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Abstract—An optimal resource allocation algorithm, Hungarian 
algorithm, is not directly applicable to manufacturing scheduling 
problems, because solutions of resource allocation problems may 
violate precedence constraints among processes that constitute 
individual manufacturing jobs. To apply Hungarian algorithm to 
scheduling problems, in this paper, several strategies for assigning 
prices to time slots of individual machines, which are allocated to 
processes, are proposed. Preliminary experimentation results 
showed that these strategies can generate near optimal schedules, 
i.e. when lengths of scheduling horizons were larger than 3 times of 
the maximum lengths of jobs, generated schedules could complete 
given jobs while maintaining the deterioration of the efficiency less 
than 5% from optimal schedules. 

 

Keywords—scheduling, hungarian algorithm, near-optimal 
schedules 

I.  INTRODUCTION 

The responsibility of manufacturing scheduling is 
increasing rapidly with the shift from low variety high volume 
to high variety low volume productions. Schedulers are 
required to quickly generate more efficient schedules for larger 
amount of manufacturing activities in environments where both 
customers’ requirements and manufacturing facilities change 
frequently. Although many scheduling systems had been 
developed based on various approaches, e.g. heuristic based 
and mathematical optimization based schedulers [1][2][3][4], 
yet they are not powerful enough. Heuristics based schedulers 
are not efficient enough because they do not ensure any 
optimality, and mathematical optimization based ones cannot 
be applied to complicated manufacturing systems because of 
various restrictions caused by their simple formulations. As one 
of approaches to develop schedulers that satisfy the 
requirements in high variety low volume manufacturing, this 
paper discusses the feasibility of a scheduling method based on 
Hungarian algorithm. 

A manufacturing scheduling problem is a kind of resource 
allocation, i.e. when individual time slots of machines are 
considered as resources, scheduling is a problem just to allocate 
these time slots to processes that constitute given 
manufacturing jobs. Therefore it is natural to apply Hungarian 
algorithm, an optimal resource allocation algorithm that 
allocates resources to jobs so that the cost functions are 
minimized, to scheduling problems. However, because of 

precedence constraints that are essential in manufacturing 
scheduling, Hungarian algorithm cannot be applied in a 
straightforward way. Namely, usually in manufacturing 
scheduling, a set of processes to be completed to accomplish a 
job should be executed in the predefined order; however these 
orders cannot be preserved when Hungarian algorithm is 
applied without any modification. 

To make Hungarian algorithm suffice these precedence 
constraints, this paper proposes strategies for assigning prices 
to individual time slots of machines for executing individual 
processes. Intuitively, the strategies assign prices to time slots 
to execute contiguous processes P1 and P2, so that prices for 
executing P1 increase more rapidly as the slot beginning time 
increases than for P2 that succeeds P1. By these strategies, the 
sum of execution cost of P1 and P2 becomes smaller when 
earlier time slots are assigned to P1 than the case where they are 
assigned to P2, i.e. precedence constraints are satisfied. 
Preliminary experimentation results showed that the proposed 
strategies can generate near optimal schedules, i.e. when 
lengths of scheduling horizons exceeded more than 3 times of 
the maximum length of jobs generated schedules could 
complete given jobs while maintaining the deterioration of the 
efficiency less than 5% from optimal schedules. 

II. RESOURCE ALLOCATION AND SCHEDULING PROBLEMS 

Table 1 shows an example of a resource allocation problem. 
In the table, the 0-th row and column of the matrix represents 
resources and jobs, respectively, and (i, j) element represents 
the price for allocating the j-th resource to the i-th job. Here, it 
is assumed that the numbers of jobs and resources are the same; 
this assumption is satisfied always by defining dummy jobs or 
resources if necessary. Then, optimal resource allocation is a 
problem to allocate resources to jobs so that the total allocation 
cost becomes minimal, i.e. to select one element in each row 
and column, so that the sum of prices of selected elements 
becomes minimal. In the figure a set of selected elements {(1, 
5), (2, 1), (3, 4), (4, 2), (5, 3)} represents the optimal allocation, 
i.e. the minimal allocation cost is 240, the sum of prices of 
selected elements.  

Hungarian algorithm finds the above optimal resource 
allocations efficiently, i.e. it can calculate the optimal 
allocation with the computation volume of O(n3). Here n is the 
number of resources or jobs. 

 



TABLE I.  OPTIMAL RESOURCE ALLOCATION PROBLEM 

 R1 R2 R3 R4 R5

J1 60 70 50 90 40

J2 40 80 90 70 60

J3 80 90 90 60 70

J4 70 50 70 60 60

J5 50 50 50 80 80

 

Manufacturing scheduling problems are a kind of resource 
allocation ones. For example, let M1 and M2 be manufacturing 
machines, and {P11, P12, P13} and {P21, P22, P23} be sequences 
of processes that constitute jobs J1 and J2, respectively. Then, 
when resources are defined as time slots of individual machines, 
scheduling manufacturing jobs J1 and J2 is just to allocate these 
time slots to processes {P11, P12, P13, P21, P22, P23} as shown in 
Table 2. However, Hungarian algorithm cannot be directly 
applied to scheduling problems, because generally there are 
precedence constraints among processes that constitute 
individual jobs. In the case shown in Table 2, to complete job 
Jk (k = 1, 2), processes Pk1, Pk2, Pk3 must be accomplished in 
this order, but Hungarian algorithm allocates time slots to these 
processes without any constraints. As the consequence, 
generated schedules may violate these precedence constraints, 
e.g. in the table, elements (1, 6), (2, 1), (3, 5), (4, 2), (5, 4) and 
(6, 3) are selected, i.e. J1 and J2 are completed by executing 
processes in the order {P12, P13, P11} and {P21, P23, P22}, 
respectively. 

TABLE II.  MANUFACTURING SCHEDULING PROBLEM 

 M1 M2 

    

 

J1 

P11 60 70 50 60 50 40

P12 40 80 90 80 70 60

P13 80 90 90 100 60 70

 

J2 

P21 70 50 70 80 60 60

P22 50 60 80 50 80 80

P23 50 70 50 80 90  100

 

III. HUNGARIAN SCHEDULER 

Hungarian scheduler proposed in this paper consists of the 
following steps, 

1) N = 0 (initialize the number of price modification 
times),  

2) assign initial prices to individual slots of machines for 
processing individual processes, 

3) execute Hungarian algorithm, 

4) if there is no constraint violation, then terminate 
calculation, else go to step 5, 

5) if N = Nmax, then set N to 0 and go to step 7, else go to 
step 6, 

6) N = N + 1, modify prices of selected slots for executing 
selected processes, and go to step 3, 

7) add time slots and go to step 1. 

In the above procedure, prices of time slots for executing 
individual processes are defined and modified according to the 
strategies described later, so that the precedence constraints 
among processes are satisfied. When the precedence constraints 
cannot be satisfied even prices are modified predefined number 
of times, an extra slot is added, and the same procedure is 
iterated. Namely, original scheduling horizon is expanded until 
the constraint violations are removed completely. Here, 
because the number of processes is finite, it is apparent that the 
constraints violations can be removed eventually, provided that 
prices of individual time slots are defined and modified 
appropriately. 

Strategies for assigning and modifying prices of slots for 
executing individual processes are described in the following 
subsections. In the following, it is assumed that jobs are 
accomplished through sequences of processes that do not have 
either branches or junctions, i.e. each job J consists of a 
sequence of processes P1, P2, ---, PN, that should be executed in 
this order.  

A. Type-1:  Equal Length Processes and Equal Performance 
Machines 

This subsection considers scheduling problems, in which 
machines may have different functions but they execute 
functions with the same performance, and all jobs consist of 
processes that require the same processing time. In this case if 
the length of slots is defined as same as the processing times of 
processes, all processes can be executed within single time 
slots of machines. Therefore, the only deference between 
scheduling and resource allocation problems is the existence of 
precedence constraints, and simple price assignment strategy 
described below works effectively. In the following, n(P) 
represents that process P is the n(P)-th process of some job J, 
e.g. for {P11, P12, P13} in the previous section, n(P11) = 1, n(P12) 
= 2, n(P13) = 3. 

Strategy-1: For executing process P, define the price of a 
slot that begins from time t as ∞ when t < n(P) and c(n(P))(t – 
n(P)) when n(P) ≤ t, where c(n(P)) is positive, therefore, the 
price increase linearly as slot beginning time increases. Also 
coefficient c(n(P)) is defined so that the prices increase less 
rapidly as n(P) increases. 

 

 

 

 

 

 

 

 

Figure 1.  Prices of slots for executing process P 
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Fig. 1 depicts how coefficient c(n(P)) is defined. Let P and 
Q be processes of job J, and n(P) = p and n(Q) = q (p < q). 
Then according to Strategy-1, it is apparent that the slot 
assignment cost of a schedule, in which Q is executed before P, 
decreases when slots that execute P and Q are exchanged. 
Therefore it is expected that the strategy generates a schedule 
which executes P earlier than Q that succeeds P, i.e. the 
strategy is prone to satisfy precedence constraints. In the figure, 
the price of Slot-1 for executing process P with n(P) = 2 and 
n(P) = 3 are defined as ∞, because P cannot be executed until 
processes that precedes it had been completed. 

However it is not ensured that precedence constraints are 
satisfied always; therefore Strategy-2 that modifies prices so 
that preceding processes are forced to be processed earlier is 
necessary.  

Strategy-2: When Hungarian algorithm generates a 
schedule that executes process Q before completing P that 
precedes Q (i.e. P and Q are processes of same job J and n(P) < 
n(Q)), define prices of slots for executing Q so that the 
beginning time of Q is forced to be greater than or equal to 
tF(P), or define prices of slots for executing P so that the 
beginning time of P is forced to be less than tB(Q). Here tF(P) 
and tB(Q) represent the originally scheduled completion time of 
P and the beginning time of Q, respectively.  

Strategy-2 can be implemented by 2 different ways, i.e. by 
inhibited slots, or by early start or late completion penalties. 
An inhibited slot for process X is a slot, of which price for 
executing X is infinite; therefore if slots that begin earlier/later 
than the scheduled completion time of P/Q are defined as 
inhibited slots for Q/P, Q/P is rescheduled to be executed 
after/before P/Q, unless P/Q is moved to a further later/earlier 
slot in the rescheduling. An early start/late completion penalty 
is the additional cost to be paid when a process 
begins/terminates before/after the designated time; and can be 
achieved by modifying prices of slots. When prices of slots for 
executing P decreases when t < tS, or they increases more 
rapidly when t > tF as shown in Fig.2, P is expected to be 
executed after tS or before tF, because the cost for executing P 
before tS or after tF increases more than executing other 
processes during that period. Obviously inhibited slots can 
implement strategy-2 in a stricter way, however early start/late 
completion penalties leave Hungarian algorithm larger number 
of possibilities to be evaluated as candidate schedules, i.e. it is 
expected that the algorithm can find more efficient schedules. 

 

 

 

 

 

Figure 2.  Early start and late completion penalty 

B. Type-2: Different Length Processes and Equal 
Performance Machines 

When processing times of individual processes that 
constitute jobs are not the same, the length of slots cannot be 

defined so that every process can be accomplished within 
single slot duration; there are processes that require multiple 
slots for their completions. To schedule a process that cannot 
be accomplished within a single slot, it is necessary to divide it 
into multiple sub-processes so that they can be accomplished 
within single slots, and to introduce adjacency constraints to 
these sub-processes, i.e. these sub-processes must be executed 
in a sequence of mutually adjacent slots of the same machines 
as shown in Fig.3.  

 

 

 

 

Figure 3.  Sub-processes and an adjacecy constraint 

Although adjacency constraints are more difficult to satisfy 
than usual precedence constraints, they are not so difficult to 
satisfy when alternative machines of all processes have the 
sane functions and equal performances as follows. Here, 
alternative machines of process P are a set of machines that can 
execute P. Then let machines M1 and M2 be alternative 
machines of process P and Q, and slots S1, --, SK of M1 be ones 
that are assigned to sub-processes from P1 to PK of process P, 
except slot Sj, as shown in Fig. 4. Slot Sj of M1 is assigned to 
sub-process Qx of process Q, and sub-process Pj is scheduled to 
be executed by slot Sj of M2, i.e. the adjacency constraint on P 
is not satisfied. However, if M1 and M2 have the same functions 
and the equal performance, slots assigned to Pj and Qx, i.e. slot 
Sj of M1 and M2, can be exchanged each other without 
changing the completion time of either of P and Q. Therefore, 
simple local adjustments can generate a schedule that satisfies 
the adjacency constraint on P.  

 

 

 

 

Figure 4.  Exchanging assigned slots 

Also, even when sub-processes of P (i.e. P1 and P2) are 
separated by those of Q (i.e. Q1, Q2 and Q3) as shown in Fig. 5 
(a), if PS (process succeeds P) is scheduled to start before QS 
(process succeeds Q), sub-processes of P and Q can be 
exchanged so that all sub-processes of P precede those of Q  
without changing start times of PS,QS, PP and QP (PP and QP are 
processes precedes P and Q, respectively). In Fig. 5(b), P1 and 
P2 are moved to the slots that precede all sub-processes of Q, 
however, this exchange does not delay the completion time of 
Q.  

In the above case, PP
last (the last sub-process of PP that 

precedes P) is scheduled to be completed before the start time 
of Q1 from the beginning. However, when PP

last is scheduled to 
be completed after Q1 starts, the completion time of Q is 
delayed, and consequently not only the start times of P and Q 
bust also that of QS must be changed, i.e. simple local 
adjustments cannot generate feasible schedules. 
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Figure 5.  Separated sub-processes 

C. Type-3: Different Performance Machines 

When individual alternative machines have different 
performances, processing times of a process differ depending 
on machines that execute it, and it becomes difficult to keep 
optimality of schedules. Namely, when the slot length is 
defined so that single slots of lower performance machines can 
complete individual processes (or sub-processes), higher 
performance machines cannot show their full ability, because 
they complete these processes before the end of their slots, and 
remaining durations of the slots are left unused. On the other 
hand, it is not possible to define the slot length as the duration, 
by which higher performance machines can complete 
individual processes, because lower performance machines 
cannot complete these processes within their single slots.  

Introduction of dummy time slots and dummy processes 
enable the scheduler to generate efficient schedules also in 
these situations, provided that performance ratios between 
alternative machines do not depend on processes. This 
condition means that, when process P and Q are accomplished 
by 3 and 6 slots of machine M1 respectively, Q must be 
accomplished in 10 slots by machine M2, if P is accomplished 
in 5 slots by M2, for example. Here a dummy time slot is 
defined for lower performance machines to adjust performance 
difference between alternative machines, and they are assigned 
only to dummy processes, i.e. prices of dummy slots are 
infinite for all processes except dummy processes, and 
performance differences between machines are adjusted by 
lower performance machines’ dummy process executions. For 
example, when machine M1 can accomplish a function, which 
is accomplished by n time slots of M2, by its m time slots (n > 
m), (n-m) dummy slots are placed before every m slots of M2 as 
shown in Fig. 6. In the figure Dj (1 ≤ j ≤ n-m) represents 
dummy slots, therefore, M2 must execute (n-m) dummy 
processes before completing m processes, and consequently, it 
can execute only m processes during the period where M1 
executes n processes. 

A drawback of the above dummy slot arrangement is that it 
allocates fixed number of dummy slots regardless of process 
length (execution time of the process), although the difference 
between process completion times of the higher and the lower 
performance machines becomes small when the process length 
is small. Therefore in Fig. 6, dummy slots may delay start times 
of Q, when lower performance machine M2 can complete P1, P2, 

---, Plast (sub-processes of P that precedes Q) within less than m 
slots. These delays can be removed when dummy slots are 
allocated after every m slots of M2 as shown in Fig. 7. In Fig.7, 
Q1 begins just after slot Sj+m-1 that is assigned to Plast. However, 
in this case, generated schedules may become infeasible, i.e. 
succeeding processes may start before the completions of 
processes that precede them. A possible solution is to distribute 
(n-m) dummy slots between m non-dummy slots. 

 

 

 

 

 

 

Figure 6.  Dummy slots 

 

 

 

 

 

Figure 7.  Inconsistent schedule 

It must be noticed that different from equal performance 
machine cases, slot Sj of 2 machines with different 
performances that are assigned to 2 different processes cannot 
be exchanged. When they are exchanged, the slot of the lower 
performance machine may not be able to accomplish the newly 
assigned process. Therefore, for cases including different 
performance machines, the scheduler may require more 
additional slots to generate consistent schedules. 

IV. PRELIMINARY EXPERIMENTATION RESULTS 

To evaluate the feasibility of the Hungarian algorithm based 
scheduler, times required for the scheduling executions and the 
optimality of scheduling results were measured for simple 
scheduling problems of types 1, 2 and 3, while comparing job 
completion times of the scheduler with that of the optimal 
schedules. Here, optimal schedules were generated by filling all 
slots of all machines by processes, and generating jobs by 
randomly selecting all allocated processes so that they can be 
arrayed in their start time increasing order, and defining these 
sequences of processes as processes or sub-processes of jobs. 
In all evaluation cases, inhibited slots were used for 
implementing strategy-2. 

A. Type-1 

The Hungarian algorithm based scheduler showed the good 
performance for type-1 cases. Namely, for all cases where 5 
machines executed jobs consists of 40-60 processes during 100 
time slots scheduling horizon, the proposed method had 
generated schedules that completed the jobs within durations as 
same as the optimal ones. However, in cases where there were 
not enough alternative machines for individual processes, the 
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numbers of iterations of the algorithm executions required to 
exclude all constraint violations became large, e.g. when more 
than 1 alternative machines were prepared for each process it 
required less than 20 iterations, on the other hand, when only 
single alternative machines are available for some processes, 
more than 200 iterations were required. 

B. Type-2 

Performance of the proposed method was evaluated in an 
environment consists of 4 identical machines while randomly 
generating jobs. Where individual jobs consisted of 9-15 
processes each of which required 2 time slots of the machines 
in average, and scheduling horizons were varied from 30 to 90 
time slots. 

Table III shows the results, where “extra slots” means the 
number of slots that were added to complete jobs without 
violating the precedence and the adjacency constraints, i.e. they 
represent the efficiency deteriorations from optimal schedules 
(the smaller is better). “Constraint violations” represents the 
maximum numbers of constraint violations generated during 
the iterations of Hungarian algorithm executions, and 
“scheduling time” represents the computation time for 
generating schedules (of course it is proportional to the number 
of iterations). According to these tables, it is expected that 
when the scheduling horizons are long enough (e.g. more than 
3 times of the maximum length of jobs) the proposed scheduler 
generate efficient schedules that complete jobs almost as same 
as the optimal ones do. Namely, when the length of scheduling 
horizon was 90 slots, Hungarian algorithm based scheduler had 
generated feasible schedules without reducing efficiency more 
than 5% of optimal schedules as shown in Fig. 8. 

TABLE III.  SCHEDULING RESULTS FOR TYPE-2 CASES 

(a) Scheduling horizon = 30 slots 

  Case 1 Case 2 Case 31 

Extra slots 11 13 11 

Constraint 
violations 

56 75 13 

Scheduling 
time 

20 26 20 

 

(b) Scheduling horizon = 60 slots 

  Case 4 Case 5 Case 6 

Extra slots 5 5 8 

Constraint 
violations 

20 18 12 

Scheduling 
time 

255 207 539 

 

(c) Scheduling horizon = 90 slots 

  Case 7 Case 8 Case 9 

Extra slots 3 4 4 

Constraint 
violations 

8 15 26 

Scheduling 
time 

880 962 1304 

 

 

 
Figure 8.  Efficiency of schedules of type-2 

C. Type-3 

An environment consists of 3 machines that can execute 
same functions with different performances were assumed, 
where the performances of individual machines were defined 
so that the 1st, the 2nd and the 3rd machines could complete 2, 
3 and 4 unit processes within their 4 time slots, respectively. 
Jobs consist of 1-8 processes each of which requires 2 time 
slots of the least performance machine in average were 
randomly generated.  

Table IV shows the results. As same as in type-2 cases, 
Hungarian scheduler performed well when the length of 
scheduling horizons were long enough. As shown in Fig. 9, 
when the length of scheduling horizons were more than 3 times 
of job length, Hungarian algorithm based scheduler had 
generated feasible schedules without reducing efficiency more 
than 5% of optimal schedules. 

TABLE IV.  SCHEDULING RESULTS FOR TYPE-3 CASES 

(a) Scheduling horizon = 16 slots 

  Case 10 Case 11 Case 12 

Extra slots 2 1 1

Constraint 
violations 

4 4 3

Scheduling 
time 

0.5 0.3 0.3

 

(b) Scheduling horizon = 32 slots 

  Case 13 Case 14 Case 15 

Extra slots 2 2 2

Constraint 
violations 

4 2 2

Scheduling 
time 

5 7 7

 

(c) Scheduling horizon = 64 slots 

  Case 16 Case 17 Case 18 

Extra slots 1 3 0

Constraint 
violations 

2 41 0

Scheduling 
time 

41 94 21
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Figure 9.  Efficiency of schedules of type-3 

V. CONCLUSION 

According to the preliminary evaluations, it is expected that 
Hungarian algorithm based scheduler can generate efficient 
schedules when machine constraints are not complicated and 
scheduling horizons are long enough compared with lengths of 
jobs. However, computation volumes necessary for scheduling 
must be reduced. As future works, firstly to generate schedules 
for more complicated cases, price assignment and modification 
strategies must be enhanced, and secondly to reduce 
computation times, mechanisms for dividing scheduling 
horizons and/or for parallelizing iterations must be devised. 
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