
Feasibility of Hungarian Algorithm based
Scheduling

言語: English

出版者:

公開日: 2011-02-22

キーワード (Ja):

キーワード (En):

作成者: TAMURA, Shinsuke, KODERA, Yuki,

TANIGUCHI, Shuji, YANASE, Tatsuro

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10098/3024URL

Feasibility of Hungarian Algorithm based Scheduling

Shinsuke Tamura, Yuki Kodera, Shuji Taniguchi and Tatsuro Yanase
Graduate school of Engineering, University of Fukui

3-9-1, Bunkyo, Fukui, Japan
tamura@u-fukui.ac.jp

Abstract—An optimal resource allocation algorithm, Hungarian
algorithm, is not directly applicable to manufacturing scheduling
problems, because solutions of resource allocation problems may
violate precedence constraints among processes that constitute
individual manufacturing jobs. To apply Hungarian algorithm to
scheduling problems, in this paper, several strategies for assigning
prices to time slots of individual machines, which are allocated to
processes, are proposed. Preliminary experimentation results
showed that these strategies can generate near optimal schedules,
i.e. when lengths of scheduling horizons were larger than 3 times of
the maximum lengths of jobs, generated schedules could complete
given jobs while maintaining the deterioration of the efficiency less
than 5% from optimal schedules.

Keywords—scheduling, hungarian algorithm, near-optimal
schedules

I. INTRODUCTION

The responsibility of manufacturing scheduling is
increasing rapidly with the shift from low variety high volume
to high variety low volume productions. Schedulers are
required to quickly generate more efficient schedules for larger
amount of manufacturing activities in environments where both
customers’ requirements and manufacturing facilities change
frequently. Although many scheduling systems had been
developed based on various approaches, e.g. heuristic based
and mathematical optimization based schedulers [1][2][3][4],
yet they are not powerful enough. Heuristics based schedulers
are not efficient enough because they do not ensure any
optimality, and mathematical optimization based ones cannot
be applied to complicated manufacturing systems because of
various restrictions caused by their simple formulations. As one
of approaches to develop schedulers that satisfy the
requirements in high variety low volume manufacturing, this
paper discusses the feasibility of a scheduling method based on
Hungarian algorithm.

A manufacturing scheduling problem is a kind of resource
allocation, i.e. when individual time slots of machines are
considered as resources, scheduling is a problem just to allocate
these time slots to processes that constitute given
manufacturing jobs. Therefore it is natural to apply Hungarian
algorithm, an optimal resource allocation algorithm that
allocates resources to jobs so that the cost functions are
minimized, to scheduling problems. However, because of

precedence constraints that are essential in manufacturing
scheduling, Hungarian algorithm cannot be applied in a
straightforward way. Namely, usually in manufacturing
scheduling, a set of processes to be completed to accomplish a
job should be executed in the predefined order; however these
orders cannot be preserved when Hungarian algorithm is
applied without any modification.

To make Hungarian algorithm suffice these precedence
constraints, this paper proposes strategies for assigning prices
to individual time slots of machines for executing individual
processes. Intuitively, the strategies assign prices to time slots
to execute contiguous processes P1 and P2, so that prices for
executing P1 increase more rapidly as the slot beginning time
increases than for P2 that succeeds P1. By these strategies, the
sum of execution cost of P1 and P2 becomes smaller when
earlier time slots are assigned to P1 than the case where they are
assigned to P2, i.e. precedence constraints are satisfied.
Preliminary experimentation results showed that the proposed
strategies can generate near optimal schedules, i.e. when
lengths of scheduling horizons exceeded more than 3 times of
the maximum length of jobs generated schedules could
complete given jobs while maintaining the deterioration of the
efficiency less than 5% from optimal schedules.

II. RESOURCE ALLOCATION AND SCHEDULING PROBLEMS

Table 1 shows an example of a resource allocation problem.
In the table, the 0-th row and column of the matrix represents
resources and jobs, respectively, and (i, j) element represents
the price for allocating the j-th resource to the i-th job. Here, it
is assumed that the numbers of jobs and resources are the same;
this assumption is satisfied always by defining dummy jobs or
resources if necessary. Then, optimal resource allocation is a
problem to allocate resources to jobs so that the total allocation
cost becomes minimal, i.e. to select one element in each row
and column, so that the sum of prices of selected elements
becomes minimal. In the figure a set of selected elements {(1,
5), (2, 1), (3, 4), (4, 2), (5, 3)} represents the optimal allocation,
i.e. the minimal allocation cost is 240, the sum of prices of
selected elements.

Hungarian algorithm finds the above optimal resource
allocations efficiently, i.e. it can calculate the optimal
allocation with the computation volume of O(n3). Here n is the
number of resources or jobs.

TABLE I. OPTIMAL RESOURCE ALLOCATION PROBLEM

 R1 R2 R3 R4 R5

J1 60 70 50 90 40

J2 40 80 90 70 60

J3 80 90 90 60 70

J4 70 50 70 60 60

J5 50 50 50 80 80

Manufacturing scheduling problems are a kind of resource
allocation ones. For example, let M1 and M2 be manufacturing
machines, and {P11, P12, P13} and {P21, P22, P23} be sequences
of processes that constitute jobs J1 and J2, respectively. Then,
when resources are defined as time slots of individual machines,
scheduling manufacturing jobs J1 and J2 is just to allocate these
time slots to processes {P11, P12, P13, P21, P22, P23} as shown in
Table 2. However, Hungarian algorithm cannot be directly
applied to scheduling problems, because generally there are
precedence constraints among processes that constitute
individual jobs. In the case shown in Table 2, to complete job
Jk (k = 1, 2), processes Pk1, Pk2, Pk3 must be accomplished in
this order, but Hungarian algorithm allocates time slots to these
processes without any constraints. As the consequence,
generated schedules may violate these precedence constraints,
e.g. in the table, elements (1, 6), (2, 1), (3, 5), (4, 2), (5, 4) and
(6, 3) are selected, i.e. J1 and J2 are completed by executing
processes in the order {P12, P13, P11} and {P21, P23, P22},
respectively.

TABLE II. MANUFACTURING SCHEDULING PROBLEM

 M1 M2

J1

P11 60 70 50 60 50 40

P12 40 80 90 80 70 60

P13 80 90 90 100 60 70

J2

P21 70 50 70 80 60 60

P22 50 60 80 50 80 80

P23 50 70 50 80 90 100

III. HUNGARIAN SCHEDULER

Hungarian scheduler proposed in this paper consists of the
following steps,

1) N = 0 (initialize the number of price modification
times),

2) assign initial prices to individual slots of machines for
processing individual processes,

3) execute Hungarian algorithm,

4) if there is no constraint violation, then terminate
calculation, else go to step 5,

5) if N = Nmax, then set N to 0 and go to step 7, else go to
step 6,

6) N = N + 1, modify prices of selected slots for executing
selected processes, and go to step 3,

7) add time slots and go to step 1.

In the above procedure, prices of time slots for executing
individual processes are defined and modified according to the
strategies described later, so that the precedence constraints
among processes are satisfied. When the precedence constraints
cannot be satisfied even prices are modified predefined number
of times, an extra slot is added, and the same procedure is
iterated. Namely, original scheduling horizon is expanded until
the constraint violations are removed completely. Here,
because the number of processes is finite, it is apparent that the
constraints violations can be removed eventually, provided that
prices of individual time slots are defined and modified
appropriately.

Strategies for assigning and modifying prices of slots for
executing individual processes are described in the following
subsections. In the following, it is assumed that jobs are
accomplished through sequences of processes that do not have
either branches or junctions, i.e. each job J consists of a
sequence of processes P1, P2, ---, PN, that should be executed in
this order.

A. Type-1: Equal Length Processes and Equal Performance
Machines

This subsection considers scheduling problems, in which
machines may have different functions but they execute
functions with the same performance, and all jobs consist of
processes that require the same processing time. In this case if
the length of slots is defined as same as the processing times of
processes, all processes can be executed within single time
slots of machines. Therefore, the only deference between
scheduling and resource allocation problems is the existence of
precedence constraints, and simple price assignment strategy
described below works effectively. In the following, n(P)
represents that process P is the n(P)-th process of some job J,
e.g. for {P11, P12, P13} in the previous section, n(P11) = 1, n(P12)
= 2, n(P13) = 3.

Strategy-1: For executing process P, define the price of a
slot that begins from time t as ∞ when t < n(P) and c(n(P))(t –
n(P)) when n(P) ≤ t, where c(n(P)) is positive, therefore, the
price increase linearly as slot beginning time increases. Also
coefficient c(n(P)) is defined so that the prices increase less
rapidly as n(P) increases.

Figure 1. Prices of slots for executing process P

Slot-5

for n(P) = 1

for n(P) = 2

for n(P) = 3

price

Slot-1 Slot-2 Slot-3 Slot-4 time

(R2)
Slot-2

(R3)
Slot-3

(R4)
Slot-1

(R5)
Slot-2

(R6)
Slot-3

Fig. 1 depicts how coefficient c(n(P)) is defined. Let P and
Q be processes of job J, and n(P) = p and n(Q) = q (p < q).
Then according to Strategy-1, it is apparent that the slot
assignment cost of a schedule, in which Q is executed before P,
decreases when slots that execute P and Q are exchanged.
Therefore it is expected that the strategy generates a schedule
which executes P earlier than Q that succeeds P, i.e. the
strategy is prone to satisfy precedence constraints. In the figure,
the price of Slot-1 for executing process P with n(P) = 2 and
n(P) = 3 are defined as ∞, because P cannot be executed until
processes that precedes it had been completed.

However it is not ensured that precedence constraints are
satisfied always; therefore Strategy-2 that modifies prices so
that preceding processes are forced to be processed earlier is
necessary.

Strategy-2: When Hungarian algorithm generates a
schedule that executes process Q before completing P that
precedes Q (i.e. P and Q are processes of same job J and n(P) <
n(Q)), define prices of slots for executing Q so that the
beginning time of Q is forced to be greater than or equal to
tF(P), or define prices of slots for executing P so that the
beginning time of P is forced to be less than tB(Q). Here tF(P)
and tB(Q) represent the originally scheduled completion time of
P and the beginning time of Q, respectively.

Strategy-2 can be implemented by 2 different ways, i.e. by
inhibited slots, or by early start or late completion penalties.
An inhibited slot for process X is a slot, of which price for
executing X is infinite; therefore if slots that begin earlier/later
than the scheduled completion time of P/Q are defined as
inhibited slots for Q/P, Q/P is rescheduled to be executed
after/before P/Q, unless P/Q is moved to a further later/earlier
slot in the rescheduling. An early start/late completion penalty
is the additional cost to be paid when a process
begins/terminates before/after the designated time; and can be
achieved by modifying prices of slots. When prices of slots for
executing P decreases when t < tS, or they increases more
rapidly when t > tF as shown in Fig.2, P is expected to be
executed after tS or before tF, because the cost for executing P
before tS or after tF increases more than executing other
processes during that period. Obviously inhibited slots can
implement strategy-2 in a stricter way, however early start/late
completion penalties leave Hungarian algorithm larger number
of possibilities to be evaluated as candidate schedules, i.e. it is
expected that the algorithm can find more efficient schedules.

Figure 2. Early start and late completion penalty

B. Type-2: Different Length Processes and Equal
Performance Machines

When processing times of individual processes that
constitute jobs are not the same, the length of slots cannot be

defined so that every process can be accomplished within
single slot duration; there are processes that require multiple
slots for their completions. To schedule a process that cannot
be accomplished within a single slot, it is necessary to divide it
into multiple sub-processes so that they can be accomplished
within single slots, and to introduce adjacency constraints to
these sub-processes, i.e. these sub-processes must be executed
in a sequence of mutually adjacent slots of the same machines
as shown in Fig.3.

Figure 3. Sub-processes and an adjacecy constraint

Although adjacency constraints are more difficult to satisfy
than usual precedence constraints, they are not so difficult to
satisfy when alternative machines of all processes have the
sane functions and equal performances as follows. Here,
alternative machines of process P are a set of machines that can
execute P. Then let machines M1 and M2 be alternative
machines of process P and Q, and slots S1, --, SK of M1 be ones
that are assigned to sub-processes from P1 to PK of process P,
except slot Sj, as shown in Fig. 4. Slot Sj of M1 is assigned to
sub-process Qx of process Q, and sub-process Pj is scheduled to
be executed by slot Sj of M2, i.e. the adjacency constraint on P
is not satisfied. However, if M1 and M2 have the same functions
and the equal performance, slots assigned to Pj and Qx, i.e. slot
Sj of M1 and M2, can be exchanged each other without
changing the completion time of either of P and Q. Therefore,
simple local adjustments can generate a schedule that satisfies
the adjacency constraint on P.

Figure 4. Exchanging assigned slots

Also, even when sub-processes of P (i.e. P1 and P2) are
separated by those of Q (i.e. Q1, Q2 and Q3) as shown in Fig. 5
(a), if PS (process succeeds P) is scheduled to start before QS
(process succeeds Q), sub-processes of P and Q can be
exchanged so that all sub-processes of P precede those of Q
without changing start times of PS,QS, PP and QP (PP and QP are
processes precedes P and Q, respectively). In Fig. 5(b), P1 and
P2 are moved to the slots that precede all sub-processes of Q,
however, this exchange does not delay the completion time of
Q.

In the above case, PP
last (the last sub-process of PP that

precedes P) is scheduled to be completed before the start time
of Q1 from the beginning. However, when PP

last is scheduled to
be completed after Q1 starts, the completion time of Q is
delayed, and consequently not only the start times of P and Q
bust also that of QS must be changed, i.e. simple local
adjustments cannot generate feasible schedules.

tS

price

tF

Slot-5 Slot-4 Slot-3 Slot-2 Slot-1

time

Slot-3 Slot-2 Slot-1

machine
Mk P1

sub-process

P2 P3

process P

sub-process sub-process

SKS1 S2 Sj

P1 P2 QX Pk

Pj

machine
M1

machine
M2

(a) Original slot allocation

(b) Modified slot allocation

Figure 5. Separated sub-processes

C. Type-3: Different Performance Machines

When individual alternative machines have different
performances, processing times of a process differ depending
on machines that execute it, and it becomes difficult to keep
optimality of schedules. Namely, when the slot length is
defined so that single slots of lower performance machines can
complete individual processes (or sub-processes), higher
performance machines cannot show their full ability, because
they complete these processes before the end of their slots, and
remaining durations of the slots are left unused. On the other
hand, it is not possible to define the slot length as the duration,
by which higher performance machines can complete
individual processes, because lower performance machines
cannot complete these processes within their single slots.

Introduction of dummy time slots and dummy processes
enable the scheduler to generate efficient schedules also in
these situations, provided that performance ratios between
alternative machines do not depend on processes. This
condition means that, when process P and Q are accomplished
by 3 and 6 slots of machine M1 respectively, Q must be
accomplished in 10 slots by machine M2, if P is accomplished
in 5 slots by M2, for example. Here a dummy time slot is
defined for lower performance machines to adjust performance
difference between alternative machines, and they are assigned
only to dummy processes, i.e. prices of dummy slots are
infinite for all processes except dummy processes, and
performance differences between machines are adjusted by
lower performance machines’ dummy process executions. For
example, when machine M1 can accomplish a function, which
is accomplished by n time slots of M2, by its m time slots (n >
m), (n-m) dummy slots are placed before every m slots of M2 as
shown in Fig. 6. In the figure Dj (1 ≤ j ≤ n-m) represents
dummy slots, therefore, M2 must execute (n-m) dummy
processes before completing m processes, and consequently, it
can execute only m processes during the period where M1
executes n processes.

A drawback of the above dummy slot arrangement is that it
allocates fixed number of dummy slots regardless of process
length (execution time of the process), although the difference
between process completion times of the higher and the lower
performance machines becomes small when the process length
is small. Therefore in Fig. 6, dummy slots may delay start times
of Q, when lower performance machine M2 can complete P1, P2,

---, Plast (sub-processes of P that precedes Q) within less than m
slots. These delays can be removed when dummy slots are
allocated after every m slots of M2 as shown in Fig. 7. In Fig.7,
Q1 begins just after slot Sj+m-1 that is assigned to Plast. However,
in this case, generated schedules may become infeasible, i.e.
succeeding processes may start before the completions of
processes that precede them. A possible solution is to distribute
(n-m) dummy slots between m non-dummy slots.

Figure 6. Dummy slots

Figure 7. Inconsistent schedule

It must be noticed that different from equal performance
machine cases, slot Sj of 2 machines with different
performances that are assigned to 2 different processes cannot
be exchanged. When they are exchanged, the slot of the lower
performance machine may not be able to accomplish the newly
assigned process. Therefore, for cases including different
performance machines, the scheduler may require more
additional slots to generate consistent schedules.

IV. PRELIMINARY EXPERIMENTATION RESULTS

To evaluate the feasibility of the Hungarian algorithm based
scheduler, times required for the scheduling executions and the
optimality of scheduling results were measured for simple
scheduling problems of types 1, 2 and 3, while comparing job
completion times of the scheduler with that of the optimal
schedules. Here, optimal schedules were generated by filling all
slots of all machines by processes, and generating jobs by
randomly selecting all allocated processes so that they can be
arrayed in their start time increasing order, and defining these
sequences of processes as processes or sub-processes of jobs.
In all evaluation cases, inhibited slots were used for
implementing strategy-2.

A. Type-1

The Hungarian algorithm based scheduler showed the good
performance for type-1 cases. Namely, for all cases where 5
machines executed jobs consists of 40-60 processes during 100
time slots scheduling horizon, the proposed method had
generated schedules that completed the jobs within durations as
same as the optimal ones. However, in cases where there were
not enough alternative machines for individual processes, the

P1 P2 Q2 Q3 QS
1

PS
1

QP
last

PP
last

Q1

machine M2

machine
M1

Sj+1 Sj+ n-m

machine
M2

Sj Sj+n-m+1 Sj+n-1

D2 Dn-m

--- ---

D1

Sj+n-m+k

P1 Plast

Sj+n-m+k+1

Q1

Dummy slots

machine
M1

Sj+1 Sj+ m-1

machine
M2

Sj Sj+m Sj+n-1

P1

Dn-m

--- ---

D1

Sj+k

Plast

Q1

P2 Pk

Dummy slots

S6 S5 S2 S8S3 S4 S7S1

machine M1

machine M1 P1 Q1 P2

machine M2

Q3 QS
1

PS
1

QP
last

PP
last

Q2

numbers of iterations of the algorithm executions required to
exclude all constraint violations became large, e.g. when more
than 1 alternative machines were prepared for each process it
required less than 20 iterations, on the other hand, when only
single alternative machines are available for some processes,
more than 200 iterations were required.

B. Type-2

Performance of the proposed method was evaluated in an
environment consists of 4 identical machines while randomly
generating jobs. Where individual jobs consisted of 9-15
processes each of which required 2 time slots of the machines
in average, and scheduling horizons were varied from 30 to 90
time slots.

Table III shows the results, where “extra slots” means the
number of slots that were added to complete jobs without
violating the precedence and the adjacency constraints, i.e. they
represent the efficiency deteriorations from optimal schedules
(the smaller is better). “Constraint violations” represents the
maximum numbers of constraint violations generated during
the iterations of Hungarian algorithm executions, and
“scheduling time” represents the computation time for
generating schedules (of course it is proportional to the number
of iterations). According to these tables, it is expected that
when the scheduling horizons are long enough (e.g. more than
3 times of the maximum length of jobs) the proposed scheduler
generate efficient schedules that complete jobs almost as same
as the optimal ones do. Namely, when the length of scheduling
horizon was 90 slots, Hungarian algorithm based scheduler had
generated feasible schedules without reducing efficiency more
than 5% of optimal schedules as shown in Fig. 8.

TABLE III. SCHEDULING RESULTS FOR TYPE-2 CASES

(a) Scheduling horizon = 30 slots

 Case 1 Case 2 Case 31

Extra slots 11 13 11

Constraint
violations

56 75 13

Scheduling
time

20 26 20

(b) Scheduling horizon = 60 slots

 Case 4 Case 5 Case 6

Extra slots 5 5 8

Constraint
violations

20 18 12

Scheduling
time

255 207 539

(c) Scheduling horizon = 90 slots

 Case 7 Case 8 Case 9

Extra slots 3 4 4

Constraint
violations

8 15 26

Scheduling
time

880 962 1304

Figure 8. Efficiency of schedules of type-2

C. Type-3

An environment consists of 3 machines that can execute
same functions with different performances were assumed,
where the performances of individual machines were defined
so that the 1st, the 2nd and the 3rd machines could complete 2,
3 and 4 unit processes within their 4 time slots, respectively.
Jobs consist of 1-8 processes each of which requires 2 time
slots of the least performance machine in average were
randomly generated.

Table IV shows the results. As same as in type-2 cases,
Hungarian scheduler performed well when the length of
scheduling horizons were long enough. As shown in Fig. 9,
when the length of scheduling horizons were more than 3 times
of job length, Hungarian algorithm based scheduler had
generated feasible schedules without reducing efficiency more
than 5% of optimal schedules.

TABLE IV. SCHEDULING RESULTS FOR TYPE-3 CASES

(a) Scheduling horizon = 16 slots

 Case 10 Case 11 Case 12

Extra slots 2 1 1

Constraint
violations

4 4 3

Scheduling
time

0.5 0.3 0.3

(b) Scheduling horizon = 32 slots

 Case 13 Case 14 Case 15

Extra slots 2 2 2

Constraint
violations

4 2 2

Scheduling
time

5 7 7

(c) Scheduling horizon = 64 slots

 Case 16 Case 17 Case 18

Extra slots 1 3 0

Constraint
violations

2 41 0

Scheduling
time

41 94 21

Efficiency deterioration from
the optimal schedule (%)

Length of
scheduling horizon

Figure 9. Efficiency of schedules of type-3

V. CONCLUSION

According to the preliminary evaluations, it is expected that
Hungarian algorithm based scheduler can generate efficient
schedules when machine constraints are not complicated and
scheduling horizons are long enough compared with lengths of
jobs. However, computation volumes necessary for scheduling
must be reduced. As future works, firstly to generate schedules
for more complicated cases, price assignment and modification
strategies must be enhanced, and secondly to reduce
computation times, mechanisms for dividing scheduling
horizons and/or for parallelizing iterations must be devised.

REFERENCES

[1] J. W. Herrmann, et al.: “Hierarchical Production Planning with Part,

Spatial and Time Aggregation,” Proc. of 4th International Conference on
Computer Integrated Manufacturing and Automation Technology, 1994

[2] P. Kanchanasevee, et al.: “Contract-Net based Scheduling for Holonic
Manufacturing Systems,” Proc. of SPIE: Architectures, networks and
Intelligent Systems for manufacturing Integration, 1997

[3] P. B. Luh, et al.: ”Schedule Generation and Reconfiguration for Parallel
Machines,” Trans. on Robotics and automation, Vol.6, No.6, 1999

[4] M. E. Aydin, et al.: “Dynamic job-shop scheduling using reinforcement
learning agents,” Robotics and Autonomous Systems, Vol.33, No.2-3,
2000

Efficiency deterioration from
the optimal schedule (%)

Length of
scheduling horizon

