
Detection of Dishonest Entities

言語: English

出版者:

公開日: 2011-02-22

キーワード (Ja):

キーワード (En):

作成者: TAMURA, Shinsuke, OHASHI, Yusuke,

TANIGUCHI, Shuji, YANASE, Tatsuro

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10098/3023URL

Detection of Dishonest Entities

Shinsuke Tamura, Yusuke Ohashi, Shuji Tanigichi and Tatsuro Yanase
Faculty of Engineering, University of Fukui

Fukui, Japan
tamura@u-fukui.ac.jp

Abstract—This paper discusses mechanisms to identify
dishonest users of services provided by a server in environments
where identities of honest users must be kept as their secrets. An
anonymous token based mechanism enables the server to identify
dishonest users when dishonest events are detected while the
users are receiving services, and a homomorhic anonymous token
based one enables that even dishonest events can be detected only
after the server completed their services and the users had left
from the server. A linear equation based encryption algorithm
that is used for implementing the above methods is also enhanced.

Keywords—anonymous tokens, homomorphic anonymous
tokens, dishonest event, dishonest entities, linear equation based
encryption algorithm

I. INTRODUCTION

Let entity S be a server that provides anonymous clients
with its services. In this setting, although S can
authenticate anonymous clients and collect fees for its
providing services from the clients by using mechanisms
for anonymous authentication [2][3] and credit card
systems [4], it cannot protect itself from dishonest
behaviors of clients once it had authenticated them as
authorized ones. If S’s service is to exhibit art objects to
visitors for example, visitors that had been anonymously
authenticated successfully by showing their tickets may
break exhibits or steal them; however, S cannot impute its
damages to anyone because visitors are anonymous. S
may be able to identify liable visitors if it inquires all
possible visitors of their alibis, but this solution is
apparently not acceptable because privacies of even
honest visitors are revealed.

This paper proposes 2 mechanisms to enable server S to
identify dishonest clients in the above environments
without revealing identities of honest clients. The 1st
mechanism is based on anonymous tokens and enables S
to identify dishonest clients when dishonest events are
detected during they are receiving services, and the 2nd
mechanism is based on homomorphic anonymous tokens
and enables S to identify dishonest clients even dishonest
events can be detected only after S had completed its
services. In addition to these mechanisms, a linear
equation based encryption function [4] is enhanced as the
base for implementing the 2nd method.

In the remainder, it is assumed that an appropriate
anonymous authentication mechanism is available.

Therefore before proposing the mechanisms, firstly
anonymous authentication mechanisms are discussed.

II. MECHANISMS FOR ANONYMOUS AUTHENTICATION

Anonymous authentication mechanisms enable a server
to authenticate authorized clients without knowing their
identities; they must satisfy the following requirements,
i.e.
1) only authorized clients are successfully authenticated,
2) no one except a client itself can know the identity of

the client that is being authenticated,
3) no one except a client itself can know that its past

authentication requests are made by the same client,
4) qualifications of clients must be invalidated when

they secede from the system managed by the server
that provides the services, and

5) the server can handle clients that lose or forget their
secrets necessary for being authenticated.

A mechanism based on anonymous tokens discussed in
Sec. II-A satisfies the 1st, 2nd, and the 3rd requirements,
and a one based on ID lists discussed in Sec. II-B satisfies
the all of the above requirements.

A. Anonymous token based autentication

Server S can authenticate authorized clients by giving them
tokens that are numbers with signatures of S, i.e. only
authorized clients can show tokens with S’s signatures.
Anonymous tokens are also numbers with the signatures of S,
however different from usual tokens S does not know the
numbers on which it had signed. Therefore, clients can
maintain their identities secret from S. Conditions that ensure
anonymous tokens to work well are,

1) tokens are unique, and

2) a client can use each of its token only once.

If clients Cp and Cq can obtain the same token T, server S
cannot determine that T is used in authorized ways by Cp or Cq,
or T is given to unauthorized entities by them. Also, if Cp can
use a single same token multiple times, it can give its tokens to
other entities without any penalty. When the above conditions
are ensured, anonymous tokens bring a substantial advantage to
anonymous authentication mechanisms. Namely, different from
the conventional password based authentication, in which non-
qualified clients can be successfully authenticated as authorized
ones by acquiring passwords from qualified clients, in a
mechanism based on anonymous tokens, clients cannot disclose
their tokens to other entities without losing their qualifications.

When client Cp discloses its token T to other client Cq, although
Cq can be authenticated as an authorized one, Cp cannot use T
anymore.

Client C can obtain its anonymous token from server S
based on the blind signature scheme [1],[2]. Firstly, C picks its
n-th token T(C, n) from the token table prepared by S
anonymously. Here, the token table maintains available tokens
while publicly disclosing them through e.g. a bulletin board
(BB) which is readable by anyone at any time, and when T(C,
n) is picked by C, S signs on it by its signing key a. Then
because only tokens with signatures generated by key a are
valid and S does not sign on T(C, n) repeatedly, tokens become
unique. Here, signatures generated by key a are different from
those generated by the blind signature scheme based on signing
key b. Signing key a is only for making tokens unique, and
even unauthorized clients can obtain signatures generated by a,
therefore notation T(C, n) is used for representing also T(C, n)
with this signature. Also because even unauthorized entities
can pick tokens in the token table, S must fill the token table
with tokens more than they are actually required. However, S
does not need to worry about dishonest events caused by tokens
picked by unauthorized entities; tokens are valid only when
they have S’s signatures generated by key b.

To obtain the signature generated by signing key b, client C
encrypts T(C, n) by its secret key c to E(c, T(C, n)) and shows
it with its (n-1)-th signed token S(b, T(C, n-1)) to S. Then, S
signs on E(c, T(C, n)) by its signing key b to generate S(b, E(c,
T(C, n))), when S(b, T(C, n-1)) is not used repeatedly and has
the correct signature of S, and finally, C decrypts S(b, E(c, T(C,
n))) to S(b, T(C, n)). Here, S(b, T(C, n)) is the signature of S on
C’s n-th token T(C, n), i.e. no one except S can generate S(b,
T(C, n)) and S can confirm that C is the authorized entity by
checking the consistency of S(b, T(C, n)), however, S cannot
identify C from it because S had signed on its encrypted form.
Also, because S checks duplicated uses of S(b, T(C, n-1)), C
can use S(b, T(C, n)) only once. As the exception, C obtains the
signature on its initial token E(c, T(C, 1)) by showing its
authenticity while disclosing its identity, and it is assumed that
signing and encryption functions S(b, x) and E(c, x) are
commutative of course. Fig.1 shows the anonymous token
based authentication procedure.

Figure 1. Anonymous token based authentication

A serious drawback of anonymous token based
authentication mechanisms is that server S does not have any
information about links between clients and their tokens;
therefore problems arise when clients lose their qualifications,
or forget or pretend to forget their tokens. Namely, firstly client
C that loses its qualification still can use its token, and secondly
C that obtains its new token while pretending to forget its token

can use its old token. About the former problem, S can collect
tokens from clients that secedes from the system while carrying
out the client deregistration procedures in which clients return
their unused signed tokens, however when clients secede from
the system without carrying out the procedures, they still have
effective tokens, and moreover they can obtain new tokens
forever by refreshing them. Theoretically the both problems
can be solved by invalidating all tokens that S had signed on.
Here, S can find all signed tokens easily by examining the
token tables. However this solution is apparently impractical
because even irrelevant clients are asked to obtain their new
tokens. Expiration times attached to tokens may mitigate the
problem, but still clients can use invalid tokens until their
expiration times, and also the clients can obtain new tokens by
showing old tokens. The worse thing is that expiration times
may suggest identities of token owners.

B. ID-List based Authentication

An ID-List based authentication mechanism [3] removes
drawbacks of the anonymous token based one. Authentication
processes proceed as shown in Fig. 2. Firstly, client Ch
generates D, a list of IDs of randomly selecting clients that
includes dh, the ID of Ch, and sends D to server S as its
authentication request. After receiving the request with D, S
generates its random bit string R, and for each dj in D, it finds
password pj in its database that corresponds to dj and encrypts
each pj to pj = E(k, pj) by its public encryption key k to
calculate qj = (pj  R). Here, although entities other than Cj
know public key k they do not know its decryption key k-1,
therefore they cannot know pj, password of other client Cj,
from E(k, pj). After calculating qj, S develops P a password list
consists of {dj, qj} pairs to send it to Ch with R = E(k, R). Then,
Ch that receives P, calculates ph’ = E(k, ph) and R’ = (qh  ph’)
while finding pair {dh, qh} corresponding to its ID from P. Here,
if Ch is the authorized client and knows its password ph, it can
calculate ph’ and R’ so that they coincide with ph and R,
respectively; therefore S can determine that Ch knows ph when
it receives R as the value of R’. On the other hand, S cannot
identify Ch provided that S assigns same random bit string R to
all clients in the ID list, because all clients in D know their
password and can return R as the value of R’.

However, S can identify clients when it encrypts passwords
of individual clients by different keys. For example, when S
encrypts ph by key Rh unique to Ch, S can easily identify Ch
when it receives Rh from Ch as the value of R’. Therefore a
mechanism to force S to encrypt passwords of all clients in the
ID list by the same key is necessary, and this is implemented
by Ch’s calculation of R’ = E(k, R’). Namely, when R’ does not
coincide with R, Ch can determine that S had encrypted
passwords of different clients in the ID list by different keys,
but when they coincide, it can believe that S had used the same
key R to all clients. Because S does not know the exact client
that is requesting the authentication, even when it encrypts ph,
the password of Ch, by encryption key Rh unique to Ch, it
cannot send E(k, Rh) as the value of R to Ch. When S uses
different encryption keys for different clients, it must take risks
to send R that does not coincide with E(k, Rh).

Different from the anonymous token based mechanism, ID-
List based one can easily handle clients that lose their

Client C

S(b, T(C, n-1) and

Server S

sign on E(c, T(C, n))decrypt S(b,E(c, T(C,n)))

verify S(b, T(C, n-1)) show current token

to next signed token
S(b, E(c, T(C, n)))

S(b, T(C, n-1))

E(c, T(C, n))
not used repeatedly

S(b, T(C, n))

encrypted next token E(c, T(C, n))
and confirm it is

qualifications or forget their secrets, because server S checks
the qualifications of clients by their passwords that are linked
directly to their IDs. When Ch loses its qualification or forgets
its password, the only thing that S must do is to delete dh, ID of
Ch, form the database or replace ph, password of Ch, in the
database with newly declared one.

Figure 2. ID-List based authentication

Possible threats to the ID-List based mechanism that must
be considered are 1) password disclosure from password list,
and 2) identifications of frequent visiting clients. About the 1st
threat, different from usual authentication systems, in this case,
dishonest client Cj can try to estimate passwords of other client
Ch infinite times without being noticed by server S, e.g. Cj
includes dh, an ID of Ch, in the ID list when it requests
authentication, assumes possible passwords of Ch such as its
birth date, telephone number, etc. and encrypts them by using
publicly known key k to compare the result with the value in
the password list. An ID-List based mechanism protects clients
from this kind of password disclosures by exploiting function
G(gh, ph) that transforms passwords so that different passwords
may have the same transformed forms, where ph is the
password of Ch and gh is a secret bit string shared by S and Ch
and attached to dh at Ch’s membership registration time.
Namely, in Fig. 2, password ph is firstly transformed to G(gh,
ph), then it is encrypted to E(k, G(gh, ph)) finally to be XORed
by S’s secret random bit string R. Therefore, S generates the
password list while calculating qh = E(k, G(gh, ph))  R. Then,
client Cj that knows its own password pj tries to steal ph in the
following way. Firstly, it calculates E(k, G(gj, pj)) to know R =
{E(k, G(gj, pj))  qj}, and extract E(k, G(gh, ph)) by calculating
qh  R, then generates E(k, G(gh1, ph1)) while assuming gh1 and
ph1 as the values of gh and ph, to compare the result E(k, G(gh1,
ph1)) with E(k, G(gh, ph)). However, because multiple pairs, e.g.
{gh1, ph1} and {gh2, ph2}, may satisfy relations E(k, G(gh, ph)) =
E(k, G(gh1, ph1)) and E(k, G(gh, ph)) = E(k, G(gh2, ph2)), Cj
cannot determine if ph1 or ph2 is the correct password of Ch or
not even E(k, G(gh1, ph1)) and E(k, G(gh2, ph2)) coincide with
E(k, G(gh, ph)); and Cj’s authentication request at other server
S’ may be rejected, and when S and S’ are communicating, S

can notify Ch that someone is trying to use its ID and password
to suggest Ch to change its password. Here, to protect password
ph securely, N(ph) the number of passwords that are
transformed into the same form G(gh, ph) must be large, i.e. the
probability that entities successfully use their steeling ph is
1/N(ph).

The 2nd problem is a one that dh, ID of frequently visiting
client Ch, appears many times in ID lists accompanying
individual authentication requests, and S can identify Ch as a
frequent visiting client, although it cannot identify clients that
requesting individual authentications. Aliases are the solution
to mitigate this problem. Namely, Ch can decrease the
appearance of dh in the ID lists even it requests authentications
frequently by using different alias ID and password pairs at its
individual visits to S. However, different from non-anonymous
systems, in anonymous authentication systems, server S must
invalidate all aliases of client Ch without knowing links
between Ch and these aliases, when Ch loses its qualification,
e.g. when Ch secedes from the system. Also, links between
aliases of same clients must be hidden from any entity except
the clients themselves; when these links are known to S, S can
easily know existences of frequently visiting clients. These
mechanisms can be implemented by using implicit transaction
links [4].

III. MECHANISMS FOR IDENTIFYING DISHONEST ENTITIES

Anonymous authentication mechanisms discussed in the
previous sections enable S to authenticate authorized
clients without identifying clients themselves, however
clients can behave dishonestly without any penalty once
they are authenticated successfully. This section discusses
mechanisms to identify clients that behave dishonestly
after they were authenticated.

A. Anonymous Token

Anonymous tokens used in the anonymous token based
authentication mechanism can be directly used to identify
dishonest clients provided that S can detect dishonest
events while the clients are receiving services. Namely in
Fig. 1, when S does not give the n-th token to C until it
can confirm the honest behavior of C, C can obtain its n-
th token only if it is honest. Therefore although C can
receive services from S at its (n-1)-visit to S by using
token T(C, n-1), after that it cannot receive any service
from S. Moreover, when S inquires clients of their last
tokens, C can show only its used token because it had
shown T(C, n-1) already at its (n-1)-th visit and did not
receive its new token. On the other hand, honest clients
always possess their unused tokens because they show
their tokens in exchange for their new tokens. Then S can
identify dishonest client C as the client that cannot show
its unused token. However, S cannot know any privacy of
honest clients from unused tokens that they show at the
requests of S because they did not receive any service by
using these tokens.

However, S cannot identify dishonest clients when
dishonest events are detected after it had completed its
services, i.e. S cannot decide whether C is honest or

Server S Client Ch

generate D a list of D find password ph for

add {dh, qh} pair to

return R’ when R’ = R

P, R
ph to ph’ = E(k, ph)

authenticate Ch,
R’

encrypt ph to ph = E(k, ph)

find {dh, qh} in P and

generate R and

calculate R = E(k, R)

calculate R’= (qh  ph’)

encrypt own password

by public key k

each dh in D

by public key k

calculate qh = (ph  R)

password list P

when R’ = R

randomly selecting IDs

and R’ = E(k, R’)

dishonest at a time when C leaves from S. Therefore S
must sign on C’s next token, and C can show its unused
token when S inquires of its unused token.

B. Homomorphic Anonymous Tokens

When tokens in the previous subsection are homomorphic,
S can identify dishonest clients, even if it can detect dishonest
events only after the clients leave from S. A homomorphic
anonymous token is a one that is encrypted by a token holder
while using homomorphic encryption function. Namely, token
holder C encrypts its token S(b, T(C, n)) signed by server S to
E(c, S(b, T(C, n))) by its encryption key c, where, E(c, x) is a
homomorphic encryption function and b is a signing key of S.
As same as anonymous tokens, S(b, T(C, n)) must be
constructed so that no one except C can identify C from it.
However, different from the anonymous token scheme, in the
homomorphic anonymous token scheme, it is not necessary for
C to conceal its tokens at times when it obtains signatures on
them. C can obtain its tokens also while hiding its identity
without concealing them. In the followings, encryption
function E(c, x) is assumed to satisfy E(c, x) + E(c, y) = E(c,
x+y), i.e. E(c, x) is homomorphic under addition.

S identifies dishonest client C as follows. Firstly, at
anonymous client C’s n-th visit to S, S asks C to show its n-th
token S(b, T(C, n)) and the encrypted (n+1)-th token (i.e.
homomorphic anonymous token E(c, S(b, T(C, n+1)))), that are
not used before, where C obtains S(b, T(C, n)) and S(b, T(C,
n+1)) from S through the other independent process and
encrypts S(b, T(C, n+1)) to E(c, S(b, T(C, n+1))) by its secret
encryption key c in advance. Then, C receives services from S
and S memorizes triple {SID, S(b, T(C, n)), E(c, S(b, T(C,
n+1)))} as the service record, where SID is the identifier of the
service that S had provided. When dishonest events are
detected in the service corresponding to SID, S asks all clients to
decrypt E(c, S(b, T(C, n+1))), and C is identified as a dishonest
one, because C that knows decryption key c-1 can decrypt E(c,
S(b, T(C, n+1))) to S(b, T(C, n+1)), the consistent signature of
S, on the other hand, the decryption result of honest client D is
E(d-1, E(c, S(b, T(C, n+1)))) that does not have consistent
meanings. The important thing is that E(d-1, E(c, S(b, T(C,
n+1)))) does not include any information about the service that
D had received, i.e. a homomorphic anonymous token does not
reveal any privacy of honest client D.

Here, although dishonest C tries not honestly to decrypt
E(c, S(b, T(C, n+1))) of course, homomorphic property of
encryption function E(c, x) disables that. Because E(c, x)
is additive, when S asks C to decrypt test = w1E(c, Tc1) +
w2E(c, Tc2) + --- + wmE(c, Tcm) + w0E(c, S(b, T(C, n+1))),
the decryption result must coincide with test = w1Tc1 +
w2Tc2 + --- + wmTcm + w0S(b, T(C, n+1))*, if C had
answered S(b, T(C, n+1))* honestly as the decrypted form
of E(c, S(b, T(C, n+1))). Here, {E(c, Tc1), E(c, Tc2), ---, E(c,
Tcm)} are encrypted forms of test bit strings Tc1, Tc2, ---
Tcm that are registered by C in advance, and w1, w2, ---, wm,
w0 are random bit strings secret from C. Then, S can
decide that C decrypts E(c, S(b, T(C, n+1))) dishonestly to
S(b, T(C, n+1))* when the decrypted form of test does not
coincide with test. Namely, when E(c-1, E(c, S(b, T(C,
n+1)))) ≠ S(b, T(C, n+1))*, C that does not know w1, w2, ---,

wm, w0 cannot decrypt test to test. On the other hand,
when S(b, T(C, n+1))* is the correct decrypted form of E(c,
S(b, T(C, n+1))), C can calculate test by simply decrypting
test without knowing any of w1, w2, ---, wm, w0. However,
the above scheme does not work correctly when C had
dishonestly encrypted S(b, T(C, n+1)) from the beginning. It
must be noted that S cannot use test bit strings to confirm the
correct encryption of S(b, T(C, n+1)), because S must know
the encrypted test bit strings {E(c, Tc1), E(c, Tc2), ---, E(c,
Tcm)} that differ from those of other clients to verify
correctness of encryptions, i.e. to enable S to find the test bit
strings corresponding to C, C must inform S of its identity.
ITLs (Implicit Transaction Links) [4] enable S to force C also
to encrypt S(b, T(C, n+1)) honestly without identifying C.

Figure 3. Used token record UTR(C, n)

To disable C to encrypt S(b, T(C, n+1)) dishonestly, S
generates used token record UTR(C, n) consists of 4 items, i.e.
visit counter, service identifier, current token, and next token,
as shown in Fig. 3, and encrypts it to E(kS, UTR(C, n)) by its
secret encryption key kS to be maintained by C. Here, E(kS, x) is
an additive (homomorphic) encryption function as same as E(c,
x). The visit counter represents the number of visits that C had
made before including the current one, service identifier SID(n)
represents the service that C had received at its n-th visit to S,
and current token S(b, T(C, n)) and encrypted next token E(c,
S(b, T(C, n+1))) are multiplied by the token concealers vn and
vn+1 that are secret of S so that C cannot modify or forge pair
{vnS(b, T(C, n)), vn+1E(c, S(b, T(C, n+1)))} consistently. It
must be noted that, the value of the visit counter must be
initialized when it exceeds the relatively small value defined in
advance, to disable S to extract frequently visiting entities.

Here, pair {vnS(b, T(C, n)), vn+1E(c, S(b, T(C, n+1)))} is an
ITL at C’s n-th visit, and S inquires sums of encrypted used
token records from individual clients periodically, e.g. at times
when S collect fees for its providing services. Therefore, S can
calculate the sums of current and encrypted next tokens of C by
decrypting the sum of encrypted records that C had reported by
exploiting the additive property of E(kS, x), and because
encryption function E(c, x) is also additive, S can calculate the
sum of next tokens by asking C to decrypt the sum of encrypted
next tokens. Then, based on the fact that the sums of current
and next tokens are equal provided that the difference between
the initial and the last tokens is compensated, S can detect
dishonest token encryptions of C. Namely, although C can
dishonestly encrypt S(b, T(C, n+1)) to X at its n-th visit to S, at
its (n+1)-th visit, C must show token S(b, T(C, n+1))
accompanied by the consistent signature that is not encrypted
to X, and as the consequence, S generates C’s (n+1)-th used
token record UTR(n+1) as UTR(n+1) = {n+1, SID(n+1), vn+1S(b,
T(C, n+1)), vn+2E(c, S(b, T(C, n+2)))}, however S had
generated UTR(n) as UTR(n) = {n, SID(n), vnS(b, T(C, n)),
vn+1X} at C’s n-th visit. Then, S detects inconsistency between
S(b, T(C, n+1)) and X at a time when it collect fees from C for

Current token Next token

vnS(b, T(C, n)) vnE(c, S(b, T(C, n+1))) n

Visit counter Serveice ID

SID(n)

its providing services, i.e. the sum of current tokens and that of
next tokens do not coincide.

As a conclusion, client C is identified as a dishonest one
through one of the following reasons, i.e. firstly C decrypts E(c,
S(b, T(C, n+1))) to consistent S(b, T(C, n+1)) at a time when S
detects dishonest events, or secondly, at a time when S
calculates the sum of used token records of each client, C
cannot decrypt the sum of encrypted next tokens so that it
coincides with the sum of current tokens.

In the above, ITLs disable C to report the sum of its service
records dishonestly, e.g. while modifying, forging, or deleting
its records, based on the relation that the sums of current and
next tokens must be same [4]. At its n-th visit to S, C cannot
report n, the number of its past visits to S, dishonestly either.

IV. LINEAR EQUATION BASED ENCRYPTION FUNCTION

A. Basic Mechanism

A linear equation based encryption function E(Q, M)
encrypts bit string M by representing M as a H-dimensional
integer vector {M} = {m1, m2, ---, mH} and linearly combining
its elements by using linearly independent (H x H) secret
coefficient matrix Q = {qij} to generate H-dimensional vector
{M*} = {m*1, m*2, ---, m*H} as shown in (1).

m*1 = q11m1 + q12m2 + ---- + q1HmH

m*2 = q21m1 + q22m2 + ---- + q2HmH

 ---- (1)

m*H = qH1m1 + qH2m2 + ---- + qHHmH

 Then, an entity that does not know Q cannot calculate M
from {M*}; however when Q is disclosed, anyone can calculate
M from {M*} by solving (1). Therefore, {M*} is the encrypted
form of M, and matrices Q and Q-1 are considered as encryption
and decryption keys, respectively. Encryption function E(Q, M)
is homomorphic under addition, i.e. when M1 and M2 are
encrypted into E(Q, M1) and E(Q, M2), then sE(Q, M1) + tE(Q,
M2) is decrypted into sM1 + tM2, where s and t are arbitrary
integers. However this property introduces a serious drawback
that it is weak against plain text attacks. When H mutually
independent H-dimensional vector {A1*}, {A2*}, ---, {AH*} are
given as encryption results of known bit strings A1, A2, ---, AH,
because arbitrarily given H-dimensional vector x* is
represented as x* = g1A1* + g2A2* + ---- + gHAH*, x* can be easily
decrypted into x = g1A1 + g2A2 + ---- + gHAH even coefficient
matrix Q is not known.

B. Protecting Encryption Function from Plain text Attacks

The drawback of the linear equation based encryption
finctions can be excluded by the following 3 ways, i.e.

1) by inserting secret random dummy elements at random
positions in the encrypted vector,

2) by adding secret random terms to (1), and

3) by representing the value of each element of the encrypted
vector as the sum of values randomly split into multiple
elements.

The 1st method mixes vector {m*1, m*2---, m*H}, which is
calculated from M according to (1), with secret random vector
{w*1, w*2, ---, w*T} while shuffling the elements of both vectors
to generate a single (H+T)-dimensional vector; therefore the
encryption result becomes to {M*’} = {w*2, w*1, m*3 w*3, m*1---,
w*5} for an example. As the consequence, to decrypt {M*’} into
M, positions where m*1, m*2---, m*H are located in {M*’} must
be determined. However, there are still linear relationships
among encrypted forms of known bit strings when dummy
elements are removed, and it is not so difficult to identify the
positions where elements {m*1, m*2---, m*H} are allocated.

To make the linear relationships among encrypted forms
difficult to be identified, the 2nd method adds G secret random
bit strings r1, ---, rG to {m1, m2, ---, mH}. Therefore, M is
represented as (H+G)-dimensional vector M = {m1, m2, ---, mH,
r1, r2, ---, rG}, and key Q is extended to (H+G) x (H+G)-matrix
Q, i.e. M is encrypted to M* = {m*1, m*2, ---, m*H+G} by using
secret coefficient matrix Q, and M* is decrypted into M by
solving the linear equation and deleting random bit strings r1, r2,
---, rG. The important thing is that r1, r2, ---, rG are kept as
secrets of the entity that encrypts M and they are changed at
every encryption. Therefore, although there are still linear
relationships among encrypted forms of known bit strings, it is
extremely difficult to use them for estimating the encryption
key.

However, it must be noted that the 2nd method cannot
protect encrypted forms without the 1st method. When (H+G)
linearly independent encrypted forms of known bit strings {M1

*,
M2

*, ---, MH+G
*} are fortunately obtained, any entity can

decrypt arbitrary encrypted form M* by decomposing it into a
linear combination of {M1

*, M2
*, ---, MH+G

}. When M is
decomposed into a1M1

* + a2M2
*, --- + aH+GMH+G

*, although it is
not possible to identify random secret numbers r1, r2, ---, rG that
are used for calculating M*, M itself can be reconstructed as M
= a1M1 + a2M2, --- + aH+GMH+G, provided that Mj

* is the
encrypted form of Mj for each j.

In the 3rd method, the value of each element m*j of the
encrypted vector is randomly split into a set of multiple
elements {m*j1, m*j2---, m*jp} so that relation m*j = m*j1 + m*j2 +
--- + m*jp is satisfied, i.e. single element m*j is represented as a
set of elements {m*j1, m*j2---, m*jp}. Therefore, linear
relationships between encrypted forms of known bit strings
totally disappear, and plain text attacks become impossible.
Because linear relationships among encrypted forms are hidden,
all possibilities that {m*1, m*2---, m*H} are allocated in an
(H+T)-dimensional vector must be examined to calculate the
coefficient matrix, i.e. (H+T)PH number of possibilities must be
examined. When H and T are set to 50, (H+T)PH becomes 100P50 >
2500, and this can be increased by adding more dummy
elements. Also for individual possible arrangements, extracting
linear relationships among encryption results of known bit
strings is extremely difficult because of the 2nd and the 3rd
methods. When the coefficient matrix is given, LU-
decomposition method [5], for example, solves linear equations
with sufficient performance in terms of both computation speed
and accuracy even when the dimensions of coefficient matrices
are more than 1,000.

C. Protecting Encryption Function form Forgeries

Although the above methods protect the encryption
function from plain text attacks, it is still easy to generate
consistent encrypted forms without knowing the key. By
linearly combining encrypted forms of known mutually
independent bit strings, encrypted forms of arbitrary bit strings
can be generated, and entities can behave dishonestly while
modifying or forging encrypted forms in unauthorized ways, as
same as in cases where public key encryption functions are
used. The following mechanism disables entities to modify or
forge encrypted forms of bit strings in unauthorized ways.

The basic idea is to attach a check code (CC) and a check
value (CV) to bit string M to be encrypted as shown in Fig. 4.
Here, values of the CC and the CV are determined as the secret
of entity P that encrypts M, and P changes their values
randomly in every encryption so that C and V, the values of the
CC and the CV, satisfy V = f(C). Therefore, when E(Q, M), the
encrypted form of M, is generated in unauthorized ways, P can
detect that by checking if V = f(C) is satisfied or not. For
entities that do not know C and V, it is difficult to generate E(Q,
M) while satisfying V = f(C) even if they know function f(x).

 Here, to protect encrypted forms, f(C) must be a nonlinear
function. If it is a linear function, e.g. V = sC + t (s and t are
constant values), it is not so difficult to generate consistent
encrypted forms of given bit strings without knowing the
encryption key by lineally combining already known encrypted
forms. On the other hand, it is desirable that f(C) is linear to
exploit advantages of the additive property. When it is linear,
the consistency of a set of n encrypted forms can be confirmed
by checking the sum of the encrypted forms in the set without
checking individual encrypted forms, and more importantly
without knowing individual data.

Figure 4. A check code and a check value

The CC and CV shown in Fig. 5 satisfy both of the above
requirements. In the figure, CC is configured as a set of Z

integers {CC1, CC2, ---, CCZ} with values 0 or 1, and P defines
their values randomly so that only one of CCj has 1 as its value.
The value of CV is defined according to CCj to which value 1
is assigned. Namely, a set of values V1, V2, ---, VZ are
corresponded to CC1, CC2, ---, CCZ in advance, and the CV
value is calculated as Vj when CCj is 1. Then the relation
between values of the CC and the CV is not linear anymore,
and entities cannot generate consistent encrypted forms by
combining those of already known bit strings, e.g. when an
entity generates pE(Q, M1) + qE(Q, M3), its CC = {CC1, CC2, --
-, CCZ} may have multiple nonzero elements. On the other
hand, P can convince itself that a set of given encrypted forms
are consistent ones without checking values of the CC and the
CV of individual forms. When the sum of the encrypted forms
is decrypted, P can extract Tj, the sum of CCj values for each j,
and W, the sum of CV values, and all encrypted forms in the
set are consistent when W = T1V1 + T2V2 + --- + TzVz is
satisfied.

By using the additive property, linear equation based
encryption algorithms can be made also verifiable as shown in
Sec. III-B, namely entity can confirm the correctness of
encryptions while using test bit strings without knowing either
of the encryption or the decryption keys.

Figure 5. Configuration of CC and CV

REFERENCES

[1] D. Chaum, “Security without identification: Transaction systems to

make gig brother obsolete,” Communications of ACM, Vol.28, No.10,
1985, pp.1030-1044.

[2] R. Shigetomi, et.al., “Refreshable Tokens and Its Applications to
Anonymous Loans,” SCIS 2003, 2003.

[3] S. Tamura, et al., “Information sharing among untrustworthy entities,”
IEEJ Trans. EIS, Vol.125, No.11, 2005, pp.1767-1772.

[4] S. Tamura, et al., “A mechanism for anonymous credit card systems,”
IEEJ Trans. EIS, Vol. 127, No. 1, 2007, pp. 81-87.

CC1 CC2 CCZ CV

CC part

CV part

M C V = f(C)

Bit string to be encrypted Check code (CC) Check value (CV)

