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ABSTRACT 

     Transient stress intensity factor of an axisymmetric circumferential crack in a finite-length, thin-walled and edges 

rotation-restrained cylinder, which is suddenly cooled inside from uniform temperature distribution was formulated. Then 

the effects of various structural parameters and heat transfer conditions on the value were studied. The maximum transient 

stress intensity factor in a thermal cycle showed a tendency to decrease monotonously when crack length was varied to 

become longer than a specific value. Furthermore, the maximum transient stress intensity factor for an infinite cylinder 

length was smaller than that for a specific length when cylinder length was varied. 

Key Words: fracture mechanics, stress intensity factor, thermal Stress, thin-walled cylinder, circumferential crack, crack 

arrest 

 
1.   INTRODUCTION 

   Crack propagation occurs, in general, under cyclic thermal loads as well as under cyclic external loads. However, in 

the absence of additional cyclic external loads, the crack propagation may not always lead to a through-thickness fracture 

under cyclic thermal loads. For example, there are interesting experimental data which indicate a surface axisymmetric 

circumferential crack inside a hollow cylinder shows tendency toward crack arrest, when the inside of the cylinder is 

cyclically cooled from uniform temperature distribution [ 1 ]. If the crack propagation rate in this situation fits the Paris 

law [ 2 ], this tendency may be explained by investigating the characteristics of the stress intensity factor (SIF) range for 

each cycle. As the SIF for uniform temperature distribution is zero [ 3 ], SIF range in interest is the maximum transient 

SIF itself. This SIF for the problem is affected by various factors such as cylinder configuration, edge restraint and 

cooling rate, etc. So the effects of these factors on the SIF should be systematically evaluated to grasp the characteristics 

and to understand the crack arrest tendency through them. The SIF can be investigated numerically by FEM, or 

analytically by assuming long cylinder and radial temperature distribution [ 4 ]. But, these methods are not realistic, 

taking the required efforts into account, to evaluate the SIF systematically considering the various factors above and to 

grasp the characteristics. An alternative is desired. 
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   Keeping these situations in mind, as a first step, we derived a closed form equation of the SIF for an axisymmetric 

circumferential crack in a finite-length thin-walled cylinder with its edges rotation-restrained and subjected to a given 

linear radial temperature distribution [ 3 ] (SIF under linear temperature distribution). As linearization of a given radial 

temperature distribution is often applied in approximate evaluation, the characteristics of the SIF for this linear 

temperature distribution was thought to represent some characteristics of the maximum transient SIF in interest. 

Advantage of our closed form SIF was that it can evaluate the effects of various structural parameters, even crack location 

and cylinder length. The characteristics of the SIF under linear temperature distribution was then studied by varying 

structural parameters and the following results were obtained [ 3 ]: (1) The SIF shows its maximum when the crack is 

located at the midpoint of the cylinder length. (2) The SIF is strongly affected by the cylinder length. (3) The SIF 

decreases monotonously when the crack length becomes lager than a specific value (tendency of the SIF to decrease for 

long crack). This tendency of the SIF to decrease for long crack corresponds to the crack arrest tendency. 

   As the SIF under linear temperature distribution showed a characteristic corresponding to the crack arrest tendency, 

we were encouraged to proceed to study the characteristics of the maximum transient SIF of the crack in the identical 

cylinder structure, which is suddenly cooled inside from uniform temperature distribution and adiabatically insulated 

outside. In the past, Nied and Erdogan [ 4 ] analytically evaluated the transient SIF of the crack for a condition of an 

infinitely long cylinder and an infinite heat transfer coefficient. However, their solution does not refer to the effect of 

cylinder length on the SIF. On the other hand, the test specimens used in experiments [ 1 ] are too short to satisfy the long 

cylinder assumption, and we know from the fact (3) above that the effect of cylinder length on the SIF should be 

considered. So we will improve our closed form equation of the SIF under linear temperature distribution so that it can 

treat transient (non-linear) temperature distribution in this paper. In addition, we will study the characteristics of the 

maximum transient SIF (important in structural integrity evaluation) for various heat transfer conditions as well as various 

structural parameters such as cylinder length. 

   In the following, the SIF of an axisymmetric circumferential crack in a finite-length thin-walled cylinder with its 

edges rotation-restrained, subjected to a given non-linear radial temperature distribution will be formulated first. The 

weight function of the crack derived by the authors [ 5 ] is combined with the procedure applied in deriving the SIF under 

linear temperature distribution [ 3 ] in formulation. Note that our weight function was newly developed to include all the 

structural parameters necessary, even the cylinder length. It is assumed that the crack is located at the midpoint of the 

cylinder length considering the fact (1) above. 

   Subsequently, analytical solution for the transient radial temperature distribution of the uncracked long hollow 

cylinder, which is adiabatically insulated on the outer surface and suddenly cooled inside from uniform temperature 

distribution, will be introduced. 



 

T. Meshii et al., Engineering Fracture Mechanics, Vol. 63, No. 1, pp. 23-38 (1999. 5). 

 

3

   By combining these two, the effects of structural parameters and heat transfer condition on the maximum transient 

SIF under this transient temperature distribution are studied. The results obtained are as follows: i) The maximum 

transient SIF for the problem also shows a tendency to decreases for long crack, regardless of the heat transfer condition. 

ii) The SIF is strongly affected by the cylinder length. iii) The SIF for a specific cylinder length is larger than that for an 

infinite length. Considering these results, the tendency toward crack arrest (when this thermal stress cycle is repeated) can 

be justified, assuming Paris law. 

 

2.   SIF OF AN AXISYMMETRIC CIRCUMFERENTIAL CRACK IN A FINITE-LENGTH 

THIN-WALLED CYLINDER UNDER TRANSIENT RADIAL TEMPERATURE DISTRIBUTION 

2. 1  SIF of an axisymmetric circumferential crack in a finite-length thin-walled cylinder under non-linear radial 

temperature distribution 

   The SIF of a circumferential crack in a finite-length thin-walled cylinder, which is subjected to non-linear radial 

temperature distribution T(η) (shown in Figure 1), is formulated first. The crack is located at the midpoint of the cylinder 

length H and the edges of the cylinder are rotation-restrained. The edges can move freely in the axial direction, as 

encountered in practical problems. The material of the cylinder is assumed to be homogeneous with isotropic and 

temperature independent physical properties. Bernoulli-Euler assumption that sections which are plane and 

perpendicular to the axis before loading remains so after loading is applied. In the following, we will modify the 

procedure adopted in obtaining the SIF under linear temperature distribution [ 3 ] to obtain the desired SIF under 

non-linear temperature distribution. 

   First, based on superposition principle, the desired SIF Kcyl of Figure 2 (i) is obtained as the sum of Kfree in 

Figure 2 (ii) (SIF due to free expansion) and Kr in Figure 2 (iii) (SIF due to edge restraint): 

rfreecyl KKK +=  

Here, (-Mr1) and (-Mr2) are the bending loads to cancel the inclination angles due to free expansion θt1 and θt2, 

respectively. Note that the crack for the problem in this paper is located at the midpoint of the cylinder length 

(h1=h2=H/2), whereas the geometry in Figures 2 and 3 represents the general case of arbitrarily crack location. 

   Second, based on the Duhamel’s analogy (used to replace thermoelastic problems with isothermal problems) 

[ 6 ], the deformation due to free expansion (Figure 3 (a)) is obtained as the sum of deformations in Figure 3 (b), (c), 

(d) and (e). σM and σP in Figure 3 are defined as follows: 

( )avg)(
1

TTE
M −

−
= η

ν
ασ  

( 1 )

( 2 )
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−

=  

where Tavg, E, α and ν are the average temperature, Young’s modulus, coefficient of thermal expansion and 

Poisson’s ratio, respectively. As the SIFs due to the uniformly distributed force σP in Figure 3 (d) and (e) compensate 

each other, the sum of the SIFs for Figure 3 (b) and (c) gives the desired SIF for Figure 3 (a). 

     In case of linear T(η) distribution, the stress distribution σM in Figure 3 (b) and (-σM) in Figure 3 (c) can be 

replaced with the axisymmetric bending loads Mt applied to the cylinder edges and the linear stress distribution 

corresponding to the resultant moment (-Mt), respectively [ 3 ]. Here, Mt was the bending moment corresponding to 

the linear stress distribution σM and given by 

∫∫
+
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Mt was named as equivalent thermal moment [ 3 ]. 

     In case in interest, in which T(η) is non-linear, situation is not the same. Although the replacement of the 

non-linear stress distribution σM by Mt means to approximate σM distribution as a linear one, St. Venant’s principle 

(which describes that the effect of non-linearity in prescribed stress on the edges disappears quickly in the 

longitudinal direction) supports this approximation in case of obtaining the SIF Kfree b for Figure 3 (b). However, it 

is necessary to appropriately include the effect of non-linearity in the stress distribution σM, in evaluating the SIF 

Kfree c for Figure 3 (c). 

     So, we will apply the closed form equation to evaluate the SIF of the crack with the cylinder ends loaded by 

a pair of bending loads [ 7 ] to evaluate Kfree b as in Ref. [ 3 ]. By substituting M=Mt and h1=h2=H/2 to Eqs. (9) and 

(10) in Ref. [ 7 ], Kfree b is deduced as follows: 
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HHDHH
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Here, the term in [ ] is a closed form equation to evaluate the SIF of an edge-cracked strip under pure bending Mt, Z = 

W2/6 is the section modulus and FM(ξ = a/W) is the infinite length edge-cracked beam’s correction factor for finite width 

under pure bending. Furthermore, Δλ is the increment of compliance due to the presence of a crack for an infinitely long 

beam under pure bending, β and D are quantities used in replacing cylindrical shell by a beam on an elastic foundation 

given concretely in the APPENDIX. 

     On the other hand, we will apply our weight function w(x; a) [ 5 ] to evaluate the SIF of the crack subjected to 

arbitrarily distributed stress (-σM) on its surface to evaluate Kfree c as: 

( 3 )

( 4 )

( 5 )
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Note that our weight function was derived to include the effect of cylinder length on the SIF. The form of our weight 

function is given in APPENDIX. 

   The remaining SIF Kr is related to the edge rotation far away from the crack tip, thus it can be evaluated as the SIF 

of the crack in a cylinder with ends loaded by equivalent moment (-Mr1) and (-Mr2) in Figure 2. By substituting h1 = h2 = 

H/2 to Eqs. (7) through (10) in Ref. [ 3 ], Kr is deduced as follows: 
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     For the ease of actual calculation, the desired SIF Kcyl in Eq. ( 1 ) is deduced further, by combining Eq. ( 5 ) and 

( 7 ). 

fbrcfreerbfreecfreecyl KKKKKK +≡++=  
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Thus, the desired SIF Kcyl is obtained as a sum of Kfree c (obtained by Eq. ( 6 )) and Kfbr (obtained by Eqs. ( 9 ) and ( 10 )). 

   As we will compare the SIF for non-linear and linear temperature distribution later, let’s define the SIF under linear 

temperature distribution Ktcyl for the configuration in Figure 1. By substituting h1 = h2 = H/2 to eqs. (5) through (11) in 

Ref. [ 3 ] and by introducing function Ftcyl, Ktcyl is deduced as follows: 

⎥⎦
⎤

⎢⎣
⎡ ⋅
−

⋅= )()( t
cylttcyl ξπ MFa

Z
MFK  

( ) ( )HHDHH
HHF

ββξλΔβββ
ββ

sinsinh)(coscosh
coscosh

cylt +⋅⋅+−
−

=  

2. 2  Analytical solution for the transient radial temperature distribution and the transient SIF 

   The transient thermal stress problem considered here is that of an infinitely long hollow cylinder, which is 

adiabatically insulated on the outer surface and is suddenly cooled inside from uniform temperature 0 K at time τ = 0 sec. 

The coefficient of thermal conductivity, inner and outer radii of the cylinder are Λ W/(m⋅K), ri and ro m, respectively. The 

coolant temperature is (-2ΔT) K and the heat transfer coefficient between coolant and wall is h W/(m2⋅K). The analytical 

( 6 )

( 7 )

( 8 )

( 9 )

( 10 )

( 11 )

( 12 )
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solution for the transient radial temperature T(τ, r) for location r m and time τ sec of the problem has been given by 

Koizumi et al. [ 8 ] as follows: 
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where the coefficients in this equation are given as follows, by using constants χ = h/Λ m-1 and κ m2/s : coefficient of 

diffusion. 
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J0 and J1 in Eq. ( 14 ) are the Bessel functions of the first kind of order 0 and 1, respectively, and Y0 are Y1 are the Bessel 

functions of the second kind of order 0 and 1, respectively. The coefficient dn represents the positive root of the following 

equation. 

0=− nnnn cbea  

Note that T(τ, r) is proportional to the initial temperature difference between the coolant and the cylinder (-2ΔT). 

   As T(τ, r) for the problem was formulated, let’s obtain the desired transient SIF Kcyl, corresponding to this T(τ, r). 

By substituting T(τ, r) given by Eq. ( 13 ) to Eqs. ( 2 ) and ( 4 ), the transient stress distribution σM used in evaluating the 

transient SIF Kfree c by Eq. ( 6 ) and the transient Mt used in evaluating the transient Kfbr by Eq. ( 9 ) are obtained, 

respectively. Finally, the desired transient SIF Kcyl is obtained as the sum of Kfree c and Kfbr, as shown in Eq. ( 8 ). 

 

3.   MAXIMUM SIF FOR AN AXISYMMETRIC CIRCUMFERENTIAL CRACK IN A FINITE-LENGTH 

THIN-WALLED CYLINDER UNDER TRANSIENT RADIAL TEMPERATURE DISTRIBUTION 

3. 1   Comparison of the derived SIF with an analytical one 

   In this section, the transient temperature distribution T(τ, r) of an infinitely long hollow cylinder, which is 

adiabatically insulated outside and suddenly cooled inside from uniform temperature 0 K at time τ = 0 sec was calculated 

by Eq. ( 13 ) first. The temperature of the coolant and heat transfer coefficient used for this study was (-2ΔT) = -100 K 

and h = ∞ W/(m2⋅K), respectively. After that, the transient SIF was calculated by Eq. ( 8 ) and compared with the 

analytical solution by Nied and Erdogan [ 4 ], to show the validity of the equation. 

   In this case, T(τ, r) is obtained as follows by putting h → ∞ in Eqs. ( 13 ) and ( 14 ), 

( 13 )

( 14 )

( 15 )
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where the coefficient dn represents the positive root of the following equation. 

0)()()()( o1i0o1i0 =− rdJrdYrdYrdY nnnn  

Note that the time τ for this T(τ, r) can be represented through the dimensionless Fourier No. = κτ/ro
2 (or κτ/ri

2), as dn is 

determined by inner and outer radii ri and ro in Eq. ( 17 ). 

   As for the cylinder configuration used in this numerical example, ri = 90, ro = 100 mm (W = 10 mm and Rm/W = 

9.5) and the crack length a = 5 mm (a/W = 0.5). Cylinder length H = 5/β = 126 mm was chosen to meet the condition of a 

long cylinder given by Labbens et al. [ 9 ]. Material constants E = 198 GPa, α = 16 x 10-6 /K, ν = 0.3, Λ = 12.7 W/(m·K) 

and κ = 3.61 mm2/s were chosen, assuming austenitic steel. 

   For the case under consideration, T(τ, r) was calculated by Eq. ( 16 ) and shown in Figure 4. T(τ, r) is shown as a 

non-dimensional temperature T/(2ΔT), as it is proportional to 2ΔT. Subsequently, the transient equivalent thermal moment 

(-Mt) calculated by Eq. ( 4 ) for this temperature distribution is shown in Figure 5 as a non-dimensional value normalized 

by (-Mt)ΔT given by the following equation:  

2

t 61
)( WTEM T ν

Δα
Δ −
=−  

which is the (-Mt) for a linear temperature distribution with its inner-outer wall temperature difference (-2ΔT). 

   In Figure 5, (-Mt)/(-Mt)ΔT reaches its maximum value 0.956 at τ = 2.38 sec, which almost corresponds to the time 

when temperature difference between the outer wall and the average reaches its maximum. Note that the non-dimensional 

value (-Mt)/(-Mt)ΔT is independent of initial wall-fluid temperature difference (2ΔT) and material constants E, α, and ν. 

   Next, the transient SIF Kcyl of the circumferential crack (a/W = 0.5) in this long cylinder subjected to the T(τ, r) 

under discussion was calculated by Eq. ( 8 ) and compared with the SIF KNied analyzed by Nied and Erdogan [ 4 ] in 

Figure 6. In this comparison, these SIFs were normalized by the following SIF KtMax, 

⎥⎦
⎤

⎢⎣
⎡ ⋅
−

⋅= )()( Maxt
cyltMaxt ξπ MFa

Z
MFK  

which is the Ktcyl (Eq. ( 11 )) for (-Mt)Max. (-Mt)Max is defined as the maximum of (-Mt) in the process obtained by the T(τ, 

r) and Eq. ( 4 ). So, KtMax can be interpreted as the simplified evaluation of the maximum transient SIF by replacing the 

transient stress distribution σM (obtained by T(τ, r) and Eq. ( 2 )) with a linear stress distribution which gives a moment 

equivalent to Mt. Hereafter, we will call KtMax as a simplified evaluation by (-Mt)Max. It is clear in this simplified 

evaluation that if T(τ, r) can be regarded as linear (i.e., σM can be regarded as linear distribution) KtMax can be regarded as 

the desired (Kcyl)Max. Note that these SIFs normalized by this KtMax are independent of E, α and ΔT. 

( 16 )

( 17 )

( 18 )

( 19 )
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   From Figure 6, the difference between transient SIF Kcyl by Eq. ( 8 ) and SIF KNied by Nied and Erdogan turned out 

to be less than 4%. Furthermore, the maximum value of the transient SIF (Kcyl)Max appeared at τ = 2.56 sec, which is close 

to τ = 2.38 sec when (-Mt) reached its maximum. In addition, (Kcyl)Max/KtMax = 0.978, which shows the validity of 

simplified evaluation by (-Mt)Max in this case. 

3. 2   Effect of cylinder length on the maximum transient SIF KtMax by simplified method 

   Before proceeding to the study on the effects of various structural parameters and heat transfer coefficient on the 

maximum transient SIF (Kcyl)Max, the effect of cylinder length on the maximum transient SIF KtMax by simplified method 

will be discussed here. In Eq. ( 19 ), which gives the definition of KtMax, it can be seen that the effect of the cylinder 

length is limited to the function Ft cyl. So we differentiated Ft cyl by (βH) to study the effect of cylinder length H on the SIF 

KtMax, as follows.  

( ) ( ) ( )[ ]2
cylt

sinsinhcoscosh
sinsinh2

HHDHH
HHD

H
F

ββλΔβββ
ββλΔβ

β∂
∂

+⋅+−
⋅⋅

=  

From this equation, the fact that Ft cyl shows a peak value at (βH) = nπ (n: integer) can be read. As there are many peaks, 

the maximum of these peaks will be determined.  

   First, (Ft cyl)∞, which is a limit value of Ft cyl for an infinitely long cylinder (βH→∞) was considered, as a reference 

value. Based on the knowledge of hyperbolic function, 

( )
2

expcoshlimsinhlim HHH
HH

βββ
ββ

==
∞→∞→

 

and combining this with Eq. ( 12 ), (Ft cyl)∞ is obtained as follows.  

( )
λΔββ ⋅+

==
∞→∞ D

FF
H 1

1lim cyltcylt  

   Though (Ft cyl)∞ is affected by the crack length through Δλ, which is the increment of compliance due to the 

presence of crack, it is no more affected by the cylinder length. So, Ft cyl normalized by this (Ft cyl)∞ was represented in 

Figure 7 to intensify the characteristics of the peak values of Ft cyl for cylinder length. In this figure, it can be seen that   

Ft cyl (for respective crack lengths) increases for short H to reach the maximum at H = π/β, and gradually saturates to (Ft 

cyl)∞ for long H. 

3. 3   Effect of structural parameters and heat transfer coefficient on the maximum transient SIF 

   Next, effects of structural parameters and heat transfer coefficient on the maximum transient SIF (Kcyl)Max were 

studied. The transient radial temperature distribution T(τ, r) of a finite-length hollow cylinder, which is insulated 

adiabatically outside and suddenly cooled inside from uniform temperature 0 K at time τ = 0 sec by a coolant of 

( 20 )

( 21 )

( 22 )
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temperature (-2ΔT) = -100 K was calculated by Eq. ( 13 ) and ( 16 ). Heat transfer coefficient h was varied for 0.465, 1.16, 

11.6 and ∞ kW/(m2⋅K). The material constants of the cylinder are identical to those in the previous section. Cylinder 

configuration used in the study are as follows: Rm = 105 mm, W = 10 mm; H = 40, π/β = 79 and 5/β = 126 mm. For each 

H, crack length was taken at a = 1, 2, 3, 4, 5, 6 mm. The corresponding transient SIF Kcyl was calculated by Eq. ( 8 ). The 

maximum value (Kcyl)Max of Kcyl was summarized in Figure 8 by using the Biot No. = hW/Λ and KΔT defined as follows: 

WTEK T π
ν
Δα

Δ −
=

1
 

   From Figure 8, the tendency of the maximum transient SIF (Kcyl)Max to decrease for a long crack can be read for all 

combination of cylinder length and heat transfer coefficient. In addition, (Kcyl)Max was affected by the cylinder length and 

(Kcyl)Max for a cylinder length of H = π/β was larger than that for a long cylinder of H = 5/β . These are similar to the 

characteristics of the SIF under linear temperature distribution [ 3 ]. Furthermore, the change in (Kcyl)Max due to crack 

length change becomes significant as the heat transfer coefficient becomes larger (the peak in Figure 8 turns out to be 

apparent). 

   Next, the validity of the simplified evaluation by (-Mt)Max (KtMax in Eq. ( 19 )) was checked for this case, for 

reference. The maximum transient SIF (Kcyl)Max was normalized by KtMax and summarized in Figure 9. 

   From Figure 9, the fact that the simplified evaluation by (-Mt) gives the SIF on the safety side for a long crack 

(a/W≥0.6) can be read. On the other hand, this simplified evaluation gives the SIF on the dangerous side for up to 

approximately 50% for short cracks (0.1≤a/W<0.6). The fact (Kcyl)Max/KtMax has a large discrepancy from unity for short 

cracks indicates that (Kcyl)Max is strongly affected by the non-linearity of transient temperature distribution in the short 

crack region. Based on the knowledge that the stress distribution on the cracked surface contribute to the SIF, the reason 

non-linearity of transient temperature distribution significantly affects (Kcyl)Max in the short crack region is considered to 

be the difference in the two linearized-temperature distributions (i.e., one on the crack surface and the other for the wall 

thickness).  

   Furthermore, the effect of cylinder length on (Kcyl)Max was small in the short crack region. On the other hand, the 

effect of cylinder length on (Kcyl)Max in the long crack region increased, though (Kcyl)Max was not sensitive to the 

non-linearity of temperature distribution. 

4.   DISCUSSIONS 

   The SIF of an axisymmetric inner-surface circumferential crack in a finite-length, thin-walled and edge-restrained 

cylinder under non-linear radial temperature distribution was formulated by replacing the problem with two isothermal 

problems: (1) a pair of equal bending loads on cylinder edges and (2) non-linearly distributed stress on the crack surfaces. 

As the SIF for these isothermal problems were obtained based on the theory of cylindrical shell, beam and a method 

( 23 )
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similar to the line spring method, accurate solution can be expected for thin (large Rm/W) and long (large H/W) cylinders. 

As a guideline for application, the expected difference between the SIF calculated by Eq. ( 8 ) and FEM is given as 

smaller than 5% for Rm/W ≥ 10.5, a/W ≤ 0.6, H/W ≥ 4 [ 3 ], [ 5 ].  

   The temperature distribution treated in this paper is radial and not disturbed by the presence of the crack. Though 

this may sound to be unrealistic, it seems to be a good assumption in a practical sense. As the velocity of the fluid on the 

crack surface compared with that of main flow is small in our problem, and as the heat transfer coefficient is proportional 

to the power of the velocity, heat transfer on the crack surface is supposed to be negligibly small. So the heat flow in the 

axial direction is negligible and the temperature distribution near the crack will not be disturbed by the presence of the 

crack. 

   As the SIF of the crack under uniform temperature distribution treated is zero, maximum transient SIF is equal to 

the SIF range for a cycle. Thus, it can be said that the SIF range shows a tendency to decrease for long crack. If crack 

propagation rate fits Paris law when thermal stress for the problem we studied is repeated, crack arrest tendency can be 

justified. 

5.   CONCLUSION 

   In this paper, we formulated the transient SIF of the axisymmetric circumferential crack in a hollow cylinder, which 

is suddenly cooled inside from uniform temperature distribution. The cylinder was finite-length, thin-walled, adiabatically 

insulated outside and edges rotation-restrained. The crack was located at the midpoint of the cylinder length. By applying 

this method, the effects of various structural parameters (including cylinder length) and heat transfer conditions on the 

SIF can be easily considered. After formulation, the effects of structural parameters and heat transfer condition on the 

maximum transient SIF were illustrated numerically. The results showed that the maximum transient SIF for the problem 

decreased monotonously when the crack length became longer than a specific value for all combination of cylinder length 

and heat transfer coefficient. This corresponds to the tendency toward crack arrest. Furthermore, the SIF was strongly 

affected by the cylinder length, and the SIF for cylinder length of H = π/β was larger than that for a long one. These 

characteristics of maximum transient SIF of the crack was similar to those for the SIF of the crack under linear radial 

temperature distribution. 

   So, for reference, the simplified method to evaluate the maximum transient SIF by the maximum transient 

equivalent thermal moment (-Mt)Max was tried and its validity was checked for Rm/W=10.5. This method can be 

considered as the linearization of the transient temperature distribution. As a result, the simplified method gave the SIF on 

the safety side for a long crack (a/W≥0.6).  
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APPENDIX 

(1)   β which appears in the text of this paper is a parameter defined in replacing a problem of a cylinder with 

axisymmetric bending loads on its edges (Fig. A1 left) with the problem of a beam on an elastic foundation with bending 

loads on its ends (Fig. A1 right). β is defined as follows, by formally writing the flexural rigidity of the prismatic beam as 

D = EW3/12(1-ν2) [ 10 ], 

2
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where Rm : mean radius, W : wall thickness, E : Young’s modulus and ν : Poisson’s ratio. Note that 1/β has a dimension of 

length. 

(2)   The weight function w(x; a) used for evaluating Kfreec is as follows [ 5 ]: 
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where a: crack length (ξ=a/W), x: location on the crack surface (Figure 1), FM and V: infinite length edge cracked beam’s 

correction factor for finite width and dimensionless crack mouth opening under pure bending. ψf was a function deduced 

as follows: 

)2cos(coshsinsinh
sinsinh

f −+⋅++
+

=
HHDHH

HH
ββλΔβββ

ββψ  

Note that the weight function was derived to include the effect of cylinder length H on the SIF. This effect is included by 

the introduction of ψf. 

(3)   The actual FM, Δλ and V used in the numerical calculations are given by the following equations (A 4) [ 11 ], (A 5) 

[ 12 ] and (A 6) [ 11 ], respectively. 
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Figure 1  A cylinder with a circumferential crack under non-linear radial temperature distribution  
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Figure 2   Principle of superposition 
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Figure 3   Duhamel’s Analogy 
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Figure 4  Transient temperature distribution (Rm/W = 9.5、W = 10 mm、h = ∞ W/(m2⋅K)) 
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Figure 5  Transient equivalent thermal moment (-Mt) (Rm/W = 9.5、W = 10 mm、h = ∞ W/(m2⋅K)) 
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Figure 6  Transient stress intensity factor  
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Figure 7   Effect of cylinder length on function Ft cyl  (Rm/W = 10.5、ν = 0.3) 
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Figure 8  Maximum transient stress intensity factor (Kcyl)Max (Rm/W = 10.5、W = 10 mm) 
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Figure 9  Comparison of (Kcyl)Max with KtMax  (Rm/W = 10.5、W = 10 mm) 
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Fig. A1   Replacement of axisymmetric bending problem of a cylinder by a beam on an elastic foundation 


