
A Path Planning Algorithm for Multi Manipulators

言語: English

出版者:

公開日: 2010-01-07

キーワード (Ja):

キーワード (En):

作成者: TAMURA, Shinsuke, MURATA, Tomonari,

ISLAM, Md. Nazrul, YANASE, Tatsuro, TANIGUCHI,

Shuji

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10098/2334URL
IEEE Computer Society

A Path Planning Algorithm for Multi Manipulators
Shinsuke Tamura, Tomonari Murata, Md. Nazrul Islam, Tatsuro Yanase and Shuji Taniguchi

Graduate School of Engineering, University of Fukui

tamura@fuis.fuis.fukui-u.ac.jp

Abstract-This paper discusses an approach to the development of
a path planning algorithm for cooperating multi manipulators.
In the approach, multiple manipulators are considered as a
single composite one. Therefore, the composite manipulator
possesses all arms of the manipulators included in the
collaboration. A newly developed path planning algorithm BFA
(Backtrack Free path planning Algorithm) enables the efficient
generation of paths of this composite manipulator with
extremely many arms. The algorithm is backtrack free and
resolution complete. Computation volume of the algorithm is
proportional to the total number of arms included in the
composite manipulator. An additional advantage of this
approach is that paths of individual manipulators can be
calculated completely in parallel.

I. INTRODUCTION

Recent manufacturing systems require highly sophisticated

handlings of work-pieces that can be achieved only through

cooperation among multiple manipulators. Therefore the

development of efficient path planning algorithms for

multiple manipulators is one of the key issues for enabling

advanced manufacturing. This paper discusses an approach

to the development of a path planning algorithm for

cooperating multi manipulators, based on a newly developed

path planning algorithm BFA [3] (Backtrack Free path

planning Algorithm). In the discussed approach, multiple

manipulators are considered as a single composite one, of

which arms are coupled through work pieces that they are

handling. Therefore the composite manipulator becomes to

have extremely large number of arms, and BFA, of which

computation volume is proportional to the number of arms,

enables efficient path planning of this composite manipulator.

The algorithm based on the discussed approach is backtrack

free and resolution complete; times and memories required

are proportional to the total number of arms included in

composite manipulators. An additional advantage is that

paths of individual manipulators can be calculated completely

in parallel.

II. BACKTRACK FREE PATH PLANNING ALGORITHM

This section explains the behavior of BFA. Different from

many existing path planning algorithms [1], [2], BFA

searches paths in 2 or 3-dimensional work spaces directly, in

order to reduce the huge computation volume caused by the

high dimensionality of configuration spaces (C-spaces).

Compared with the C-space where the dimension increases

with the number of arms, the dimension of the work space is

fixed at 2 or 3. Therefore when loci of individual arms can be

calculated sequentially without any backtrack, it is possible to

construct an algorithm, of which computation volume is

proportional to the number of arms. BFA achieves just this. It

determines the existence of paths, and finds correct paths of

individual arms sequentially from the base to the top arms

without any backtrack when paths exist, provided that the size

of the gird is small enough compared with that of arms and

obstacles (in BFA, positions in 2 or 3-dimensional spaces are

approximated by the finite number of grid points). In this

section, firstly a basic theorem is explained with definitions

of terms, and then the algorithm and its performance are

discussed. In the following, fulcrums and the other ends of

arms are called joints and movable ends. It is assumed that a

sequential number is assigned to each arm of a manipulator,

so that 1 and N are assigned to the base and the top arms,

respectively (N is the number of arms included in the

manipulator), and the joint position of the base arm is fixed.

Location and attitude of an arm: A location of the n-th arm is

represented by the grid point occupied by its joint. An

attitude of the n-th arm is represented by a pair of grid

points (X, Y). Here, X and Y are grid points occupied by

the joint and the movable end of the n-th arm, respectively.

Feasible attitude set (FAS): Attitude (X, Y) of the N-th arm

(N is the maximum arm number) is called feasible when

the N-th arm does not collide with any obstacle. Also

attitude (X, Y) of the n-th arm (n < N) is called feasible

when the n-th arm does not collide with any obstacle and

there exists at least one feasible attitude (Y, Z) of the

(n+1)-th arm. A feasible attitude set (FAS) of the n-th arm

at X is a set of grid points that are occupied by the movable

end of feasible attitudes of the n-th arm located at X and

denoted as A(X, n).

Adjacent attitudes: A pair of attitudes of the n-th arm (X1,

Y1) and (X2, Y2) is called adjacent, when X1 and Y1 are

equal or adjacent to X2 and Y2, respectively.

Connecting point pair: Any grid point pair P and Q included

in A(X, n) and A(Y, n) is called a connecting point pair of

a FAS pair A(X, n) and A(Y, n), when attitudes of the n-th

arm (X, P) and (Y, Q) are adjacent.

n-connectivity: Adjacent grid points X1 and X2 are called N-

connective (N is the maximum arm number), when they are

not occupied by any obstacle. Adjacent grid points X1 and

X2 are called (n-1)-connective, when a FAS pair A(X1, n)

and A(X2, n) has at least one connecting point pair (Y1, Y2)

such that Y1 and Y2 are n-connective.

n-reachable set: n-reachable set R(n) is a set of grid points

that are reachable from Hn, the start position of the

978-1-4244-3507-4/09/$25.00 ©2009 IEEE Page 1150

movable end of the n-th arm, by chaining grid points,

which are mutually n-connective.

The following theorem ensures that BFA determines the

existence of paths and finds paths when they exist without

any backtrack.

[Theorem] [3] Under the assumptions that individual FAS

A(X, n) are connective sets in terms of n-connectivity and

collisions of arms themselves are allowable, the necessary

and sufficient condition for the existence of collision free

paths of a manipulator from its start attitude H = {H0, H1, H2,

----, HN} to the goal attitude D= {D0 = H0, D1, D2, ----, DN} is

that R(n) and A(Dn-1, n) includes Dn for each n (= 1, 2, ---, N).

Also when collision free paths from H to D exist, L0, the

locus of the joint of the 1st arm is the single fixed point {H0},

and Ln the locus of the movable end of the n-th arm can be

determined without backtracks based on Ln-1. Here H and D,

start and goal attitudes of the manipulator, are represented as

sets of start and goal positions of movable ends of individual

arms, i.e. H = {H0, H1, H2, ----, HN} and D= {D0, D1, D2, ----,

DN}. Dn A(Dn-1, n) means that the attitude of the n-th arm,

of which joint and movable end are located at its goal

positions, is feasible.

/* off-line part */
 calculate R(N), a set of grid points to which the movable end of

 the N-th arm can reach from the start position as a single point
n=N

 while (n > 0) {
 find feasible attitude set A(X, n) of the n-th arm at

each point X in the workspace
 determines the (n-1)-connectivity of individual neighboring
 point pairs
 calculate R(n-1), a set of points, which are reachable by the

 joint of the n-th arm from its start position, based on

 (n-1)-connectivity

n=n-1
 }
 /* real-time part */
 if (Dn R(n), and Dn A(Dn-1, n) for all n) {

n=1
 while (n=<N) {
 find the locus of the movable end of the n-th arm

that connects its start position to its goal position
n=n+1
}

 }
 else {there is no collision free path}

Fig. 1. BFA

Based on the above theorem, a backtrack free path

planning algorithm can be constructed easily. Fig. 1 shows

the overall structure of the algorithm. The algorithm consists

of two parts, off-line and real-time parts. The off-line part is

executed only when locations of the manipulator or obstacles

are changed and the real-time part is executed every time

when the goal attitude is given to the manipulator. For each n
beginning from n = N to 1, the off-line part finds feasible

attitude sets of the n-th arm at individual points, and based on

them, it determines the n-connectivity of individual

neighboring point pairs, and calculates n-reachable set R(n).

The real-time part generates loci of individual arms

sequentially from the 1st (base) to the top (N-th) arm based

on n-connectivity when goal attitudes are given. Here

existence of paths is ensured when Dn R(n) and Dn A (Dn-1,

n) are satisfied for all n at the beginning of the real-time part,

and loci of individual arms are calculated without any

backtrack.

Computation time and memory space required for the

algorithm execution is the order of NVR. Here, V and R

represents the total number of grid points in the workspace

and the maximum number of grid points included in

individual FASs, respectively. N is the number of arms.

According to the theorem, the algorithm is effective only

under assumptions that collisions of arms themselves are

allowable, and FAS of the n-th arm at each position is n-

connective, i.e. arms can rotate without collision from one

attitude to any other attitude within the same FAS at every

point. The former assumption is not serious in 3-dimensional

cases. Collisions among arms can be removed easily by the

local adjustments of arm positions, because usually there are

enough free spaces around collision free attitudes.

It is possible to apply BFA also to cases where the latter

assumption is not satisfied by defining copies of points

corresponding to individual connected components of FASs.

Namely, when a FAS has m disjoint connected components at

point P, m copies of P are generated including the original

point P, and different connected components of the FAS are

assigned to different copy points as their FASs. Therefore,

path-planning problems for these cases can be converted to

the one, in which the assumption is satisfied, i.e. all arms

have FASs with single connected components at each point.

Advantages of BFA are, 1) its computation volume is

proportional to the number of arms, 2) its computation time is

not sensitive to environments, 3) it is easy to generate locus

or attitude constrained paths, and 4) it is a resolution

complete algorithm.

Although the complete BFA program is available only for

2 dimensional work spaces until now, experimental results

have exhibited the above advantages [8].

Fig. 2. Free spaces connected by a single point

Y

Y

X

7
0

 c
m

A B

C

D

P1

S

P2

H

Base

2nd arm

1st arm
G

Fig. 2 is one of environments, in which BFA performance

was evaluated. In the figure, 4 obstacles A, B, C and D are

allocated, and the gap between A and C is set just as the same

size as the length of the 2nd arm (in the figure, line segments

and small circles represent arms and their joints, and lengths

of the 1st and the 2nd arms are set to 50 cm and 70 cm,

respectively). Therefore, the movable end of the 1st arm must

be located at single point P1 in order to change the direction

of the 2nd arm. In other words, 2 areas that include start and

goal attitudes of the manipulator S and G are connected by

just a single point P1, and finding collision free paths that

Page 1151

connect attitudes S and G is very difficult for conventional

heuristics based algorithms [4], [5], [6]. BFA found paths

successfully and efficiently even in these cases. The

manipulator had firstly moved the movable end of the 1st arm

from P2 to P1 in order to change the attitude of the 2nd arm

as shown by the solid arc, and then moved it back to P2 as

shown by the dashed arc. By using a PC with 1.53 GHz CPU

and 224 Mbyte RAM, BFA found these paths within 2.5 sec.

for 2 to 6 arms manipulators that behave in 80 x 80 grids

(grid size is 5cm).

Figs. 3 and 4 show the BFA performance for the

environment shown in Fig. 2, they are relations between the

computation time and the number of arms, and that between

the computation time and path length. The off-line part

computation time is proportional to the number of arms. In

spite of the fact that BFA is resolution complete, the off-line

part computation time does not increase exponentially.

Regarding to the real time part computation time and the total

computation time, they are not proportional to the number of

arms. However, this is because that path length increases not

linearly with the number of arms. It is obvious that any

algorithm has parts that require the computation volume at

least proportional to path length, and according to Fig. 4 the

real-time part computation time of BFA increases just

linearly with the path length. Consequently, different from

existing resolution complete algorithms, the total computation

time of BFA can be suppressed at linear order of the number

of arms provided that path length increases also linearly with

the number of arms.

Fig. 3. Computation time and number of arms in Fig.2 cases

Fig. 4. Computation time and path length in Fig.2 cases

Fig. 3 also shows that BFA performance is not sensitive to

environments. When obstacle A is removed from Fig. 2, the

gap that divides the free space of the 2nd arm disappears.

Therefore for heuristics based algorithms, computation times

necessary for these 2 environments, i.e. the one where

obstacle A is allocated (4 obstacles case in the figure) and the

other where A is removed (3 obstacles case in the figure)

differ extremely. In contrast, BFA can find paths with almost

the same time regardless of environments. Namely, the off-

line part computation time is constant even environments

change, and although the real-time part computation time

changes with environments, it is because that the path length

becomes long when arms avoid many obstacles.

S

Base

G

Fig. 5 An environment with a narrow corridor

Base

G

S

Fig.6 An environment with a long narrow corridor

0

1

2

2.5

0 2 4 6 8

total (4 obstacles)

total (3 obstacles)

off-line part (3 and 4 obstacles)

real-time part (4 obstacles)

real-time part (3 obstacles)

Number of arms

0.5

1.5

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
ec

) Table 1 Performance comparisons between BFA and PRM

Number of arms Width of

gap (cm)

Computation

time of BFA

(sec.)

Computation

time of PRM

(sec.)

1 (disk robot) 60 - 0.87

1 (disk robot) 40 - 1.32

1 (disk robot) 20 - 346.00

18 60 4.16 -

18 40 4.16 -

18 25 4.96 -

18 20 5.15 -

18 15 7.16 -

Performances of BFA and PRM (Probabilistic Roadmap

Method) [6] were compared in the environment shown in

Figs. 5 and 6. For finding paths of 8 arms manipulator from

the initial attitude S to the goal attitude G in Fig.5, BFA and

PRM require 3.07 and 98.2 seconds, respectively (BFA and

PRM were executed by 1.53GHz and 2.8GHz CPUs

respectively, and both were implemented by Java). Table 1

shows computation times for the environment shown in Fig. 6.

BFA was implemented by Java on a PC with 1.53GHz CPU,

and PRM was implemented by C++ on a PC with 1GHz CPU.

According to these results, apparently BFA finds paths with

much shorter time than PRM. Moreover, different from PRM

cases where the computation time increases rapidly with the

decrease of the size of the gap in Fig.6, BFA can find paths

within almost the same time even the gap size changes.

0

0.5

1

1.5

2

2.5

0 500 1000 1500

total (4 obstacles)

total (3 obstacles)

real-time part (4 obstacles)

real-time part (3 obstacles)

Path length

C
o

m
p

u
ta

ti
o

n
 t

im
e

(s
ec

)

Page 1152

Although the computation time increases when the gap size

becomes less than 20cm, it is simply because arms should

change their attitudes more frequently, i.e. the path length

increases when the gap size is small compared with the arm

lengths.

Regarding to the performance in 3 dimensional work

spaces, although only the off-line part is implemented for 3

dimensional spaces until now, it has been confirmed that the

off-line part computation volume is the linear order of the

number of arms. Also several tens of seconds are enough for

completing the off-line part calculation for manipulators with

5-6 arms that behave in 50 x 50 x 40 grids.

The other important advantage of BFA, which is

exploitable in multi manipulator path planning, is that it is

easy to generate locus or attitude constrained paths. Fig. 2

was used for evaluating BFA locus and attitude constrained

path generation ability. As a locus constraint, the movable

end of the top arm was enforced to follow the edge of

obstacle B when its joint was inside of area H, and as an

attitude constraint, the top arm was enforced to be parallel to

the X-direction when its joint was in H. BFA can incorporate

these constraints in a straightforward and intuitive way, i.e.

they can be incorporated only by deleting attitudes that do not

satisfy the constraints from feasible attitude sets. In Fig. 7,

A(F, N), a feasible attitude set of the N-th arm (top arm) at

point F is an arc (U, W) when there is no constraint, and the

above locus constraint can be incorporated by only deleting

points that are not on the edge of obstacle B from A(F, N).

Then, A(F, N) is reduced to a single point U, and as a

consequence, paths automatically follow the edge when the

joint of the N-th arm moves within H, because BFA generates

paths by connecting only points included in FASs.

An attitude constraint can be incorporated in the same way

by deleting points that are not parallel to the X-direction from

A(F, N). In this case A(F, N) is reduced to a single point V,

and the N-th arm attitude on the path automatically becomes

parallel to the X-direction when the joint of the N-th arm

moves within H. As shown above, attitude constraints are

easier to be incorporated than locus constraints. In cases of

attitude constraints, points on FASs to be deleted can be

determined without considering path positions to be followed,

different from locus constraint cases. Different from existing

algorithms, in which only the top arm loci or attitudes are

constrained [7], it is apparent that loci and attitudes of general

arms can be constrained in the same way as the top arm in

BFA.

Fig.7 Locus and attitude constraints

Regarding to the advantage about the resolution

completeness, BFA determines the existence of paths

promptly, and it finds correct paths within estimated time

when they exist, i.e. without any backtrack, provided that the

size of grids is small enough. Actually different from

heuristics based algorithms, BFA determines the existence of

paths by only executing its off-line part. Because of this

property, BFA becomes applicable to real time uses, in which

times necessary for generating paths must be predetermined.

III. PATH PLANNING FOR MULTI MANIPULATORS

In this section BFA is extended so that the path planning of

multi manipulators that cooperate to achieve complicated

tasks can be accomplished efficiently.

A. Simple casesG
Firstly, M manipulators that are cooperating while holding

the same position on a work-piece are considered. In Fig. 8, 3

manipulators, of which base arm joint positions are fixed, are

cooperating while holding a work-piece at point P by their

top arms. The extension is straightforward by considering M

cooperating manipulators as a single composite manipulator

consists of Nm arms. In the followings, Nm represents the

number of arms included in the m-th manipulator, and arms

of the composite manipulator are numbered so that arms of

the m-th manipulator have the smaller number than those of

the r-th manipulator when m < r, and arms of the same

manipulator are numbered in the reverse way from the top to

the base (i.e. the j-th arm has the smaller number than the k-th

arm when j > k). Fig. 8 shows an example, where arm

numbers on the upper lines and those on the lower lines

(included in parentheses) indicate arm numbers of individual

manipulators and those of the composite manipulator,

respectively. However to make explanations comprehensive,

notation n(m) is also used to represent the arm number of the

composite manipulator that is assigned to the n-th arm of the

m-th manipulator, e.g. N2(2)-th arm of the composite

manipulator represents N2-th arm (top arm) of the 2nd

manipulator.

1st manipulator

3rd manipulator

2nd manipulator

P

1st arm

(N1-th arm)

1st arm

((N1+ N2+ N3)-th arm)
1st arm

((N1+ N2)-th arm)

N1-th arm

(1st arm)

N2-th arm

((N1+ 1)-th arm)

N3-th arm

((N1+ N2+ 1)-th arm)

H

F

U

V

W

D

B

Fig.8 Composite manipulator consists of 3 manipulators

X
Then the slight modifications of definitions of feasible

attitudes and the n-connectivity make BFA efficiently

generate paths of the composite manipulator that avoid

collision while bringing work-pieces from initial to goal

attitudes. Definitions are modified by exchanging roles of

Page 1153

joints and movable ends of individual arms, i.e. in the

following; it is considered that a joint of an arm rotates

around the movable end of the arm. Therefore, provided that

X and Y are points occupied by a movable end and a joint of

the n-th arm, the location and an attitude of the n-th arm are

represented by X and (X, Y), respectively. Modified

definitions are followings.

Modified feasible attitude set: For each m (1 m M),

attitude (Xm, Ym) of the 1(m)-th arm is called feasible when

it does not collide with any obstacle (in this case, Ym is the

single fixed point where base of the m-th manipulator is

located). Also attitude (Xm, Ym) of the n(m)-th arm (1 < n

Nm) is called feasible when it does not collide with any

obstacle and there exists at least one feasible attitude (Ym,

Zm) of the (n-1)(m)-th arm. As an exception, for NM(M)-th

arm, top arm of the M-th manipulator, its attitude (XM, YM)

is feasible when it does not collide with any obstacle and

there exists at least a set of feasible attitudes (YM, ZM), (XM,

Z1), (XM, Z2), ---, (XM, ZM-1) of the (NM-1)(M)-th, N1(1)-th,

N2(2)-th, ---, NM-1(M-1)-th arms. A modified feasible

attitude set of the n-th arm at X is a set of grid points that

are occupied by the joint of feasible attitudes of the n-th

arm when its movable end is located at X and denoted as

A(X, n).

Modified n-connectivity: For n = 1(m) (1 m M), adjacent

grid points X1 and X2 are called n-connective, when base

arm attitudes (X1, Y) and (X2, Y) of the m-th manipulator

are feasible (Y is the base arm joint position of the m-th

manipulator). For other n except n = NM(M), adjacent grid

points X1 and X2 are called n-connective, when there is at

least one connecting point pair (Y1, Y2) of FAS pair A(X1,

n) and A(X2, n), and Y1 and Y2 are (n+1)-connective. For n

= NM(M), adjacent grid points X1 and X2 are called n-

connective, when they are N1(1), N2(2), ---, NM-1(M-1)-

connective, there is at least one connecting point pair (Y1,

Y2) of FAS pair A(X1, n) and A(X2, n), and Y1 and Y2 are

(n+1)-connective.

The corollary below ensures that BFA finds paths of the

composite manipulator correctly with the computation time

and memory space proportional to the total number of arms of

the composite manipulator, i.e. Nm.

[Corollary] Under the assumptions of the theorem in Sec. 2,

the algorithm shown in Fig.1 determines existence of paths of

the composite manipulator that connect start and goal

attitudes, and finds the paths without any backtrack correctly

when they exist.

(Proof)

The corollary can be proved when the condition of the

theorem in Sec. 2 is also the necessary and sufficient one for

the existence of paths of composite manipulators. The

necessity is apparent. About the sufficiency firstly, when

points X and Y in the work space of the composite

manipulator are NM(M)-connective (M is the number of

manipulators), they are apparently Nm(m)-connective for all m

M from the definition of NM(M)-connectivity, therefore

from the theorem in Sec. 2 (in this case roles of joints should

be replaced by those of movable ends), for all m, m-th

manipulator has feasible attitude T(X, m) and T(Y, m), and

there exists at least one path that brings T(X, m) to T(Y, m)

without colliding with obstacles. Here, T(X, m) is an attitude

of the m-th manipulator (i.e. a set of consistent attitudes of all

arms in the m-th manipulator), in which the movable end of

the Nm-th arm (top arm) of the m-th manipulator is located at

point X. Then for any given locus L consists of a sequence of

mutually NM(M)-connective points, it is possible to constitute

collision free paths of all manipulators, in which movable end

positions of their top arms coincide with L. (Q.E.D.)

From the definition of feasible attitudes of arms in the

composite manipulator, it is apparent that path calculations of

individual manipulators can be executed completely in

parallel except calculations for the NM(M)-the arm.

1st manipulator

2nd manipulator

1st arm

3rd manipulator

N3-th arm
1st arm

Wok-piece
1st arm

N1-th arm

N2-th arm

Fig.9 Multi manipulators holding 3 different points

B. General Cases

Generally, top arms of the multiple manipulators must hold

different positions in order to hold work-pieces stably as

shown in Fig.9. Path planning for these cases also can be

accomplished efficiently based on BFA by defining virtual

arms corresponding to the work-pieces. Path planning for 2

cooperating manipulators is trivial, i.e. only additions of

virtual arms are sufficient. In Fig.10, work-piece W is

considered as a virtual arm that is connected to the (original)

top arm of the 2nd manipulator at point Q. Then, when the

movable end positions of the top arm of the 1st and 2nd

manipulators share the same position P (the top arm of the

2nd manipulator is the virtual arm W in this case), the

original 2 manipulators constrained to collaborate while

holding different positions P and Q of work-piece W.

N1-th arm
N2-th arm

1st manipulator
2nd manipulator

Wok-piece W
P

Q

Virtual arm

Fig.10 Cooperation between 2 manipulators

Page 1154

Here, an advantage of BFA in planning paths of

cooperating multi manipulators is its ability for generating

locus and attitude constrained paths. One of reasons to exploit

multi manipulators is that it can convey large work-pieces

while maintaining their desired attitudes. As discussed in the

previous section, it is easy for BFA to constrain loci and

attitudes of the virtual arm, i.e. the work-piece.

A virtual arm with M-1 branches, of which attitudes are

adjusted so that they can hold M-1 different points on a work-

piece, makes BFA applicable also to path planning for M (>

2) cooperating manipulators. In an example of the

cooperation among 3 manipulators shown in Fig. 11, the 3rd

manipulator has a virtual arm with 2 branches, and the end

points of its 1st and 2nd branches and its joint are located at P,

Q and R, respectively, so that top arms of the 1st, 2nd and 3rd

manipulators can hold points P, Q and R on the work-piece.

Fig.11 Cooperation among 3 manipulators

To enhance BFA applicable also to cooperation among M

(M > 2) manipulators, feasible attitudes of virtual arms with

multiple branches must be defined. This is an extension of the

modified feasible attitude and defined as follow

(modifications of FASs and n-connectivity according to this

extension are straightforward). Here, it is assumed that the

virtual arm is connected to the top arm of the M-th

manipulator, and the m-th branch of the virtual arm is located

at the holding position of the m-th manipulator.

Feasible attitudes of virtual arms: Attitude (Y1 ,Y2, ---, YM-1,

X) of the virtual arm with M-1 branches connected to the

NM(M)-th arm (top arm of the M-th manipulator) is called

feasible when it does not collide with any obstacle, and

there exists at least a set of feasible attitude (X, ZM) of

NM(M)-th arm and (Ym, Zm) of the Nm(m)-th arm (m = 1, 2,

---, M-1)). Here, (Y1 ,Y2, ---, YM-1, X) is the attitude of the

virtual arm, in which its joint and its m-th branch are

located at X and Ym.

The above definition makes calculations of feasible

attitudes and determinations of n-connectivity complicated,

because locations of the virtual arm are represented by sets of

(M-1) points that are occupied by (M-1) braches of the virtual

arm (not single points), i.e. the number of possible locations

of the virtual arm increases exponentially with the number of

cooperating manipulators. However, because locations of the

end points of these (M-1) braches are constrained to the

holding positions of the work-piece, usually the number of

possible combinations is limited. Especially when attitudes of

work-pieces are constrained in order to convey work-pieces

stably, e.g. to maintain attitudes of the work-pieces parallel to

the ground, the number of possible combinations decreases

further.

The one of the most important advantages of this approach

is that paths of individual manipulators except the locus of

the virtual arm can be calculated completely in parallel, as

discussed at the end of Sec. 3.A. Therefore when numbers of

CPUs are available, loci of multiple manipulators can be

calculated within almost the time that is required for a single

manipulator.

IV. CONCLUSION

An approach to the development of a path planning

algorithm for cooperating multi manipulators has been

discussed. Based on a newly proposed algorithm BFA, the

approach enables path planning in complicated environments

within practical time, i.e. required computation time and

memory space are proportional to the total number of arms

included in individual manipulators. Moreover when many

CPUs are available, path planning can be accomplished

within the duration required for a single manipulator.
2nd manipulator

1st manipulator

Wok-piece

N1-th arm

N2-th arm

N3-th arm

3rd manipulator

P

Q

1st branch

2nd branch

R
Virtual arm

As future works, firstly BFA must be implemented for 3-

dimensional path planning. Also, occurrence of collisions

among arm themselves must be evaluated. Different from

path planning for single manipulators, collisions among multi

manipulators may not be easy to remove by local adjustments

of paths.

REFERENCES

[1] Y. K. Hwang and N. Ahuja, “Gross motion planning-A survey,” ACM

Computing Surveys, Vol. 24, No.3, pp. 219-291, 1992.

[2] K. K. Gupta, “Motion planning for flexible shapes (systems with many

degrees of freedom): a survey,“ The Visual Computer, Vol.14, No.5-6, pp.

288-302, 1998.

[3] S. Tamura, T. Yanase, Md. N. Islam, T. Ito and H. Miyashita, “A new

path planning algorithm for manipulators,” IEEE Intl. Conf. on Systems,

Man and Cybernetics, pp. 2242-2247, Oct. 2005.

[4] Z. Sun, D. Hus, T. Jiang, H. Kurniawati and J. H. Reif, “Narrow passage

sampling for probabilistic roadmap planning,” IEEE Trans. on Robotics,

Vol. 21, No. 6, pp. 1105-1115, 2005.

[5] M. Saha and J. C. Latombe, “Finding narrow passages with probabilistic

roadmaps: the small-step retraction method,” Autonomous Robots, Vol. 19,

pp. 301-319, 2005.

[6] D. Hsu, J. C. Latombe and H. Kurniawati, “On the probabilistic

foundations of probabilistic roadmap planning,” The International Journal

of Robotics Research, Vol. 25, No. 7, pp. 627-643, 2006.

[7] Zhenwang Yao and Kamal Gupta: “Path planning with general end-

effecter constraints,” Robotics and Autonomous Systems, Vol. 55, pp. 316-

327, 2007.

[8] Md. N. Islam, T. Murata, S. Tamura and T. Yanase, “Evaluation of a new

backtrack free path planning algorithm for manipulators,” IEEJ, Trans.

EIS, Vol.128, No.8, pp. 1293-1302, 2008.

Page 1155

