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Abstract:  Multifractal analysis based on generalized concepts of fractals has been applied to evaluate 
biological tissues composed of complex structures. This type of analysis can provide a precise quantitative 
description of a broad range of heterogeneous phenomena. Previously, we applied multifractal analysis to 
describe heterogeneity in white matter signal fluctuation on T2-weighted MR images as a new method of 
texture analysis and established Δα as the most suitable index for evaluating white matter structural 
complexity (Takahashi et al. J. Neurol. Sci., 2004; 225:33-37). Considerable evidence suggests that 
pathophysiological processes occurring in deep white matter regions may be partly responsible for cognitive 
deterioration and dementia in elderly subjects. We carried out a multifractal analysis in a group of 36 healthy 



elderly subjects who showed no evidence of atherosclerotic risk factors to examine the microstructural 
changes of the deep white matter on T2-weighted MR images. We also performed conventional texture 
analysis, i.e., determined the standard deviation of signal intensity divided by mean signal intensity (SD/MSI) 
for comparison with multifractal analysis. Next, we examined the association between the findings of these 
two types of texture analysis and the ultrasonographically measured intima-media thickness (IMT) of the 
carotid arteries, a reliable indicator of early carotid atherosclerosis. The severity of carotid IMT was positively 
associated with Δα in the deep white matter region. In addition, this association remained significant after 
excluding 12 subjects with visually detectable deep white matter hyperintensities on MR images. However, 
there was no significant association between the severity of carotid IMT and SD/MSI. These results indicate 
the potential usefulness of applying multifractal analysis to conventional MR images as a new approach to 
detect the microstructural changes of apparently normal white matter during the early stages of 
atherosclerosis. 



Dr. Keith Worsley, Section Editor of “NeuroImage” 

NeuroImage Editorial Office, Elsevier, Inc. 

 

         April 18, 2006 

 

Dr. Keith Worsley: 

 

 Attached is our Re-revised manuscript (No.: NIMG-05-998) entitled 

“Multifractal analysis of deep white matter microstructural changes on MRI in 

relation to early-stage atherosclerosis” by T. Takahashi et al., which we are 

submitting for publication in the Journal of “NeuroImage: to the section on 

Original Research Article”. 

 The comments of the three reviewers have been greatly helpful in 

allowing us to re-revise our manuscript.  We have attempted to address each of 

the issues raised by the reviewers in a point-by-point response in the attached 

Responding Letter. 

 I certify that the manuscript, or parts of it, have not been, and will not be 

submitted elsewhere for publication. 

 I certify that all the authors have read the papers and have agreed to 

having their names listed as authors. 

 I hope you will give favorable consideration to this revised manuscript.  

Thank you for your consideration to this re-revised manuscript. 

 

Sincerely, 

 

Tetsuhito Murata, M.D., Ph.D. 
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Reviewers' comments: 

Reviewer #1: 

General Comments: In revising the manuscript, the authors have obviously made an 

effort to address the reviewers’ comments, but their revisions fail to address one of the 

major comments from the original review. 

In response to Reviewer 1 Comment, the authors add a calculation of mean signal 

intensity within the ROI as an alternative texture analysis for comparison to their 

method. This is hardly adequate as a comparison and few researchers would use it 

alone for statistical texture mapping. Addition of other first and second order 

descriptive statistics such as intensity variance, and mean/variance of the absolute 

gradient would have been more convincing and required relatively little effort. For a 

truly realistic comparison, wavelet (Jafari-Khouzani), run-length (Xu) or co-occurrence 

matrix (Kovalev, Kurani) analyses would be recommended. 

The question of whether the proposed multi-fractal technique outperforms 

_comparable_ texture analysis methods has not been addressed in revision, and the 

manuscript remains weakened by this. I consequently cannot recommend publication. 

 
References: 
K. Jafari-Khouzani, H. Soltanian-Zadeh, K. Elisevich, and S. Patel. "Comparison of 2D 
and 3D wavelet features for tle lateralization." In Proc. of SPIE Medical Imaging 2004: 
Physiology, Function and Structure from Medical Images, volume 5369, pages 593-601, 
2004. 
 
V.A. Kovalev, F. Kruggel, H.-J Gertz, and D.Y. von Cramon. "Three-dimensional texture 
analysis of MRI brain datasets." IEEE Trans. on Medical Imaging, 20(5):424-433,2001.  
 
A.S. Kurani, D.-H Xu, J.D. Furst, and D.S. Raicu. "Co-occurance matrices for 
volumetric data." 7th IASTED Int'l Conf on Computer Graphics and Imaging, 2004. 
 

* Response to Reviews
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D.-H Xu, A.S. Kurani, J.D. Furst, and D.S. Raicu. "Run-length encoding for volumetric 
texture." 4th IASTED Int'l Conf on Visualization, Imaging and Image Processing, 2004. 
 

As you pointed out, comparison using the value of the mean signal intensity is 

inappropriate to show the usefulness of multifractal analysis.  In this revised version, 

we have used the standard deviation of signal intensity divided by the mean signal 

intensity (SD/MSI) instead of the value of the mean signal intensity.  A significant 

correlation was observed between Delta alpha and SD/MSI, and multiple regression 

analysis was performed separately for them.  As a result, Delta alpha [but not SD/MSI] 

was a significant predictor for intima-media thickness (IMT).  These results suggest 

that multifractal analysis is more useful than other conventional texture analysis 

methods for the quantification of MRI signal intensity fluctuations in the white matter 

associated with early carotid atherosclerosis. 

 Therefore, in the last paragraph of the Introduction, the following description 

has been added: “To clarify the utility of multifractal analysis, we additionally 

calculated the standard deviation of signal intensity divided by the mean signal intensity 

(SD/MSI) as a conventional type of texture analysis in comparison with multifractal 

analysis”.  In the section of Conventional texture analysis (Materials and methods), the 

following description has also been added: “To compare multifractal analysis with 

conventional texture analysis, we additionally measured the SD/MSI of the absolute 

gradient in each ROI using the Scion Image Beta 3 processing application (Scion), in 

addition to calculating multifractal dimensions.” 

 In the 3rd paragraph of the Results, the following description has been added: 

“Since there was a significant correlation between ∆α and SD/MSI, we conducted 

multiple regression analysis with IMT for ∆α  and SD/MSI.” 

 In addition, in the 3rd paragraph of the Discussion, the following description 
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has been added: “In univariate analysis, there was a significant correlation between ∆α 

and SD/MSI.  This correlation may be related to the fact that both parameters are 

evaluating some aspects of fluctuation of the signal intensity.  Note that ∆α  was found 

to have a positive significant correlation with IMT in all subjects and in the subgroup of 

subjects without DWMH for both sides, while SD/MSI had a positive significant 

correlation with IMT for only the right side (Tables 2 and 5).  Furthermore, we 

demonstrated a strong association between IMT and ∆α  in multiple regression models 

independent of age, gender, and BMI (Table 3), while there was no significant 

association between IMT and SD/MSI (Table 4).  These results suggest that ∆α  more 

accurately reflects texture fluctuation and is a better predictor of the early stage of 

atherosclerosis than conventional texture analysis such as SD/MSI.” 

 

Reviewer #2: 

As reviewer #2 of the first manuscript I while limit my comments to changes pertaining 

to the issues I raised at that time. 

1) The authors now take advantage of previous publications in order to shorten the 

description of the multifractal analysis method. 

2) Possible effects of B0 field inhomogeneities on <DELTA><alpha> have been 

addressed in several ways including mention of higher order shimming, parallel 

imaging, and the measurement of <DELTA><alpha> for an ROI outside the brain. Also, 

the lack of any significant correlation between the <DELTA><alpha>s of background 

and white matter ROIs argues against any significant effects of B0 field inhomogeneities. 

3) The rational for the location and size of the ROIs is now described in detail. 

4) Upon reanalysis log-transformation of IMT and <DELTA><alpha> measures proved 

to be unnecessary and the graphs have been changed accordingly. 
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5) Analyses pertaining to possible laterality differences were performed. 

6) Although extension of the ROIs over more than one slice was not possible with this 

particular dataset the sizes of the ROIs was increased to obtain more robust estimates of 

<DELTA><alpha>. 

7) Omissions and typographical errors in the figures have been corrected. 

The latest version of this manuscript addresses each of the issues I previously raised. In 

my opinion this novel technique provides a useful method of assessing early-stage white 

matter changes and may prove to be a useful diagnostic tool. I look forward to its 

application to the study of other diseases. 

 Reviewer #2 did not suggest any further revisions. 

 

Reviewer #3: 

The authors have applied multifractal analysis methods to investigate textural 

differences in image intensities as a function of atherosclerotic risks.  The fractal 

measurements do appear to be correlated with intima-media thickness (IMT) as 

measured by ultrasound. This appears to be an interesting observation as IMT is 

probably one of the better predictors of sub-clinical atherosclerotic disease. 

This is a revised paper and the authors appear to have addressed many of the concerns 

raised in the initial review. I do have some minor comments and suggestions, but overall 

this is an interesting and provocative paper, which illustrates that textural features in 

the images may also be important. 

The first concern that I have is with respect to the other supposed measure of texture, 

which is the mean signal intensity. This has two problems. First, I am not convinced that 

the mean signal is a measure of texture. I suppose it could be an attribute, but texture is 

about describing how the signal is varying over the region. The second issue with the 
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mean intensity is that the data is somehow normalized to a 256-point range with CSF at 

the top and zero signal at the bottom. How consistent is this sort of normalization? The 

signal will fluctuate within CSF so how does one set the upper value? Also, there may 

be problems with dynamic range after setting the maximum value to a relatively small 

value like 256. While I am not an expert in texture analysis, it would seem that a more 

appropriate measure would be the standard deviation divided by the mean signal. Of 

course, this does not describe the spatial scales of the signal fluctuations, but would 

give information about how the amount of fluctuation in the region. It would seem to be 

a better measure than just the mean intensity and would obviate the need for intensity 

normalization. I would imagine that there are Fourier power spectral analysis methods 

that could be used to relate variations to spatial frequencies in the region, but I'm not 

convinced that this is essential to study in this paper. 

The first reviewer also raised a point that was not adequately addressed about the 

effects of field inhomogeneities. Unfortunately, the reviewer posed these fluctuations as 

arising from B0, which is probably not a large effect. The stronger effect will arise from 

the inhomogeneities of the RF (B1) field and coil sensitivity. In other words, what are 

the effects of the spatial variations in the coil RF excitation and receiver sensitivity? If 

somehow these could be estimated and removed prior to the multifractal analysis, that 

would be preferable although I would imagine over a large sample these inhomogeneity 

effects will be randomly distributed across the groups. Regardless, it should be 

discussed as a source of error. 

I respectfully disagree with the second reviewer's comment that the text describing the 

multifractal analysis method has been described elsewhere and should be removed. This 

is not a standard image analysis approach and the original description was not overly 

long. 
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Comment 1. Inappropriateness of the value of mean signal intensity as 

conventional texture analysis for comparison with multifractal analysis 

 As you pointed out, multifractal analysis quantifies how the signal varies over 

the region, and therefore, the use of the value of the mean signal intensity as the other 

supposed measure of texture for comparison in our previous version was inappropriate.  

In the present version, according to your suggestion, the standard deviation of signal 

intensity divided by mean signal intensity (SD/MSI) has been used instead of the value 

of the mean signal intensity.  A significant correlation was observed between Delta 

alpha and SD/MSI.  This correlation may be associated with the fact that both 

parameters are evaluating some aspects of fluctuation of the signal intensity.  In 

addition, multiple regression analysis was performed separately for Delta alpha and 

SD/MSI.  As a result, Delta alpha [but not SD/MSI] was a significant predictor for 

intima-media thickness (IMT).  These results suggest that multifractal analysis is more 

useful than other conventional texture analysis methods for the quantitative evaluation 

of fluctuations of MRI signal intensity in the white matter associated with early carotid 

atherosclerosis.  In addition, as you suggested, the evaluation of other texture analysis 

methods such as Fourier power spectral analysis methods may also be necessary in the 

future. 

 Therefore, in the last paragraph of the Introduction, the following description 

has been added: “To clarify the utility of multifractal analysis, we additionally 

calculated the standard deviation of signal intensity divided by the mean signal intensity 

(SD/MSI) as a conventional type of texture analysis in comparison with multifractal 

analysis”.  In the section of Conventional texture analysis (Materials and methods), the 

following description has also been added: “To compare multifractal analysis with 
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conventional texture analysis, we additionally measured the SD/MSI of the absolute 

gradient in each ROI using the Scion Image Beta 3 processing application (Scion), in 

addition to calculating multifractal dimensions.” 

 In the 3rd paragraph of the Results, the following description has been added: 

“Since there was a significant correlation between ∆α and SD/MSI, we conducted 

multiple regression analysis with IMT for ∆α  and SD/MSI.” 

 In addition, in the 3rd paragraph of the Discussion, the following description 

has been added: “In univariate analysis, there was a significant correlation between ∆α 

and SD/MSI.  This correlation may be related to the fact that both parameters are 

evaluating some aspects of fluctuation of the signal intensity.  Note that ∆α  was found 

to have a positive significant correlation with IMT in all subjects and in the subgroup of 

subjects without DWMH for both sides, while SD/MSI had a positive significant 

correlation with IMT for only the right side (Tables 2 and 5).  Furthermore, we 

demonstrated a strong association between IMT and ∆α  in multiple regression models 

independent of age, gender, and BMI (Table 3), while there was no significant 

association between IMT and SD/MSI (Table 4).  These results suggest that ∆α  more 

accurately reflects texture fluctuation and is a better predictor of the early stage of 

atherosclerosis than conventional texture analysis such as SD/MSI.” 

 

Comment 2. Necessity for and method of 256-point range gray-scale normalization 

 Since multifractal analysis is a method for the quantitative evaluation of 

fluctuations, differences in the signal intensity range among individuals present a 

methodological problem in analysis.  Therefore, the signal intensity range on images 

should be made consistent.  In this study, the highest signal intensity that was most 

commonly distributed in the background air was regarded as maximal densities, the 
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lowest signal intensity that was most commonly distributed in the CSF was regarded as 

minimal densities, and signal intensity data were converted into 255-gray scale images. 

 In the 3rd paragraph of the Multifractal analysis section (Materials and 

methods), the following description has been added: “Since multifractal analysis 

evaluates the fluctuation of the objects, the difference of intensity range among subjects 

poses an adverse effect in calculating ∆α .  Therefore, MRI signal intensity data were 

converted into 255-gray scale images (the highest signal intensity which is most 

commonly distributed in background air as maximal densities and the lowest signal 

intensity which is most commonly distributed in cerebrospinal fluid as minimal 

densities) using a Scion Image Beta 3 processing application (Scion).” 

 

Comment 3. Reason for the conversion of MR signal intensity into the 255-gray 

scale (8 bits) 

 In the multifractal analysis we performed, no marked difference was observed 

between the algorithmic Delta alpha value using the 4095-gray scale (12 bits) as raw 

data and that after conversion into the 255-gray scale (8 bits) for actual analysis.  We 

have used the 255-gray scale for analysis because 12 bits markedly prolongs the time 

required for analysis, and the present program we developed is difficult to use with the 

conventional method.  However, as you suggested, more detailed information can be 

obtained with a higher resolution.  We would like to improve the program so that more 

detailed data analysis can be performed in the future. 

 

Comment 4. Influences of inhomogeneities of the RF (B1) field and coil sensitivity 

on multifractal analysis 

 As you suggested, the influences of the inhomogeneities of the RF (B1) field 
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and coil sensitivity on multifractal analysis should be evaluated.  However, the 

accurate evaluation of their influences on multifractal analysis is very difficult.  We 

previously reported a significant difference in the Delta alpha value in the white matter 

between healthy young subjects and healthy elderly subjects under the same MRI 

conditions.  This difference supports the notion that multifractal analysis reflects the 

fluctuation of the white matter tissue itself (e.g., age-related changes in ∆α) irrespective 

of the inhomogeneities of the RF field and coil sensitivity. 

Therefore, the following description has been added to the section of Accuracy 

and sensitivity assessment of multifractal analysis (Materials and methods): “As other 

possible sources of error, effects of the inhomogeneities of the RF field and coil 

sensitivity must be taken into account for multifractal analysis. Previously, we found a 

significant difference in ∆α  between healthy young subjects and healthy elderly subjects 

under the same MRI conditions (Takahashi et al., 2004).  This difference supports the 

reflection of the fluctuation of the white matter tissue itself (e.g., age-related changes in 

∆α) by multifractal analysis irrespective of the inhomogeneities of the RF field and coil 

sensitivity.” 

 
References: 
Takahashi, T., Murata, T., Omori, M., Kosaka, H., Takahashi, K., Yonekura, Y., Wada, Y., 

2004. Quantitative evaluation of age-related white matter microstructural changes 
on MRI by multifractal analysis. J. Neurol. Sci. 225, 33–37. 

 

Comment 5. Description of the multifractal analysis method 

Thank you for your valuable suggestion.  In our previous version, we made 

efforts to shorten our text by omitting equations and principles associated with 

multifractal analysis by citing previous references.  However, in the present version, 
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according to your suggestions, we have described these equations and principle in detail 

(in the 1st paragraph of the Multifractal analysis section of the Materials and methods). 
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Abstract 

Multifractal analysis based on generalized concepts of fractals has been applied to 

evaluate biological tissues composed of complex structures. This type of analysis can 

provide a precise quantitative description of a broad range of heterogeneous 

phenomena. Previously, we applied multifractal analysis to describe heterogeneity in 

white matter signal fluctuation on T2-weighted MR images as a new method of texture 

analysis and established ∆α  as the most suitable index for evaluating white matter 

structural complexity (Takahashi et al. J. Neurol. Sci., 2004; 225:33−37). Considerable 

evidence suggests that pathophysiological processes occurring in deep white matter 

regions may be partly responsible for cognitive deterioration and dementia in elderly 

subjects. We carried out a multifractal analysis in a group of 36 healthy elderly subjects 

who showed no evidence of atherosclerotic risk factors to examine the microstructural 

changes of the deep white matter on T2-weighted MR images. We also performed 

conventional texture analysis, i.e., determined the standard deviation of signal intensity 

divided by mean signal intensity (SD/MSI) for comparison with multifractal analysis. 

Next, we examined the association between the findings of these two types of texture 

analysis and the ultrasonographically measured intima-media thickness (IMT) of the 

carotid arteries, a reliable indicator of early carotid atherosclerosis. The severity of 

carotid IMT was positively associated with ∆α  in the deep white matter region. In 

addition, this association remained significant after excluding 12 subjects with visually 

detectable deep white matter hyperintensities on MR images. However, there was no 

significant association between the severity of carotid IMT and SD/MSI. These results 

indicate the potential usefulness of applying multifractal analysis to conventional MR 
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images as a new approach to detect the microstructural changes of apparently normal 

white matter during the early stages of atherosclerosis. 

 

Keywords: Texture analysis; Multifractal; T2-weighted MRI; Deep white matter; 

Intima-media thickness; Atherosclerosis 
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Introduction 

Considerable evidence has recently suggested that pathophysiological 

processes in the white matter regions may partly account for a number of brain 

dysfunctions in elderly subjects. This white matter deterioration may play an important 

role in clinical deficits such as age-related cognitive decline, geriatric depression, or 

dementia (Gunning-Dixon and Raz, 2003; Valenzuela et al., 2000). Therefore, the 

deterioration of white matter should be evaluated at the earliest possible stage. 

T2-weighted MRI has demonstrated a high prevalence of white matter changes with 

aging. These changes frequently occur in deep white matter, i.e., the terminal zone of 

the penetrating medullary arteries (Kirkpatrick and Hayman, 1987; van Swieten et al., 

1991), and they are reflected in MR signals such as deep white matter hyperintensities 

(DWMHs). DWMHs are related to standard risk factors for cardiovascular diseases and 

are believed to be a consequence of cerebrovascular disease (Bots et al., 1993; Fazekas 

et al., 1988; Manolio et al., 1994). 

Another method, ultrasonographic measurement of the intima-media thickness 

(IMT) of carotid arteries, is reported to be a reliable indicator of the early stage of 

atherosclerosis (Allan et al., 1997; Burke et al., 1995). Given that the carotid arteries 

provide most of the blood supply to the brain, carotid atherosclerotic changes of IMT 

may be associated with a higher risk of cerebrovascular disease (Manolio et al., 1999; 

Touboul et al., 2000) and are regarded as a robust predictor of stroke (Cao et al., 2003; 

O’Leary et al., 1999). Several studies have also elucidated the relationship between IMT 

and visible white matter hyperintensities on MRI (Manolio et al., 1999; Pico et al., 

2002). 
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The analysis of texture parameters is a useful way of increasing the 

information obtainable from MR signal changes. Various types of texture analysis have 

been applied for the delineation and separation of tissue alterations (Castellano et al., 

2004). However, the current clinical diagnosis of white matter degeneration on 

T2-weighted MR images still depends on visual rating scales due to the lack of 

appropriate measurement tools. Accordingly, there is demand for a more sophisticated 

method that can provide a better description of pathological changes on MR images, 

especially in the early stage. Fractals, proposed by Mandelbrot (1983), are characterized 

by self-similar structures, and fractal theory provides a new scale of nonlinearity. 

Various physical phenomena such as the growth of cancers and arterial and bronchial 

trees show the features of fractals, and fractal theory has already provided clinically 

useful information to differentiate pathological tissue from healthy tissue (Baish and 

Jain, 2000; Mauroy et al., 2004; Zamir, 1999). The application of fractal theory to the 

neuroimaging field has also provided novel and useful information in clinical medicine 

(Kiselev et al., 2003; Yoshikawa et al., 2003a, 2003b). In contrast to simple fractals, the 

concept of “multifractal phenomena” holds that different regions of an object have 

different local fractal properties that quantify local singular behavior (Halsey et al., 

1986). To describe these local fractal properties, Halsey et al. (1986) introduced α , the 

so-called Lipschitz-Hölder index (or the strength of singularity), and the multifractal 

spectrum f(α). Multifractal scaling provides a quantitative description of a broad range 

of heterogeneous complex phenomena that are impossible to evaluate using simple 

fractals (Ivanov et al., 1999; Shimizu et al., 2004; Stanley et al., 1999). 

Our previous study showed that index ∆α  (established as the most suitable 

index of heterogeneity in Takahashi et al. (2001)), in apparently normal deep white 
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matter frontal regions on T2-MRI, reached significantly higher levels in elderly subjects 

than in young subjects and was correlated with cognitive decline in elderly subjects 

(Takahashi et al., 2004). Yet, the underlying pathogenesis behind these changes in the 

deep white matter in elderly subjects remains obscure. In this study we carried out a 

multifractal analysis to examine the microstructural changes of the deep white matter in 

apparently normal T2-weighted MR images in elderly subjects who showed no evidence 

of atherosclerotic risk factors. To clarify the utility of multifractal analysis, we 

additionally calculated the standard deviation of signal intensity divided by the mean 

signal intensity (SD/MSI) as a conventional type of texture analysis in comparison with 

multifractal analysis. We also sought to identify the pathogenesis of these changes with 

special reference to ultrasonographic measurements of carotid artery IMT, a reliable 

indicator of the early stage of atherosclerosis. Last, we re-examined the relationships 

among these changes in view of the coexistence of DWMH. 

 

Materials and methods 

Subjects and study design 

Forty-three healthy elderly subjects were recruited from the general population 

in Fukui prefecture, Japan; a brochure described the following exclusion criteria: history 

of major atherosclerotic risk factors (such as hypertension, hypercholesterolemia, 

diabetes mellitus, coronary artery disease, congestive heart failure, and 

hemodynamically significant valvular disease), history of psychiatric treatment, chronic 

alcoholism, smoking, obesity with a body mass index (BMI) above 26, and the 

continuous administration of drugs. All female subjects were postmenopausal. Of the 43 

volunteers, 7 were excluded due to the confined space for setting the ROI and a high 
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prevalence of DWMH, which precluded subsequent multifractal analysis (as described 

in the section on “Multifractal analysis”). Finally, 36 volunteers (23 males aged 52–72 

(mean: 61.0 ± 4.7 years) and 13 females aged 55–70 (mean: 60.9 ± 4.1 years)) were 

included in the study. All subjects gave written informed consent. 

The protocol of this study was approved by the ethics committee of our 

university. Data from each examination were analyzed independently by different 

clinical technologists, radiologists or psychiatrists who were blinded to the data 

collected in other examinations. 

 

Multifractal analysis 

The idea of the multifractal is a generalized concept based on Mandelbrot’s 

fractal (Halsey et al., 1986; Mandelbrot, 1983). Details of multifractal analysis are 

provided elsewhere (Takahashi et al., 2001, 2004). Briefly, after dividing an image into 

squares with sides having length r, we define a probability density for each square box 

as pi = Ni /N, where Ni is the density at the i-th box and N = ∑i Ni is the total density of 

the image. The density of the images with nonlinear structures fluctuates and reveals 

fractality. To estimate this fractality, Halsey et al. (1986) proposed the q-th moment of 

probability density to be ∑i pi
q, a generalization of the conventional partition function ∑i 

pi. When the probability scales as pi ∝  rα i, α i represents a local fractal dimension at the 

i-th box. Halsey et al. (1986) have defined a mass index τ(q) by 

lim (∑i pi
q/rτ(q)) = 1.     

r →0 
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τ(q) relates to the so-called generalized fractal dimension D(q) (Grassberger, 1983; 

Hentschel and Procaccia, 1983) as τ(q) = (q –1) D(q). By mathematical manipulation 

(Halsey et al., 1986), we obtain 

α(q) = dτ(q)/dq.      

α(q), the Lipschitz-Hölder index (or the strength of singularity after Halsey et al. 

(1986)), represents the local dimension. For the set with a constant α(q) on the image, 

Mandelbrot’s fractal dimension (the capacity dimension) is given as (Halsey et al., 

1986) 

f(α(q)) = q α(q) – τ(q).     

Analogies between multifractal theory and classical thermodynamics can be drawn as 

follows. q corresponds to inverse temperature, α(q) to energy, f(α(q)) to entropy, and 

τ(q)/q to free energy. 

Actually, f(α) is the smooth concave function of α , typical examples of which 

are shown in Fig. 1. Theoretically, α(q) with large positive q values corresponds to the 

most concentrated regions (low intensity regions of the image, i.e., dark regions) and 

α(q) with large negative q values corresponds to the most rarefied regions (high 

intensity regions of the image, i.e., white regions). In addition, the width of both ends of 

the f(α) spectrum reveal the image’s heterogeneity. Since α(q) tended to be constant at 

|q| >20 in this study, the width between the α(q) value at q = –20 (the right end of the 

f(α) spectrum in Fig. 1) and the α(q) value at q = +20 (the left end of the f(α) spectrum 

in Fig. 1) was defined as ∆α  (the width of both ends of the f(α) spectrum in Fig. 1). Our 

previous studies showed that ∆α  is the most suitable multifractal index of heterogeneity 

on MRI (Takahashi et al., 2001, 2004). 
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Brain MRI was performed using a General Electric 1.5-Tesla Signa system. 

Axial T2-weighted images (TR = 3000 ms, TE = 80 ms) were obtained parallel to the 

orbitomeatal line. The slice thickness was 5 mm and the matrix size was 512 × 512. No 

spatial filter was used prior to multifractal analysis, although the Fermi spatial filter 

built in the GE MR imaging system was used during reconstruction. Since multifractal 

analysis evaluates the fluctuation of the objects, the difference of intensity range among 

subjects poses an adverse effect in calculating ∆α . Therefore, MRI signal intensity data 

were converted into 255-gray scale images (the highest signal intensity which is most 

commonly distributed in background air as maximal densities and the lowest signal 

intensity which is most commonly distributed in cerebrospinal fluid as minimal 

densities) using a Scion Image Beta 3 processing application (Scion). The “power of 2” 

box size (i.e., r = 2n) is needed to divide the image to calculate the f(α) spectrum, and an 

increase in size will theoretically provide more stable results. Previously, we reported 

the necessity for at least 32 × 32 pixel images to achieve a stable f(α) spectrum 

according to the size and resolution of the images (Takahashi et al., 2004). In this study, 

the establishment of ROIs was restricted because we included subjects with DWMH, 

which must be excluded from the ROI. In the actual analysis, to achieve more robust 

data, a rectangular ROI of x × y pixels (1600 < x × y < 2000; x, y > 32 pixels) was 

placed bilaterally in the deep white matter of the frontoparietal region in the vicinity of 

the lateral ventricles (Figs. 2A and 2B) as the ROI. ROIs were chosen to avoid 

including the cortex, the ventricles, and the abnormal white matter intensities manually 

by T.T. and K.N. Since the rectangular ROI consisted of (x − 32 + 1) × (y − 32 + 1) 

frames of 32 × 32 pixel images (Fig. 2C with magnification), we performed multifractal 

analysis to these subframes separately and averaged them all for subsequent analysis. 
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The interrater reliability (intraclass correlation coefficient), established by two different 

evaluators (T.T. and K.N.), was r = 0.813 for the right ∆α and r = 0.912 for the left ∆α . 

Prior to calculating the multifractal dimensions, all selected ROIs were visually 

inspected and determined to be normal (as shown in Figs. 3E1 and 3E2) by an 

experienced radiologist (H.K.). As a result of setting this condition, however, we had to 

exclude 7 subjects from further analysis due to restrictions in the establishment of the 

ROIs (confined space for setting the ROIs and high prevalence of DWMH). The MR 

signal intensity fluctuations in these ROIs (as shown in Fig. 2C with magnification) of 

the remaining subjects were quantitatively evaluated by multifractal analysis. The sum 

of the density of the divided image into the i-th square with a side of r (maximum was 

32 pixels) was regarded as Ni, and the sum of the density of the entire image was 

regarded as N. The probability density in the i-th square was defined as pi = Ni /N for 1, 

2, 4, 8, 16, and 32 pixels (Fig. 2D). 

DWMHs were graded to ascertain their conventional macroscopic 

classifications for hyperintensity on T2-weighted images according to the system of 

Fazekas (Fazekas et al., 1988) (grade 0 = absent; grade 1 = punctuate foci; grade 2 = 

beginning confluence of foci; grade 3 = large confluent areas). The 36 subjects were 

classified as follows: grade 0 (24), 1 (10), 2 (2), or 3 (0) by a skilled radiologist (H.K.). 

We also divided the subjects into two groups, grade 0 and grades 1–3, due to the small 

numbers of DWMHs classified specifically as grade 2 or 3. 

 

Conventional texture analysis 

To compare multifractal analysis with conventional texture analysis, we 

additionally measured the SD/MSI of the absolute gradient in each ROI using the Scion 
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Image Beta 3 processing application (Scion), in addition to calculating multifractal 

dimensions. 

 

Carotid B-mode ultrasonography 

Carotid B-mode ultrasonography was performed using a LOGIQ500 MD MR3 

(General Electric Medical Systems), and carotid atherosclerosis was examined using an 

8.8-MHz wideband transducer. IMT was measured as the distance between the 

lumen-intima interface and the media-adventitia interface at the far wall on each side in 

the B-mode image according to the method of Handa et al. (1990). 

 

Biochemical determinations 

All subjects underwent venous blood sampling from an antecubital vein in the 

right arm at about 11:00 a.m. after an overnight and morning fast. Serum concentrations 

of total cholesterol (TC) were measured by enzymatic determination. 

 

Twenty-four-hour ambulatory blood pressure monitoring (ABPM) 

Twenty-four-hour ABPM was performed using an FM-200 (Fukuda Densi 

Co., Tokyo, Japan). Blood pressure (BP) was measured at 30-min intervals from 6:00 

a.m. to 10:00 p.m. and at one-hour intervals from 10:00 p.m. to 6:00 a.m. In this study, 

24-hour mean systolic BP was used. 

 

Accuracy and sensitivity assessment of multifractal analysis 

To determine whether our method accurately measured multifractal 

dimensions, we simulated homogeneous images such as simple gray (Fig. 3A) and a 
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standard fractal object such as Sierpinski’s gasket (Figs. 3B1−3 from homogeneous to 

heterogeneous type) in comparison with theoretical values. Additionally, randomized 

noise (Fig. 3C), background air, and the averaged image of 10 ROIs with DWMH (Fig. 

3D) were calculated. Figs. 3E1 and 3E2 show the images of selected ROIs with high and 

low ∆α . Simple gray images resulted in ∆α  close to 0, which indicates that they were 

completely homogeneous (Fig. 3A). Delta α  of Sierpinski’s gasket was in line with the 

theoretical value (Fig. 3F); the line indicates the theoretical value, and the dots reveal 

the actual value. With increasing image fluctuation (from Fig. B1 to B3), the width of 

both ends of α  gradually increases, results in line with the algorithm of multifractals that 

substantiate the accuracy of our analysis. Moreover, ∆αs of images with DWMH were 

extremely large (mean: 0.156, SD: 0.023) compared to those of apparently normal white 

matter (mean: 0.024, SD: 0.007). We also analyzed background air images in all 

subjects to identify the effect of background activity. We found extremely high values 

of ∆α  in background air (mean: 0.505, SD: 0.057, close to the value of noise) compared 

to those of white matter; there was no significant relationship between the ∆αs of 

background air images and those of the white matter (right side: r = −0.052; left side: r 

= 0.093). These results substantiate the irrelevancy of artifacts in applying multifractal 

analysis to white matter on T2-weighted MRI. As other possible sources of error, effects 

of the inhomogeneities of the RF field and coil sensitivity must be taken into account 

for multifractal analysis. Previously, we found a significant difference in ∆α  between 

healthy young subjects and healthy elderly subjects under the same MRI conditions 

(Takahashi et al., 2004). This difference supports the reflection of the fluctuation of the 
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white matter tissue itself (e.g., age-related changes in ∆α) by multifractal analysis 

irrespective of the inhomogeneities of the RF field and coil sensitivity. 

 

Statistical analysis 

Statistical analysis was carried out using SPSS software for Windows version 

12 (SPSS Japan Inc., Tokyo, Japan). 

Pearson’s χ2 and Student’s t test were used to compare the distribution of 

categorized data and continuous data by gender. The paired t test was used to test for 

laterality differences in ∆α , SD/MSI, and IMT. The relationships among ∆α , SD/MSI, 

IMT, age, gender, BMI, TC, and mean 24-hour systolic BP were explored by simple 

correlation analysis using Pearson’s product-moment correlation coefficient (r). The 

independent IMT predictors were examined in a multiple regression model in which ∆α , 

SD/MSI, age, gender, and BMI were introduced as independent variables on both sides. 

We also calculated these univariate analysis and multiple regression models after 

eliminating the subjects with DWMH. The relationship between ∆α  and IMT was further 

investigated using one-way ANCOVA across IMT subgroups on both sides separately, 

divided into approximate groupings of high (18 subjects) and low (18 subjects) IMT 

values. Age, gender, and BMI were treated as covariates. P values < 0.05 were 

considered statistically significant. 

 

Results 

The demographic characteristics, ∆α , SD/MSI, IMT, age, BMI, TC, mean 

24-hour systolic BP, and coexistence of DWMH are presented in Table 1. There were 
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significant differences in right and left SD/MSI and total cholesterol levels between 

male and female subjects. 

The paired t test demonstrated no significant laterality differences for ∆α (P = 

0.773), SD/MSI (P = 0.402), or IMT (P = 0.625). 

Table 2 represents the Pearson’s product-moment correlation among ∆α , 

SD/MSI, IMT, age, BMI, TC, and mean 24-hour systolic BP in all subjects separately 

for right and left sides. There were significant correlations between ∆α and SD/MSI for 

the right side (r = 0.624, P < 0.001) and left side (r = 0.618, P < 0.001). Correlations 

between texture analysis and confounding factors were found in ∆α  and IMT (r = 0.515, 

P < 0.001; open and closed circles in Fig. 4A), SD/MSI and IMT (r = 0.397, P = 0.016), 

SD/MSI and BMI (r = 0.342, P = 0.041) for the right side, ∆α  and IMT (r = 0.474, P = 

0.004; open and closed circles in Fig. 4B), SD/MS and BMI (r = 0.347, P = 0.038) for 

the left side. Correlations among confounding factors were found in BMI and mean 

24-hour systolic BP (r = 0.367, P = 0.028). Since there was a significant correlation 

between ∆α and SD/MSI, we conducted multiple regression analysis with IMT for ∆α 

and SD/MSI. When variables (∆α , age, gender, and BMI) were input into multiple 

regression models, ∆α  was the strongest predictor of IMT for both sides (Table 3). On 

the other hand, when variables (SD/MSI, age, gender, and BMI) were input into 

multiple regression models, SD/MSI had no association with IMT (Table 4). 

Table 5 represents the Pearson’s product-moment correlation among ∆α , 

SD/MSI, IMT, age, BMI, TC, and mean 24-hour systolic BP, in subjects without 

DWMH, for the right and left sides separately. There were significant correlations 

between ∆α  and SD/MSI for the right side (r = 0.592, P = 0.002) and left side (r = 
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0.454, P = 0.026). Correlations between texture analysis and confounding factors were 

found in ∆α  and IMT (r = 0.540, P = 0.006; closed circles in Fig. 4A), SD/MSI and 

BMI (r = 0.453, P = 0.026) for the right side, and ∆α and IMT (r = 0.610, P = 0.002; 

closed circles in Fig. 4B), and SD/MSI and BMI (r = 0.412, P = 0.042) for the left side. 

No significant correlation was found between any combinations of confounding factors. 

Exclusion of subjects with DWMH did not affect the relationship between ∆α  and IMT 

in multiple regression models (Table 3). 

Fig. 5 shows further evidence of the relationship between ∆α  and IMT. IMT 

was divided into approximately two subgroups (i.e., low (< 0.84 mm), high (≥ 0.85 

mm)), and the means across the subgroups were compared by one-way ANCOVA. 

One-way ANCOVA with adjustments for age, gender, and BMI indicated that the value 

of ∆α  was higher in the high-IMT group (right: F = 6.942, P = 0.013; left: F = 20.523, 

P < 0.001). This significant relationship between ∆α  and IMT remained significant after 

adjustments for age, gender, BMI, TC, and systolic BP (right: F = 6.523, P = 0.016; left: 

F = 19.092, P < 0.001). 

 

Discussion 

Previous studies have shown that the properties of T2-weighted MR image 

signal intensity reflect a broad range of pathological changes, such as demyelination, 

microtubule deterioration, dilated perivascular spaces, and axonal dilation (Fazekas et 

al., 1998; Meier-Ruge et al., 1992; Takao et al., 1999). Other studies have demonstrated 

the roles of these changes in normal aging (Davatzikos and Resnick, 2002; Yamamoto 

et al., 2005), cognitive function (Gunning-Dixon and Raz, 2003; Ylikoski et al., 1993), 
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depression (Salloway et al., 1996), and dementia (Varma et al., 2002). These 

pathological changes in white matter are accompanied by lesions in the small 

perforating cerebral arteries (Inzitari, 2003; Schmidt et al., 2002, 2004; van Swieten et 

al., 1991) and are related to the prevalence of peripheral atherosclerosis (Manolio et al., 

1999; Pico et al., 2002). Most of these studies were based on visually detectable 

changes in the white matter (e.g., DWMH), occurring at relatively late stages in the 

development of pathological changes. These visually detectable changes could be 

quantified with comparative ease by visual inspection. However, to date no studies have 

explored the changes that occur at the initial stages (especially in normal-appearing 

white matter on T2-MRI). 

At the initial stages, since these MR signal intensity changes are localized in a 

very small region associated with cerebral small vessel damage (Inzitari, 2003; Kidwell 

et al., 2001; Pantoni, 2002; Pugh and Lipsitz, 2002; Schmidt et al., 2002; van Swieten et 

al., 1991), such minute changes might appear as fluctuations of signal intensity and be 

difficult to evaluate by conventional methods. Multifractal analysis can provide a good 

quantitative evaluation of such fluctuations in the signal intensity of the images. Our 

group previously reported that ∆α  (an index of the heterogeneity of signal intensity) in 

apparently normal deep white matter regions reached significantly higher levels in 

elderly subjects than in young subjects and was correlated with executive cognitive 

decline in the elderly group (Takahashi et al., 2004). However, the underlying causal 

mechanisms remain obscure. 

In the present study we quantitatively examined the MR signal characteristics 

of the deep white matter region by multifractal analysis in comparison with a 

conventional method of analysis, i.e., calculation of SD/MSI, and examined the 
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correlation of these characteristics with ultrasonographic measurements of carotid artery 

IMT, a reliable indicator of the early stage of atherosclerosis. In univariate analysis, 

there was a significant correlation between ∆α  and SD/MSI. This correlation may be 

related to the fact that both parameters are evaluating some aspects of fluctuation of the 

signal intensity. Note that ∆α  was found to have a positive significant correlation with 

IMT in all subjects and in the subgroup of subjects without DWMH for both sides, 

while SD/MSI had a positive significant correlation with IMT for only the right side 

(Tables 2 and 5). Furthermore, we demonstrated a strong association between IMT and 

∆α  in multiple regression models independent of age, gender, and BMI (Table 3), while 

there was no significant association between IMT and SD/MSI (Table 4). These results 

suggest that ∆α  more accurately reflects texture fluctuation and is a better predictor of 

the early stage of atherosclerosis than conventional texture analysis such as SD/MSI. 

More noteworthy is that the relationship between ∆α  and IMT was observed not only in 

all subjects but also after eliminating the subjects with DWMH. Thus, detection using the 

multifractal analysis of microstructural changes in the white matter, specifically changes 

related to the early stages of atherosclerosis, before the appearance of visible changes on 

T2-MRI, is clinically significant. IMT is a strong predictor of cerebrovascular disease, 

including stroke (Cao et al., 2003; Manolio et al., 1999; O’Leary et al., 1999; Touboul 

et al., 2000). Therefore, this study’s quantitative analysis of deep white matter by 

multifractal analysis is likely to be useful for predicting the occurrence or prognosis of 

cerebrovascular disease. 

Contrary to expectations, there were no significant associations between ∆α  or 

IMT and confounding factors which were reported to be associated with atherosclerosis 
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and cerebrovascular damage (Bonithon-Kopp et al., 1996; Bots et al., 1992; Zureik et 

al., 1999). In addition, very few combinations of confounding factors showed 

significant correlations. These results were probably related to the stringent exclusion of 

subjects with atherosclerotic risk factors from this study. 

The findings of this study are limited by the following four factors. First, 

restrictions in the establishment of ROIs must be taken into account. At the present 

stage, multifractal analysis can only be applied to relatively large ROIs (i.e., 32 × 32 

pixel ROIs), and ROI placement is operator dependent. Another consideration for ROI 

placement is whether the pathological process affects all of the white matter or is 

localized. Hence, multifractal dimensions could be affected by ROI placement 

depending on whether the potential pathological process was included in the ROI. To 

overcome these limitations, we must improve multifractal analysis to permit high 

resolution and regional analysis. Second, artifacts derived from the MRI technique must 

be taken into account to enable better descriptions in multifractal analysis. Third, the 

subjects in the present study were highly restricted due to the exclusive selection of subjects 

who had no evidence of cardiovascular risk factors. Finally, the small number of 

subjects needs to be taken into account. Further studies with larger numbers are required 

to confirm our findings, and longitudinal studies are awaited to corroborate and 

strengthen our preliminary results. Nevertheless, our findings highlight the potential 

usefulness of multifractal analysis in MR imaging studies and suggest that this 

multifractal approach can contribute to identifying the early stages of atherosclerosis 

through the detection of microstructural changes in apparently normal white matter, 

which could be crucial in combination with conventional methods. 
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Figure legends 

Fig. 1. Typical example of f(α) spectrum in a deep white matter ROI. The slope at each 

plot of the smooth concave function shows the q  value. The α(q) value at q = –20 was 

defined as αmax (right end of the f(α) spectrum), while the α(q) value at q = +20 was 

defined as αmin (left end of the f(α) spectrum). The width of both ends of the f(α) 

spectrum was defined as ∆α . 

 

Fig. 2. Representative sagittal (A) and axial (B) slices from T2-weighted MR images 

demonstrate ROI placement. A rectangular x × y pixel ROI (1600 < x × y < 2000; x, y > 

32 pixels) was placed bilaterally in the deep white matter of the frontoparietal region in 

the vicinity of the lateral ventricles (white line on A and white rectangle on B). ROIs 

were chosen manually to avoid including the cortex, the ventricles, and abnormal white 

matter intensities. The rectangular x × y pixel ROI consisted of (x − 32 + 1) × (y − 32 + 

1) frames of 32 × 32 pixel images. A typical example of the rectangular regions of 

interest (ROIs: 38 × 48 pixels) on T2-weighted MR images selected from the deep 

white matter of the frontoparietal region (B) and MR signal intensity fluctuations in the 

ROI (C, with magnification). Fig. 2D shows divided images with sides of r = 1, 2, 4, 8, 

16, and 32 pixels. 

 

Fig. 3. Examples of simulated homogeneous images such as simple gray (A), standard 

fractal objects such as Sierpinski’s gaskets (B1−3 from homogeneous to heterogeneous 

type), randomized noise (C), and averaged image of 10 ROIs with DWMH (D). Figs. E1 

and E2 show images of selected ROIs with high and low ∆α . In Fig. F, lines represent 
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theoretical values and dots show actual values. Red dots demonstrate the theoretical and 

actual values of a simple Sierpinski’s gasket (B1). The green line and dots show results 

for the heterogeneous Sierpinski’s gasket (B2). The blue line and dots show the results 

for a more heterogeneous Sierpinski’s gasket (B3). With increasing heterogeneity of the 

image (from B1 to B3), the width of both ends of α  gradually increases (as shown in F). 

 

Fig. 4. Association between ∆α  and intima-media thickness (IMT). Significant positive 

correlations were observed (all subjects (open and closed circles): r = 0.515, P < 0.001; 

subjects without DWMH (closed circles): r = 0.540, P = 0.006) for the right side (A). 

Significant positive correlations were observed (all subjects (open and closed circles): r 

= 0.472, P = 0.004; subjects without DWMH (closed circles): r = 0.610, P = 0.002) for 

the left side (B). 

 

Fig. 5. ∆α  values across intima-media thickness (IMT) groups (high- vs. low-IMT), 
right and left sides, respectively. Values are mean ± SD. *P < 0.05 (ANCOVA). 
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0.112 119.15 (11.00) 126.35 (13.56) SBP (mm Hg), mean (SD)  

0.032* 227.00 (37.03) 200.95 (31.59) TC (mg/dl), mean (SD)  

0.069 22.43 (2.65)  23.90 (2.01) BMI (kg/m2), mean (SD) 

0.944 60.85 (4.10) 60.96 (4.74) Age (years), mean (SD)  

0.479 0.843 (0.110) 0.868 (0.096) Left IMT (mm), mean (SD)  

0.463 0.838 (0.112)  0.863 (0.090) Right IMT (mm), mean (SD)  

0.004** 0.0274 (0.0036) 0.0340 (0.0071) Left SD/MSI, mean (SD) 

0.002** 0.0275 (0.0046) 0.0347 (0.0071) Right SD/MSI, mean (SD)  

0.181 0.0219 (0.0046) 0.0251 (0.0078) Left ∆α , mean (SD) 

0.725 0.0237 (0.0077) 0.0246 (0.0062) Right ∆α , mean (SD) 

P Female (n = 13) Male (n = 23) 
 

Table 1
Demographic characteristics of the study subjects with comparison between gender groups 

0.635 30.8 (4/13) 30.4 (7/23) Co-existence of DWMH (%), (n) 

Data are expressed as mean ± S.D.; SD/MSI, standard deviation of signal intensity divided by mean 
value of signal intensity; IMT, intima-media thickness; BMI, body mass index; TC, total cholesterol; 
SBP, systolic blood pressure; DWMH, deep white matter hyperintensity. *P < 0.05; ** P < 0.01. 

Table 1



 

 
Right SD/MSI 

 
Age BMI TC SBP 

Right ∆α  0.624** 0.515** 0.109 -0.075 0.101 0.001 
Right SD/MSI  - 0.397* -0.119 0.342* 0.232 -0.100 
Right IMT (mm) - - 0.206 0.193 -0.064 0.183 

Table 2 
Correlation matrix of ∆α , SD/MSI, IMT, age, BMI, TC, and systolic BP in all subjects 

SD/MSI, standard deviation of signal intensity divided by mean value of signal intensity; IMT, intima-media thickness; 
BMI, body mass index; TC, total cholesterol; SBP, systolic blood pressure; DWMH, deep white matter hyperintensity. 
*P < 0.05; ** P < 0.01. 

Left side 
Left SD/MSI Left IMT  Age 

Right side 

Age (years) -0.032 0.128 -0.033 
BMI (kg/m2) - -0.066 
TC (mg/dl) - - -0.121 

Correlation matrix among confounding factors  

0.226 0.324 

-0.091 
0.163 

0.618** 

- 
- - 0.312 

0.347* -0.128 

0.367* 

 Left ∆α  0.474** 0.106 0.015 0.127 
Left SD/MSI 0.222 0.268 
Left IMT (mm) 0.051 

Right IMT 

BMI TC SBP 

BMI TC SBP 

Table 2



 
 Table 3 

Summary of multiple linear regression analysis for right and left IMT with ∆α   

β P 
Right ∆α   0.514 0.001 0.478 0.017 
Age (years) 0.157 0.293 0.038 0.828 

 -0.148 0.883 -0.179 0.355 Gender (%) 
0.149 0.145 0.338 0.071 

 All subjects  Subjects without DWMH 

BMI (kg/m2) 

β P 

IMT, intima-media thickness; BMI, body mass index; DWMH, deep white matter 
hyperintensity. β  is the standardized regression coefficient, which allows 
comparison of the relative contribution of each variable to the prediction of IMT. 
For this model, multiple r = 0.587, r2 = 0.344, P = 0.009 (for all subjects); r = 
0.686, r2 = 0.471, P = 0.013 (for subjects without DWMH) for right side and 
multiple r = 0.664, r2 = 0.441, P < 0.001 (for all subjects); r = 0.779, r2 = 0.606, 
P < 0.001 (for subjects without DWMH) for left side, respectively. 

Left side 
β P β P 

Left ∆α   0.497 0.001 0.635 0.001 
Age (years) 0.380 0.008 0.359 0.025 

 0.087 0.549 0.077 0.622 Gender (%) 
0.298 0.043 0.277 

 All subjects   Subjects without DWMH 

BMI (kg/m2) 0.083

Right side 

Table 3



 
 Table 4 

Summary of multiple linear regression analysis for right and left IMT with SD/MSI 

β P 
Right SD/MSI  0.465 0.018 0.461 0.067 
Age (years) 0.265 0.104 0.122 0.519 

0.131 0.479 -0.161 0.462 Gender (%) 
0.082 0.630 0.105 0.617 

 All subjects  Subjects without DWMH 

BMI (kg/m2) 

β P 

SD/MSI, standard deviation of signal intensity divided by mean value of signal 
intensity; IMT, intima-media thickness; BMI, body mass index; DWMH, deep white 
matter hyperintensity. β is the standardized regression coefficient, which allows 
comparison of the relative contribution of each variable to the prediction of IMT. 
For this model, multiple r = 0.489, r2 = 0.239, P = 0.069 (for all subjects); r  = 
0.632, r2 = 0.400, P = 0.038 (for subjects without DWMH) for right side and 
multiple r = 0.494, r2 = 0.244, P = 0.062 (for all subjects); r = 0.524, r2 = 0.274, 
P = 0.171 (for subjects without DWMH) for left side, respectively. 

Left side 
β P β P 

Left SD/MSI  0.222 0.239 0.227 0.363 
Age (years) 0.370 0.027 0.324 0.130 

 0.069 0.706 -0.005 0.981 Gender (%) 
0.268 0.124 0.234 

 All subjects   Subjects without DWMH 

BMI (kg/m2) 0.305

Right side 

Table 4



 

 
Right SD/MSI Age 

Right ∆α  0.592** 0.540** 0.017 -0.024 -0.345 0.071 
Right SD/MSI  - 0.589** -0.064 0.453* -0.273 0.084 
Right IMT (mm) - - 0.128 0.377 -0.215 0.225 

Correlation matrix of ∆α , SD/MSI, IMT, age, BMI, TC, and systolic BP in subjects without DWMH 

SD/MSI, standard deviation of signal intensity divided by mean value of signal intensity; IMT, intima-media thickness; 
BMI, body mass index; TC, to tal cholesterol; SBP, systolic blood pressure; DWMH, deep white matter hyperintensity. 
*P < 0.05; ** P < 0.01. 

Leftt side 
Left SD/MSI Left IMT  Age 

Right side 

Age (years) 0.197 0.192 0.127 
BMI (kg/m2) - -0.058 
TC (mg/dl) - - -0.304 

Correlation matrix among confounding factors  

0.226 0.352 

-0.087 
-0.083 

0.454** 

- 
- - 0.392 

0.412* 0.011 

0.231 

 Left ∆α  0.610** 0.100 0.023 0.002 
Left SD/MSI 0.299 -0.235 
Left IMT (mm) 0.039 

Right IMT BMI TC SBP 

BMI TC SBP 

BMI TC SBP 

Table 5 

Table 5


