞
∑

k=0

(−s)k

Γ(k + 1.5) k!
.

Then the problem is very easy to approximate, indeed n + 1 = 9 for the
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tolerance ε = 10−9 with En = 1.2 × 10−15.

From Tables 2∼4 we see that the present automatic method could approximate
successfully the fractional derivatives (A)∼(C) with varied values of q and a as
well as s ∈ [0, 1] for functions f(s) = sαg(s) where α ≥ q−1 and g(s) are well-
behaved functions. The present scheme could give an uniform approximation
toDq{sαg(s)}, namely a set of approximations for various values of s satisfying
the required tolerance ε.

It appears that we have no other automatic methods to be compared in perfor-
mance with the present method although some computational schemes exist.
One of the remaining problems is to approximate fractional derivatives with
a non-integer q such that 1 ≤ m < q < m+1 for a positive integer m, namely
dm

dsmD
q−m{sαg(s)}, α > −1.
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