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Abstract

Lossless source coding is a technology to represent given data in shorter bit
lengths than the original representation without losing its contents. This
enables efficient recording of data on storage devices and high-speed trans-
mission of data over networks and plays an essential role in the advanced
information society.

Huffman coding is a widely used lossless source coding methods in vari-
ous applications such as image compression (JPEG) and video compression
(H.264). The coding scheme of Huffman coding is described as the following
system consisting of a source, an encoder, and a decoder:

e the source outputs a source sequence, a sequence of source symbols in
the source alphabet, where each output symbol follows an independent
and identical distribution;

e the encoder encodes each symbol of the source sequence to a binary
codeword according to the code table obtained by Huffman’s algorithm;

e then the decoder receives the codeword sequence, which is the concate-
nation of the codewords, and recovers the original source sequence from
the codeword sequence.

The decoder is not given explicit information on the delimitation between
the codewords in the codeword. However, the decoder can uniquely identify
the delimitation by reading the codeword sequence from the beginning of it
because of the following prefix-free property of the Huffman code table: no
codeword is a prefix of any other codeword. The decoder can decode each
codeword without any decoding delay as long as the encoder uses a prefix-free
code table. For this reason, a prefix-free code is also called an instantaneous
code. Huffman code is an instantaneous (prefix-free) code with the optimal



average codeword length, a measure of compression performance, for a given
source distribution.

However, it is known that one can achieve a better compression perfor-
mance than Huffman coding by using a time-variant encoder with multi-
ple code tables and allowing some decoding delay. AIF'V (almost instanta-
neous fized-to-variable length) codes developed by Yamamoto, Tsuchihashi,
and Honda can attain a smaller average codeword length than Huffman codes
by using a time-variant encoder with two code tables and allowing at most 2-
bit decoding delay. Moreover, AIFV codes are generalized to AIF'V-m codes,
which can achieve a smaller average codeword length than AIFV codes for
m > 3, allowing m code tables and at most m-bit decoding delay.

In this thesis, we discuss a more general class of source codes with multiple
code tables considering decoding delay than AIFV-m codes and show their
properties. We first formalize source codes with a finite number of code
tables as code-tuples, and then we introduce two equivalent definitions of k-
bit delay decodable code-tuples, which allow at most k-bit decoding delay for
k > 0. Then we prove three theorems related to k-bit delay optimal code-
tuples, which are defined as code-tuples with the optimal average codeword
length for a given source distribution among all the k-bit delay decodable
code-tuples. These theorems describe properties of k-bit delay decodable
code-tuples by the set of the possible first k bits of the codeword sequence
in the case of starting from each code table.

The first theorem claims that there is no need for more than one code table
such that the sets of the possible first k bits of the codeword sequence are
equal. This implies that it is not the case that one can achieve an arbitrarily
small average codeword length by using arbitrarily many code tables, and it
is sufficient for us to consider at most finitely many code tables. In particular,
this guarantees that a k-bit delay optimal code-tuple does indeed exist. Also,
the first theorem gives a concrete upper bound of the required number of code
tables for a k-bit delay optimal code-tuple.

The second theorem gives the following necessary condition for a k-bit
delay decodable code-tuple to be optimal: if the first k£ bits of a given binary
sequence is a prefix of some codeword sequence, then the entire given binary
sequence is also a prefix of some codeword sequence. This result is a gen-
eralization of the property of Huffman codes that each internal node in the
code tree has two child nodes.

The third theorem shows that it is sufficient to consider only the code-
tuples such that both 0 and 1 are possible as the first bit of codeword no



matter which code table we start the encoding process from.

These three theorems enable us to limit the scope of codes to be consid-
ered when discussing k-bit delay optimal codes in theoretical analysis and
practical code construction.

As applications of the three theorems, for k = 1,2, we give a class of k-bit
delay decodable code-tuples which include a k-bit delay optimal code-tuple
for a given source distribution. More specifically, we first prove that the
Huffman code achieves the optimal average codeword length in the class of
1-bit delay decodable code-tuples. Namely, the class of instantaneous codes
with a single code table can achieve the optimal average codeword length in
the class of 1-bit delay decodable code-tuples. Then we also prove that the
class of AIFV codes can achieve the optimal average codeword length in the
class of 2-bit delay decodable code-tuples. In particular, this result implies
that it is sufficient to consider at most two code tables to find a 2-bit delay
optimal code-tuple.
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Chapter 1

Introduction

1.1 Background

1.1.1 Data Compression

Data compression is a technology to represent given data in shorter bit
lengths than the original representation without compromising its utility.
This enables efficient recording of data on storage devices and high-speed
transmission of data over networks. Therefore, data compression technol-
ogy plays an essential role in the advanced information society, where vast
amounts of data are processed on computers and transmitted over networks.

Data compression is studied as source coding in information theory, a
mathematical field which deals with information mathematically, established
by Claude E. Shannon [1]. Source coding is divided into lossy source coding,
where some of the original information is lost by the compression process,
and lossless source coding, where the original information is fully preserved.
Huffman coding, stated later in Subsection 1.1.4, is an example of the widely
used lossless source coding methods in various applications such as image
compression (JPEG) and video compression (H.264). This thesis focuses on
lossless source coding.

1.1.2 Source Coding

Lossless (binary) source coding is modeled as a process of encoding a given
source sequence of source symbols of the source alphabet S to a codeword
sequence over the binary coding alphabet C == {0, 1} and then recovering the



original source sequence from the codeword sequence; that is, encoding an
element x of §* to an element b of C* temporally and then recovering x from
b later, where S* and C* denote the set of all sequences of finite length over
S and C, respectively. We now describe one of the simplest models of source
coding, which consists of a source, an encoder, and a decoder as follows.

e Source: outputs a source sequence ¥ = r1Zs...x, € S*, where each
output x; independently follows a fixed probability distribution pu : § —
(0, 1], that is, p(s) is the probability of occurrence of s € S.

e Encoder: reads the source sequence £ = x125...2, € §* symbol by
symbol from the beginning and encodes each symbol x; to a codeword
f(z;) € C* according to a fixed code table f : & — C*. Then the
encoder outputs the concatenation of each codeword as a codeword
sequence, that is, the encoder outputs f*(x1xs...x,) == f(x1)f(x2)...
f(zx,) for the given source sequence = x1xs...1, € S*.

e Decoder: receives the codeword sequence f*(z) and recovers the orig-
inal source sequence & € S* from f*(z). Note that for the decoder to
be able to correctly recover z, the code table f must be chosen so that
the mapping f*: S* — C* is injective.

The behavior of the encoder and decoder is determined by the code table f.
Accordingly, we refer to a mapping f : S — C* as a source code or a code
and identify the encoder and decoder with f.

The compression performance of a code f is evaluated by the average
codeword length L*(f) defined as the expected value of the length of the
codeword.

Definition 1.1.1. The average codeword length L*(f) of a code [ (with
respect to 1) is defined as

LA(f) =Y ) f(s)], (1.1)

where |f(s)| denotes the length of f(s).

Then the following problem naturally arises: how good (small) average
codeword length can be achieved under the constraint that the decoder can
correctly recover the original source sequence?

10



1.1.3 Uniquely Decodable Codes

A uniquely decodable code is a source code f such that the decoder can
correctly recover the original source sequence.

Definition 1.1.2. A code f is said to be uniquely decodable if the mapping
f* is injective.

It is known that a lower bound of achievable average codeword length of
uniquely decodable codes is given by the entropy of u.

Theorem 1.1.1 ( [1]). For any uniquely decodable code f, we have

L) > H(u), (1.2)

where H(p) is the entropy of v defined as
H(0) = = 3 p(s) logy (). (13)
seS

Namely, uniquely decodable codes cannot achieve an average code length
smaller than the entropy. Therefore, the next focus is how close average code-
word length to the entropy can be achieved, that is, how small redundancy
7, defined as follows, can be achieved:

1= LM(f) = H(p). (1.4)

By the following McMillan’s theorem, we can always achieve a redundancy
smaller than or equal to 1.

Theorem 1.1.2 (McMillan’s inequality [2]). Let S = {s1,52,...,5,}. Let
(I1,1s,...,1,) be a sequence of non-negative integers. Then the following two
conditions (a) and (b) are equivalent.

(a) There ezists a uniquely decodable code f such that |f(s;)| = l; for any
i=1,2,... .0

(b) YL, 27 <1,

Indeed, if we choose (I1,1s, ... ,1,) as l; = [—logy u(s;)] fori =1,2,...,0,
then

izli _ i 9—[—logy pu(s:)] < i gloga pu(si) — iﬂ(sl) =1 (15)
i=1 i=1 i=1 =1

11



and thus by Theorem 1.1.2, there exists a uniquely decodable code f such
that

L) = 3 ) [~ o ()] € 3 o)~ logy () + 1) = ) + 1
- - (1.6)

Namely, for any u, there exists a uniquely decodable code f with a redun-
dancy L*(f) — H(pu) < 1. In other words, the worst-case redundancy of the

class of uniquely decodable codes, defined as follows, is less than or equal to
1.

Definition 1.1.3. Let C be a set of codes. Then the worst-case redundancy

of C is

sup (inf (£2(1) ~ (1)), (1.7
€

neA

where 4 denotes the set of all probability distributions.

Conversely, for a source alphabet S = {s1,82,...,8,} with ¢ > 2, the
worst-case redundancy of the class of uniquely decodable codes is not less
than 1 for the following reason. For any uniquely decodable code f and
probability distribution u, we have L*(f) > 1 since each codeword must be
non-empty. On the other hand, for any ¢ > 0, the probability distribution p
defined as

(1.8)

(50, 1(52), -, 1i(55)) = (5 1-61-9 1_5)

"o—1"0—-1"""0-1

satisfies H(u) < € for a sufficiently large 0 < § < 1. Therefore, for any € > 0,
there exists a probability distribution p such that

LA(f) = H(p) > 1 ¢ (1.9)

holds for any uniquely decodable code f.

1.1.4 Prefix-free Codes

The decoder receives a codeword sequence f*(xixs...x,), which is the con-
catenation of individual codewords f(z1), f(x2),..., f(z,), without explicit
information on the delimitation between the codewords. Therefore, even if f

12



is uniquely decodable, the original source sequence x can be recovered only
after the decoder has read the entire codeword sequence in the worst case.
However, if f is a prefiz-free code defined as below, then when the decoder
reads the codeword sequence from the beginning, it can instantly identify the
delimitation of each codeword at the moment the decoder reaches the end of
each codeword.

Definition 1.1.4. A code f is said to be prefix-free if for any s,s' € S, if
f(s) 2 f(s'), then s = ', where £ <y denotes that x is a prefix of y.

In other words, a code is prefix-free if and only if no codeword is a prefix of
any other codeword. A prefix-free code is also called an instantaneous code
because the decoder can identify the delimitation instantly as mentioned
above.

Regarding prefix-codes, the following Kraft’s Theorem holds.

Theorem 1.1.3 (Kraft’s inequality [3]). Let S = {s1,2,...,5,}. Let (Iy,ls,
..., 1) be a sequence of non-negative integers. Then the following two con-
ditions (a) and (b) are equivalent.

(a) There exists a prefix-free code f such that |f(s;)| = l; for any i =
1,2,...,0.

() T2k <1

Comparing Theorems 1.1.2 and 1.1.3, we see that for any sequence (ly, [,

.., 1ly), the following equivalent relation holds: there exists a uniquely decod-

able code f such that |f(s;)| = [; if and only if there exists a prefix-free code

[’ such that |f'(s;)| = l;. Moreover, the average codeword length of a code

f is determined only by the multiset of codeword lengths |f(s1)|,|f(s2)],-- -,
| f(ss)|. This yields the following result.

Theorem 1.1.4. For any uniquely decodable code f, there exists a prefix-free
code f" such that L*(f") = L*(f).

In this sense, it is sufficient to consider only the class of prefix-free codes
instead of the whole class of uniquely decodable codes. Then the next ques-
tion is how to give a prefix-free code with the minimum average codeword
length among all prefix-free codes. Huffman [4] gave an algorithm to con-
struct a prefix-free code with the optimal average codeword length for a given
source distribution p. The source code obtained by Huffman’s algorithm is

13



called Huffman code. Huffman codes achieve the optimal average codeword
length in the class of prefix-free codes. By Theorem 1.1.4, Huffman codes
are also optimal in the class of uniquely decodable codes.

However, in the discussion so far, we assumed that a single code table is
used for coding. It is known that one can achieve a smaller average codeword
length than Huffman codes by using a time-variant encoder with multiple
code tables as mentinoned in the next subsection.

1.1.5 AIFV-m Codes

ATFV (almost instantaneous fixed-to-variable length) codes [5] developed
by Yamamoto, Tsuchihashi, and Honda can attain a smaller average code-
word length than Huffman codes by using a time-variant encoder with a pair
(fo, f1) of two code tables and allowing at most 2-bit decoding delay. Fur-
ther, AIFV-m codes [6], which is a generalization of AIFV codes, can achieve
a smaller average codeword length than AIFV codes for m > 3 by allowing
a tuple (fo, f1,..., fm—1) of m code tables and at most m-bit decoding de-
lay (the original AIFV codes [5] are particular cases of AIFV-m codes for
m = 2). The worst-case redundancy of AIFV-m codes is given as 1/m for
m < 5 as shown in [6,7].

The literature [8-16] gives the construction methods of the optimal AIFV
codes and AIFV-m codes for a given source distribution. The coding methods
of code tables (fo, fi,--., fm—1) of AIFV and AIFV-m codes are studied
in [17,18]|. Extensions of AIFV-m codes are proposed in [19,20]. Other
relevant studies include [21-23].

1.2 Contribution

The proposal for AIFV-m codes motivates us to study source codes with
multiple code tables considering some decoding delay. This thesis discusses
a more general class of such source codes than AIFV-m codes: we introduce
a notion of code-tuple, which is a source code with a finite number of code
tables, and we investigate the properties of the class of k-bit delay decodable
code-tuples, which are code-tuples allowing at most k-bit decoding delay for
k> 0.

e We prove three theorems related to k-bit delay optimal code-tuples,
which are code-tuples achieving the optimal average codeword length

14



for a given source distribution among all the k-bit delay decodable
code-tuples.

— The first theorem gives an upper bound of the required number
of code tables for a k-bit delay optimal code-tuples. This shows
that it is not the case that one can achieve an arbitrarily small
average codeword length by using arbitrarily many code tables, in
particular, the existence of a k-bit delay optimal code-tuple.

— The second theorem gives the following necessary condition for a
k-bit delay decodable code-tuple to be optimal: if the first k bits
of a given binary sequence is a prefix of some codeword sequence,
then the entire given binary sequence is also a prefix of some
codeword sequence. This is a generalization of the property of
Huffman codes that each internal node in the code tree has two

child nodes.

— The third theorem shows the existence of an optimal k-bit delay
decodable code-tuple F such that both 0,1 € C are possible as the
first bit of codeword no matter which code table of F' we start the
encoding process from.

These theorems enable us to limit the scope of codes to be considered
when discussing k-bit delay optimal code-tuples.

e As applications of the three theorems, we give a class of code-tuples
which can achieve the optimal average codeword length in the class of
k-bit delay decodable code-tuples for k =1, 2.

— We prove that the Huffman code achieves the optimal average
codeword length in the class of 1-bit delay decodable code-tuples
for a given source distribution .

— We also prove that the optimal AIFV codes can achieve the opti-
mal average codeword length in the class of 2-bit delay decodable
code-tuples for a given source distribution pu.

1.3 Organization

This thesis is organized as follows.

15



e In Chapter 2, we prepare some notations, describe our data compression
scheme, and basic definitions, and show their properties.

— In Section 2.1, we formalize source codes with a finite number of
code tables as code-tuples.

— In Section 2.2, we state two equivalent definitions of the class
Fr-dec Of k-bit delay decodable code-tuples in Section 2.2.

— In Section 2.3, we introduce a class % of extendable code-tuples,
to exclude some abnormal code-tuples from consideration.

— In Section 2.4, we define the average codeword length of a code-
tuple and introduce a class Fyes of reqular code-tuples.

— In Section 2.5, we define a class .%;,, of irreducible code-tuples and
introduce irreducible parts of a code-tuple, which are obtained by
removing the non-essential code tables from a code-tuple.

e In Chapter 3, we introduce a class Fy o of k-bit delay optimal code-
tuples and prove three theorems on the general properties of k-bit delay
optimal code-tuples as parts of the main results.

— In Section 3.1, we first explain the statements of the three theo-
rems.

— In Section 3.2-3.4, we give the proofs of the three theorems, re-
spectively.

e In Chapter 4, we present a class of code-tuples which can achieve the
optimal average codeword length in the class of k-bit delay decodable
code-tuples for k =1, 2.

— In Section 4.1, we prove that the class of Huffman codes achieves
the optimal average codeword length in the class of 1-bit delay
decodable code-tuples.

— In Section 4.2, we prove that the class of AIFV codes achieves
the optimal average codeword length in the class of 2-bit delay
decodable code-tuples.

e In Chapter 5, we summarize our results and conclude with future works.

The main notations are listed in Appendix A. To clarify the flow of dis-
cussion, we relegate long proofs to the end of each chapter.

16



Chapter 2

Preliminaries

We define some notations as follows. Let R denote the set of all real numbers,
and let R™ denote the set of all m-dimensional real row vectors for an integer
m > 1. Let |A| denote the cardinality of a finite set A. Let A x B denote
the Cartesian product of A and B, that is, A x B = {(a,b) : a € A,b € B}.
Let A* (resp. ASF, AZF A% AT) denote the set of all sequences of length &
(resp. of length less than or equal to k, of length greater than or equal to k,
of finite length, of finite positive length) over a set A. Thus, AT = A*\ {\},
where \ denotes the empty sequence. The length of a sequence x is denoted
by |z|, in particular, |A| = 0. The i-th letter of a sequence « is denoted by x;.
For a non-empty sequence & = 2125 . .. T, we define pref(z) = x129... 2,1
and suff(z) == 25 ...z, 12,. Namely, pref(z) (resp. suff(z)) is the sequence
obtained by deleting the last (resp. first) letter from z. We say < y if
is a prefix of y, that is, there exists a sequence z, possibly z = A, such that
y = xz. Also, wesay x < y if £ < y and x # y. Moreover, we say T g Y
ifx Ay and & ¥ y. A notation £ Ay denotes the longest common prefix of
two sequences x and y, that is, the longest sequence z such that z < x and
z <y. If x <y, then 27 'y denotes the unique sequence z such that zz = y.
Note that a notation z~! behaves like the “inverse element” of x as stated in
the following statements (i)-(iii).

(i) For any z, we have 7'z = \.
(ii) For any z and y such that z <y, we have zz" 'y = y.

(iii) For any z,y, and 2z such that zy < 2, we have (zy) 'z =y 'z~ '2.

17



For ¢ € C, the negation of ¢ is denoted by ¢, that is, 0 := 1,1 := 0. Also,
for ¢ € C=*, let [c]; denote the prefix of length k of ¢. Moreover, for ¢ € C*
and A C C*, we define cA = {cb : b € A}. The main notations used in this
thesis are listed in Appendix A.

We now describe our data compression system. In this thesis, we consider
a data compression system consisting of a source, an encoder, and a decoder.

e Source: We consider an i.i.d.(independent and identical distribution)
source, which outputs a sequence x = x1x5...x, of symbols of the
source alphabet & = {s1, s9,..., 8}, where n and o denote the length
of x and the alphabet size, respectively. Each source output follows
a fixed probability distribution (p(s1), (s2), ..., 1(ss)), where pu(s;) is
the probability of occurrence of s; for i = 1,2,...,0. In this thesis we
assume that the alphabet size 0 = |S| is greater than or equal to 2.

e Encoder: The encoder has m fixed code tables fo, f1,..., fn-1: S —
C*, where C = {0,1} is the coding alphabet. The encoder reads the
source sequence x € S* symbol by symbol from the beginning of x
and encodes them according to the code tables. For the first symbol
xr1, we use an arbitrarily chosen code table from fy, fi,..., fin_1. For
To, X3, ..., Ty, Wwe determine which code table to use to encode according
to m fixed mappings 79, 71,..., Tm-1 : S — [m] = {0,1,2,...,m —
1}. More specifically, if the previous symbol z;_; is encoded by the
code table f;, then the current symbol z; is encoded by the code table
Jr;(@i_y)- Hence, if we use the code table f; to encode x1, then a source
sequence r = 1%y ...T, is encoded to a codeword sequence f(x) :=

fir(z1) fin(x2) . .. fi, (x,,), where

| —
i = {Z I (2.1)

Tij_l(xj_1> lf] Z 2
fory=1,2,...,n.

e Decoder: The decoder reads the codeword sequence f(x) bit by bit from
the beginning of f(z). Each time the decoder reads a bit, the decoder
recovers as long prefix of z as the decoder can uniquely identify from the
prefix of f(x) already read. We assume that the encoder and decoder
share the index of the code table used to encode z; in advance.

18



2.1 Code-tuples

In our data compression system described above, the behavior of the en-
coder and decoder for a given source sequence is completely determined
by m code tables fo, f1,..., fin_1 and m mappings 79, 71, . .., Tm_1 if we fix
the index of code table used to encode x;. Accordingly, we name a tuple
F(fo, f1, s fm-1-T0,T1,-- - Tm—1) as a code-tuple F' in the following Defini-
tion 2.1.1, and we identify a source code with a code-tuple F'.

Definition 2.1.1. Let m be a positive integer. An m-code-tuple F(fo, f1,. .-,
fm—1,70,T1, -, Tm—1) 1S a tuple of m mappings fo, f1,..., fm-1:S — C* and
M MappPings 7o, T, - -, Tm—1 : S — [m].

We define F™ as the set of all m-code-tuples. Also, we define F =
FOUZAUZFZE U-.. . An element of F is called a code-tuple.

We write F(fo, f1,---» fm-1,70,T1,- -+, Tm—1) also as F(f,7) or F for sim-
plicity. For F' € .Z(™) let |F| denote the number of code tables of F, that
is, |F| .= m. We write [|F|] ={0,1,2,...,|F| — 1} as [F] for simplicity.

Definition 2.1.2. For F(f,7) € F,i € [F], and b € C*, we define
Sri(b) ={s € S: fi(s) =b}. (2.2)
Note that f; is injective if and only if |Sg;(b)| < 1 holds for any b € C*.

Example 2.1.1. Table 2.1 shows examples of a 3-code-tuple F® FB) FO)
for § ={a,b,c,d}. We have

SF(a)p(llO) = {a, C}, SF(B)J(OOOOOOOO) = (Z), SF(Q)Q()\) = {a, b, C, d}.
(2.3)

Example 2.1.2. We consider encoding of a source sequence & = r1xox3Ty =
badb with the code-tuple F(f,7) := FO) in Table 2.1. If x; = b is encoded
with the code table fy, then the encoding process is as follows.

e r1 = b is encoded to fo(b) = 10. The index of the next code table is
Tg(b) = 1.

e 1y = a is encoded to fi(a) = 00. The index of the next code table is
T1 (a) =1.
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Table 2.1: Examples of a code-tuple F(®), F(# F®)

S AT [0 0 7 A
a 110 0 010 0 A 2
b A 1 011 2 A 2
c 110 2 1 2 A 2
d 111 0 10 1 A 2
scS éﬁ) 7éﬁ) fﬁ) T{ﬁ) 56) 755)
a 11 1 0110 1 10 2
b A 1 0110 1 11 2
c 101 2 01 1 1000 2
d 1011 1 0111 1 1001 2
seS fév) Téw) jfv) va) 57) 757)
a 01 0 00 1 1100 1
b 10 1 A 0 1110 0
c 0100 0 00111 1 111000 2
d 01 2 00111 2 110 2

o 13 =d is encoded to fi(d) = 00111. The index of the next code table
is 1(d) = 2.

e 1y =D is encoded to fo(b) = 1110. The index of the next code table is
Tg(b) =0.

As the result, we obtain a codeword sequence ¢ = fo(b)fi(a)fi(d)fa(b) =
1000001111110.
The decoding process of ¢ = 1000001111110 s as follows.

o After reading the prefix 10 of ¢, the decoder can uniquely identify x1 = b
and 10 = fo(b). The decoder can also know that x4 is decoded with

Jrom) = f1-

o After reading the prefix 1000 = fo(c) fi(a) of ¢, the decoder still cannot
uniquely identify xo = a because there remain three possible cases: the
case xo = a, the case ro9 = ¢, and the case x9 = d.

o After reading the prefix 10000 of ¢, the decoder can uniquely identify
x9 = a and 10000 = fyo(b) f1(a)0. The decoder can also know that x3 is
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decoded with fr .y = f1.
o After reading the prefixr 100000111 = fo(b)fi(a)fi(d) of ¢, the decoder

still cannot uniquely identify x3 = d because there remain two possible
cases: the case r3 = ¢ and the case x5 = d.

o After reading the prefix 10000011111 of ¢, the decoder can uniquely
identify x5 = d and 10000011111 = fy(b)fi(a)f1(d)11. The decoder
can also know that x4 is decoded with fr () = fo.

o After reading the prefix ¢ = 1000001111110, the decoder can uniquely
identify x4 = b and 1000001111110 = fo(b) f1(a) f1(d) fo(b).

As the result, the decoder recovers the original sequence x = badb.

In encoding & = x125 ... x, € S* with a code-tuple F(f, 1), the m map-
pings 7y, 71, - - . , Tm—1 determine which code table to use to encode o, x5, . . .,
x,. However, there are choices of which code table to use for the first symbol
x1. For i € [F] and & € §*, we define f(x) € C* as the codeword sequence
in the case where z; is encoded with f;. Also, we define 7/°(z) € [F] as the
index of the code table used next after encoding z in the case where x; is
encoded with f;. We give formal definitions of f; and 7;* in the following
Definition 2.1.3 as recursive formulas.

Definition 2.1.3. For F(f,7) € % and i € [F|, we define a mapping f; :
S* — C* and a mapping 17 : S* — [F] as

. A P
' N 2.4
i) {fi(xl)f;(xl)(suﬂx)) ifz # N, (2.4)

(z) = 7 ifx =\,
T T\ 7 (@) i T £ A

forx =x125...2, € S*.

(2.5)

Example 2.1.3. We consider F(f,7) == FO(f0) 7)) of Table 2.1. Then
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fi(badb) and 75 (badb) is given as follows (cf. Example 2.1.2):

fo(badb) = f,(b) f; (adb) (2.6)

= fo(b) fi(a)fy(db) (2.7)

= fo(b) f1(a) f1(d) f3 (D) (2.8)

= fo(b) f1(a) f1(d) f2(b) f5 (A) (2.9)

— 1000001111110, (2.10)

75 (badb) = 77 (adb) = 77 (db) = 75(b) = 75 (A) = 0. (2.11)

The following Lemma 2.1.1 follows from Definition 2.1.3.

Lemma 2.1.1. For any F(f,7) € %, i € [F], and x,y € S*, the following
statements (1)—(iii) hold.

(i) fi(=y) = fz*(x)f;i(a:)(y)
(1i) 77 (@Y) = 772 ) ()
(iit) If £ 2y, then fi(z) = fi(y).

2.2 k-bit Delay Decodable Code-tuples

In Example 2.1.2, despite fo(b)fi(a) = 1000, to uniquely identify z1z9 =
ba, it is required to read 10000 including the additional 1 bit. Namely,
a decoding delay of 1 bit occurs to decode z, = a. Similarly, despite
fo(b) fo(a) f1(d) = 100000111, to uniquely identify ziz9z3 = bad, it is re-
quired to read 10000011111 including the additional 2 bits. Namely, a de-
coding delay of 2 bits occurs to decode 3 = d. In general, in the decoding
process with F() in Table 2.1, it is required to read the additional at most
2 bits for the decoder to uniquely identify each symbol of a given source
sequence. We say a code-tuple is k-bit delay decodable if the decoder can
always uniquely identify each source symbol by reading the additional & bits
of the codeword sequence. The code-tuple F) is an example of a 2-bit
delay decodable code-tuple. In this section, we state two equivalent formal
definitions of a k-bit delay decodable code-tuple.
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2.2.1 The First Definition

To state the first definition of a k-bit delay decodable code-tuple, we first
introduce the following Definitions 2.2.1 and 2.2.2.

Definition 2.2.1. For an integer k > 0, F(f,7) € Z#,i € [F], and b € C*,
we define

Pri(b) ={ceC:z eS8 fi(z)=be, fi(x:) = b}, (2.12)

75§7i(b) ={cecC.xcS" f(zx)>be fi(r)) - b}. (2.13)

Namely, Pj;(b) (resp. Pf;(b)) is the set of all ¢ € C* such that there exists

T =11%s...7, € ST satisfying fF(x) = be and fi(x1) = b (resp. fi(x1) = b).
Definition 2.2.2. For F(f,7) € Z,i € [F], and b € C*, we define

P?,i(”) = Pzg,i(b) U P}’i(b) U PI%“,i(b) Ue---, (2.14)

75;”@<b) = ﬁ%z(b) U 75}%(1)) U 75}27’1(1’) U---. (2.15)

We write P ;(\) (resp. Pg,;())) as P, (resp. Pp,) for simplicity. Also,
we write P ;(A) (resp. Pr;(\)) as Pp; (resp. Pf,;). We have

Pr; @ {ceC’:zeST fi(z)=c} © {ceCr:xz eS8 fi(x) = c},
(2.16)

where (A) follows from (2.12), and (B) is justified as follows. The relation
“C” holds by St C S*. We show the relation “O”. We choose ¢ € C¥ such
that f7(x) = ¢ for some z € §* arbitrarily and show that f/(2’) = ¢ for some
x' € 8T. The case z € ST is trivial. In the case x € {\} = §*\ ST, then
since ¢ X ff(x) = ff(A\) = A by (2.4), we have ¢ = A, which leads to that

7

any ' € ST satisfies f(2’) = A = ¢. Hence, the relation “2” holds.

Example 2.2.1. We consider F(f,7) = F® in Table 2.1. First, we confirm
P3o(b) = {100,101,111} for b= 101 as follows.

e 100 € P (b) holds because x = cc satisfies fi(xz) = 1011000 = 5100
and fo(z1) = 101 = b.

e 101 € P (b) holds because x = da satisfies fg(x) = 10110110 > b101
and fo(z1) = 1011 = b.
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Table 2.2: The set Pp; and Pz; for the code-tuples F' in Table 2.1

FeZ | Pro  Pry Pry|  Piyg Pra P
F@ [{0,1} {0,1} @ |{o1,10,11}  {01,10} 0
F® 1 {0,1} {0} {1} | {01,10,11} {01} {10, 11}
FO 1 {0,1} {o0,1} {1} | {o1,10}  {00,01,10} {11}

Table 2.3: The set Pz, (fi(s)) for F := F1)

5 €8 [Pholhl®) PAG) Phalh(s)
X {00} {11} 0
b 0 {00} {00}
c 1) 0 0
d {00} 0 (00,01}

e 111 € P (b) holds because x = cbb satisfies fi(x) = 1011111 > b111
and fo(x1) = 101 = b.

Neat, we confirm Py o(b) = {101} for b =101 as follows.

e 101 € P} (b) holds because x = da satisfies f§(z) = 10110110 = b101
and fo(xy) = 1011 > b.

Also, we confirm P, (b) = {\} for b= 011 as follows.
o X € Pp(b) holds because x = a satisfies f7(x) = 0110 = b = bA and
f1($1) = 0110 = b
Example 2.2.2. Tuble 2.2 shows Pr.; and P, for the code-tuples F in Table
2.1. Also, Table 2.3 shows PE(fi(s)) for F(f,7) = F in Table 2.1.

We show the basic properties of the sets P (b) and Py, (b) as the follow-
ing Lemmas 2.2.1 and 2.2.2.

Lemma 2.2.1. For any integer k > 0, F(f,7) € F, i € [F], and b € C*,
the following statements (i) and (i) hold.
g _
Ph®) =PEB U (U Phow): (2.17)

sESE,i(b)
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(i) If k > 1, then
Pr.i(b) = 0P (b0) U 1P,  (b1). (2.18)

Proof of Lemma 2.2.1. (Proof of (i)): For any ¢ € C*, we have
c € Py,(b)

L 5y e ST (fr (@) = be, fi(x1) = b) (2.19)
— (Fz eS8 (f(x) = be, fi(x1) » b))

or Gz € 8*; (f(x) = be, f(1) = b)) (2.20)
L cePhb) or 'z e ST (f(z) = be, fi(z1) = b) (2.21)
LL cePhb) or Pz e ST (fr,, (suff(x)) = ¢, filar) = b) (2.22)
= cePpib) or’se S eSS (fLy(@) e fils) =b) (2.23)
> c€Pg,b) or s € Sp(b); 'z € S*; fro@) =c (2.24)
L e 751’?7i(b) or °s € Spi(b);c € Pryys (2.25)
= cePp b orce |J PE. (2.26)

s€Ski(b)
> cePLb) ( U PFT s)) (2.27)
sESFi(

as desired, where (A) follows from (2.12), (B) follows from (2.13), (C) follows
from (2.4), and (D) follows from (2.16).

(Proof of (ii)): For any ¢ € C*, we have

ceE 751’?i(b)

L 3y e S (fH (@) > be, fi(a1) = b) (2.28)
«— Iz c ST (f () = beysuff(e), fi(x1) = bey) (2.29)
< (c; = 0,7z € S*; (ff(x) > bOsuff(c), fi(x,) = b0))

or (¢, = 1,7z € ST; (ff(x) = blsuff(c), f;(x1) = bl)) (2.30)
L (¢ = 0,5uff(e) € PE(80)) or (1 = 1,suff(e) € Pi;'(B1))  (2.31)
< ¢ e 0PL; ' (b0) or ¢ € 1Py (b1) (2.32)
< c € 0Py, (b0) U 1PL; " (b1) (2.33)

as desired, where (A) follows from (2.13), and (B) follows from (2.12). O
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Lemma 2.2.2. For any F(f,7) € % and i € [F], the following statements
(1)-(iii) hold.

(i) For any b € C*, the following equivalence relation holds: PP, (b) #
) < IseS;fi(s)=b.

(ii) There exists s € S such that Pp;(fi(s)) = 0.
(iii) If |Spi(N)| < 1, in particular f; is injective, then Pp; # 0.

Proof of Lemma 2.2.2. (Proof of (i)): We have

AePL®) L e S (f@) = b, filen) ) <= s € S fi(s) - b
(2.34)
as desired, where (A) follows from (2.13).
(Proof of (ii)): Let s € arg max{|fi(s')] : ' € S}. Then there is no
s’ € § such that fi(s) < fi(s’). Hence, by (i) of this lemma, we obtain
Ph(f() = .
(Proof of (iii)): By |Sri(A)| < 1 and the assumption that |S| > 2, there
exists s € S such that f;(s) # A. This is equivalent to Pg; # 0 by (i) of this
lemma. U

We consider the situation where the decoder has already read the prefix b
of a given codeword sequence and identified a prefix x x5 . .. x; of the original
sequence . Then we have b’ = f;, (x1) fi,(z2) ... fi,(x;)b for some b € C*. Put
i = i;41 and let {s1,s9,...,5,} be the set of all symbols s € S such that
fi(s) = b. Then there are the following r + 1 possible cases for the next
symbol x;,1: the case x;,1 = s1, the case x; 1 = s9, ..., the case x; 1 = s,
and the case f;j(x;11) = b. For a code-tuple F' to be k-bit delay decodable,
the decoder must always be able to distinguish these r + 1 cases by reading
the following £ bits of the codeword sequence. Namely, it is required that
the r 4+ 1 sets listed below are disjoint:

° 731’;7”(81), the set of all possible following k& bits in the case x;,1 = sq,
° Pllf“,n(@)’ the set of all possible following k& bits in the case x;,1 = so,
® ---

Y

° PEH(ST), the set of all possible following £ bits in the case z;.1 = s,
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e Pg.(b), the set of all possible following k bits in the case f;(z41) > b.

Example 2.2.3. We obtain fj(z) = 1000001111110 by encoding x := badb
with F(f,7) == F in Table 2.1 (cf. Ezample 2.1.2). We consider the
decoding process of fi(x).

e First, we suppose that the decoder already read the prefix b = 1000 of
fo(x) and identified 1 = b. Then we haveb’ = fy(21)00 and Sg1(00) =
{a}, and the next symbol x5 is decoded with fr 1)y = fi. Now, there are
two possible cases for xo: the case xo = a and the case fi(x3) = 00
(i.e., o = ¢ or x93 = d). The decoder can distinguish these two cases
by reading the following 2 bits because

- 73%771(6‘), the set of all possible following 2 bits in the case x9 = a,
and

- 75%71(00), the set of all possible following 2 bits in the case fi(xs) =
b,

are disjoint: Pz ) N Pri(fi(a)) = {00,01,10} N {11} = 0. Since
the following 2 bits are 00 € P%,Tl(a), the decoder can identify x5 = a
indeed.

e Next, we suppose that the decoder already read the prefiz & = 100000
of fi(x) and identified x1x9 = ba. Then we have ' = fi(x122)00 and
Sp1(00) = {a}, and the next symbol x5 is decoded with f. ) = fi.
Now, there are two possible cases for x3: the case r3 = a and the case
fi(z3) > 00 (i.e., x3 =c or x3 = d). The decoder can distinguish these
two cases by reading the following 2 bits because

- 73%’71(&), the set of all possible following 2 bits in the case x3 = a,
and

— P%1(00), the set of all possible following 2 bits in the case fi(x3) >
b,

are disjoint: 73}2%(&) NP (fi(a)) ={00,01,10} N {11} = 0. Since the
following 2 bits are 11 € P%,(00), the decoder can identify fi(x3) > 00,
n particular, rs # a indeed.
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e Lastly, we suppose that the decoder already read the prefizb = 100000111
of f§(x) and identified x1x2 = ba. Then we have b = f(ba)00111 and
Sr1(00111) = {c,d}. Now, there are two possible cases for x3: the
case r3 = ¢ and the case x3 = d. The decoder can distinguish these two
cases by reading the following 2 bits because

— Pz%,n(c); the set of all possible following 2 bits in the case x5 = c,

and

- 7712%1(61), the set of all possible following 2 bits in the case x4 = d,

are disjoint: P%_ o N Pr. @ = 100,01,10} N {11} = 0. Since the

following 2 bits are 11 € P%’Tl(d), the decoder can identify x3 = d
indeed.

Based on the discussion above, the first definition of a k-bit delay decod-
able code is given as the following Definition 2.2.3.

Definition 2.2.3. Let k > 0 be an integer. A code-tuple F(f,T) is said to
be k-bit delay decodable if the following conditions (a) and (b) hold.

(a) For any i € [F] and s € S, it holds that 731’3771_(8) NPE(fi(s)) = 0.

(b) For any i € [F]| and s,s" € S, if s # s and fi(s) = fi(s'), then
Pg',n(s) N Plg’,n(s’) = @

For an integer k > 0, we define F._qec as the set of all k-bit delay decodable
code-tuples, that 1is,

Frdec ={F € F : F is k-bit delay decodable}. (2.35)

Example 2.2.4. We confirm F(f,7) == FO in Table 2.1 is 2-bit delay
decodable as follows.

First, we see that F satisfies Definition 2.2.3 (a) as follows (cf. Tables
2.2 and 2.3).

® Pirviw) N Prolfola)) = Pho N Pyl fo(a)) = {01,10} N {00} = 0.
® Pi oy N Pho(fo(b)) = Py N Pio(fo(b)) = {00,01,10} N0 = 0.

® Prin( N Pholfole)) = Pho N Pro(fo(c) = {01,104 N0 = 0.
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Py N Prolfo(d) = Pia NP (fo(d)) = {11} N {00} = 0.

® Piow NPri(f1(a)) = Piy NP (fi(a)) = {00,01,10} N {11} = 0.
o Py N Pia(fi(b)) = Pio NP, (fi(b)) = {01, 10} N {00} = 0.

® Pio NPii(fi(c)) = Piy N PEi(fi(c) = {00,01,10} N0 = 0.

o P N Pia(fi(d) = Phy N PRy (fi(d) = {11} N0 = 0.

® i) N Pha(fo(a)) = Piy NPE,(fa(a)) = {00,01,101 N0 = 0.

o Pi i) N Pha(f2(b)) = Pho N PE,(f2(b)) = {01,10} N {00} = 0.

® Pi N Pialfalc)) = Phy N PEy(fa(c) = {11} N0 = 0.

o Pi @ NPha(fo(d)) = Phy N PE(f2(d) = {11} N {00,01} = 0.

Next, we see that F satisfies Definition 2.2.3 (b) as follows (cf. Table

L] P}Z‘—',To(a) N 7)}2777_0((1) - P}27‘70 N P}%;Q - {01, ].O} N {11} = @
® Ptrtey NV Praya = Py N Phy = {00,01,10} N {11} = 0.
Consequently, we have F € Fy_gec.

Example 2.2.5. In a similar way to Erxample 2.2.4, we can see that the
code-tuple F®) in Table 2.1 is 2-bit delay decodable. We give some more
examples as follows.

o For F(f,7) = F“, we have F & F1_gec because P}T,ro(b)ﬂﬁ}?,o(f()(b)) =
{01} n{1} = {1} # 0.

o For F(f, 1) := F®, for any integer k > 0, we have F' ¢ Fj_gec because
,Pllé’,n(a) A ’P;ﬁ(b) = ,Plg‘,l N Pf’,l = ,Pff“,l 7& @

o For F(f,7) == FO, we have F & F\ qe because 7311%1(0) N P}V,n(d) =
{0, 1} {1} = {1} # 0.
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Remark 2.2.1. If all the code tables fo, f1,..., fir|—1 are injective, then
Definition 2.2.3 (b) holds since there are no i € [F] and s,s' € S such that
s# 5 and fi(s) £ 1:(5).

If k=0, then the converse also holds as seen below. We consider Defini-
tion 2.2.3 (b) for the case k = 0. Then by (2.16), we have Pllfﬂﬂ(s) 0731'?’72_(8,) =
NN} ={A} #0 forany i € [F] and s,s' € S. Hence, for F to satisfy
Definition 2.2.3 (b), it is required that for anyi € [F| and s,s' € S, if s # ¢,
then fi(s) # fi(s'), that is, fo, fr, ..., fip|—1 are injective.

Remark 2.2.2. A k-bit delay decodable code-tuple F' is not necessarily uniquely
decodable, that is, the mappings f5, f, ..., f|’},|_1 are not necessarily injective.
For example, for F) € Fy 4o in Table 2.1, we have fé“’)*(bc) = 1000111 =

féw*(bd). In general, it is possible that the decoder cannot uniquely recover
the last few symbols of the original source sequence in the case where the rest
of the codeword sequence is less than k bits. In such a case, we should append
additional information for practical use.

For k-bit delay decodable code-tuples, the following Lemma 2.2.3 holds.

Lemma 2.2.3. For any integer k > 0, F(f,7) € Prqec, i € [F|, and b € C*,
we have

Pr®) = PO+ Y 1 Phal (2.36)

SESF’i(b)

Proof of Lemma 2.2.3. We have

@ 5
Pr®) E PEOU( U Phaw)l (2.37)
SESFYi(b)
®B) |5
= |Pr:(b)] + | U va,n(sﬂ (2.38)
SESFyi(b)
© 5
SESFyi(b)

as desired, where (A) follows from Lemma 2.2.1 (i), (B) follows from F €
Fr-dec and Definition 2.2.3 (a), and (C) follows from F' € %y e and Defini-
tion 2.2.3 (b). 0

30



2.2.2 The Second Definition

We give the second definition of a k-bit delay decodable codes. We first fix
F(f,7) € # and i € [F] and consider a situation where a source sequence
' € §* is encoded with F starting from the code table f;. Then the source
sequence z' is encoded to the codeword sequence f'(z’), and the decoder
reads it bit by bit from the beginning. Let b < f*(z') be the sequence the
decoder has read by a certain moment of the decoding process. If b = f7(x)
for some x € S*, then there are two possible cases, * < a2’ and x A z’. The
k-bit delay decodability requires that it is always possible for the decoder to
distinguish the two cases, x < &’ and £ £ &', by reading the following k bits
¢ € C* of the codeword sequence f7(x), that is, for any pair (z,¢) € S* x C*,
the decoder can distinguish the two cases, x < &’ and A z’ according to
the pair (z,¢). Thus, F' is k-bit delay decodable if and only if for any pair
(z,¢) € 8* x C*, it holds that (z,c¢) is f;-positive or f;-negative defined as
follows.

Definition 2.2.4. Let F(f,7) € # and i € [F).

(1) A pair (z,c) € S* x C* is said to be fr-positive if for any ' € S*, if
fi(x)e X fr(z'), thenz 2 2.

(ii) A pair (x,c) € §* x C* is said to be fr-negative if for any ' € S*, if
fi@)e 2 f7 (&), thenx A 2.

Then the second definition of a k-bit delay decodable code-tuple is given
as follows.

Definition 2.2.5. Let k > 0 be an integer. A code-tuple F is said to be
k-bit delay decodable if for any i € [F] and (z,c) € S* x C*, the pair (z,c)
18 fr-positive or fF-negative.

Note that it is possible that a pair (z,¢) € §* x C* is f;-positive and f;-
negative simultaneously. A pair (z,¢) € S*xC* is f/-positive and f;-negative
simultaneously if and only if there is no sequence z’ satisfying f7(z)c =<
[ @).

The two definitions of a k-bit delay decodable code-tuple, Definitions 2.2.3
and 2.2.5, are indeed equivalent as shown in the following Lemma 2.2.4, which
proof is deferred to Subsection 2.6.1.

Lemma 2.2.4. For any F(f,7) € F, the following conditions (a) and (b)
are equivalent.
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(a) For any i € [F| and (z,¢) € 8* x C*, the pair (z,c) is f}-positive or
f-negative.

(b) The code-tuple F satisfies Definition 2.2.3 (a) and (b).

The classes Zj.gec, K = 0,1,2,... form a hierarchical structure #y_qe. C
Fldee € Foqec C -+ - . Namely, the following Lemma 2.2.5 holds.

Lemma 2.2.5. For any two non-negative integers k, k', if k < k', then
ﬁk-dec g gk’—dec-

Proof of Lemma 2.2.5. Let F(f,7) € Piaec. Fix i € [F] and (z,c') € §* x
C*¥ arbitrarily. It suffices to prove that (x,¢') is f/-positive or ff-negative.
Let ¢ be the prefix of ¢ of length k. Then for any ' € S* such that
fi(@)e = fi(a'), we have fi(z)e = fi(z)c’ =X fi(z'). Namely, fI(z)c =
f#(z") implies f/(z)e < fr(z’). Hence, by Definition 2.2.4, if (z,¢') is f/-
positive (resp. ff-negative), then also (z,¢) is f;*-positive (resp. f-negative),
respectively. Therefore, it follows that F(f,7) € Fy e from F(f,7) €
ﬁk—dec' O

The following Lemma 2.2.6 claims that a 0-bit delay decodable code-tuple
(i.e., an instantaneous code) is always uniquely decodable (cf. Remark 2.2.1).

Lemma 2.2.6. For any F(f,7) € Zo.dec and i € [F], the following state-
ments (i) and (i) hold.

(i) For any x € S8*, the pair (x,\) is f}-positive.
(11) fF is injective.

Proof of Lemma 2.2.6. (Proof of (i)): By F' € Zy.qec, the pair (x,\) is f7-
positive or ff-negative. However, since f(z) =< f(z) and £ < z, the pair
(z,\) must be ff-positive.

(Proof of (ii)): By (i) of this lemma, we have

Yr,x' € S (fi(z) 2 fi(@)) = z<7). (2.40)

Choose y,y’ € S* such ff(y) = f*(y') arbitrarily. Then we have ff(y) =<
fi@y') and fr(y) 2 f(y). Thus, by (2.40), we obtain y <y’ and y' <y,
that is, y = ¢'. Consequently, f is injective. OJ

)
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A 0-bit delay decodable code-tuple is also characterized as a code-tuple
all of which code tables are prefiz-free as below.

Definition 2.2.6. For F(f,7) € .% and i € [F], the mapping f; is said to
be prefix-free if for any s,s' € S, if fi(s) 2 fi(s'), then s = 5.

Lemma 2.2.7. A code-tuple F(f,T) satisfies F' € Fy.aec if and only if for
any i € [F|, the mapping f; is prefiz-free.

Proof of Lemma 2.2.7. (Necessity) Assume F' € % qec and choose i € [F]
arbitrarily. By Lemma 2.2.6 (i), the pair (z,\) is f/-positive. Thus, (2.40)
holds. In particular, we have

V5,8 € S;(ff(s) = f1(s) = s=4). (2.41)

Since s < &' implies s = &', the mapping f; is prefix-free.

(Sufficiency) Assume that for any ¢ € [F], the mapping f; is prefix-free.
To prove F € Fy gec, it suffices to prove (2.40) for arbitrarily fixed i € [F].
We prove it by induction for |z|.

For the base case || = 0, clearly we have z < &’ for any 2’ € S*.

Let [ > 1 and assume that (2.40) is true for the case |z| < [ as the
induction hypothesis. We prove (2.40) for the case || = [. Choose ¢’ € S*
such that f(z) =X f(z’) arbitrarily. Then by (2.4), we have

fi(@1) [ o (suff (@) = fi(2)) frx o) (suff (). (2.42)

Thus, fi(x1) < fi(z}) or fi(x1) = fi(2}) holds. Hence, since f; is prefix-free,
we obtain
T =1} (2.43)
By (2.42) and (2.43), we have fi(21) [, (suff(z)) = fi(azl)f%(x,l)(suff(x’)).
Thus, we have f:i*(xl)(suff(m)) = f;‘i*(x,l)(suff(m’)). By the induction hypothe-
sis,
suff(z) < suff(z'). (2.44)

By (2.43) and (2.44), we obtain & < 2’ O
2.3 Extendable Code-tuples

For the code-tuple F® in Table 2.1, we can see that fz(a)*(m) = X for any
z € §*. To exclude such abnormal and useless code-tuples, we introduce a

class Z . in the following Definition 2.3.1.
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Definition 2.3.1. A code-tuple F' is said to be extendable if 73}772- # 0 for
any i € [F|. We define Fex as the set of all extendable code-tuples, that is,

T ={F € F :"i € [F];Pp,; # 0}. (2.45)

Example 2.3.1. The code-tuple F(®) in Table 2.1 is not extendable because
P}T(Q)Q = 0 by Table 2.2. The code-tuples F®) and FO) in Table 2.1 are
extendable.

The following Lemma 2.3.1 shows that for an extendable code-tuple F'(f, 7),
we can extend the length of f(z) as long as we want by appending symbols
to = appropriately.

Lemma 2.3.1. A code-tuple F(f,T) is extendable if and only if for any
i € [F] and integer | > 0, there exists x € S* such that |f(z)| > .

Proof of Lemma 2.3.1. (Sufficiency) Fix ¢ € [F] arbitrarily. Applying the
assumption with [ = 1, we see that there exists x € S* such that |f;*(z)| > 1.
Then there exists ¢ € C such that f(z) > ¢, which leads to ¢ € Pp, by
(2.16), that is, P, # 0 as desired.

(Necessity) Assume F' € F. We prove by induction for [. The base case
[ =0 is trivial. We consider the induction step for [ > 1. By the induction
hypothesis, there exists £ € S* such that

fi@)| =11 (2.46)

Also, by F € ey, there exists ¢ € P}Tﬁ(m). By (2.16), there exists y € S*
such that '

fr@W) = c (2.47)
Thus, we obtain
el | Q) | pr . ©
i @y)l = @+ 1@ = (=) +1=1 (2.48)
where (A) follows from Lemma 2.1.1 (i), and (B) follows from (2.46) and
(2.47). This completes the induction. O

This property yields the following Lemma 2.3.2 and Corollary 2.3.1.

Lemma 2.3.2. Let k, k" be two integers such that 0 < k < k'. For any
F(f,7) € Pexs,i € [F], b€ C*, and ¢ € C*, the following statements (i) and
(i) hold.
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(i) c € PE(b) < ¢ ¢ CHFk.ed € Pﬁ/z(b)
(i) ¢ € Pf;(b) < I € C¥ e € PL,(b).

Proof of Lemma 2.3.2. We prove (i) only because (ii) follows by the similar
argument.

(=) Assume ¢ € Pj;(b). Then by (2.12), there exists z € ST such
that

fi(z) = be, (2.49)
fi(z1) = b. (2.50)
By F € %o and Lemma 2.3.1, there exists y € S* such that
@) = K — k. (2.51)
Hence, we have
@) 215 @) ] @) = el K k(252

where (A) follows from Lemma 2.1.1 (i), and (B) follows from (2.49) and
(2.51). By (2.49) and (2.52), there exists ¢’ € C¥'~* such that

fi(zy) = bec'. (2.53)

Equations (2.50) and (2.53) lead to e¢’ € Py, (b) by (2.12).

(<= ) Assume that there exists ¢ € C¥~* such that ec’ € Pj;(b). Then
by (2.12), there exists € ST such that ff(z) > bec’ and f;(x1) = b. This
clearly implies ff(z) = bc and f;(x1) = b, which leads to ¢ € Pp;(b) by
(2.12). O

Corollary 2.3.1. For any F € Fy, i € [F|, and b € C*, the following
statements (i) and (ii) hold.

(i) (a) For any integer k > 0, the following equivalence holds: P, (b) =
0 < Pp,;b)=0.
(b) For any integers k and k' such that 0 < k < k', we have |Pf,;(b)| <
[PE:B)].

(i) (a) For any integer k > 0, the following equivalence holds: Ppi(b) =
0 < Pp,;b)=0.
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(b) For any integers k and k' such that 0 < k < k¥, we have [P}, (b)| <
[P 0)].

Also, the following Lemma 2.3.3 gives a lower bound of the length of a
codeword sequence for F' € Zo N Fhdee. See Subsection 2.6.2 for the proof
of Lemma 2.3.3.

Lemma 2.3.3. For any integer k > 0, F(f,7) € Fext N Frdec,t € [F], and
x € §*, we have |f(z)| > ||z|/|F|].

2.4 Average Codeword Length of Code-Tuple

We introduce the average codeword length L(F') of a code-tuple F. From
now on, we fix an arbitrary probability distribution p of the source symbols,
that is, a real-valued function p : & — R such that ) _cu(s) = 1 and
0 < u(s) <1 for any s € S. Note that we exclude the case where p(s) =0
for some s € § without loss of generality.

First, for FI(f,7) € % and i, j € [F], we define the transition probability
Qi ;(F') as the probability of using the code table f; next after using the code
table f; in the encoding process.

Definition 2.4.1. For F(f,7) € ¥ and i,j € [F], we define the transition
probability Q; ;(F) as

Qi;(F) = Z wu(s). (2.54)

s€S,Ti(s)=j

We also define the transition probability matrix Q(F) as the following |F| x
|F'| matriz:

Qoo(F) Qoi(F) -+ Qoyp—1(F)
Q1,0:(F) Q1,1:(F) o Q1,|F|:1<F) (2.55)

Q\F\—.l,()(F) QlF\—‘l,l(F) Q|F|—1,|.F|—1(F)

We fix F' € . and consider the encoding process with F. Let I; € [F]
be the index of the code table used to encode the i-th symbol of a source
sequence for i = 1,2,3,.... Then {I;};—123 . is a Markov process with the
transition probability matrix Q(F'). We consider a stationary distribution of
the Markov process {I;};—123 ., formally defined as follows.
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Definition 2.4.2. For F' € #, a solution ® = (7, T1,...,Tp|-1) € RIFI of
the following simultaneous equations (2.56) and (2.57) is called a stationary
distribution of F':

d» m=1 (2.57)

]

A code-tuple has at least one stationary distribution without a negative
element as shown in the following Lemma 2.4.1. See Subsection 2.6.3 for the
proof of Lemma 2.4.1.

TQ(F) =, (2.56)
eF

i

Lemma 2.4.1. For any F € %, there exists a stationary distribution ™ =
(7o, 71, ..., mp|—1) of F such that m; >0 for any i € [F].

As stated later in Definition 2.4.4, the average codeword length L(F) of
F' is defined depending on the stationary distribution 7w of F'. However, it is
possible that a code-tuple has multiple stationary distributions. Therefore,
we limit the scope of consideration to a class %, defined as the following
Definition 2.4.3, which is the class of code-tuples with a unique stationary
distribution.

Definition 2.4.3. A code-tuple F is said to be regular if F has a unique
stationary distribution. We define F,es as the set of all reqular code-tuples,
that is,

Freg = {F € F : F is regular}. (2.58)

For F' € Freq, we define w(F) = (mo(F), m(F), ..., mr-1(F)) as the unique
stationary distribution of F.

Since the transition probability matrix Q(F') depends on p, it might seem
that the class %, also depends on p. However, we show later as Lemma
2.5.2 that in fact .#,¢, is independent of 1. More precisely, whether a code-
tuple F'(f, 7) belongs to F,e depends only on 79, 71, ..., 7p—1. We also note
that for any F' € #,,, the unique stationary distribution w(F") of F satisfies
m;(F) > 0 for any ¢ € [F] by Lemma 2.4.1.

The asymptotical performance (i.e., average codeword length per sym-
bol) of a regular code-tuple does not depend on which code table we start
encoding: the average codeword length L(F') of a regular code-tuple F’
is the weighted sum of the average codeword lengths of the code tables
fo, f1, -+, fip|—1 weighted by the stationary distribution (F'). Namely, L(F)
is defined as the following Definition 2.4.4.

37



Definition 2.4.4. For F(f,7) € % and i € [F], we define the average
codeword length L;(F) of the single code table f; : S — C* as

Li(F) =Y _|fi(s)] - u(s). (2.59)

seS

For F' € F,oy, we define the average codeword length L(F) of the code-tuple
F as
L(F) =Y m(F)L(F). (2.60)

1€[F)

Example 2.4.1. We consider F' .= F) of Table 2.1, where (u(a), u(b), u(c),
wu(d)) =(0.1,0.2,0.3,0.4). We have

04 0.2 04
QF)= |02 04 04 |. (2.61)
02 0.1 0.7

The simultaneous equations (2.56) and (2.57) have the unique solution w(F)
= (mo(F), m(F), ma(F)) = (1/4,5/28,4/7). Hence, we have F' € Feq. Also,
we have

Lo(F) =26, Li(F)=37 Ly(F)=4.2. (2.62)
Therefore, the average codeword length L(F') of the code-tuple F' is given as
L(F) = mo(F)Lo(F) + m(F)L1(F) 4+ mo(F) Lo (F) =~ 3.7107. (2.63)

Remark 2.4.1. Note that Q(F), L;(F), L(F), and ©(F') depend on u. How-
ever, since we are now discussing on a fived i, the average codeword length
Li(F) of f; (resp. the transition probability matriz Q(F')) is determined only
by the mapping f; (resp. 70,71, ..., T\p|-1) and therefore the stationary distri-
bution w(F') of a regular code-tuple F is also determined only by 7o, 71, ..., T|p|-1-

2.5 Irreducible Code-tuples and Irreducible Parts

As we can see from (2.60), the code tables f; of F(f,7) € F such that
mi(F) = 0 does not contribute to L(F'). It is useful to remove such non-
essential code tables and obtain an rreducible code-tuple: we say that a
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regular code-tuple F' is irreducible if m;(F) > 0 for any i € [F| as formally
defined later in Definition 2.5.3. In this section, we introduce an irreducible
part of F' € F,o, which is an irreducible code-tuple obtained by removing
all the code tables f; such that m;(F') = 0 from F. The formal definition of
an irreducible part of F' is stated using a notion of homomorphism defined
in the following Definition 2.5.1.

Definition 2.5.1. For F(f,7), F'(f',7') € %, a mapping ¢ : [F'] — [F] is
called a homomorphism from F’ to F' if

fi(s) = foti (), (2.64)
P(7(8)) = Tp(i(5) (2.65)
for anyi € [F'] and s € S.

Given a homomorphism of code-tuples, the following Lemma 2.5.1 holds
between the two code-tuples. See Appendix 2.6.4 for the proof of Lemma
2.5.1.

Lemma 2.5.1. For any F(f,7),F'(f',7") € % and a homomorphism ¢ :
[F'] = [F] from F' to F, the following statements (i)-(vi) hold.
(i) For anyi € [F'] andx € S*, we have f{*(x) = [}, (x) and o(7;*(z)) =
Tow (@)

(it) Foranyi € [F'] andb € C*, we have P, ;(b) = Py, (b) and P i(b) =

(i) For any stationary distribution 7' = (mg, @, ..., 7w ;) of F', the vec-
tor m = (7o, T1, ..., Mp-1) € RIFl defined as
mp= Y forj€[F] (2.66)
j/E.Aj

is a stationary distribution of F', where
A ={i € [F']: (') =i} (2.67)
fori € [F].

() If F € Foyy, then F' € Foy.
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(0) If F,F' € Frey, then L(F') = L(F).
(vi) For any integer k >0, if F € P qoc, then F' € Py qee-

We also introduce the set R for F' € .# as the following Definition 2.5.2.

We state in Lemma 2.5.2 that we can characterize a regular code-tuple F' by
Rp.

Definition 2.5.2. For F(f,7) € ., we define Rp as
Rp={i€[F]:"je[F);’z €87 (x) =i} (2.68)

Namely, R is the set of indices i of the code tables such that for any j € [F],
there exists x € S* such that 77 (x) = i.

Example 2.5.1. First, we consider F(f,7) := F® in Table 2.1. Then we
confirm Rp = {2} as follows.

e 0 & Ry because there exists no x € S* such that 75 (x) = 0.
o 1 & Ry because there exists no x € S* such that 75 (x) = 1.
e 2 € Ry because 75 (bc) = 7/(c) = 5 (\) = 2.

Neat, we consider F(f,7) = F® in Table 2.1. Then we confirm Rp = ()
as follows.

o 0 & Ry because there exists no x € S* such that 7 (x) = 0.
o 1 & Ry because there exists no x € S* such that 75 (x) = 1.
o 2 ¢ Ry because there exists no x € §* such that 71 (x) = 2.

Lastly, we consider F(f,7) = F" in Table 2.1. Then we confirm Ry =
{0,1,2} as follows.

e 0 € Rp because 7§(\) = 11(b) = 75(b) = 0.
o 1 € Ry because 75 (b) = 71(\) = 75(a) = 1.
o 2 € Ry because 75(d) = 77(d) = 75 (\) = 2.

Lemma 2.5.2. For any F € .F, the following statements (i) and (ii) hold.
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(i) F € Freg if and only if Rp # 0.

(1) If F' € Frey, then for any i € [F|, the following equivalence relation
holds: m;(F) >0 <= i€ Rp.

The proof of Lemma 2.5.2 is given in Subsection 2.6.5.

Since R does not depend on p, we can see from Lemma 2.5.2 (i) that
the class ¢, is determined independently of ;v as mentioned before.

By Lemma 2.5.2 (ii), a regular code-tuple F'(f,7) satisfies m;(F) > 0 for
any ¢ € [F] if and only if F' is an irreducible code-tuple defined as follows.

Definition 2.5.3. A code-tuple F' is said to be irreducible if Rp = [F]. We
define Fy, as the set of all irreducible code-tuples, that is, Fy, = {F € F :
Rr = [F ]}

Note that Fi, C Freg since F' € Fe is equivalent to Ry # () by Lemma
2.5.2 (i).

Now we define an irreducible part F of a code-tuple F as the following
Definition 2.5.4.

Definition 2.5.4. An irreducible code-tuple F is called an irreducible part
of a code-tuple F if there exists an injective homomorphism ¢ : [F] — [F]
from F to F.

The following property of F is immediately from Definition 2.5.4 and
Lemma 2.5.1 (iv)—(vi).

Lemma 2.5.3. For any integer k > 0, F € Freg N Fext N ﬁ’k_(iec, and an
irreducible part F' of F, we have F' € Fyp N Foxt N Frdec and L(F) = L(F).

The existence of an irreducible part is guaranteed as the following Lemma
2.5.4. See Appendix 2.6.6 for the proof of Lemma 2.5.4.

Lemma 2.5.4. For any F € .o, there exists an irreducible part F of F.

2.6 Proofs of Lemmas in Chapter 2

2.6.1 Proof of Lemma 2.2.4

Proof of Lemma 2.2.4. ((a) = (b)): We show the contraposition. Assume
that (b) does not hold. We consider the following two cases separately: the
case where Definition 2.2.3 (a) is false and the case where Definition 2.2.3

(b) is false.
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e The case where Definition 2.2.3 (a) is false: Then there exist i € [F],
se€ S8, and ¢ € 771’3771,(8) N Pri(fi(s)). By (2.13) and (2.16), there exist
z € §* and 2’ € ST such that

frs(®) = ¢, (2.69)
i@ = fi(s)e, (2.70)

We have

ffamy ) " @)

fi(sz) = fi(s)fr (@) = fils)e, (2.72)
where (A) follows from (2.4), and (B) follows from (2.69). By (2.72)
and s < sz, the pair (s,¢) is not f*-negative. On the other hand, since
s # x} by (2.71), we have s A 2’. Hence, by (2.70), the pair (s,¢) is not

f#-positive. Since the pair (s,¢) is neither f-positive nor f;-negative,
the condition (a) does not hold.

e The case where Definition 2.2.3 (b) is false: Then there exist i € [F],
s, €S, and ¢ € Pf,’n(s) N 731’2772,(5/) such that s # s and

By (2.16), there exist z,z’ € S* such that
frs(®@) = ¢, (2.74)
fran(@) = e (2.75)
Thus, we have
oy ) " ®
fi(sz) = fi(s)fr (@) = fi(s)e, (2.76)

(E)
162 D ) @) D ) @) 2 f(se, (@277)

where (A) follows from (2.4), (B) follows from (2.74), (C) follows from
(2.4), (D) follows from (2.73), and (E) follows from (2.75). By (2.76)
and s =< sz, the pair (s,¢) is not ff-negative. On the other hand, by
s £ s’z and (2.77), the pair (s,e) is not ff-positive. Since the pair
(s,¢) is neither f-positive nor f-negative, the condition (a) does not

hold.
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((b) = (a)): We show the contraposition. Assume that (a) does not
hold. Then there exist i € [F] and (z,¢) € S* x C* such that (z,¢) is neither
fi-positive nor f-negative. Thus, there exist 2’,2"” € §* such that

fi@)e = fi (&), (2.78)
fi@)e < fiz"), (2.79)
T3, (2.80)
Az (2.81)

We consider the following two cases separately: the case £ > x” and the
case x i/ x”.

e The case = z”: By Lemma 2.1.1 (iii), we have

fi(@) = f;(&"). (2.82)
Hence, by (2.79), it must hold that ¢ = A. Namely, only k£ = 0 is
possible now.
Since (2.81) and = = z” lead to > z”, there exists u € ST such that
z = z2"u. Defining j = 7/ (2”), we have
* Sl * 1 * (E) * * (g) * *
fix) = fi(= )f] (u) = f; (x)f] (w) = f; (.'I:)f](ul)ij(ul)(suff(u)),
(2.83)

where (A) follows from Lemma 2.1.1 (i), (B) follows because we have
fi(x) = fr(&") by (2.79) and we have f*(z) = fr(z”) by (2.82), and
(C) follows from (2.4). Comparing both sides of (2.83), we obtain

and f7 . (suff(w)) = A.

We now show that (b) does not hold dividing into two cases by whether
f; is injective.

— If f; is not injective, then F' does not satisfy Definition 2.2.3 (b)
by k£ = 0 and Remark 2.2.1.
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— If f; is injective, then by Lemma 2.2.2 (iii)

Pp; #0 (2.85)

by (2.13). We see that F' does not satisfy Definition 2.2.3 (a)
because

_ A _

Pl VPR () & Pl NPR, (286)

©Oynp, (2.87)

Y onny (2.88)

={\} (2.89)

# 0, (2.90)

where (A) follows from (2.84), (B) follows from (2.16), and (C)

follows from (2.85).

e The case x # z”: By (2.81) and z % z”, there exist z,2” € ST such
that

r =yz, (2.91)
' =y2", (2.92)
2 # 2 (2.93)
where y := z A z”. Defining 2’ := zz~'2’, defined by (2.80), we have
¥ =zr 'y =y 'z =y (2.94)
2 = 2). (2.95)

Then defining j == 7/ (y), we have
FE @) fi(2) 7, o (sut (2))

(D)
W i) Y e Qe e e (2.96)

where (A) follows from (2.4), (B) follows from Lemma 2.1.1 (i), (C)
follows from (2.94), and (D) follows from (2.78). Similarly, by (2.79)
and (2.92), we have

fi*(?/)fj(Zi’)f;(zg')(suff(z”))
= fi (y)f;(z//) = [{(y2") = fi(&") = fi(z)c. (2.97)
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Also, we have

©)

= fi*(y)fj(zl)f:j(zl)(Suﬂ(z>>c7
(2.98)

fr@e? e ) fiz)e

where (A) follows from (2.91), (B) follows from Lemma 2.1.1 (i), and
(C) follows from (2.4).

Thus, we have

(A)

B e (uff(2) = fi(20) £ o) (suff(2))e (2.99)
S 1L ) suf(2)e (2.100)
= fi(z)e, (2.101)

where ¢ = [f:j(zi)(suff(z))c]k, (A) follows from (2.96) and (2.98), and
(B) follows from (2.95). Similarly, we have

Fi(20) £7, oy (suft (27)) (> fi(z) [ ) (suff (2))e (2.102)
S 1D ) st (2)e (2.103)
= f;(2)¢, (2.104)

where (A) follows from (2.97) and (2.98), and (B) follows from (2.95).
By (2.101), we have f7 ., (suff( 2')) = ¢, which leads to

¢ €Ph ) (2.105)

by (2.16).

By (2.104), at least one of fj(zl) = fi(z{) and f;(#]) = f;(={) holds. We
may assume f;(z1) = f;(z{) by symmetry. We consider the following
two cases separately: the case f;(27) < f;(27) and the case f;(z]) =

fi(=0).
— the case f;(2]) < f;(2/): We have

* " (A) " * " (B) !/ /
[ @) = [z 7 e (suff (27) = fi(z1)€, (2.106)
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where (A) follows from (2.4), and (B) follows from (2.104). By
(2.106) and f;(2}) < f;(2{), we obtain
¢ € Ph, () (2.107)

by (2.13). By (2.105) and (2.107), the code-tuple F' does not
satisfy Definition 2.2.3 (a).
— the case f;(z]) = f;(#}): We have
/ * 7 (A) 2 * 2 (B) / /
[y (suft (27)) = 15 (20 f7 oy (suff (27) = f(z1)¢€,
(2.108)

where (A) follows from f;(z]) = f;(2}), and (B) follows from
(2.104). This shows fjj(zi,)(suff(z”)) > ¢/, which leads to

¢ € Pirny (2.109)

by (2.16). By f;(z1) = f;(z]), (2.93), (2.105), and (2.109), the
code-tuple F' does not satisfy Definition 2.2.3 (b).

O

2.6.2 Proof of Lemma 2.3.3

Proof of Lemma 2.5.3. 1t suffices to show that |f(z)| > 1 holds for any
i € [F] and x € S¥I. We prove by contradiction assuming that there exist
i € [F]and = 2125 ... 2y € Sl such that f;(z) = A\. Then by pigeonhole
principle, we can choose integers p, ¢ such that 0 < p < ¢ < |F| and

i (x1my .. xy) =T (2122 ... Ty) = 5. (2.110)
We have
. ) . ®) . © .
T; (Tpi1Tpra .- Tg) = Tri*(xlxg...xp)<xp+1xp+2 ) = T (T2 1) =,
(2.111)

where (A) follows from (2.110), (B) follows from Lemma 2.1.1 (ii), and (C)
follows from (2.110). Thus, we obtain

(A) (A)

Pk S o S Pk ©pk (2112
i ( ) = F’T;(xp+lmp+2) == F’TJ*(xP+1xp+2~~~xq) - I Eyp ( : )
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where (A)s follow from Lemma 2.2.1 (i) and (ii) and f/(z) = A, and (B)
follows from (2.111).

We consider the following two cases separately: the case 75}?,]- # () and the
case 751’?’]» = 0.

e The case Py ; # (): We have

k s A s B sk T,

PF,Tj($p+1) N PF,j 2 PF,] N PF,j 2 PF,j N PF,] — PF,j # @, (2113)
where (A) follows from (2.112), (B) follows from Lemma 2.2.1 (i), and
(C) follows from the assumption. Therefore, F' does not satisfy Defini-

tion 2.2.3 (a), which conflicts with F' € Fy_gec.

e The case Py,; = : By Corollary 2.3.1 (ii) (a), we have Pp; = (. Hence,
by Lemma 2.2.2 (iii), we have |S| > 2 so that there exists s € S such
that s # z,41 and f;(s) = A = f;(xp11). We have

A)
k k k k

’PF7Tj(xp+l) n PF;rj(s) 2 PF,j N PF,TJ'(S) (2114>

B)
k k

2 PF,Tj(s) N PF,‘rj(s) (2115>
= Prris) (2.116)
©)
# 0, (2.117)

where (A) follows from (2.112), (B) follows from Lemma 2.2.1 (i) and
(ii), and (C) follows from F' € 4 and Corollary 2.3.2 (i) (a). There-
fore, F' does not satisfy Definition 2.2.3 (b), which conflicts with F' €
7 k-dec-

O

2.6.3 Proof of Lemma 2.4.1

In preparation for the proof, we introduce the following Definition 2.6.1 and
Lemma 2.6.1.

Definition 2.6.1. Let F/(f,7) € F. A set Z C [F] is said to be closed if for
any i €L and s € S, it holds that 7;(s) € T.

47



Lemma 2.6.1. For any F € % and x = (v0,%1,...,%F|-1) € RIFI if
zQ(F) ==, (2.118)
then both of T, = {i € [F]|:2; >0} and I_ = {i € [F]| : z; < 0} are closed.

Proof of Lemma 2.6.1. By symmetry, it suffices to prove only that Z, is
closed. We have

2.2 wQuF)+ ), > wQulF

i€Ly jely €Ly je[F\I+

=) Z 2,Q;4(F (2.119)
i€ly jE[F

= (2.120)
1€l

55 Y QiR (2.121)
€Ly jE[F]

=3 S wQu(F) (2122
i€Ly jE[F)

=22 wQu(F)+ 3, 3, wiQu(F (2.123)
z€I+ JETy 1€y je[F\T+
EDIDIL RIS DD DNl (2.124)
i€l jeIy €14 je[F\Z+

where (A) follows from (2.118), (B) follows from } ;) Qi;(F) = 1 for any
i € [F], and (C) is obtained by exchanging the roles of i and j in the first
term. Therefore, we have

(A)

0= Z Z I]Q]z B) Z Z zsz = , (2125)

i€l je[F\I+ 1€y je[F\T4+

where (A) follows since z; < 0 for any j € [F]\ Z4, (B) is obtained by
eliminating the first terms from the leftmost and rightmost sides of (2.124),
and (C) follows since z; > 0 for any i € Z,. This shows

Y. D wQu(F)=0. (2.126)

i€, jE[F\T,
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Since x; > 0 holds for any ¢ € Z,, it must hold that @, ;(F) = 0 for any
i €Z, and j € [F|\Z,. This implies that for any i € Z, and s € S, we have
7;(s) € Z; that is, Z, is closed as desired. O

Proof of Lemma 2.4.1. Equation (2.56) can be rewritten as
TA=0, (2.127)

where A = (4;;) = Q(F) — E and E is the identity matrix. We have
det A = 0 because the sum of each row of A equals 0: for any i € [F], we
have

D A=) (Qig(F) —6y) (2.128)
Je(F]

JEF]

=3 Qii(F) =>4 (2.129)
JE[F] JE[F]

= Qiy(F) -1 (2.130)
JE[F]

=> ) uls)-1 (2.131)
JEIF] s€8,mi(s)=j

=> p(s)—1 (2.132)
seS

=0, (2.133)

where 0;; denotes Kronecker delta. Thus, the dimension of the null space
of A is greater than or equal to 1. In particular, Equation (2.127), which
is equivalent to (2.56), has a non-trivial solution 7 # 0. We choose such
m = (7o, m1,...,mMpj—1) # 0. Then both of Z, := {i € [F] : m; > 0} and
Z_={i€[F]:m <0} are closed by Lemma 2.6.1. Hence, we have

YieZyVj e [FI\IyQi(F) =0, (2.134)

YieZ ;VjeFI\T_;Qi;(F)=0. (2.135)

Since m # 0, we have ), [m| > 0 and thus we can define n’ =
(7, s -+ > Ty _y) € RIFI s

= _ml (2.136)

Zie[F] |3
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for i € [F]. This vector 7’ is a desired stationary distribution of F'. In fact,
by the definition, " clearly satisfies (2.57) and 7} > 0 for any i € [F]. Also,
we can see that o' satisfies (2.56) because for any j € [F], we have

(X Iml) (X mQus(r)) (2.137)

1€[F] 1€[F]
(A
= D ImilQi(F) (2.138)
1E[F]
- Z miQig (F Z i@ (F (2.139)
ZEI+ =y
® (Y ez, miQi (F) if j € Z,,
= 4~ 2ier mQiy(F) ifjel, (2.140)
L0 otherwise,
© ( Yz, mQii(F) + Yier miQiy(F) if j € I,
=\ ZieIJr Qi (F) =Y ier miQij(F) if jeI_, (2.141)
L0 otherwise,
Zie[F] TiQi5(F) if jeZy,
=\~ Liep TiQi(F)  ifjel, (2.142)
0 otherwise,

Uy lfj €I+,

=47 itjel, (2.143)
0 otherwise,

= |m;| (2.144)

© (Z yw,-|>7r;, (2.145)
1E[F]

where (A) follows from (2.136), (B) follows from (2.134) and (2.135), (C) fol-
lows from (2.134) and (2.135), (D) follows since 7 is a stationary distribution
of F, and (E) follows from (2.136). O
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2.6.4 Proof of Lemma 2.5.1

Proof of Lemma 2.5.1. (Proof of (i)): We first show that f*(z) = [ (z)
for any ¢ € [F’'] and £ € §* by induction for |z|. For the base case |z| = 0,
we have f*(A) = A = [, (A) by (2.4). We consider the induction step for
lz| > 1. We have

fr(@) E i) £y (suff (@) (2.146)
—fm D2 oy (0t () (2.147)

2 fowr (@) (7! () (suff (2)) (2.148)

" fw (1) £, o) (UL (@) (2.149)

() (@) (2.150)

as desired, where (A) follows from (2.4), (B) follows from (2.64), (C) follows
from the induction hypothesis, (D) follows from (2.65), and (E) follows from
(2.4).

Next, we show that ¢(7;*(z)) = 77, (z) for any ¢ € [F'] and z € S by
induction for |z|. For the base case || = 0, we have ¢o(7/*(\)) = (i) =

T2 (A) by (2.5). We consider the induction step for [z| > 1. We have

* A) " B) .

p(17"(®) = (177 () (U (2))) = 750 (s (2)) (2.151)
©) D)

- T’Qp(i)(:m)(suff(x)) = gp(i)(x) (2.152)

as desired, where (A) follows from (2.5), (B) follows from the induction hy-
pothesis, (C) follows from (2.65), and (D) follows from (2.5).
(Proof of (ii)): For any ¢ € C*, we have

(A)

¢ € Pp(b) <= "z €S (f"(z) = be, fi(z1) = b) (2.153)

L 3 e st (fo@ (@) = be, fo(z1) = b) (2.154)

L cepp ), (2.155)

where (A) follows from (2.12), (B) follows from (i) of this lemma, and (C)

follows from (2.12). This shows that Py ;(b) = Pj ;(b). We can prove
Py (b) = _;790(%') (b) by the same way using (2.13).
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(Proof of (iii)): For any ¢ € [F'] and j € [F], we have

S QusF)YE ST Y uls) (2.156)

J'EA; j'eA; s€S

()=
= > uls) (2.157)
s€S
TZ,’,(S)G.AJ'
2% ) (2.158)
sES
(7 ()=
N ) (2.159)
seS
Tap(i/)(s):j
)
= Qu(in§(F) (2.160)
= Qi (F), (2.161)
where i = ¢(i') and (A) follows from (2.54), (B) follows from (2.67), (C)

follows from (2.65), and (D) follows from (2.54). Thus, for any j € [F], we
have

=3 (2.162)
j/GAj
& SN wQu gy (F) (2.163)

J'EA; i €[F']

=> > > mQuy(F) (2.164)

J'EA; i€[F|i'€A;

=D DT Y QualF) (2.165)

i€[F)i'eA; Jj'eA;

B

CST S wQuF) (2.166)
i€[F)i'eA;

= > Qi (F)Y 7 (2.167)
i€[F) EA;

= Qii(F)m;, (2.168)
1E[F]
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where (A) follows since 7’ satisfies (2.56), and (B) follows from (2.161) and
i € A;. Also, we have

Ym=Y Y m=Y @ (2.169)
i€[F] ]

i€[F)i'eA; i'e[F’

where (A) follows since 7’ satisfies (2.57). By (2.168) and (2.169), 7 is a
stationary distribution of F'.
(Proof of (iv)): We have

F € P < Yic[Fl;Ph, #0 (2.170)
—> i € [F'}; Py # 0 (2.171)
& Y e [F); Ph, £ 0 (2.172)
e [ € Py, (2.173)

where (A) follows from (ii) of this lemma.

(Proof of (v)): By F, F" € Z,eq, the code-tuples F' and F’ have the unique
stationary distributions 7(F') and 7(F"), respectively. By (iii) of this lemma,
we have

YjeFlm(F) = mp(F), (2.174)
JIEA;
where
A ={i" € [F']: (i) =i} (2.175)
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for i € [F|. Therefore, we have

L(F')= Y m(F)Ly(F) (2.176)
= EZ[;] ]g i (F") Ly (F') (2.177)
=Y Z 7 (F') Ly (F) (2.178)

i€[F)i'eA;
® z[:] > m(F)Li(F) (2.179)
i€[F]i'€A;
_ Z;]L" () ; 7 (F) (2.180)
@l; m(F)Li(.;?) (2.181)
_ [ie([z?]) (2.182)

as desired, where (A) follows from (2.64) (cf. Remark 2.4.1), (B) follows from
(2.175) and " € A;, and (C) follows from (2.174).
(Proof of (vi)): For any i € [F'] and s € S, we have

5 @) _

Prraite) N Pinilf(8) = Phitrtie N Prii (11(5)) (2.183)
(B) _

= Phir ) N Pripo (foi () (2.184)

<, (2.185)

where (A) follows from (ii) of this lemma, (B) follows from (2.64) and (2.65),
and (C) follows from F' € % gec. Namely, F” satisfies Definition 2.2.3 (a).

Choose i € [F'] and s,s" € S such that s # s’ and f/(s) = f/(s') arbitrar-
ily. Then by (2.64), we have

foty(8) = fi(s) = fi(s") = fow(s). (2.186)
Thus, we obtain
k k (A) 1k k B) sk k ©)
Prrrt) VPrst(e) = Proet() N Premisn) = P N Prrpe) = 0
(2.187)

where (A) follows from (ii) of this lemma, (B) follows from (2.65), (C) follows
from (2.186) and F' € .Z_gec. Namely, F” satisfies Definition 2.2.3 (b). O
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2.6.5 Proof of Lemma 2.5.2

To prove Lemma 2.5.2, we first prove the following Lemmas 2.6.2-2.6.4. Lem-
mas 2.6.2 and 2.6.3 relate to closed sets defined in Subsection 2.6.3.

Lemma 2.6.2. For any F € %, the following statements (i) and (ii) hold.
(i) Ry is closed.
(ii) For any non-empty closed set T C [F|, we have Rp C T.

Proof of Lemma 2.6.2. (Proof of (i)): Choose i € Rr and s € S arbitrarily.
For any j € [F], there exists € §* such that 77 (z) = i, which leads to

7 (@) = Tr@)(s) = Tils), (2.188)

where (A) follows from Lemma 2.1.1 (ii). This shows 7;(s) € Rp.

(Proof of (ii)): Choose i € Rp arbitrarily. We prove i € Z by contradic-
tion assuming the contrary ¢ € Z. Since Z # (), we can choose j € Z. By
i € Rp, there exists £ = x122...7, € S8* such that Tf(x) = 4. We define
ip = 7 (1129 7y) for [ = 0,1,2,...,n. Since igp = 7(\) = j € T and
in = 77 (%) =i € T, there exists an integer 0 < I < n such that i, € 7 and

G141 = T, (x141) € Z. This conflicts with that Z is closed. O

Lemma 2.6.3. For any F € F and non-empty closed set T C [F], the
following statements (i) and (i1) hold.

(i) There exist F' € ZWD and an injective homomorphism o : [F'] — [F]
from F' to F such that T = p([F']) == {¢(i) : i € [F']}.

(ii) There exists a stationary distribution ® = (7o, m1, ..., Trj—1) of F such
that m; = 0 for any i € [F)\ Z.
Proof of Lemma 2.6.3. (Proof of (i)): Suppose Z = {ig,1,...,4n_1}, where
ip < iy < -+ < pm—y and m = |Z|. We define a mapping ¢ : [m] — [F] as
©(j) = ij for j € [m]. Since ¢ is injective and ¢([m]) = Z, we can consider

the inverse mapping ¢! : Z — [m], which maps ¢(i) to i for any i € [m].
Also, we define F'(f',7') € F(™ as

fz/(5> = fgo(i)(s>> (2.189)
7i(5) = ¢ (700 (5)) (2.190)
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for i € [F'] and s € S. Since Z is closed, we have 7,;)(s) € Z and thus
7/(s) = ¢ H7pw(s)) € [m] = [F']; that is, F’ is indeed well-defined. We
can see that ¢ is a homomorphism from F’ to F' directly from (2.189) and
(2.190).

(Proof of (ii)): By (i) of this lemma, there exist F’ € .% and an injective

homomorphism ¢ : [F'] — [F] from F’ to F such that

o([F']) =T. (2.191)
By Lemma 2.4.1, we can choose a stationary distribution 7’ of F’. By Lemma
2.5.1 (iii), the vector # € RIFI defined as (2.66) is a stationary distribution
of F'. This vector m is a desired stationary distribution because A; = {i’ €
[F'] : ¢(i") = i} = () holds for any i € [F]\ Z by (2.191). O
Lemma 2.6.4. For any F € .7, If Rp =0, then there exist p,q € [F] such
that T, N\Z, = 0, where Z; == {7} (x) : ¢ € §*} fori € [F].
Proof of Lemma 2.6.4. We first show that for any 7,5 € [F], we have
Assume j € Z; and choose p € 7; arbitrarily. Then there exists £ € S* such
that 77(z) = p. Also, by j € Z;, there exists y € S* such that 7/(y) = j.
Therefore, we have

e VA, \
7 (yz) = T (@) = 7/ () = D, (2.193)

where (A) follows from Lemma 2.1.1 (ii). This leads to p € Z; and thus we
obtain (2.192).

Now, we prove Lemma 2.6.4 by proving its contraposition. Namely, we
show Ry # () assuming that

Yi,j € [F;LiNT; #0. (2.194)
We can see that
Rr= (L (2.195)
1E[F]

because for any j € [F], it holds that

jeE(T < "ielFjeL (2.196)
1E[F]

— Yic[FliPzeST(x)=j (2.197)
< jE€Rp. (2.198)
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Thus, to show Ry # (), it suffices to show that

() Z #0 (2.199)
i€][r]
for any r = 1,2,...,|F| since the case r = |F| gives the desired result.

We prove (2.199) by induction for r. The base case r = 1 is trivial
since Zy © 0. We consider the induction step for » > 2. By the induction
hypothesis, we have (¢, Zi # (). Therefore, we can choose j € [F] such
that j € Z; for any ¢ € [r —1]. By (2.192), we have Z; C Z; for any i € [r — 1]
and thus

< () T (2.200)
i€[r—1]
Hence, we obtain
(A) B)
NzZ=( N Z)nT SLNT £0 (2.201)
i€[r] i€[r—1]

as desired, where (A) follows from (2.200), and (B) follows from (2.194). O

Proof of Lemma 2.5.2. (Proof of (i)): (Necessity) We assume Rp = ) and
show that F' has two distinct stationary distributions. By Lemma 2.6.4, we
can choose p, ¢ € [F] such that

7,NZ, = 0. (2.202)

We can see that Z,, is not empty since Z, > p and also see that Z,, is closed
because for any ¢ € Z,,, we have

{ri(s): s €S} CH{r/(z): 2 € S} =T, (é) Z,, (2.203)

where (A) follows from (2.192). By the same argument, also Z, is a non-
empty closed set. Therefore, by Lemma 2.6.3 (ii), there exist stationary

distributions m = (7, 71,. .., mp—1) and T = (7, 7Y, . .. ,7r|’F|_1) of F such
that

Vi€ [FI\Zy;m =0 (2.204)
and

Yie [F]\Z,;7 =0. (2.205)
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Since 7 satisfies (2.57), we have m; > 0 for some j € [F]|. By (2.204) and
(2.202), it must hold that j € Z, C [F]\Z,. Hence, we obtain 7, = 0 < 7; by
(2.205). This shows 7 # @’. Therefore, we conclude that F' has two distinct
stationary distributions as desired.

(Sufficiency) We prove Rp = () assuming that there exist two distinct

stationary distributions 7 = (mo, 71, ..., mp—1) and " = (7, 7, . .. ,7T|/F|71)
of F. Then x = (2o, 1,...,7p—1) =7 — 7 # 0 satisfies
2Q(F) =1Q(F) - Q(F) ¥ r -1’ =1, (2.206)
inzzm_zﬂg@1_1:o, (2.207)
1E[F] 1E[F] 1€[F)

where (A) follows from (2.56), and (B) follows from (2.57). Thus, by  # 0
and (2.207), both of Z, == {i € [F]:x; >0} and Z_ = {i € [F] : x; < 0} are
non-empty sets. Also, both of Z, and Z_ are closed by (2.206) and Lemma
2.6.1 stated in Subsection 2.6.3. Therefore, by Lemma 2.6.2 (ii), we obtain
Rrp CZ, and Rr C Z_, which conclude Rr C Z, NZ_ = () as desired.

(Proof of (ii)): We show Rp =Z, = {i € [F] : m(F) > 0}.

(Rp C Z,) By (2.57), the set Z, is not empty. Also, by (2.56) and
Lemma 2.6.1 stated in Subsection 2.6.3, the set Z, is closed. Hence, we
obtain Rr C Z, by Lemma 2.6.2 (ii).

(Rr D Z;) Since Rp is closed by Lemma 2.6.2 (i), we see from Lemma
2.6.3 (ii) that the unique stationary distribution 7 (F') satisfies m;(F') = 0 for
any i € [F]\ Rp. Therefore, we obtain Rp 2 Z,. O

2.6.6 Proof of Lemma 2.5.4

The proof of Lemma 2.5.4 relies on Lemmas 2.6.2 and 2.6.3 stated in Sub-
section 2.6.5.

Proof of Lemma 2.5.4. Since Rp is closed by Lemma 2.6.2 (i), we see from
Lemma 2.6.3 (i) that there exist F'(f,7) € .% and an injective homomorphism
¢ : [F] = [F] from F’ to F such that ¢([F]) = Rp. Now, it suffices to show
F e P

For any i, j € [F], there exists £ € S* such that

Tow (@) = ©(j) (2.208)
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by ©(j) € ¢([F]) = Rp. Thus, for any i, € [F], we have

— - —x (A 1/« B - :

(@) = ¢ (e(7 (@) = 0 (0 (@) = ¢ (e(5) = 4, (2.209)
where (A) follows from Lemma 2.5.1 (i), and (B) follows from (2.208). There-
fore, F' € %, holds. O
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Chapter 3

(General Properties of k-bit Delay
Decodable Optimal Codes

3.1 k-bit Delay Optimal Code-tuples

In this chapter, we consider code-tuples which achieve the optimal average
codeword length in Fee N Fexy N Fi-dec for an integer k > 0.

Definition 3.1.1. Let k > 0 be an integer. A code-tuple F' € Freg N Fexy N
Fr-dec 15 said to be k-bit delay optimal if L(F) < L(F") holds for any F' €
Freg N Fext N Fidec. We define Fiopy as the set of all k-bit delay optimal
code-tuples, that 1is,

Fropt = {F € F : F is k-bit delay optimal.} = arg min L(F).

Feﬁreg NFextNFk-dec
(3.1)

Note that .%_op depends on the probability distribution p of the source
symbols, and we are now discussing on an arbitrarily fixed pu.

Example 3.1.1. Let (u(a), u(b), pu(c), u(d)) = (0.1,0.2,0.3,0.4). Then the
code-tuple F) in Table 3.1 is a 2-bit delay optimal code-tuple with L(F®) ~
1.8667.

We now prove three theorems which enable us to limit the scope of code-
tuples to be considered when discussing k-bit delay optimal code-tuples. In
Subsections 3.1.1-3.1.3, we state the three theorems as Theorem 3.1.1-3.1.3
and give their proofs in Section 3.2-3.4, respectively.
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Table 3.1: The code-tuple F*) is a 2-bit delay optimal code-tuple, which sat-
isfies Theorem 3.1.1 (a)—(d) with F' = F© where (u(a), u(b), u(c), u(d)) =
(0.1,0.2,0.3,0.4)

seS| O L9 OO E @ o
a pooito 2 100 1 1100 1 010 O
b 0011 0 00 0 11 2 011 1
c 000 1 01 1 01 1 100 O
d A 2 1 2 10 0 1 2

ses| i n? f7 o

a 100 0 1100 O

b 00 0 11 1

c 01 0 01 0

d 1 1 10 0

3.1.1 The First Theorem

The first theorem claims that for any F' € Feq N Fexy N F-dec, there exists
F' € FNF oyt NFp-dee such that L(FT) < L(F) and Pl’fﬂf’o, Pllﬁ,m, . ,P’;,fj‘F”_l
are distinct. Namely, it suffices to consider only irreducible code-tuples with
at most 22" code tables to achieve a small average codeword length. In
particular, it is not the case that one can achieve an arbitrarily small av-
erage codeword length by using arbitrarily many code tables. To state the
theorem, we prepare the following Definition 3.1.2.

Definition 3.1.2. For an integer k > 0 and F € F, we define P}, as
Py = {Pp,; i€ [F]}. (3.2)
Example 3.1.2. For FO) in Table 2.1, we have

@2@) = {{)\}}7 @}wm = {{0> 1}> {1}}>
2%, = {{01,10},{00,01, 10}, {11}}.

The following Lemma 3.1.1 holds by Lemma 2.5.1 (ii).

Lemma 3.1.1. For any integer k > 0, F' € F,eq, and an irreducible part F
of F', we have gzl’; - 33173
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Using Definition 3.1.2, we state the desired theorem as follows.

Theorem 3.1.1. For any integer k > 0 and F € Freg N Fext N Fhdec, there
exists F' € .F satisfying the following conditions (a)-(d).

(a) FT € P N Foxt N Fdee-
(b) L(F') < L(F).
(¢c) P C Pk
(@) |24 = |F.
Note that P}%}O, 77}271, . 77)113,\1?\—1 are distinct if and only if L@}i\ = |F|.

Example 3.1.3. Let (u(a), u(b), u(c), u(d)) = (0.1,0.2,0.3,0.4) and F =
F® in Table 3.1. Then we have F € Freg N Fos N Fogee, L(F) = 1.98644,
and 2% = {{00,01, 10,11}, {01,10,11}}. The code-tuple F't := F*) in Table
3.1 satisfies Theorem 3.1.1 (a)-(d) because Rpi = {0,1} = [FT], L(F") ~
1.8667 < L(F), and 2%, = {{00,01,10,11},{01,10,11}}.

Example 3.1.4. We confirm that Theorem 3.1.1 holds for k = 0. Choose
F € Zrog N Foxi N Fodee arbitrarily and define FT(f1, 1) € FO) as

fo(s) = fy(s), (3.5)
7(s) =0
for s € S, where
p € arg min L;(F). (3.7)
1€[F)

Namely, F' is the 1-code-tuple consisting of the most efficient code table of
F.
We can see that F' satisfies Theorem 3.1.1 (a)-(d) as follows.

(a) We obtain FT € F, directly from |FT| =1. By F € Fy.gec and Lemma
2.2.7, all code tables of F are prefix-free. In particular, fg = fp s

prefiz-free and thus FT € Fo.gec. Moreover, since fg 18 prefix-free and
|S| > 2, we have fg(s) £ X for some s € S, which shows F' € Z.y.
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(b) We have

LY = Lo(FY @ L(F) = 3" m(F)Ly(F) € 3 m(F)Li(F) = L(F),
1E[F) 1E[F]

(3.8)
where (A) follows from (3.5), and (B) follows from (3.7).

(c) By Py = {{\}} = 7.

(d) By | 70| = [{{\}}| =1=|F1].

As a consequence of Theorem 3.1.1, we can prove the existence of a k-
bit delay optimal code-tuple as the following Lemma 3.1.2 which proof is
relegated to Subsection 3.5.1.

Lemma 3.1.2. For any integer k > 0, there exists a k-bit delay optimal
code-tuple, equivalently, Fy op 7 0.

3.1.2 The Second Theorem

The second theorem gives a necessary condition for F' € Freg N Fext N Fk-dec
to be k-bit delay optimal. Recall that every internal node in a code-tree of
Huffman code has two child nodes because of its optimality. This leads to
that any bit sequence is a prefix of the codeword sequence of some source
sequence. More formally,

b e C*; °r e S*; fHuﬁ(m) = b, (39)

where fuug(x) is the codeword sequence of x with the Huffman code. The
following Theorem 3.1.2 is a generalization of this property of Huffman codes
to k-bit delay decodable code-tuples for & > 0.

Theorem 3.1.2. For any integer k > 0, F € Fpopt, © € Rp, and b € Czk,
if by € Pk, then b € Pf,.

Remark 3.1.1. A Huffman code is represented by a 0-bit delay decodable
1-code-tuple F € FV N Fygec. We have F € Foope by the optimality of
Huffman codes. Applying Theorem 3.1.2 to F with k = 0, we obtain

b e C*b € Py, (3.10)

which is equivalent to (3.9), and thus Theorem 3.1.2 is indeed a generalization
of the property (3.9) of Huffman codes.
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Table 3.2: An example of x € S* such that f(zx) = b, where F(f,7) := F*)
in Table 3.1, 7 € {0,1}, and b € C3

b 000 001 o010 o011 100 101 110 111

)
0 bb ba «c¢b ca a dec dd db
1 - - cb ca db da a ba

Example 3.1.5. For F(f,7) = F" in Table 3.1, we have F € Fy.qp; for
(u(a), u(b), p(c), u(d)) = (0.1,0.2,0.3,0.4) (c¢f. Ezxample 3.1.1). Theorem
8.1.2 claims that for any i € Rp = {0,1} and b € C=* such that bib, € P,
it holds that b € Pr;, that is, there exists x € §* such that f;(x) = b.

For i € {0,1} and b € C* such that biby, € Pf,;, Table 3.2 shows an
example of x € §* such that f}(x) = b. For ezample, we have fi(ca) = 011
and fi(ba) = 111. Note that bib, € Pf,; does not hold for (i,b) = (1,000)
and (i,b) = (1,001).

3.1.3 The Third Theorem

The third theorem enables us to assume without loss of generality that a
k-bit delay optimal code-tuple F' satisfies Pj; = {0,1} for any i € [F], that
is, F' belongs to the class Z., defined as follows.

Definition 3.1.3. We define %o as
Fiox = {F € F : Vi € [F], Py, = {0,1}}, (3.11)

that is, Pk is the set of all code-tuples F' such that Prpo = Pp1 = -+ =
'PF,|F|_1 = {0, 1}.

Theorem 3.1.3. For any integer k > 0 and F' € Free N Fe
exists F' € Freg N Fext N Fl-dec N Fiork such that L(F') =

it N Fldec, there
(F).
Corollary 3.1.1. For any integer k > 0, we have Fy_opt N Fiorx # 0.

3.2 Proof of Theorem 3.1.1

As a preparation for the proof of Theorem 3.1.1, we state the following Lem-
mas 3.2.1-3.2.4. See Subsection 3.5.2-3.5.4 for the proofs of Lemmas 3.2.1,
3.2.2, and 3.2.4, respectively.
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Lemma 3.2.1. Let k > 0 be an integer and let F(f,7) and F'(f',7") be
code-tuples such that |F| = |F'|. Assume that the following conditions (a)
and (b) hold.

(a) fi(s) = fl(s) for anyi € [F]| and s € S.

(b) 73;”(8) = 731’377{(8) for any i € [F] and s € S.
Then the following statements (i)—(iii) hold.

(i) For any i € [F'] and b € C*, we have Py, (b) = Pp. ;(b) and Pj,;(b) =

P i(b).

(i1) If F' € Pexy, then F' € Foy.

(i1i) If F € P gec, then F' € Fp_gec.
Lemma 3.2.2. For any F(f,7) € %y, T C [F], and p € I, the code-tuple
F'(f',7") € ZUED defined as (3.12) and (3.13) satisfies F' € Freg:

fi(s) = fils), (3.12)

)= {i«s) iy 1)
fori € [F'] and s € S.

Lemma 3.2.3. For any F € Z, there exists (ho, hi, ..., hp—1) € RIF sat-
isfying
Yi € [Fl;L(F) = Li(F) + Y _ (hj — hi)Qi;(F). (3.14)
JELF]

See 24, Sec. 8.2| for proof of Lemma 3.2.3. The vector h called “bias”
defined as [24, (8.2.2)] satisfies (3.14) of this thesis. This fact is shown as [24,
(8.2.12)] in |24, Theorem 8.2.6], where g, r, and P in [24, (8.2.12)] correspond
to the notations of this thesis as follows:

L(F) Lo(F)
g= Lf), r— M?U . P=Q(F). (3.15)
L(F) Lipi1(F)

A real vector (ho, hi, ..., hp-1) satisfying (3.14) is not unique. We refer
to arbitrarily chosen one of them as h(F) = (ho(F), hi(F), ..., hr-1(F)).
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Lemma 3.2.4. For any F(f, 1), F'(f',7) € Freg such that |F| = |F'|, if the
following conditions (a) and (b) hold, then L(F') < L(F).

(a) Li(F) = L;(F") for any i € [F].
(b) hrys)(F) = hyroy(F) for any i € [F] and s € S.
Using these lemmas, we now prove Theorem 3.1.1.

Proof of Theorem 3.1.1. We fix an integer k > 0 arbitrarily and prove The-
orem 3.1.1 by induction for |F|. For the base case |F'| = 1, the code-tuple
F' := F satisfies (a)—(d) of Theorem 3.1.1 as desired. We now consider the
induction step for |F| > 2.

We consider an irreducible part F(f,7) of F. By Lemmas 2.5.3 and 3.1.1,
the following statements (a)—(c) hold (cf. (a)—(c) of Theorem 3.1.1).

(a> F € fgzirr N yext N yk—dec-
(b) L(F) = L(F).
(€) Z5C Ph.

Therefore, if | #| = |F|, then F' := F satisfies (a)-(d) of Theorem 3.1.1
as desired. Thus, we now assume || < |F|. Then we can choose 7, j" €
[F] such that i' # j" and PE , = Pk » by pigeonhole principle. We define

F'(f', 1) e ZFUFD a5

fi(s) = fils), (3.16)
oy p if 7;(s) € Z,
ﬂ@)_{ﬂ@) £ 7(s) 2 T (3.17)

for i € [F'] and s € S, where

I:={i€lF]:Pg,=Pt,(=PE,)} (3.18)
and we choose )
p € arg Hél%l hi(F) (3.19)

arbitrarily.
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Then we obtain F' € F,e by applying Lemma 3.2.2 since F' € Z,. Also,
we obtain I’ € ey N Fpgec and

Py, = PE (3.20)

for any i € [F’] by applying Lemma 3.2.1 (i)-(iii) since f;(s) = f/(s) and

771’; ) = 77 o for any i € [F] and s € S by (3.16) and (3.17). Moreover,

Wwe can see

L(F') < L(F) (3.21)

by applying Lemma 3.2.4 because F” satisfies (a) (resp. (b)) of Lemma 3.2.4
by (3.16) (resp. (3.17)—(3.19)).

Since |Z| > |{#',j'}| > 2, we have T \ {p} # 0. Also, for any i € T\ {p},
we have i € R since for any j € [F']\ {i}, there exists no £ € §* such that

7;*(z) =i by (3.17). Therefore, we have

Re S [F]. (3.22)

For an irreducible part £ of F’, we have

_ (A) _
[P = [Rp| < [F'| = |F| = |Rp| < |F], (3.23)

where (A) follows from (3.22). Therefore, by applying the induction hy-
pothesis to I, we can see that there exists F'' € .% satisfying the following
conditions (aT) (df).

irr N eg.ext N cg.k-dec-

(af
(b'

) F

) L(F') < L(FY).
(f) Pk, C P,
(d) |2, | = |F|.

We can see that FT is a desired code-tuple, that is, FT satisfies (a)—(d) of
Theorem 3.1.1 as follows. First, (a) and (d) are directly from (af) and (d),
respectively. We obtain (b) as follows:

Ly S oy @ Ly < L) © L), (3.24)
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where (A) follows from (b'), (B) follows from Lemma 2.5.3, (C) follows from
(3.21), and (D) follows from Lemma 2.5.3. The condition (c) holds because

(A) (B) (D)
7k, C 7k C ok D Pk C P, (3.25)

where (A) follows from (c'), (B) follows from Lemma 3.1.1, (C) follows from
(3.20), and (D) follows from Lemma 3.1.1. O

3.3 Proof of Theorem 3.1.2

Proof of Theorem 3.1.2. We prove by contradiction assuming that there exist
p € Rpand b= biby...b € CZ* such that

b Phy, biby...by € P, (3.26)

Without loss of generality, we assume p = |F| — 1 and b is the shortest
sequence satisfying (3.26). Because we have | > k by (3.26), we have
pref(b) = biby... by € Pl'f” Fl-1- Since b is the shortest sequence satisfying
(3.26), it must hold that pref(b) € Py, _,. Hence, by I € Feyy and Lemma
2.3.2 (i), we have d = dyd; . . . d; := pref(b)b, € Prr_1- Namely, we have

d € Prp_1,  pref(d)d; =b & Pr gy (3.27)

We state the key idea of the proof as follows. By (3.27), whenever the
decoder reads a prefix pref(d) of the codeword sequence, the decoder can
know that the following bit is d; without reading it. Hence, the bit d; gives
no information and is unnecessary for the k-bit delay decodability of the
mapping fz_,. We consider obtaining another code-tuple F" € Fe N
Foxt N Fp_aee such that L(F") < L(F') by removing this redundant bit, which
leads to a contradiction to F' € % o as desired. However, naive removing
a bit may impair the k-bit delay decodability of the other mappings f; for
i € [|F| —1]. Accordingly, we first define a code-tuple F” which is essentially
equivalent to I’ by adding some duplicates of the code tables to F. Then
by making changes to the replicated code tables instead of the original code
tables, we obtain the desired F” without affecting the k-bit delay decodability
of ff fori e [|F]—1].

We define the code-tuple F’ as follows. Put L = |F|(|d| + 1) and
M = |S=L|. We number all the sequences of SF as 20, 21V () (M=)
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in any order but z® = \. For 2/ € S5 we define (2/) = |F| — 1 +

t, where t is the integer such that 2z = 2. Note that (\) = |F| — 1

since 20 = X. We define the code-tuple F' € ZFUFI=1+M) congisting of

fé? f{? cee 7f‘/F‘_17 f</z(1)>7 f(lz(2)>7 R f(lz(M—l)> and Té? T{u s 7T|/F|_17 T</z(1)>7 T</z(2)>7
/

s Tiyr-1)y 88

fi(s) = fT{M(z)(S) if i = (z) for some z € S=L, 3.28)
' fi(s) otherwise,
(zs) if i = (z) for some 2z € S,
Ti/(s) - 7—<*)\> (ZS) if 1= <Z> for some z € SL) (329)
7;(s) otherwise

for i € [F'] and s € §. Then F” satisfies the following Lemma 3.3.1. See
Subsection 3.5.5 for the proof of Lemma 3.3.1.

Lemma 3.3.1. For any z € S<%, the following statements (i) and (i) hold.
(i) 75(2) = (2).
(11) (z) € Rpr.

Lemma 3.3.1 (i) claims that the code table in F” used next after encoding
z € S=" starting from f[,, is f{,), which is a duplicate of the code table in F
used next after encoding 2z starting from f(yy. This leads to the equivalency
of F' and F’ shown next.

We confirm that F” is equivalent to F', that is, [’ € Freg N Fext N Fh-dec
and L(F") = L(F). We obtain F’ € F,¢, from Lemma 3.3.1 (ii) and Lemma
2.5.2 (i). To prove F' € Foyy N P gec and L(F') = L(F) by using Lemma
2.5.1, we show that a mapping ¢ : [F'] — [F] defined as the following (3.30)
is a homomorphism:

: i if i € [F],
- 3.30
©(1) {T<*/\> (z) if i = (2) for some z € S=F ( )

for i € [F’]. The case i = |F|—1 = (\) applies to both of the first and second
cases of (3.30). However, this case is consistent since 77,(2) = 70,,(A) =
(\) = i. We see that ¢ satisfies (2.64) directly from (3.28) and (3.30). We
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confirm that ¢ satisfies also (2.65) as follows:

(¢((23)) if i = (2) for some z € SSL71,
plri(s) & p(mhy(2s)) if i = (z) for some z € S*, (3.31)

Lp(7i(s)) otherwise,

N r7-<*>\> (zs) if i = (z) for some z € SSE71

- 7-<*>\> (zs) if i = (z) for some z € St (3.32)
(7i(s) otherwise,

O8N KEAN @(s) ifi= (z) for some z € S=F, 533
7i(s) otherwise,

D)

= To(i) (5), (3.34)

where (A) follows from (3.29), (B) follows from (3.30), (C) follows from
Lemma 2.1.1 (ii), and (D) follows from (3.30). Hence, by Lemma 2.5.1 (iv)-
(vi), we obtain F' € ey N Frgec and L(F') = L(F).

Now, we define a code-tuple F” € ZFF'D as

oy (@) pref(d)d=" (f75, (25))

1l(s) = if i = (z) and f<’f\> (2) <d = f<’f\>(zs) for some z € S=F,
fi(s) otherwise,
(3.35)
7' (s) = 7/(s) (3.36)

fori € [F"] and s € S.

Intuitively, (3.35) means that F" is obtained by removing the bit d; from
codeword sequences of I such that f7},(z) = d.

Then F” satisfies the following Lemma 3.3.2. See Subsection 3.5.6 for the
proof of Lemma 3.3.2.

Lemma 3.3.2. The following statements (i)-(iii) hold.
(i) For any z € S and x € SSF71# we have
o) {f<’§> (o) pref @) (7 (50)) if F1y(2) < d < fl (23),

x
I [ (@) otherwise.
(3.37)
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(ii) For any z € S<F and s,s' € S, if fin(s) = [y (s), then fi,(s) <
f</z>(5/>'

(iii) For any x € S=, we have 1oy @) =115(@)| = |d|+1 and [f7(2)] >
d].

We show that [ € Freg N Fext N Frdec and L(F") < L(F") (= L(F) as
shown above), which conflicts with F' € %}, and completes the proof of
Theorem 3.1.2.

(Proof of F"" € F,ee): From F' € Z,e, and (3.36).

(Proof of F" € Z): Choose j € [F"] arbitrarily. Since (\) € Rp =
R by Lemma 3.3.1 (ii) and (3.36), there exists £ € S* such that

7" (x) = (A). (3.38)
Also, we can choose ' € S” such that
o) =d (3.39)

by Lemma 3.3.2 (iii). We have

7 @) D11 @)+ 1 £y (@) (3.40)
2 ’f;?*(z)(mlﬂ (3.41)
2t @) (3.42)
S 15 ) pret(d)d £y (@) (3.43)
= /@) -1 (3.44)
5 d| (3.45)
> 1, (3.46)

where (A) follows from Lemma 2.1.1 (i), (B) follows from (3.38), (C) follows
from (3.39) and the first case of (3.37), and (D) follows from Lemma 3.3.2
(iii). Hence, by (2.16), Pgn; # 0 holds for any j € [F"], which leads to
" € Foy as desired.

(Proof of L(F") < L(F")): For any i € [F"] and s € S, we have |f/(s)| <
|f1(s)| by (3.35). Hence, for any i € [F"], we have

m(FYLy(F") < m(F')Ly(F"). (3.47)
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By Lemma 3.3.2 (iii), we can choose £ = x175...2;, € S* such that
f<’i{> (x) = d. Since f<’§>()\) <d =< f{f\> (x), there exists exactly one integer r
such that

foy@we . xeq) <d 2 f5 (1my .2y, (3.48)

which leads to

(@)l 2 £ () pref(@)d (£ (z2,))| = | flay ()] = 1 < |fay (@),
(3.49)

where z == x129...2,_1, and (A) follows from (3.48) and the first case of
(3.35). This leads to

7T<z>(F/)L<z> (F”) < T(z) (F’)L<z>(F/) (350)

because 7,y (F') > 0 by Lemma 3.3.1 (ii) and Lemma 2.5.2 (ii).
Hence, we have

L(F") = Z mi(F")Li(F") (3.51)

1E[F"]

Y NT (P Li(F) (3.52)
i€[F")

= > m(F)Li(F") + me (F') Lz (F") (3.53)
i€[F"\{(2)}

(B)

< Y m(F)Li(F) + ey (F') Ly (F”) (3.54)
i€[F"\{(2)}

©)

S R(F)L(F) + i (F) Ly (F) (3.55)
i€[F"\{(2)}

=Y m(F)Li(F) (3.56)
i€[F"]

= L(F) (3.57)

as desired, where (A) follows from (3.36), (B) follows from (3.47), and (C)
follows from (3.50).

(Proof of F” € Py gec): To prove F" € F gec, we use the following
Lemma 3.3.3, where J = ([F']\ (\) U{(z) : z € St} = [F']\ {{2) : z €
S=L=11. See Subsection 3.5.7 for the proof of Lemma 3.3.3.
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Lemma 3.3.3. The following statements (i)-(iii) hold.

(i) For anyz € S* andc € C=*, if [15(@) = ¢, then [}, (z) = c. Therefore,
we have Pﬁ/’<A> o Pf,,,7</\> by (2.16).

(i) For anyi € J and s € S, we have f]'(s) = fi(s).

(iii) For any i € J and b € C*, we have Pk, ;(b) C Pf. ;(b) and Py, ,(b) C
Pier(0).

Also, for z € §*, we define a mapping ¢, : C* — C* as

ba(b) = foy (2)"tdpref (@) (f75, (2)b)  if f75(2) = pref(d) < £33, (2)b,
b otherwise
(3.58)
for b € C*. Then 1, satisfies the following Lemma 3.3.4.

Lemma 3.3.4. The following statements (i)—-(iii) hold.
(i) For any z € 8* and b,b' € C*, if b < b, then 1,(b) < ¥, (V).

(i) For any z € SSF, x € S and ¢ € C*, we have

pref(ff3 () if f13)(2) < 73 (z2) =d,c = ),
fi3(@)Y2z(c) otherwise.

b5 (®)e) = {

(iii) For any z € S¥ and b € C*, we have 1),(b) = b.

See Subsection 3.5.8 for the proof of Lemma 3.3.4.

By Lemma 3.3.4 (ii) with ¢ = A, it holds that ¢,(f(z)) = f},(z) in
most cases. Thus, we can intuitively interpret the mapping v, as a kind of
an inverse transformation of (3.37). We prove k-bit delay decodability of F”
later by attributing it to k-bit delay decodability of F’ using ,.

Now we prove F” € % gec. We first show that F” satisfies Definition
2.2.3 (a). Namely, we show that 771’3,,77_,(5) NP (f](s)) = 0 for any i € [F”]
and s € S dividing into the following two cases: the case i € J and the case

ie[F)\J.
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The case ¢ € J: Then for any 7 € J and s € §, we have

Pl i O P (F1(8)) © Pho oy VPRI (360

2 Ph i N PhF(9)) (3.61)

= (3.62)

where (A) follows from Lemma 3.3.3 (i) (iii) since 77(s) € [F], (B)

follows from Lemma 3.3.3 (ii) and (3.36), and (C) follows from F’ €
gk—dec-

The case i € [F"] \ J: We prove by contradiction assuming that there
eXiSt z € SSL_I, s &€ S, and C &€ Pﬁv//’<z>(f</;>($)> N Pfj‘//’<zs>. By C &€
771’?,, ) (f5y(s)) and (2.13), there exist z € St and y € 8* such that

fio(@y) = [ (s)e (3.63)
and
[y (1) = [y (). (3.64)
By Lemma 2.3.1, we may assume
|f<':; (y)| > max{k,1}. (3.65)
By (3.64) and Lemma 3.3.2 (ii), we obtain

This shows that féz) is not prefix-free, which conflicts with I’ € .%_gee
in the case k = 0 by Lemma 2.2.7. Thus, we consider the case k > 1,
that is,

c# A\ (3.67)

Equation (3.63) leads to

o (@y) = Sl (s)e 22 (0 @) = da(fl (s)e) (3.68)
<(:>¢z(f””§()<'§;>( ) = ea(fly(s)e)  (3.69)
b @l @) = Fly(8)sle)  (3.70)
Eb fi @) @) = [y (5w, (3.71)
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where (A) follows from Lemma 3.3.4 (i), (B) follows from Lemma 2.1.1
(i) and Lemma 3.3.1 (i), (C) follows from (3.65), (3.67), and the second
case of (3.59), and (D) follows from Lemma 3.3.4 (iii) and |zz| = L.

Then by (3.66) and (3.71), we have

fioy @)y @)k = iy (9)[as(€)] (3.72)
Also, we have
1% (A)
[f(za:) (y)]k < Pf”’,(zx) C Pg”,(zm)? (373>

where (A) follows from Lemma 3.3.3 (iii) and (zz) € S¥ C J. Hence,
by (2.16) there exists y' € S such that f7,,(y") = [f (¥)]k, which
leads to

)
fo@y) = @) fonW) = 16@) @ = fi(s) sk,
(3.74)

where (A) follows from (3.72). Equations (3.66) and (3.74) show
[V25(€)]n € P i) (f12(3)) (3.75)

by (2.13).

On the other hand, by ¢ € Pkm(
and y € §* such that

> and (2.16), there exist x € St—/#!

zSs

fizo(@y) z e (3.76)

By Lemma 2.3.1, we may assume
[y @) = k> 1. (3.77)

We have

(©)
L0 @) Fay @) 2 i @) ([ @) 2 (£ (29)) = as(e),
(3.78)

where (A) follows from Lemma 3.3.4 (iii) and |zsz| = L, (B) follows
from (3.77) and the second case of (3.59), and (C) follows from (3.76)
and Lemma 3.3.4 (i).
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Hence, we have

Fio) @) f ey @)k = [Yzs(0)]k- (3.79)
Also, we have
1% (A)
[f<zsm> (y)]k € ’Pf?”,(zsa:) C ’Pl]?’,(zsxw (380)

where (A) follows from Lemma 3.3.3 (iii) and (zsz) € S* C J. Hence,
there exists y' € S* such that f5 . (y') = [f/ ., (y)]x, which leads to

(zx) (zsz)

(A)

where (A) follows from (3.79). This shows

[V2s(€)]k € Pl (3.82)

by (2.16). By (3.75) and (3.82), the code-tuple F’ does not satisfy
Definition 2.2.3 (a), which conflicts with F’ € Zy_gec-

Consequently, F" satisfies Definition 2.2.3 (a).

Next, we show that F” satisfies Definition 2.2.3 (b). Namely, we show
that for any ¢ € [F"] and s,s" € S such that s # s and f/'(s) = f/'(s'), we
have P?”,TZ-/(S) N 7)1];',7;(5/) = (). We prove for the following two cases: the case
i € J and the case i € [F"]\ J.

e The case i € J: Then for any i € J and s,s" € S such that s # s’ and
fi'(s) = f'(s'), we have

fi(s) = fi(s) (3.83)
by Lemma 3.3.3 (ii), and we have
k k @ k B) 1k k ©
PF“,T{’(S) N PF”,T{’(S’) g PF/,T{I(S) N PF’,TZ-”(S’) == PF’,T{(S) N PF/,TZ{(S/) - @,
(3.84)

where (A) follows from Lemma 3.3.3 (i) (iii) since 7/'(s), 7/ (s) € [F],

» '

(B) follows from (3.36), and (C) follows from F’ € % _gec and (3.83).

e The case i € [F"]\ J: We prove by contradiction assuming that there
exists z € S 5,5’ € S, and ¢ € Pl 1, N Pl (g such that s # s
and

fizy(s) = [ (s). (3.85)
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By the similar way to derive (3.82), we obtain

[Vas(€)] € Pl oy (3.86)

from ¢ € 731’2,,7<zs>. By (3.85) and Lemma 3.3.4 (i), we have

Viay (fl2y(8)) = iy (i) (5))- (3.87)
By Lemma 3.3.4 (ii), exactly one of f/,,(s) = fi,,(s'), fi,(s) < f1,,(s),

and f7,(s) > f,/(s') holds. Therefore, f, is not prefix-free, which
conflicts with F’ € % gec in the case & = 0 by Lemma 2.2.7. We
consider the case k > 1, that is,

c# N (3.88)

We consider the following two cases separately: the case f<’z>(s) =
fi»y(8') and the case fi,,(s) < f,(s'). Note that we may exclude the
case f(,(s) = fi,(s') by symmetry.

— The case fi,(s) = fi,,(s): By (3.58), we have ¢,(c) = s (c)
and thus

(@)t = [aw (@i € Pl o, (3.89)

where (A) is obtained from ¢ € 77}'?,,’<z5,> by the similar way to

derive (3.82).

By (3.86), (3.89), and f,\(s) = f,(s'), the code-tuple F" does

not satisfy Definition 2.2.3 (b), which conflicts with F’ € Zy_gec-
— The case f[,,(s) < f(,)(s"): Then by (3.87) and Lemma 3.3.4 (ii),

it must hold that

[h(2) =< Sy (25) = d (3.90)

and
flay(8) = pref(fi, (s")). (3.91)
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Thus, we have

Flay(s)d 2 pref(fl, (s))dy (3.92)
= @)y (2)pref (fl) (s)di (3.93)

= f& (2)” pref( y(25))d; (3.94)

S 115, (2) pref(@d)d, (3.95)

= f’* (z)—ld (3.96)

= f’* (2)~'fy(28) (3.97)

Foy @) () fly(s) (3.98)

f<z>(8’) (3.99)

where (A) follows from (3.91), (B) follows from Lemma 2.1.1 (i)
and Lemma 3.3.1 (i), (C) follows from (3.90), (D) follows from
(3.90), and (E) follows from Lemma 2.1.1 (i) and Lemma 3.3.1
().

Also, we have

pref(d) = pref(f y(25)) (3.100)
= pref(f3(2) £, (s) (3.101)
2 pref (f(3) () £y (5)d) (3.102)
= [y () [y (5) (3.103)
— fla(29), (3.104)

where (A) follows from (3.90), and (B) follows from (3.99).

By ¢ € Pk and (2.16), there exist € S¥1#'l and y € S*
such that

”,<ZS/>

flown (@y) = (3.105)

By Lemma 2.3.1, we may assume

| floway @) = k> 1. (3.106)

ZS.’II

78



We have
f</z> (Sl)fgsq (-’”)f(’éif@ (y)

D (Ve (Fly (@) vy ) (3.107)

E) (5 bar (f ey () (3.108)

> fiay (820 (€) (3.109)

2 11 (8)dias (o) (3.110)

2 L (s)dic (3.111)

f<’ (s)pref(d)~"dpref(d)~" (pref(d)c) (3.112)

D 11, (5) £y (25) " "dpref(d) (115, (z5)e) (3.113)

S 1l (5mslo), (3.114)

where (A) follows from (3.106) and the second case of (3.59), (B)

follows from Lemma 2.1.1 (i) and Lemma 3.3.1 (i), (C) follows
from (3.105) and Lemma 3.3.4 (i), (D) follows from (3.99), (E)
follows from the second case of (3.58) because f73,(zs') = pref(d)
does not hold by (3.90), (F) follows from (3.104), and (G) follows
from the first case of (3.58) because f{},(zs) = pref(f(3},(25")) =
pref(d) < f7},(2s)e by (3.90), (3.91), and (3.88).

Hence, by f,\(s) < fi,y(s'), we have

Fiey () fizany @) oy @)k = iy (5)[0zs () - (3.115)

Also, we have

(4)
[f(,,/zs’x> (y)]k € ,Pllf“”,(zs’x) C P]]f“’,(zs’mw (3'116)

where (A) follows from Lemma 3.3.3 (iii) and (2s'z) € S* C J.
Hence, there exists y' € S such that f7.,(¥") = [/ @)k
which leads to

f</:>(5/$yl) = f(/z>(8/>f(/:s’)(x)f</:s’x> (") (3.117)
= L) oy @) @) (3.118)
(A)
= f{z)(s)[sz(c)}kv (3-119>
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where (A) follows from (3.115). The assumption that f,(s) <
fi,y(s") and (3.117) shows that
Vanle))e € Pl (11 (5)) (3.120)

by (2.13). By (3.86) and (3.120), the code-tuple F’ does not satisfy
Definition 2.2.3 (a), which conflicts with F’ € Zy_gec.

Consequently, " satisfies Definition 2.2.3 (b). O

3.4 Proof of Theorem 3.1.3

The outline of the proof is as follows. First, we define an operation called
rotation which transforms a code-tuple F € Fext Into another code-tuple
F € #. Next, we show that for any F' € Fes N Fexy N Fhdec, We have
Fec Freg N Fext N Fr-dec and L(ﬁ ) = L(F'). Namely, the rotation preserves
“the key properties” of a code-tuple. Then we prove Theorem 3.1.3 by showing
that any F' € Freg N Fext N Fpodec can be transformed into some F’ € Fo N
Foxt N Fh-dec N Fiork Dy TOtation in a repetitive manner without changing the
average codeword length.

Definition 3.4.1. For F(f,7) € Fux, we define F(f,7) € F as follows.
Fori € [F] and s € S,

2o ) fi(8)dras if Pr; =1{0,1},
fi(s) = {suff(fi(s)dpﬂ(s)) FPL £ {01}, (3.121)
7i(s) = Ti(s), (3.122)

where
0 if Pp; = {0},
drp; =<1 sz}Z = {1}, (3.123)
A if P ={0,1}.

The operation which transforms a given F € oy into FeZ defined above
15 called rotation.

Example 3.4.1. Table 3.4 shows Pp,;,i € [F] and dp;,i € [F] for the code-
tuples FO), FO) and F©) in Table 3.3.
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Table 3.3: Examples of a code-tuple F(), F©®) and F()
seS fo(v) Tév) fl(w) 7_1(7) 2(’7) 72(7)
a 01 0 00 1 1100 1
b 10 1 A 0 1110 0
c 0100 0 00111 1 111000 2
d 01 2 00111 2 110 2

T A A G
a 01 0 00 1 100 1
b 10 1 A 0 110 0
¢ 0100 0 00111 1 110001 2
d 011 2 001111 2 101 2

T P N A A S
a 01 0 00 1 00 1
b 10 1 A 0 10 0
c 0100 0 00111 1 100011 2
d 0111 2 0011111 2 011 2

Example 3.4.2. In Table 3.3, F% is obtained by applying rotation to F),

FO.

that is, F©) = FO) . Also, F(9) is obtained by applying rotation to F9, that
is, F() = FO)_ Furthermore, we obtain F'© itself by applying rotation to
F© | that is, F(© = F(),

Directly from Definition 3.4.1, we can see that for any F'(f,7) € Fext, i €
[F], and s € S, we have

szJ?z(S) = fi(8)drz(s)- (3.124)
This relation (3.124) is generalized to the following Lemma 3.4.1.

Table 3.4: P};,i € [F] and dp;,i € [F] for the code-tuples F(, F® and
F(© in Table 3.3

,P]%“’() dF,O 7)}1771 dF,l ,P}qz dF,2
FO [ {o,1} X {o,1} X {1} 1
FO | {o,1} X {o,1} X {1} 1
FO | {0,1} X {0,1} X {0,1} A
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Lemma 3.4.1. For any F(f,7) € Fex, 1 € [F], and x € S*, we have

dpif; (@) = [} (@)dpr@)- (3.125)

Proof of Lemma 3.4.1. We prove the lemma by induction for |z|.
For the base case |z| = 0, we have

dri 7 (@) = dps i) 2 dpid = Mpg 2 F; (Ndie oy = F(@)dp )
(3.126)
as desired, where (A) and (B) follow from (2.4).
Let [ > 1 and assume that (3.125) holds for any ' € §* such that |z/| <[
as the induction hypothesis. We prove that (3.125) holds for any x € S'. We
have

drifr@) Y dpifo(@) o ) (suff(z) (3.127)
@ @) o) F ooy (S0 () (3.128)

2 fiw) ri(en) U (@) dpre suti(e) (3.129)

= fz(xl) (o) (U (2))d 7 @) (3.130)

2 [ (@)dper o (3.131)

as desired, where (A) follows from (2.4), (B) follows from (3.124), (C) follows
from the induction hypothesis, (D) follows from (2.5), and (E) follows from
from (2.4). O

Example 3.4.3. For F(f,7) = FO) of Table 3.3, we have F = F©) as seen
in Example 3.4.2. We can see dF2f2 (bbe) = 1f2( )fo( )fl( ) = 11101000
and f5(bbc)drrsmbey = f5(bbe)drr = fo(b) fo(b)fi(c) = 11101000. Hence,

we confirm dpsf5(bbe) = f5 (bbe)drrs (o) -

Next, we prove that if F' € Freg N Fext N Fpodec, then Fecg Freg (N Fext N

Frdec and L(F) = L(F). To prove it, we show the following Lemmas 3.4.2-
3.4.4.

Lemma 3.4.2. For any integer k > 0 and F(f,7) € Fr.qec N Fext, we have
F(fa?) € yk-dec-

Lemma 3.4.3. For any F(f,7) € Fexs, we have ﬁ(ﬁ T) € Fext-
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Lemma 3.4.4. For any F' € F,e, we have FeZ Freg ANA L(F) L(F).

The proof of Lemma 3.4.2 relies on Lemma 3.4.5 whose proof is relegated
to Subsection 3.5.9.

Lemma 3.4.5. Let F(f,7) € Zexi. There exists no tuple (k,i,z,2') satisfy-
ing all of the following conditions (a)—(c), where k is a non-negative integer,
i € [F], and z,z’ € S*.

(a) F e yl@—dec-
() |f@)| +k < |f7 (@)
(c) & <.

Proof of Lemma 8.4.2. Fix i € [F] and (z,¢) € 8* x C* arbitrarily. Also,
choose ' € §* such that

~

fi@e =< fi () (3.132)
arbitrarily. Then, we have szf ()e = dp; ( ). From Lemma 3.4.1, we
have fi(x)dp,+@c 2 fi (@' )dr@). By (3. 123) there exists £” € S* such
that

dpri@y 2 fre@n(@”). (3.133)
Defining ¢ := [dp;+(z)c]r, we have

fi (@) 2 [ (@)dpr@e (3.134)
Y dp fr(@)e (3.135)

B) ~

C *

Q@) dp @) (3.137)
i [ @) [ 7 @ (&) (3.138)
f (z'z"), (3.139)

where (A) follows from Lemma 3.4.1, (B) follows from (3.132), (C) follows
from Lemma 3.4.1, (D) follows from (3.133), and (E) follows Lemma 2.1.1
(i).

In general, exactly one of the following conditions holds: z < z'; z >
z;z ¥ 2’. Now, z > 2 is impossible because if we assume z > z’, then
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the tuple (k,i,z) satisfies the conditions (a)-(c) of Lemma 3.4.5, where the
condition (b) follows from by (3.132). Thus, it suffices to consider the case
where either z < 2’ or z # 2’ holds.

By F € % qec, the pair (z,¢) is ff-positive or fi*—negative If (z,¢)
is fr-positive (resp. f-negative), then we have x -< z'z” (resp. z A x’ ")
by (3.139). This implies that 2 < &’ (resp. ¥ ') holds since z > 2’ is
impossible. Since ' is chosen arbitrarily, the pair (.’L‘ c) is f -positive (resp.
ﬁ—negative), respectively. Therefore, we have Fe F-dec- O

Proof of Lemma 8.4.3. Fix i € [F] arbitrarily. By F € Z. and Lemma
2.3.1, there exists x € §* such that |f(z)| > 2. For such &, we have

S B ®
117 @) = |7 @)+ |dprr @] — ldral = 1, (3.140)

where (A) follows since dpzﬁk(x) = fi(x)dp,+(z) by Lemma 3.4.1, and (B)
follows from [f;(x)| > 2,|dpr+@)| = 0, and |dp;[ < 1. Therefore, we have
F\ S ngext- |:|

Proof of Lemma 3.4.4. By (3.122), for any i,] G [F], we have Q”(ﬁ) =
Qi j(F) (cf. Remark 2.4.1). Thus, we have FeZ Freg, and for any i € [F], we
have

mi(F) = m(F). (3.141)
Also, for any i € [F], we have
i S€$|fl dFTl 8)| M( ) lflgBa (3142)
seS|Suff fl )dF‘r's)|':u(S) leEB,
_ Li(F) + ZSES |dFTz(S |- pu(s) ifi¢B (3.143)
LZ )+ D ses [drms) - p(s) =1 if i € B,
(B) L;(F) +Z]63Q”( ) if i & B, (3.144)
Li(F) + 2 5 Qig(F) —1 if i€ B,

where B := {i € : Pr; # {0,1}}, (A) follows from (3.123), and (B)

A
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follows from (3.121). Therefore, we obtain

L(F) =" m(F)Li(F) (3.145)
1E€[F)
= > mEML(E) + Y m(F)Li(F) (3.146)
€[F\B i€B
2N mE)LF) + Y Qiy(F))
i€[F)\B jeB
+) (P Li(F) + ) Qiy(F) — 1) (3.147)
i€B jeB
= > m(F)Li(F)+ Y m(F)Li(F
i€[F\B 1€eB
+ Y D mF)Qu(F)+ Y Y m(F)Quy(F) =) m(F)
i€[F]\B jeB i€B jeB i€B
(3.148)
=Y m(F )+ DD m(F)Qig(F) = m(F) (3.149)
1€[F] i€[F] jeB jeB
EDIL +ZZ% )Qig(F ZZ% )Qi(F
i€[F) F] jeB JEB ie[F
(3.150)
= m(F)Li(F) (3.151)
1€[F)
= L(F), (3.152)

where (A) follows from (3.141) and (3.144), and (B) follows from (2.56). O

To prove Theorem 3.1.3, for an integer k > 0, F' € Fp.qec N Foxt, and
i € [F], we define lp; as

lp; == min{|f/ () A f{ ()] z,2" € S*, fi(x) & [/ (z)}. (3.153)
Example 3.4.4. Table 8.5 shows lp;,i € [F] for the code-tuples F(), F(©)
and F© in Table 3.3.

Note that

(A)

lpi=0 <= Ph,=1{0,1} < dp, =0, (3.154)
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Table 3.5: l;,i € [F] for the code-tuples F) F(® and F(© in Table 3.3
F lro lp1 lrp
FO 1l 0 0 2
FO 1 0 0 1
FOl 0 0 0

where (A) follows from (3.153), and (B) follows from (3.123).
The following Lemma 3.4.6 guarantees that the right hand side of (3.153)
is well-defined.

Lemma 3.4.6. For any integer k > 0, F(f,7) € Prqec N Fexs, and i € [F],
there exist x, &’ € 8* such that ff(zx) & f7(z').

Proof of Lemma 3.4.6. We prove by contradiction assuming that there exist
an integer k > 0, F(f,7) € Frdec N Fext, and i € [F] such that for any
2,5 € §°, we have f(z) < f1(&') or fi(z) = fi(&).

Choose two distinct symbols s,s" € S arbitrarily. Then we have f(s) <
fi(s") or f¥(s) = fI(s') by the assumption, and we may assume f7(s) =<
f#(s") by symmetry. By F' € % and Lemma 2.3.1, we can choose z,z’ € §*
such that

|f7 (sz)| = £ (S = [ f7 ()] + k. (3.155)
Then by the assumption, we have
fr(sz) < f(57) or fi(sz) = f(5). (3.156)
By (3.155) and (3.156), it holds that
fi(sx) = fH (L) = fi(s)e (3.157)

for some ¢ € C*. By (3.157) and s < sz, the pair (s,¢) € S x CF is not
f#-negative. Also, by (3.157) and s A sz, the pair (s,¢) is not f-positive.
Consequently, the pair (s,¢) € St x C* C 8* x CF is neither f/-positive nor
f#-negative. This conflicts with F' € Fy_gec. d

Now we state the proof of Theorem 3.1.3 as follows.
Proof of Theorem 3.1.3. For non-negative integer ¢t = 0,1,2,..., we define
FO(fO +0) € F as follows.

F if t =0
w._ )
P’._{F“D s (3.158)
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that is, F') is the code-tuple obtained by applying ¢ times rotation to F.
From FOO = F ¢ Jreg N Fext N Frdec and Lemmas 3.4.2-3.4.4, for any
t > 0, we have F®) ¢ .Z Freg N Foxt N Fh-dec and L(F ) = L(F). Therefore,
to prove Theorem 3.1.3, it suffices to prove that there exists an integer ¢ > 0
such that F'®) € Fy,,.. Furthermore, by (3.154), it suffices to prove that for

some integer t > 0, we have lF(z)p = lF®,1 =...= lF({)7‘F‘_1 =0.
Fix i € [F] and choose z,2’ € S* such that
9@ £ 1Y), (3.159)
’fi*(t) () A fi*(t) (@) = lpwy ;- (3.160)

Then we have

dF,ifi*(t+1) (.’L') (i) fi*( )dFT % f ( /)dF,Ti*(a:) (g) dF,ifi*(t+1)($/)a
(3.161)
where (A) follows from Lemma 3.4.1, (B) follows from (3.159), and (C) follows
from Lemma 3.4.1. Hence, we obtain

[ @) 70 @), (3.162)
We have

lrog 2 1570 @) A 7O (@) (
1O @) o o) A SO @)oo @) (
| dpio 7D (@) A (dpeo 7 (@)) (3.165)
= |dpw | + 17V @) A 7D (@) (3.166)

(D)
> |dpw | + Lpesn 4, (3.167)

3.163)
3.164)

where (A) follows from (3.160), (B) follows from Lemma 3.4.1, (C) follows
from (3.162), and (D) follows from (3.162). By (3.154) and (3.167), we

have lp@r1); = 0 if lpw; = 0 and lpesn ; < lpw ,; if lpw ; > 0. Therefore,
lpw,; =0 for any t > l r ;. Consequently, we obtain F f) € Fiork, Where
t —max{lpo,lpl,.. lF|F| 1} O
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3.5 Proofs of Lemmas in Chapter 3

3.5.1 Proof of Lemma 3.1.2

Proof of lemma 3.1.2. For m € {1,2,..., M = 2(2k)}, the number of possi-
ble tuples (70, 71,...,Tm-1) (i-e., a tuple of m mappings from S to [m]) is
m!SI™_in particular, finite. Hence, the number of possible vectors 7(F’) =
(mo(F"), w1 (F"), ..., Tm—1(F")) of a code-tuple F’ € F' is also finite (cf. Re-
mark 2.4.1), where

F' = {F € Ty N Fuxe N Fraee : |F'| < M}. (3.168)

Therefore, D = {m(F’) : F' € Z',i € [F']} is a finite set and has the
minimum value § := minD. Note that ¢ > 0 holds since m;(F") > 0 for any
F'€ " and i € [F'] by %' C %, and Lemma 2.5.2 (ii).

Now, we define

F={F(f,7)eF > fils) <) (3.169)
i€[F'],seS

where [ := [log, |S|] and v := minges 11(s). Note that

1
O<v< g (3.170)

Then %" is not empty because F(fo,70) € F defined as the following
(3.171) is in F":
fols)) =b(r), Fo(sy) =0 (3.171)

for r =0,1,2,...,0 — 1, where S = {s9,51,...,5,-1} and b(r) denotes the
binary representation of length [ of the integer r. In fact, we obtain F' € .#”

by
- . (A)
Z | fi(s)] :nyo(s)\ =S|l <

i€[F),seS seS

where (A) follows from (3.170), and (B) follows from 0 < ¢ < 1. Since .Z#" is
a non-empty and finite set, there exists F™* € .#” such that

B) |
< — 172
— v’ (3.172)

R~

L(F*) = min L(F"). (3.173)

FreFn
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To complete the proof, it suffices to show that L(F*) < L(F') for any F €
gzreg N Lgfext N egrk-deo

First, we can see that L(F*) < L(F’) for any F' € %’ because for any
F'(f',7") e F'\ F", we have

L(F') =) m(F)Li(F) (3.174)

i€[F)

= > m(F) Y ul9)lfi(s)] (3.175)
1E[F’] s€S

Y > 1)l (3.176)

1€[F'],s€S

Vs % (3.177)

= (3.178)

= L(F) (3.179)

©)

> L(F™), (3.180)

where (A) follows from the definitions of § and v, (B) follows from F’ ¢ .F",
and (C) follows from (3.173). Hence, we have

L(F*) = min L(F"). (3.181)

FeF

By Theorem 3.1.1, for any F' € Freg N Fext N F-dec, there exists F' €

tgiirrmtg[extmyk-dec such that L(F,) < L(F) and ‘@fyﬂ = |F,‘ Then we have
I’ € 7' because

|F'| = |25 < |P(Ch)] =220 = M, (3.182)

where P(C*) denotes the power set of C*. Therefore, for any F € Fpe N
Fext N Fl-dec, We have

L(F) > L(F) Y L(F¥) (3.183)

as desired, where (A) follows from (3.181). O
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3.5.2 Proof of Lemma 3.2.1

Proof of Lemma 3.2.1. (Proof of (i)): We prove only Pf;(b) 2 Pf ;(b) for
any i € [F] and b € C* because we can prove Pj;(b) C P ,(b), PFl(b) D
P ;(b), and Pf;(b) € Py, ;(b) in the similar way. To prove Pj;(b) 2 Pf. ;(b),
it suffices to prove that for any (i,z,b,¢) € [F] x ST x C* x C=F, we have
(fi*(2) = be, fi(z1) = b) = "' € ST (f/ (&) = be, fiay) =b) (3.184)
because this shows that for any i € [F’], b € C*, and ¢ € C*, we have

(A)

c € P (b) < xS (f*(x) = be, fi(x1) = b) (3.185)

Bl 3y e St (fr (@) = be, fi(z) = b) (3.186)

L cephd) (3.187)

as desired, where (A) follows from (2.12), (B) follows from (3.184), and (C)

follows from (2.12).
Choose (i,z,b,c) € [F] x 8t x C* x C=F arbitrarily and assume

¥ (z) = be (3.188)
and
fi(z1) = b. (3.189)
Then we have
@ L 8
filx1) = fi(z1) = b, (3.190)

where (A) follows from the assumption (a) of this lemma, and (B) follows
from (3.189).
We prove (3.184) by induction for |z|. For the base case |z| = 1, we have

fi(x) = fi(x1> = f (1) = f*(z) (? be, (3.191)

where (A) follows from the assumption (a) of this lemma, and (B) follows
from (3.188). By (3.191) and (3.190), the claim (3.184) holds for the base
case |z| = 1.

We consider the induction step for |z| > 2. We have

Filwn) F (st (@) 2 fl(0) fli,) (suff (@) 1 (@) e (3.192)
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where (A) follows from the assumption (a) of this lemma, (B) follows from
(2.4), and (C) follows from (3.188). Therefore, fi(z1) = be or fi(z1) < be
holds. In the case f;j(x;) = be, clearly &' = x; satisfies f(z’) = be and
fi(x}) = fi(z1) = b by (3.190) as desired. Thus, now we assume f;(z1) < be.
Then we have

- A , (B)
[Filwn) "] = = i) | + 6] + el E =1/ (x)| + 6] + le] < le] <k,
(3.193)

where (A) follows from the assumption (a) of this lemma, and (B) follows
from (3.189). By (3.192), we have

Fritony (suff(z)) = fi(az1)be. (3.194)

By (3.193) and (3.194), we can apply the induction hypothesis to (7/(z1),
suff(z), A, fi(z1)"'be). Hence, there exists £’ € S* such that fhen(@) =

fi(x1)"tbe, which leads to fi(xy) tbe € Pllf“:r{(:cl) by (2.16), where k' =
| fi(z1)"'be|. By Lemma 2.3.2 (i), there exists ¢ € C*~* such that

_ (A)
fl(l'l) 1bCCI € 7)1]?‘,71{(11) = 7)57',71'(:1:1)7 (3195)

where (A) follows from the assumption (b) of this lemma. By (2.16), there
exists £’ € §* such that

Py (@) = filan) "bee’ = filar) b, (3.196)
Thus, we have
fi(@iz") 2 filwn) £ o (@) (3.197)
Y () fi(an) b (3.108)
= be, (3.199)

where (A) follows from (2.4), and (B) follows from (3.196). The induction is
completed by (3.190) and (3.199).
(Proof of (ii)): We have

F € P < "i€[F;Pp, #0 (3.200)
& Vi [F);Ph, £ 0 (3.201)
e [ € Py, (3.202)
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where (A) follows from (i) of this lemma.
(Proof of (iii)): For any i € [F'] and s € S, we have

S / (A) S ' (B) — (©)
Pfﬂ',rg(s) N P?/,i(fi(s)) = 7)]13,7;(5) N Pp]i,i(fi(s)) = Pfﬂ,n(s) N ,P]I?‘,i(fi(s)) =0,
(3.203)

where (A) follows from (i) of this lemma, (B) follows from the assumptions
(a) and (b), and (C) follows from F' € % qec. Namely, F” satisfies Definition
2.2.3 (a).

For any ¢ € [F'] and s, s’ € S such that s # s’ and f/(s) = f/(s'), we have

fi(s) = fi(s)) (3.204)

by the assumption (a), and we have

A B C
Pty 1 Phvasior = Phiatt) 1 Phistiey = Phiney 1 Phimgey = 0, (3.205)

where (A) follows from (i) of this lemma, (B) follows from the assumptions
(b), and (C) follows from F € Fjgec and (3.204). Namely, F” satisfies
Definition 2.2.3 (b). O

3.5.3 Proof of Lemma 3.2.2

Proof of Lemma 3.2.2. We show Ry 3 p since this implies F' € F,, by
Lemma 2.5.2 (i). Namely, we show that for any j € [F'], there exists x € S*
such that 7*(z) = p.

For j = p, the sequence z := A satisfies 7/"(x) = p by (2.5). Thus, we now
consider the case j # p. Choose j € [F'] \ {p} arbitrarily. Since p € R by
F € %, there exists £ = z1x5... 2, € ST such that ij‘(.’r) =p. Letr>1
be the minimum positive integer such that
i (x129 .. p) € L. (3.206)

J

*

Note that there exists such an integer r < n since 7 (z) = 7} (1172 ... 7,) =
p € Z. We show that

(@@ ) = T (2122 2) (3.207)
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for any " = 1,2,...,r — 1 by induction for r’. For the base case ' = 0, we
have 7*(\) = j = 77(\) by (2.5). We consider the induction step for ' > 1.
We have

@\

T (01 ) = TT]{*(xlle_.xT,_l)(xr/) (3.208)
(B)
= T;Jf*(xlxz...mr/fl)(xw) (3209)
©
= 7—7';‘(:1:112...:27,/71)(3:1“’) (3210)
D a2y ) (3.211)

as desired, where (A) follows from Lemma 2.1.1 (ii), (B) follows from the
induction hypothesis, (C) is obtained by applying the second case of (3.13)
since 7'7-;(33112“.%,71)(:137«/) = 7/ (129...7) ¢ T by v < 7 — 1 and the mini-
mality of r, and (D) follows from Lemma 2.1.1 (ii).

Thus, we obtain

* ) B) ©)
Tj/' (ZL‘ll'g e 'wT’) = 7-7/']’-*(:(;1:02...1‘T_1)(‘T7") = 7—7/';(;B1x2...xrfl)(‘r7") =D (3212)
as desired, where (A) follows from Lemma 2.1.1 (ii), (B) follows from (3.207),
and (C) follows from (3.206) and the first case of (3.13). O

3.5.4 Proof of Lemma 3.2.4
Proof of Lemma 3.2.4. Let p € arg min(h;(F') — h;(F")). Then it holds that

1E[F]
Vi€ [F); hi(F') = hy(F') < hi(F) — hy(F). (3.213)
We have
> Un(F) = hy(F)@Qpa(F) = 3 (hi(F) = hy(F)) D pls)  (3.214)
1E[F] i€[F] Tps(isszi
=3 S n(F) = hp(F)u(s)  (3.:215)
el Tps(%szi
=Y > (heyo(F) = hp(F))u(s)  (3.216)
i€[F] s€S
Tp(s)=i
= > (o) (F) = hy(F))u(s). (3.217)
seS
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Similarly, we have
D (hi(F) = hp(F)Qpa(F') = Y (heyoy(F) = hp(F))p(s).  (3.218)
1E[F] sES

Hence, we obtain

L(FY Y L (F) + > (ks ho(F')) Qi (F") (3.219)
ielF]

< L) + 2;] (F)@ulF)  (3220)

2 Ly(F) + ;(hr,e(s)(F) — hp(F))pu(s) (3.221)

F)+ ;(hw)(l’) — hy(F))pu(s) (3.222)

)+ 2; (F)@p,i(F) (3.223)

© L) o (3.224)

as desired, where (A) follows from (3.14), (B) follows from (3.213), (C) follows
from (3.218), (D) follows from the assumptions (a) and (b) of this lemma,
(E) follows from (3.217), and (F) follows from (3.14). O

3.5.5 Proof of Lemma 3.3.1

Proof of Lemma 3.3.1. (Proof of (i)): We prove by induction for |z|. For the
base case [z| = 0, we have 7(3,(A) = (A) by (2.5). We consider the induction
step for |z| > 1. We have

I ®)

A) ©)
T (2) = 7-7/'<’§\>(pref(z))(zn) = Tloret(z)) (2n) = (2), (3.225)

where 2z = 2125 ... z, and (A) follows from Lemma 2.1.1 (ii), (B) follows from
the induction hypothesis, and (C) follows from the first case of (3.29).

(Proof of (ii)): It suffices to show that () € Rp because it guarantees
that for any j € [F'], there exists z € S such that 7/*(z) = ()\), which leads
to that for any 2 € S<F, we have

* (A) * ®B)
T (x2) = T ,*(m)(z) =T7n(2) = (2) (3.226)
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as desired, where (A) follows from Lemma 2.1.1 (ii), and (B) follows from (i)
of this lemma.

To prove (\) € Ry, we show that there exists £ € S* such that 7/*(x) =
(A) for the following two cases separately: (I) the case j € [F] and (II) the
case j = [F'] \ [F].

Y

(IT)

The case j € [F]: By the assumption that p = (\) € Rp, there
exists £ = x173... 2, € S such that 77(z) = (\). We choose the
shortest x among such sequences. Then we can see 7']/-* (r129. .. 2,) =
7/ (7129 .. x,) for any r = 0,1,2,...,n by induction for r. For the
base case r = 0, we have 7/*(\) = j = 77(\) by (2.5). We consider the
induction step for » > 1. We have

T (21T 1) = TTJ{*(xle...xr_l)<xT) (3.227)
2 L a0 (@) (3.228)
S e g () (3.229)
Qs ) (3.230)

as desired, where (A) follows from (2.5), (B) follows from the in-
duction hypothesis, (C) follows from the third case of (3.29) since
Ti(z12 ... 1) € [F]\ {(A)} by the definition of z, and (D) follows
from Lemma 2.1.1 (ii). Therefore, we obtain 7;*(z) = 7/ (z) = (\) as
desired.

The case where j = [F']\ [F]: Then we have j = (2) for some z € S<L.
Choose 2’ = 2,2} ... 2/, € SE=FFL arbitrarily. We have

% A)
T (22)) = T;é;‘\)(zpref(z’))(ziz’) (3.231)
B) ©)
= T{zpref(z’))('z:z’) = T(A) (zzl> (3232)
= Tlp-1(22) € [F], (3.233)

where (A) follows from Lemma 2.1.1 (ii), (B) follows from (i) of this
lemma and zpref(z’) € S=F, and (C) follows from the second case
of (3.29) and zpref(z’) € St. Hence, by the discussion for the case (I)
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above, there exists ' € S* such that 7’7 (') = (N\). Thus, z = 2z’
(5 (227)

satisfies

* A) s B)
T (@) = 705 (2'2") = T;g*i)(z) (2'2") = 733 (22')

=

(9) /% AN
- TT<’§\>(zz’)<m) - <)‘>7

(3.234)

where (A) follows from (i) of this lemma, (B) follows from Lemma 2.1.1
(ii), and (C) follows from Lemma 2.1.1 (ii).

O

3.5.6 Proof of Lemma 3.3.2

Proof of Lemma 3.5.2. (Proof of (i)): We prove by the induction for |z|. For
the base case |z| = 0, we have fi5(A) = A = f;,(A) by (2.4). We consider
the induction step for |z] > 1 choosmg z € Sst arbltrarlly and dividing into
the following two cases: the case f(3},(z) < d = f73,(2z) and the other case.

e The case f},(2) < d = fj;,(22): We consider the following two cases
separately: the case ff},(z) < d = f(},(221) and the case [} (221) <
d =[5, (2z).

— The case f73,(2) <d = f},(2z1): We have

15 @) 2 fl () £, (suff()) (3.235)
2 1) (2) ref(d)d £ (zw0) i, (suff(z)  (3.236)
9 fi2)(2) pref(d)d £ (1) fly (sufi(@)  (3.237)
E y(2) " Tpref(d)d ™ £}, (2z), (3.238)

where (A) follows from (2.4) and Lemma 3.3.1 (i), (B) follows
from the first case of (3.35) and f}},(2) < d =2 [f(z21), (C)
follows from the second case of (3.37) by the induction hypothesis
and f7},(z21) A d, and (D) follows from (2.4).
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— The case f’; (zz1) < d = 75, (2z): We have

fio (@ ) F oy (21) f gy (suf () (3.239)
oy (21) f gy (suf () (3.240)
Floy (@) [ (z21) " pref(d)d ™ (75 (22))  (3.241)
2 f<’;‘§> (2)"'pref(d)d™" f75, (22), (3.242)

where (A) follows from (2.4) and Lemma 3.3.1 (i), (B) follows from
the second case of (3.35) since d 2 [}, (221), (C) follows from the
first case of (3.37) by the induction hypothesis and [, (zz1) <
d = fi3y(2z), and (D) follows from (2.4).

e The other case: We have

@) 2 (@) £l (suff(@)) (3.243)
2 fl @)l (suff (@) (3.244)
D iy (1) Flayy (0 (@) (3.245)
@ fo(@), (3.246)

where (A) follows from (2.4) and Lemma 3.3.1 (i), (B) follows from the
second case of (3.35) since ff},(2) < d = fj},(2z1) does not hold, (C)
follows from the second case of (3.37) by the induction hypothesis and
that f7},(2) <d = f}5,(z21) does not hold, and (D) follows from (2.4).

(Proof of (ii)): Assume that

fioy(s) = figy(5). (3.247)
In the case ff},(2) A d, we have

Fal9) @ 109 = 1150 @ () (3219
as desired, where (A) follows from the second case of (3.35) and [, (2) A d,
(B) follows from (3.247), and (C) follows from the second case of (3.35) and
f Zi) (2) Ad.
We consider the case f<’f\> (z) < d dividing into four cases by whether
d = f3y(2s) and whether d < f73,(25").
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e The case d = [, (2s),d =2 f}},(2s'): We have

o (Z)_lpref(d)d_l(f&) (2) £ (5)) (3.249)
Y 15, () pref(d)d £ (zs) (3.250)
2 () (3.251)
< 1) (3.252)
2 £ (2) pref(d)d £3, (25) (3.253)
B e (2) pref(d)d (11 (2) fly (), (3.254)

where (A) follows from Lemma 2.1.1 (i) and Lemma 3.3.1 (i), (B) fol-
lows from the first case of (3.35) and d =[5 (2s), (C) follows from
(3.247), (D) follows from the first case of (3.35) and d < f{3,(2s'), and

(E) follows from Lemma 2.1.1 (i) and Lemma 3.3.1 (i). Comparing
both sides of (3.254), we obtain f7,,(s) < f(,)(s') as desired.

e The case d < f7},(2s),d A f}},(2s'): We show that this case is impos-
sible. We have

fiy(es) & 15 (@) () (3.255)
2 15 @) (3.256)
& @) (3257)
2 15 (2) f13) (2) dpref(d) £ (25) (3.258)
= dpref(d)~'d (3.259)
= d, (3.260)

where (A) follows from Lemma 2.1.1 (i) and Lemma 3.3.1 (i), (B) fol-
lows from the second case of (3.35) and d 2 f;,(25'), (C) follows from
(3.247), and (D) follows from the first case of (3.35) and d = f75,(2s).
This conflicts with d 2 f7}, (25').
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e The case d 2 [},(2s),d =2 f}},(2s'): We have

Ty(e) © 1)@ 7l (o) (3.261)
ERONA0 (3.262)
< @) (3.263)
2 £ ()5 (2) dpref(d) ! 113 (25) (3.264)
= dpref(d) ™[5, (25), (3.265)

where (A) follows from Lemma 2.1.1 (i) and Lemma 3.3.1 (i), (B) fol-
lows from the second case of (3.35) and d £ f5,(2s), (C) follows from
(3.247), and (D) follows from the first case of (3 35) and d =2 f75,(25").

Therefore, we have at least one of f7},(2s) < d and [, (2s) = d. Since
d A f</§\>(zs), we have f<’§\>(zs) < d. Thus, we have f<’f\>(zs) <d <
[y (zs), which leads to fi,\(s) < fi,y(s') as desired.

e The case d 2 f},(25),d Z f(},(28'): We have

Fioe) 1505 = 60 D () (3260
as desired, where (A) follows from the second case of (3.35) and d A
[y (zs), (B) follows from (3.247), and (C) follows from the second case
of (3.35) and d £ f73,(25').

(Proof of (iii)): Choose z € S=F arbitrarily. We have

@) D1l 2 | ] > || € | FEER | <o
(3.267)

where (A) follows from Lemma 2.5.1 (i) since ¢ defined in (3.30) is a homo-
morphism from F’ to F', (B) follows from Lemma 2.3.3, and (C) follows from
the definition of L. Also, we have

A)

155 @) = min15) @)1 () pref@d " (75, (@)} (3.268)
= win{ |5, (@). |75 @)] — 1} (3269
21d) (3.270)

where (A) follows from (i) of this lemma, and (B) follows from (3.267). O
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3.5.7 Proof of Lemma 3.3.3
Proof of Lemma 3.3.3. (Proof of (i)): Assume
@) = e (3.271)
We consider the following two cases separately: the case d < f<’j‘\> () and the
case d Z f1},(z).
e The case d = f},(z): We have

* (A) — *
f5 (@) = pref(d)d™" 3 (x) = pref(d), (3.272)
where (A) follows from the first case of (3.37) and d = f75, (). Compar-
ing (3.271) and (3.272), we have pref(d) = ¢ since |pref(d)| > k > |c|.
Th(?refore, by d < f<’;>(1:), we obtain f<’j‘\>(m) = d > pref(d) = c as
desired.

e The case d 2 f},(z): We have

5 (A) e (B)
@) = @) = ¢ (3.273)

where (A) follows from the second case of (3.37) and d 2 f}},(z), and
(B) follows from (3.271).

(Proof of (ii)): For i € [F]\{(\)}, we have f'(s) = f/(s) directly from the
second case of (3.35). We consider the case where i = (2) for some z € ST.
Then we have f3,(2) A d because [f7},(z)| > |d| + 1 by Lemma 3.3.2 (iii).
Therefore, by the second case of (3.35), we obtain f/'(s) = fI(s).

(Proof of (iii)): We prove only that Py, ,(b) C P ;(b) for any i € J
and b € C* because we can prove Pl ;(b) C Pf ,(b) in the similar way.
To prove Piu,;(b) C P ;(b), it suffices to prove that for any (i,z,b,c) €

J x 8t x C* x C=F, we have
(f*(z) = be, f{'(z1) = b) = ' € ST (fi*(&') = be, fi(#}) = b) (3.274)

1

because this shows that for any i € 7, b € C*, and ¢ € C*, we have

c e Ph(b) <5 p e S (f"(x) = be, f(z1) = b) (3.275)
2L e §* (7 (@) = be, f()) = b) (3.276)
L ceph ) (3.277)
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as desired, where (A) follows from (2.12), (B) follows from (3.274), and (C)
follows from (2.12).
Choose (i,z,b,¢) € [F] x 8T x C* x C=* arbitrarily and assume

fi"(x) = be (3.278)
and
f(x1) = b, (3.279)
Then we have
oA @ B
filz1) = fi'(z1) = b, (3.280)

where (A) follows from (ii) of this lemma, and (B) follows from (3.279).
We prove (3.274) by induction for |z|. For the base case || = 1, we have

f5(@) = fi(z) E fl () = 17 (@) (? be (3.281)

as desired, where (A) follows from (ii) of this lemma, and (B) follows from
(3.278). By (3.281) and (3.280), the claim (3.274) holds for the base case
lz| = 1.

We consider the induction step for |z| > 2. We have

(®)]
P 1y (st (@)) D ) £ (suti(@) 2 @) = b, (3.252)

where (A) follows from (ii) of this lemma, (B) follows from (2.4), and (C)
follows from (3.278).

Therefore, f/(x1) = be or f!/(x1) < be holds. In the case f/(z1) » be, the
sequence ¢’ == z; satisfies f/*(z’) = be and f/(z}) = f/(x1) >= b by (3.280) as
desired. Thus, now we assume f/(z1) < be. Then we have

/ — / A 17 (B)
£ () b = —| £ ()] + 18] + le] = ()| + [b] + e < le] <,
(3.283)

where (A) follows from (ii) of this lemma, and (B) follows from (3.279). By
(3.282), we have

f;?(xl)(suff(x)) = fl(z1) "be. (3.284)
We can see that there exists 2’ € ST such that
P @) = i) be (3.285)

as follows.
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e The case 7/'(z1) = (A): By (3.283), we can apply (i) of this lemma to
obtain that &’ := suff () satisfies (3.285) from (3.284).

e The case 7/'(z1) € J: By (3.283) and (3.284), we can apply the induc-
tion hypothesis to (7//(zy),suff(z), \, f/(x1) " 'be).
Therefore, we have

(©)
1) D ) o @) D F) @) = fw0) fn) be = be,

(3.286)
where (A) follows from (2.4), (B) follows from (3.36), and (C) follows from
(3.285). The induction is completed by (3.280) and (3.286). O
3.5.8 Proof of Lemma 3.3.4
Proof of Lemma 3.3.4. (Proof of (i)): Assume that

b=<b. (3.287)
In the case f3,(2) Z pref(d), we have
(B)

0a0) @b <0 ), (3.288)

where (A) follows from the second case of (3.58) and f3,(2) Z pref(d), (B)
follows from (3.287), and (C) follows from the second case of (3.58) and
15,(2) £ pref(d).

We consider the case ff},(z) < pref(d) dividing into four cases by whether
pref(d) < f{3,(2)b and whether pref(d) < f73,(2)b'.

e The case pref(d) < f[3,(2)b, pref(d) < f;3,(2)b": We have

0.(0) 2 15, (2)  dpref(d) (13, (2)b) (3.289)
2 15, (2) dpret (@) (15, (2)8) (3.200)
@) (3.291)

as desired, where (A) follows from the first case of (3.58) and pref(d) <
[y ()b, (B) follows from (3.287), and (C) follows from the first case of
(3.58) and pref(d) < f75,(2)b".
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e The case pref(d) < f(5,(2)b, pref(d) A f73,(2)b": This case is impossible
because (3.287) leads to pref(d) < fw( )b = [ (2)b', which conflicts

with pref(d) A f75,(2)b'.
e The case pref(d) A f7},(2)b, pref(d) < [}, (2)b": By (3.287), we have
foy(2)b =[5, (2)b'. (3.292)

By (3.292) and pref(d) < f73,(2)b’, exactly one of pref(d) < f3,(2)b and
pref(d) = f7},(2)b holds. Since the former does not hold by pref(d) A
[ ()b, the latter holds:

£ (2)b < pref(d). (3.293)
Thus, we have
0. (0) Y b (3.294)
= (@) 5 (2)b (3.295)
? f(/}k\> (z) pref(d) (3.296)
= f'* (2)~'dpret(d) ™' (f73(2)b) (3.297)
< .b), (3.298)

where (A) follows from the second case of (3.58) and pref(d) A [}, (2)b,
(B) follows from (3.293), and (C) follows from the first case of (3.58)
and pref(d) < f7},(2)b".

e The case pref(d) A f;},(2)b, pref(d) A [}, (2)b": We have

) Ve Sy Q) (3.209)

as desired, where (A) follows from the second case of (3.58) and pref(d) 4
[y ()b, (B) follows from (3.287), and (C) follows from the second case

of (3.58) and pref(d) A f7},(2)b'.

(Proof of (ii)): We consider the following three cases separately: (I) the
case f1},(2) = pref(d) < f73,(22), (II) the case f73,(zz) =< pref(d) < f7},(2z)e,
and (III) the other case.
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(1) The case f§(2) = pref(d) < ff} (22): We have
oy (2) < d < [l (22) (3.300)
since
_® . (B) -,
pref(d)dy & Pr oy = Py (3.301)

where (A) follows from (3.27), and (B) follows from Lemma 2.5.1 (ii)
since ¢ defined in (3.30) is a homomorphism from F’ to F. Therefore,
by the second case of (3.58), we obtain

fio (@) = f5,(2) " pref(d)d ™" (f3 (22)). (3.302)

We consider the following two cases separately: (I-A) the case f(3,(z) <

v (27) =d,c =\ and (I-B) the other case.

(I-A) The case f}},(2) < f(},(2z) =d,c = A: We have

[ @) s @e 2 15 (2) £, (2) pref(d)d (£, (z2))e (3.303)
B f5 () £13, (2) " pref(d)d"de (3.304)
< pret(d) (3.305)
# pref(d), (3.306)

where (A) follows from (3.302), (B) follows from f73,(2z) = d, and
(C) follows from ¢ = A.
Hence, we have

Ua(fiz(@)e) = [ (@)e (3.307)
© e (2)  pref(d)d 11y, (zx)e (3.308)
S 115, (2)  pref (ff5, (22))d'd (3.300)
2 15 2) 7 (el (1) (@))d"'d (3.310)
= pref(f(;,(x)) (3.311)

as desired, where (A) follows from the second case of (3.58) and
(3.306), (B) follows from (3.302), (C) follows from [} (2z) = d
and ¢ = A, and (D) follows from Lemma 2.1.1 (i), Lemma 3.3.1

(i), and f75,(2) < 73, (2).
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(I-B) The other case: Then by (3.300), we have
d =< [ (22)c, (3.312)

since it does not hold that f7},(2) < fj},(2z) = d,c = A by the
assumption of the case (I-B).
We have

@) s @e 2 15 (2) £, (2) pref(d)d (£, (z2))e (3.313)
(B)

= o (2) f<’§>(z)‘1pref(d)d‘1d (3.314)
= pref(d) (3.315)
©)

= [y (2) (3.316)

as desired, where (A) follows from (3.302), (B) follows from (3.312),
and (C) follows from the assumption of the case (I).

Hence, we have

V:(fl (@)e)

S 15 (2) Mdpret (@) (£ (2) 115 (@)e) (3.317)

2 15 (2) dpret(d) " (ff3y (2) f13y (2)  pret(d)d (£ (22)e))
(3.318)

= fiz(@)e (3.319)

@ [y (@) Y2z (c), (3.320)

where (A) follows from the first case of (3.58), (3.315), and (3.316),
(B) follows from (3.302), and (C) follows from the second case of
(3.58) and the assumption of the case (I).

(II) The case f3},(zz) = pref(d) < fj},(2z)e: Then since d 2 f73,(2z), we
have
fioy (@) = [i3) () (3.321)
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applying the second case of (3.37). Therefore, we have

foy(2) 2 15 (22) (3.322)
% pref(d) (3.323)

2 15 (e (3.324)
—ﬁuﬁww (3325)
f@) (2) (5 (@)e, (3.326)

where (A)s follow from the assumption of the case (II), (B) follows from
Lemma 2.1.1 (i) and Lemma 3.3.1 (i), and (C) follows from (3.321).

Hence, we have

G5 @)e) 2 ) (2) dpref(d) (1 (2).f15 (@)e) (3.327)
2 115, () dpref(d) " (f15, (2) 113 (@)e) (3.328)
Qﬁ@V@Mm%ﬂ<>> (3.320)
= [ @) fio (@) (z)’ldpref(d) Y(fh(zm)e) (3.330)

(3.331)

as desired, where (A) follows from the first case of (3.58), (3.323), and
(3.326), (B) follows from (3.321), (C) follows from Lemma 2.1.1 (i) and
Lemma 3.3.1 (i), (D) follows from Lemma 2.1.1 (i) and Lemma 3.3.1
(i), and (E) follows from the first case of (3.58) and the assumption of
the case (II).

(III) The other case: The following implication holds:
foy(2) =d =2 [, (22) = [f{(2) X pref(d) < [, (zz)  (3.333)

Now, it does not hold that f73,(2) < pref(d) < f{},(2) by the assump-
tion of the case (III). Hence, by the contraposition of (3.333), we see
that f7},(2) <d = f}},(2z) does not hold. Therefore, we obtain

[ @) = [ (@) (3.334)
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applying the second case of (3.37).

By the assumption of the case (III), neither f7},(2) = pref(d) < f7},(22)
nor fj5,(2z) = pref(d) < f73,(zz)c hold. Hence, the following condition
does not hold:

* * A * *
() S prefd) < Sy am)e = @ e (3339
where (A) follows from (3.334). Therefore, by the second case of (3.58),
we have
e ([l (x)e) = f3)(@)e. (3.336)

Thus, we have

1 @ale) 2 £ @(e) 2 1l @e € (G @e)  (3.337)

as desired, where (A) follows from (3.334), (B) follows from the second case of
(3.58) since f73,(zx) = pref(d) < f7},(22)c does not hold by the assumption
of the case (III), and (C) follows from (3.336).

(Proof of (iii)): We have f7,(z) Z pref(d) because [f}},(2)| > |d| by
Lemma 3.3.2 (iii). Hence, by the second case of (3.58), we obtain v, (b) =b
as desired. O

3.5.9 Proof of Lemma 3.4.5

To state the proof of Lemma 3.4.5, first we prove the following Lemma 3.5.1.
Lemma 3.5.1. For F(f,7) € #,i € [F], and z,a’ € S*, ifx’ < x and
fi(@) = fi ('), then Pp .0, 7311:7 ‘(@)

Proof of Lemma 3.5.1. Choose ¢ € PFT -y arbitrarily. Then there exists
y € §* such that

[r@W) = c (3.338)
We have
fr@)e € fr(a)e (3.339)
2@ e (3.340)
= [ (@2 7T) [ 10y (Y) (3.341)
S 1 @) oy (&), (3.342)
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where (A) follows from the assumption, (B) follows from (3.338), and (C)
follows from Lemma 2.1.1. This yields ¢ =< f:f(m,)(:l:'_lxy), which implies

c c 7)}1777_1_* (=) |:|

Proof of Lemma 3.4.5. Let (k,i,2,2") be a tuple satisfying all of the condi-
tions (a)—(c), and we lead a contradiction.
By the condition (¢) and Lemma 2.1.1 (iii), we have

fi(@) = fi (=) (3.343)
Also, we have
; A A S/ NUSN (o) IR
| f; (m)dF,ri*(m)| +k = |dpif] (@) +k < |dpafi ()] = [f] (= )dF,r;*(m’)L
(3.344)

where (A) follows from Lemma 3.4.1, (B) follows from the condition (b), (C)
follows from Lemma 3.4.1. Hence, we have

5@ > 115 @)] + dp @) + F = |dpr @) (3.345)
This yields
(4) (B)
-1 < |dF,7—i*(a:)| + k- |dF,7’i*(1?/)| < 0, (3346)

where (A) follows since 0 < |dpr+@z)| < 1 and 0 < |dprr@n| < 1, and (B)
follows from (3.343) and (3.345). Therefore, the following two cases are
possible: the case |dp +@)| + k — |dpr+@| = 0 and the case |dp -@z)| + k —
|dpr@n| = —1.

e The case |dpr+(z)| +k —[drr@)| = 0: Then by (3.345) and (3.343), we

obtain

fi(x) = fi (&) (3.347)
Also, the assumption that |dp;(z)| +k — |dpr+ ()| = 0 implies that the
tuple (k, |drr+(@)|, |drrr@)|) is equal to one of (0,0,0),(0,1,-1), (1,0,
—1). Now, the last case (k,|dpr*@)|; |[drrs@]) = (1,0, 1) is impossi-
ble because

(A)

drr@] =0 <= Proe =1{0,1} (3.348)
(:B)> P}',Ti*(a}’) = {07 ]-} (3349)
L |dFrr@n| =0, (3.350)



where (A) follows from (3.123), (B) follows since P}«“,r;(x') > P}’Ti*(m)
by Lemma 3.5.1, and (C) follows from (3.123). Hence, we must have
k = 0 and thus obtain F' € % 4. by the condition (a). Therefore, by
(3.347) and Lemma 2.2.6 (ii), we obtain = z’, which conflicts with
the condition (b).

The case |dpyrs(@)| + k — [dprr@y| = —1: Then we must have k =
|dF,T;(m)| = 0 and |dp77i*(z/)| = 1 since |dF77i*(m)| > (0 and |dp,7i*(m/)| < 1.
Hence, we have

F € o (3.351)
by k = 0 and the condition (a), and we have
Prrr@y = {drer @)} (3.352)
by |dpr @] = 1 and (3.123).
Also, we have
[fi @) < |ff @) < |f7 @) +1, (3.353)
where (A) follows from (3.343), and (B) follows from (3.345) and
|dprr@)| + k — |dprr@)| = —1. Therefore, we have either [f;(z)| =

S (@) or |7 (@) + 1 = [f7(2')|. If we assume |f7(z)| = |f7(z')], then
fi(x) = ff(z’) holds by (3.343). Then by (3.351) and Lemma 2.2.6
(ii), we obtain z = 2/, which conflicts with the condition (b). Hence,
we have

| @) = [f7 ()] + L. (3.354)

By the condition (b), there exists z = 2123 ...2, € ST such that x =
x'z. For such z, we have

* * (A) | px * B) | s
[fF @)+ @ (2)] = | @'2)] = |f7 @) = [fi (@) +1, (3.355)
where (A) follows from Lemma 2.1.1 (i), and (B) follows from (3.354).

Choose s € S\ {z,} and define 2’ := suff(2)s. By F' € % and Lemma
2.3.1, we can choose y € §* such that

| fre@n (2Y)| > 1. (3.356)

Then by (3.352), we have

N (A) ®) . ,
fTi*(xl)(z) = dFvTi*(z/) j f’r;‘(a:’)(z y)v (3357)
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where (A) follows since |f7. ) (2)] = 1 by (3.355), and (B) follows from

(3.356). By (3.351), (3.357) and Lemma 2.2.6 (i), we obtain z < 2y.
This conflicts with the definition of 2’.

O
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Chapter 4

Optimality of Huffman Codes and
AIFV Codes

In this chapter, by applying the three theorems in the previous chapter, we
prove that the class of Huffman codes (resp. AIFV codes) achieves the optimal
average codeword length in Zeg N Fext N Fi-dec (1€SP. Freg N Fext N Fodec) I
Section 4.1 (resp. Section 4.2). Note that we are now discussing an arbitrarily
fixed source distribution pu.

4.1 Optimality of Huffman Codes in the Class
of 1-bit Delay Decodable Codes

The main result of this subsection is the following Theorem 4.1.1 that the

Huffman code achieves the optimal average codeword length in Fes N Fexq N

F1-dec-
Theorem 4.1.1. For any F' € Freg N Fext N F1.dec, We have
L(F) =2 Luug, (4.1)
where Lyug s the average codeword length of the Huffman code.
The proof of Theorem 4.1.1 relies on the following Lemma 4.1.1.

Lemma 4.1.1. freg N Fext N Fidgee N Frork C Fo-dec-
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Proof of Lemma 4.1.1. Choose F(f,7) € Freg N Fext N Fi-dec N Fiork arbi-
trarily. We prove F' € % gec by showing that for i € [F] and z € S*, the
pair (z,\) is fi-positive, that is, for any i € [F] and 2,2’ € S* such that
fi(z) = ff(z'), we have x < z’.

Choose z,z’ € §* such that f/(z) < f(z') arbitrarily. Since F' € Foyx,
we have PFT = {0, 1}, that is, there exist yo,y; € S* such that Fre @) (Wo) =

0 and fl, *(z) (’!Jl) >~ 1. Hence, we have
£ @yo) € £ (@) Fe iy (w0) = F7(@)0, (4.2)

fray) Y fr@ ) fre@ (Y1) = fi ()1, (4.3)

where (A) and (B) follow from Lemma 2.1.1 (i). Since & < 2yo,x =< zy;, and
F € F1_gec, the pairs (z,0), (x, 1) are f -positive.

By fi(z) = f#(2') and F € Fox, there exist ¢, € C and " € §* such
that ff(z)c = fH(2')d X fr(2’z"). Since (z,0) and (z,1) are f/*-positive,

we have £ < z'z”. Therefore, we have either (a) or (b) of the following

conditions: (a) z < 2'; (b) > m’ . To complete the proof, it suffices to prove
that (a) is true. Now we prove it by contradiction assuming that (b) is true,
that is, there exists 2 = 2125 ...2, € ST such that z = 2'z.

By z > 2/, Lemma 2.1.1 (iii), and f(z) < f(z’), we have

fi@) = fi(z). (4.4)

Choose s € S\ {z,} and define 2’ = pref(z)s. By F' € Foy, we can
choose ¢y’ € §* and ¢’ € C such that

f:/r(z/) (Z/yl) i Cl. (45)

By (4.4) and (4.5), we have

fi@)e = f7@)e = fr @) forw(2y) S 11 @2y), (4.6)

where (A) follows from Lemma 2.1.1 (i). Since the pairs (z,0) and (z,1)
are fr-positive (in particular, (z,c’) is ff-positive), we have £ < z'2'y’. By
x = x'z, we have 'z < 2'2'y’. Hence, we obtain z < 2’y’. This conflicts with
the definition of 2’. O
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Proof of Theorem 4.1.1. Choose F' € Freg N Fext N Fidec arbitrarily. By
Theorem 3.1.3, there exists F' € Freg N Fext N Fidec N Fiork such that
L(F") = L(F). By Theorem 3.1.1, there exists FT € Fi,; N Foxt N Fo.dee Sch
that L(F') < L(F’) and

(A) (B) ©)
|F'| = | 2] < |25 = [{{0,1}} =1, (4.7)

where (A) follows from Theorem 3.1.1 (d), (B) follows from Theorem 3.1.1
(c), and (C) follows from F’" € F,. By Lemma 4.1.1, we have F' € %, N
Foxt N Frdee C Fo.qec- Hence, by Lemma 2.2.6, the only code table fg of

FT is injective, and thus F' is a uniquely decodable code with a single code
table. Therefore, by McMillan’s Theorem 2], we have L(FT) > Lyug so that

L(F) = L(F') > L(F') > Lg (4.8)

as desired. 0

4.2 Optimality of AIFV Codes in the Class of
2-bit Delay Decodable Codes

In this section, we prove that the class of AIFV codes achieves the optimal
average codeword length in Fes N Fexy N Fogec. The class of AIFV codes
Farry is formalized with our notations as the following Definition 4.2.1.

Definition 4.2.1. We define Farpy as the set of all F(f, 1) € .F?) satisfying
all of the following conditions (i)—(vii).

(i) fo and fy are injective.

(it) Foranyi € (2] ands € S, it holds that Pp;(fi(s)) # 1 and Pf,,(f:(s)0)
1.

(iii) For any i € [2] and s,s" € S, it holds that f;(s") # fi(s)0.
(iv) For anyi € [2] and s € S, it holds that

(s) = {0 if PRi(fi(5))
Z L if PRy(fils)) #

, 0o
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(v) For any s € S, it holds that f1(s) # X and fi(s) # 0.

(vi) 75}?,1(0) 7 0.

(vii) For any i € [2] and b € C*, if |Pp(b)] = 1, then at least one of the
following conditions (a) and (b) hold.

(a) fi(s)e=10b for some s €S ande e C*'UC!.
(b) (i,b) = (1,0).
Example 4.2.1. The code-tuple F*) in Table 4.1 is in Fawpy.

Now, the desired theorem, the optimality of AIFV codes in Feg M F ey N
F9.dec, Can be stated as follows.

Theorem 4.2.1. %5 o5 N Fawry # 0.

Theorem 4.2.1 claims that there exists an optimal AIFV code, that is,
the class of AIFV codes achieves the optimal average codeword length in
Freg N Fext N Fodec. We prove Theorem 4.2.1 through this section. To prove
this, we introduce four classes of code-tuples %y, %1, %>, #3 and %, as
follows.

Definition 4.2.2. We define %y, %1, %o, F3 and %, as follows.
o Ty = Freg N Foxt N Frdee = {F € Freg N Fadee 1 € [F]; Phy # 0}

b gl = fﬂozregmyextmyZdecm&ngork = {F S gregmyldec Vi € [F]vpll?,z =
{0,1}}.

o ﬂé = {F S greg N yQ_deC L S [F], ‘,PZQ:’Z| > 3}

o T3 ={F € Prey N Fraee : Vi € [F); PR, 2 {01,10,11}}.

o Fy = {F € Freg N Fraec N FP : PEy = {00,01,10,11}, P}, =
{01,10,11}}.

By the definitions, the classes defined above form a hierarchical structure

as follows:
(A) (B)
Fo 2D F1 D Fo 2D F32 Fy O Fawv, (4.10)

where (A) follows from Lemma 2.3.2 (i), and (B) is stated as the following
Lemma 4.2.1, which proof is in Subsection 4.3.1.
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Table 4.1: Examples of a code-tuple F()—F*)

scS fév) Té”/) 1(7) Tl(v) 2(v) )
a 01 0 00 1 1100 1
b 10 1 A 0 1110 0
¢ 0100 0 00111 1 111000 2
d 01 2 00111 2 110 2
S I U GO
a 01 0 00 1 100 1
b 10 1 A 0 110 0
c 0100 0 00111 1 110001 2
d 011 2 001111 2 101 2
S I GO G U
a 01 0 00 1 00 1
b 10 1 A 0 10 0
c 0100 0 00111 1 100011 2
d 0111 2 0011111 2 011 2
scS éC) TéC) l(C) 7_1(4) fQ(O 7_2(4)
a 10 0 01 1 00 1
b 11 1 A 0 10 0
¢ 1000 0 01001 1 100011 2
d 1001 2 0100100 2 011 2
s€S fén) Tén) fl(n) 71(77) f2(77) 72(77)
a 01 0 01 1 00 1
b 1 1 1 0 101 0
c 0001 0 01001 1 100011 2
d 001 2 0100100 2 011 2
CES[HT A T AT
a 01 0 01 1 10 1
b 1 1 1 0 011 0
c 0001 0 01001 1 010011 2
d 001 2 0100100 2 111 2
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seS | fu n) fY )
a 01 1 01 1
b 1 1 1 0
c 0001 0 01001 1
d 001 1 0100100 1
S A TP
a 100 0 1100 O
b 00 0 11 1
c 01 0 01 0
d 1 1 10 0

Table 4.2: The set P for the code-tuples F' in Table 4.1

FeZ Pz, Pi1 Pz,

FO) {01, 10} {00, 01,10} {11} F e %\ 7
F©® {01,10} {00,01,10}  {10,11} F e %\ %
F© {01,10} {00,01,10} {00,01,10} | F € .% \ %,
F© {10, 11} {01,10,11} {00,01,10} | F € %\ %
FM 1 100,01,10,11} {01,10,11} {00,01,10} | F € %\ %5
FO 1100,01,10,11} {01,10,11} {01,10,11} | F € %3\ %,
F® | {00,01,10,11} {01,10,11} F € Z4\ Fawv
F®) 1 {00,01,10,11} {01,10,11} F € Fapv

Lemma 4.2.1. %, O Fapy.

Example 4.2.2. The rightmost column of Table 4.2 indicates the class to

which each code-tuple in Table 4.1 belongs.

Noting that %5 opt = arg minge 7, L(F'), we have Fo o5 N Fo # (0 directly
from Definition 3.1.1 and Lemma 3.1.2. Starting from this, we sequentially
prove Fo opeNF; # 0 for i = 1,2, 3,4, in Subsection 4.2.1-4.2.4, respectively.
Then in Subsection 4.2.5, we finally prove the desired Theorem 4.2.1 from
Foopt N Fy # 0.

We use the following Lemma 4.2.2 throughout this section.

Lemma 4.2.2. For any integer k < 2, F(f,7) € Fo.qec N Foxs, & € [F|, and

s €S, we have [P, (fi(s))] + [Ph .| < 4.
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Proof of Lemma 4.2.2. We have

_ @) _ (B)
[Pra(fi(s)] + [ Phro)| < PR fi(D] + [Py < [Phi(fi(s))] < 4(4.11)

as desired, where (A) follows from k < 2, F' € Zoy, and Corollary 2.3.1 (ii)
(b), and (B) follows from F' € %5 gec and Lemma 2.2.3. O

4.2.1 The Class .%;

Since F1 = Freg N Fext N Fo-dec N Fiork, We obtain the following Lemma 4.2.3
immediately from Corollary 3.1.1.

Lemma 4.2.3. % o5 N % # 0.

We enumerate the basic properties of .#; as the following Lemmas 4.2.4
and 4.2.5. See subsections 4.3.2 and 4.3.3 for the proofs of Lemmas 4.2.4 and
4.2.5, respectively.

Lemma 4.2.4. For any F(f,7) € %, and i € [F], the following statements

(i)—(vi) hold.
(i) P, 2 {0a,1b} for some a,b € C. In particular, |P,| > 2.
(i) If |P%,| = 2, then the following statements (a) and (b) hold.

(a) For any s € S, we have |fi(s)| > 2.
(b) 73[2% = 75%1 = {0a, 1b} for some a,b € C.

(iii) For any s,s' € S, if s # s and fi(s) = fi(s'), then [P} 4| =
|PI27,Ti(s/)| =2

(iv) For any s € S, we have

L if Phi(fils) #0,
Ski(fi(s))] < {2 i PY(£(s)) = 0. (4.12)

(v) For any s,s' € S, we have f;(s') # fi(s)0 and fi(s") # fi(s)1.

(vi) For any s € S, we have [P, (fi(s)0)| <1 and |Pk,(fi(s)1)] < 1.
Lemma 4.2.5. For any F(f,7) € Foop N F1,i € Rp and s € S, if
Pri(fi(s)) =0 and |Spi(fi(s))] = 1, then [PF | = 4.
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4.2.2 The Class %,

In this subsection, we prove s ot N F2 # () and some properties of the class
Fs.

e First, we define an operation called dot operation, which transforms a
given code-tuple I’ € .%#; into the code-tuple F' defined as Definition
4.2.4.

e Next, we consider the code-tuple F, obtained from F by gpplying dot
operation firstly and rotation secondly. We show that F e % and
L(F) = L(F) hold for any F € 7.

e Then we show that we can transform any F' € %y, N .#; into some
F' € Zy o N F5 by repeating dot operation and rotation alternately.
This shows Fp opt N Fa # 0 since Foopt N F1 # ) by Lemma 4.2.3.

To state the definition of F', we first introduce the decomposition of a
codeword called y-decomposition. Fix F(f,7) € F1,i € [F], and s € S, and
define Sz,(fi(s)) = {s" € S : fi(s') < fi(s)}. By Lemma 2.2.2 (i), we have
|7527i(fi(s’))\ # () for any s’ € Sﬁ,i(fi(S)), which leads to |Sr;(fi(s'))] = 1 by
Lemma 4.2.4 (iv). Thus, without loss of generality, we may assume

fi(s1) < filsa) <+ < fil5)); (4.13)

where Sz, (fi(s)) = {s1,82,...,8,-1} and s, := s. Then there uniquely exist
v(s1),7(82),-..,7(s,) € C* such that

‘ ) (s1) if r=1,
o) = {ﬁ-(sr_l)v(s» ifr=23,...,p (414
for any r = 1,2,..., p. We can represent f;(s) as

fils) = 7(s1)7(s2) ... 7(sp). (4.15)

Definition 4.2.3. For F(f,7) € F,i € [F], and s € S, we define -
decomposition of fi(s) as the representation in (4.15). Note that s, = s.

Example 4.2.3. We consider F(f,7) := F'©) in Table 4.1.
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e First, we consider the y-decomposition of fi(d). We have Sz (fi(d)) =
{a,b,c}. Since fi(b) = X < fi(a) = 00 < fi(c) = 00111. Thus, we
obtain the y-decomposition of f1(d) as

fi(d) = v(s1)7(s2)v(s3)7(54), (4.16)

where
s1 =b,s9 =a,s3 =c,84 =d, (4.17)
V(1) = A, ¥(s2) = 00,7(s3) = 111,7(s4) = 11. (4.18)

e Next, we consider the y-decomposition of fo(c). We have Sgy(fo(c)) =
{a}. Thus we obtain the ~y-decomposition as

fole) = ~(s1)7(s2), (4.19)

where
S1 =a, s =c¢, (4.20)
v(s1) = 01,7v(s2) = 00. (4.21)

We show the basic properties of y-decomposition as the following Lemma
4.2.6.

Lemma 4.2.6. For any F(f,7) € %, i € [F] and s € S, the following
statements (i)-(iii) hold, where v(s1)v(s2)...7v(s,) is the y-decomposition of
fz(S)

(i) Spi(A) #0 <= fi(s1) =v(s1) = A
(it) For anyr=1,2,....p, if r >2 or [Pp;| =2, then |y(s,)| > 2.
(iii) For any r = 2,....p, we have g1g2 € Pp;(fi(s,—1)), where y(s,) =
9192 ---gi-

Proof of Lemma 4.2.6. (Proof of (i)): Directly from the definition of
~v-decomposition.

(Proof of (ii)): We prove for the following two cases separately: the case
7> 2 and the case r = 1,|Pz,| = 2.

e The case r > 2: We have |y(s,)| > 1 by (4.13). If we assume 7(s,) = ¢
for some ¢ € C, then fi(s,) = fi(sr—1)7(sr) = fi(sy—1)c holds, which
conflicts with Lemma 4.2.4 (v). This shows |y(s,)| > 2 as desired.
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e The case r = 1,|P%,| = 2: By Lemma 4.2.4 (ii) (a), we have |y(s1)| =
|[fi(s1)| = 2.

(Proof of (iii)): By (ii) of this lemma, we have |y(s,)| > 2. Hence, we have
)

)
fi(sr) = fi(sr—1)7(s:) = fi(Sr—1)9192, which leads to g1g, € PF,z(fz(Sr—l)) as
desired. 0

Using y-decomposition, we now state the definition of F" as the following
Definition 4.2.4.

Definition 4.2.4. For F(f, 1) € %1, we define F(f,r) e ZUFD 45
fils) = A(s1)4(s2) -4 (s,), (4.22)

7i(s) = 7i(s) (4.23)
fori € [F] and s € S. Here, ¥(s,) is defined as

(arig1939s - - ifr=1,|P¢,| =2,
V(sr) ifr=1,[P%,| >3,
apry(s,)919394 --- Q1 if r > 2, \751%71-(]‘2-(37«,1))] =2,
i(s,) = apry(s,-)09394 ... g1 if r > 2, |7DFZ(fz<Sr =1, ]75;7”(&71)\ =1,
aF,n(sr,l)lgsm g ifr > 2,[Phi(filse-1))| =1,
=2,|P} sy = 2

Ph

sT4 S’V‘ l)l
V(sr) ifr 2 2,[Ppy(fi(si-1))l =1,
\ ”P}:‘,Ti(sr,1 | 2 "sz‘_‘ 1)| Z 3

(4.24)
forr=1,2,...,p, where v(s1)y(s2)...7v(s,) is the y-decomposition of f;(s)
and y(s;) = q192-..g1. Also, ap; € C is defined by the following recursive
formula:

aprsy o Spi(A) = {s'} for some s’ € &,
ap; =40 if |SFZ(/\)| #1,P¢,; 3 00, (4.25)

and ar; denotes the negation of ar;, that is, ar; =1 — ar;.
We refer to the operation of obtaining the code-tuple F' from a given code-
tuple F' € %7 as dot operation.
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Remark 4.2.1. In Definition 4.2.4, it holds that |v(s,)| < 2 only if r = 1
and |Pg;| > 3 by Lemma 4.2.6 (ii). Hence, the right hand side of (4.24) has
enough length so that +(s,.) is well-defined for every case.

Example 4.2.4. We consider F(f,7) == F'©) in Table 4.1. Then ap;,i € [F)
are given as follows.

e apg = 1 applying the third case of (4.25) since |Spo(N)| # 1 and Pgq #
00.

e apy = 0 applying the second case of (4.25) since |Spa(N)| # 1 and
P 2 00.

o ap1 =apo =1 applying the first case of (4.25) since |Sp1(N)| = {b}.

The codeword fo(c) 1s obtained as follows since the y-decomposition of

fo(c) is given as (4.19)-(4.21).

o we have ¥(s1) = apo0 = 10 applying the first case of (4.24) since
|,Pl%“,0| =2,

e we have Y(82) = Gpy(s)0 = ar10 = 00 applying the third case of (4.24)
since |Ppo(fo(s1))] = [Pr,o(01)] = 2.

Therefore, we obtain fo(c) = A(s1)%(s2) = 1000.
The codeword fi(d) is obtained as follows since the ~y-decomposition of

fi(d) is given as (4.16)-(4.18).

e we have ¥(s1) = Y(s1) = X applying the second case of (4.24) since
|PI27‘,1| Z 3;

e we have Y(s2) = Grqr(s)l = arpol = 01 applying the fifth case of
(4-24) since [Ppy(fi(s))|l = |Pral = 1, [Py o)) = [Prol = 2. and
|7D}27,7'1(51)| = |P127,O| = 2;

o we have Y(83) = Gpqr(s,)00 = ap1l = 001 applying the fourth case of
(4-24) since [P, (fi(s2))| = |Pp1(00)] = 1 and [Pp_ ()| = [Ppal = 1.

Therefore, we obtain f1(d) = 4(s1)¥(s2)3(s3) = 01001.
The code table F©) in Table 4.1 is obtained as F©. Moreover, the code
table F™ in Table 4.1 is obtained as F©) (= F().
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Now we enumerate some properties of F' as the following Lemmas 4.2.7—
4.2.9.

Lemma 4.2.7. For any F(f,7) € % and i € [F|, the following statements
(1)—(iii) hold.

(i) Let s € S and let y(s1)v(s2)...7(s,) be the vy-decomposition of fi(s).
Then we have |¥(s.)| = |v(s,)| for anyr=1,2,...,p.
(ii) For any s € S, we have |fi(s)| = | fi(s)].

(i4) For any s,s" € S, the following equivalence holds: fi(s) X fi(s') <=

fils) 2 fuls").

Proof of Lemma 4.2.7. (Proof of (i)): Directly from (4.24).
(Proof of (ii)): We have

Fis)] = s + sl + - + (s, (4.26)
D (sl + [r(s2) + - + [(s,)] (4.27)
= Jf(s)], (4.28)

where (A) follows from (i) of this lemma.
(Proof of (iii)): See Subsection 4.3.4. O

Lemma 4.2.8. For any F(f,7) € %1 and i € [F|, the following statements
(i) and (ii) hold.

(i) (a) If |P%,| = 2, then 7312” = {ar,0,ap,1}.
(b) For any s € S, if |Pf,| > 3, then

{00,01,10,11} if |PE:(fi(s)] =0,
Pi,; € (ari0,aplanl}  if [Ppi(fils)] = 1, [Phyl =1,
Pl%“,j of ‘Pll:‘z<fl<s)>| =1, ’,PI{“,]‘| =2,
(4.29)

where j = 1;(s) = T:i(s).
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(ii) For any s € S, we have

0 i 1P () = 0
P2 (F {aF,jOvaF,jl} Zf\ﬁfm(fz(sm > 1, ‘,PI%,]" = 2,
PRV E gy 1P| 2 LIPE | 2 3.1k, = 1,
PLUKS) U IPLU] = LIPE| = 3Pk —2

(4.30)
where j = 1;(s) = T(s).

See Subsection 4.3.5 for the proof of Lemma 4.2.8.
The next lemma relates to dp; and ap; defined in Definitions 3.4.1 and
4.2.4, respectively.

Lemma 4.2.9. For any F(f,7) € %1 and i € [F|, the following statements
(i) and (ii) hold.

(i) If ]7712;1\ =2, then dy; = ap;.
(i) For any s,s' € S, if s # s and fl(s) = fi(s’), then dp ;. () = GFm(s) #
WFri(s') = g 5, (00)-

See Subsection 4.3.6 for the proof of Lemma 4.2.9.
Using the properties above, we now prove the following Lemma 4.2.10.

Lemma 4.2.10. For any F' € %, we have F € . and L(]/*:) = L(F).
Proof of Lemma 4.2.10. 1t suffices to prove the following three statements
(i)—(iii) for any F' € .#;.

@) F € Fraee.

(ii) Pﬁ = {0,1} for any i € [F].

~

(iil) £ € Fog and L(E) = L(F).

(Proof of (i)): It suffices to prove F € Py gec because this implies F €
Fodec by Lemma 3.4.1 (iv).

We first show that F' satisfies Definition 2.2.3 (a). Choose i € [F] and
s € § arbitrarily and put j = 7;(s). We consider the following two cases
separately: the case [P, (fi(s))| = 0 and the case P, (f;(s))] > 1.
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e The case [P};(fi(s))] = 0: We have

_ . (4) _ . (B)
P2 NP (fi(s)) € {00,01,10,1130PZ (fi(s)) C {00,01,10,11}00 = 0
) (4.31)
as desired, where (A) follows from |Pr,(fi(s))] = 0 and the first case
of (4.29), and (B) follows from |Pp,(fi(s))| = 0 and the first case of
(4.30).

e The case |Pr;(fi(s))| > 1: We consider the following three cases sepa-
rately: the case |P7 ;| = 2, the case |Pf;| > 3,[Pr;| = 1, and the case
|7D1%‘,j| > 3, |P11F,j| =2.

— The case [Pz, = 2: We have
_ . A — .
PL AP (f(s) 2 far0,am1} NP2 (fi(s)  (4.32)

(B)
g {CI,F’]‘O, CLFJ‘]_} N {&ij(), ELFJ‘]_} (433)

= 0 (4.34)

as desired, where (A) follows from |PZ;| = 2 and Lemma 4.2.8
(i) (a), and (B) follows from |Pr,(fi(s))| > 1, |P#,| = 2, and the
second case of (4.30).

— The case |PZ;| > 3: Then we have [P, (fi(s))| < 1 by Lemma

4.2.2. Combining this with [P;(f;(s))| > 1, we obtain

[Pri(fi(s)| = 1. (4.35)
* The case [P} ;| = 1: We have

P2 NPL(fi(s)
(A) _ .
Q {CZFJO,CI,F,]‘LELF’]'I} ﬁ’PZQ;,’Z(fZ(S)) (436)

(B)
- {CLF’J'O, CLF,jl, C_LF,jl} N {C_LFJ'O} (437)

= 0, (4.38)

where (A) follows from (4.35), [P;| = 1, and the second case
of (4.29), and (B) follows from |Pp,(fi(s))| > 1, [Pz;| > 3,
|Pk;| =1, and the third case of (4.30).
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* The case [P} | = 2: We have

_ . A) _ , (B) _ ©)

P} NP (fi(s) € PRyOPR(fils)) © PENPE(fils)) = 0,
(4.39)

;| = 2, and the third case of
NI =1, PR >3, [Pryl =
nd (C ) follows from F €

where (A) follows from (4.35), |P}
(4.29), (B) follows from |7DF1< i(s
2, and the fourth case of (4.30), a
<952—(160

These cases show that F satisfies Definition 2.2.3 (a).
Next, we show that F' satisfies Definition 2.2.3 (b). Choose i € [F] and
s,s’ € 8 such that

s# 8, fz(5> = fi(s/) (4.40)
arbitrarily and put j = 7;(s). Since (4.40) and Lemma 4.2.7 (iii) lead to
fi(s) = fi(s"), we have

|P1%',T¢(8)‘ = ’,P%,Ti(s/)| =2 (441)

applying Lemma 4.2.4 (iii). Hence, we obtain
@) (B)
Prrt) VPhrey = 10Fm9)0, arn(9 1} N {arn )0, ann)1} = 0 (4.42)

as desired, where (A) follows from (4.41) and Lemma 4.2.8 (i) (a), and (B)
follows since apr,(s) # @pr(sy by (4.40) and Lemma 4.2.9 (ii).

(Proof of (ii)): We prove for the following two cases separately: (I) the
case Sp;(A) = 0; (II) the case Sg;(\) # 0.

(I) The case Sg;i(A) = 0: It suffices to show
YeeClre S fi(x) - dj ;¢ (4.43)

because this implies that for any ¢ € C, there exists x € §* such that

A % % (B) o
dpic =2 fi(@) 2 [ (@)dp vy = dipifi (@), (4.44)
where (A) follows from (4.43), and (B) follows from Lemma 3.4.1 (i).
This shows that f, (x) = ¢ for some & € S*, which leads to ¢ € 7711.0 ,

as desired. Thus, we prove (4.43) considering the following two cases
separately: the case |73%l| = 2 and the case |7312p2| > 3.
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e The case |P#;| = 2: For any c € C, we have

P2 D ap0,ar1} 2 {dp,0,dp,1} 3 dp e, (4.45)

where (A) follows from Lemma 4.2.8 (i) (a), and (B) follows from
Lemma 4.2.9 (i). Hence, there exists € ST such that f}’;l(.'z:) -
d ;¢ as desired. ’

e The case |P#;| > 3: Choose ¢ € C arbitrarily. We have Pr; =
{0,1} 3 ¢ by F € %#,. Hence, there exists £ = z125...2, € St
such that f(x) > c. Let y(s1)7(s2) ... 7(s,) be the y-decomposition
of fi(x1). We have

. . . (A) (B)

[i(®) = file1) = 4(s1) = (s1) = ¢, (4.46)
where (A) follows from |P2,| > 3 and the second case of (4.24),
and (B) follows from Sp,;(A) = () and Lemma 4.2.6 (i).
Since ¢ is arbitrarily chosen, we have 77;1 = {0,1} by (4.46).
This implies dj. ; = A by (3.123). Therefore, by (4.46), we obtain
fi@) = c= dj ;¢ for any ¢ € C as desired.

(IT) The case Sgi(A\) # 0: By Lemma 2.3.3, we can choose the longest
sequence £ € ST such that fj(z) = X\. Then Sp.x@) () = 0. Hence,
from the result of the case (I) above, we have 771% @ = {0,1}. Thus,

T (z
we obtain
, W @ @ @
P F,r¥(x1) F,1¥(zr122) F,1*(x)
as desired, where (A)s follow from Lemma 2.2.1 (i).
(Proof of (iii)): We have

A) B) /7

QF) = Q(F) = Q(F), (4.48)
where (A) follows from (4.23), and (B) follows from (3.122) (cf. Remark
2.4.1). Hence, F' € %, implies F e Freg- Also, we have

LF) Y Ly 2 Ly, (4.49)
where (A) follows from (4.48) and Lemma 4.2.7 (ii) (cf. Remark 2.4.1), and
(B) follows from Lemma 3.4.1 (iii). O
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For F € .77 and an integer t > 0, we define

F if t =0,
JACI (4.50)
Ft=Y if ¢ > 0.

Namely, F® is the code-tuple obtained by applying dot operation and rota-
tion to F' t times. We now prove that any code-tuple of .%#; is transformed
into a code-tuple of .%; by repeating of dot operation and rotation, that is,
Mg = 0 holds for a sufficiently large t, where Mp = {i € [F] : [Pf,| = 2}.
To prove this fact, we use the following Lemma 4.2.11. See Subsection 4.3.7
for the proof of Lemma 4.2.11.

Lemma 4.2.11. For any F' € Py op N F1 N Fire and two integers t and t’
such that 0 <t < t', it holds that M pwy N Mpwy = 0.

Lemma 4.2.12. % ., Ny # 0.

Proof of Lemma 4.2.12. By Lemma 4.2.3, there exists ' € %5 o, N F1. By
Lemmas 2.5.3 and 2.5.4, we may assume F' € .%;, without loss of generality.
Consider |F| + 1 code-tuples F©, O pUF)  Because Lemma 4.2.11
shows that the |F| + 1 sets Mg, Mpq), ..., Mpqr) are disjoint, there ex-
ists an integer ¢ € {0,1,2,...,|F|} such that Mp® = 0. This shows that
|P}27,({)7i| > 3 for any i € [F]. Since F® € %, N . by Lemma 4.2.10, we
obtain F(f) < gzg_opt N yg. O

We state some properties of %, as the following Lemmas 4.2.13 and 4.2.14.

Lemma 4.2.13. For any F(f,7) € %, and i € [F]|, the mapping f; is
mjective.

Proof of Lemma 4.2.13. For any s € S, we have

(f. A) > vese (e | Pr ] B) [P (fi
’SF,z<fz(3))‘ _ 3|SF,Z<fl<S))| < 2 €Sr,i(fi(s)) | Firi( )| < | Rz(f (s))] < L_l’
3 3 3 3
(4.51)
o

where (A) follows since ‘P%,n(s')’ > 3 for any s’ € Sp;(fi(s)) from F € F,
and (B) follows from Lemma 2.2.3. Therefore, we have |Sg;(fi(s))| < 1 for
any s € §. This shows that f; is injective as desired. O

Lemma 4.2.14. For any F(f,7) € Foopt N Fo, there exists i € Rp such
that |P3,| = 4.
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Proof of Lemma 4.2.14. Choose p € Rp. By Lemma 2.2.2 (ii), there ex-
ists s € S such that PP (f,(s)) = 0. Also, by Lemma 4.2.13, we have
|Skp(fp(s))] = 1. Hence, by Lemma 4.2.5, we obtain [Pz,;| = 4 for i = 7,(s).

By p € Rp, for any j € [F], there exists z € S* such that 7} (z) = p,
which leads to

* A) .
T (Xs) = Tre@)(s) = 1p(s) =1, (4.52)
where (A) follows from Lemma 2.1.1 (ii). This shows i € Rp. O

4.2.3 The Class .73

In this subsection, we prove Foop N Z3 # 0, which proof is outlined as
follows.

e First, we define the code-tuple F' as Definition 4.2.5 for a given code-
tuple F' € %5.

e Then we show that F € Foopt N F3 holds for any F' € Fy o N Fo.
This shows Fo opt N F3 # 0 since Foopt N F2 # 0 by Lemma 4.2.12.

Definition 4.2.5. For F(f,7) € F5, we define F(f7 7y e FUD gs

fils) = 4(s1)3(s2) - A (s,), (4.53)
7i(s) == 7(s) (4.54)
fori € [F| and s € S. Here, 4(s,) is defined as

/

”Y(Sr) ifr =1, ’P%A =4,
1 ifr=1,1P;| =3, |7(s,)]
A(sr) = < 01g3gs ... g ifr =1, |7312PZ| =3, |v(s)]
lgagsga-..gi  if = 1,|Pg;| = 3, [7(s,)]
009394 - .. q; ifr > 2

L,
27 919_2 g 7)}27’71'7
2

>
Z agng € P]%’J'a

(4.55)
forr=1,2,...,p, where v(s1)y(s2)...7v(s,) is the y-decomposition of f;(s)
and Y(sr) = G192 - - - G-

Example 4.2.5. We consider F(f,7) = F™ in Table 4.1.
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The ~-decomposition of fo(d) is fo(d) = ~(s1), where v(s1) = 001.
We have 5(s1) = v(s1) = 001 applying the first case of (4.55) since
|PEol = 4. Hence, we have fo(d) = 4(s1) = 001.

o The y-decomposition of fi(c) is fi(c) = v(s1)y(s2), where v(s1) = 01
and v(sg) = 001. We have 7(s1) = 01 applying the third case of (4.55)
since [P, | =3 and 00 € Pf,. We have 5(s2) = 001 applying the fifth
case of (4.55). Hence, we have fi(c) = 5(s1)%(s2) = 01001.

e The ~y-decomposition of fi(b) is fi(b) = ~(s1), where y(s1) = 1. We

have 4(s1) = 1 applying the second case of (4.55) since |Pg,| = 3 and
Iv(s1)| = 1. Hence, we have fi(b) = 4(s;) = 1.

e The y-decomposition of fa(d) is fo(d) = v(s1), where y(s1) = 011. We
have %(s1) = 111 applying the fourth case of (4.55) since |Ppy| = 3
and 01 € Pf,. Hence, we have fo(d) = 5(sy) = 111.

The code table F© in Table 4.1 is obtained as F™ .

We state some properties of F as the following Lemmas 4.2.15 and 4.2.16
(cf. Lemmas 4.2.7 and 4.2.8).

Lemma 4.2.15. For any F(f,7) € %5 and i € [F], the following statements
(i)-(iii) hold.
(i) Let s € S and let y(s1)y(s2)...7(s,) be the vy-decomposition of fi(s).
Then we have |5(s,)| = |v(s.)| for any r=1,2,...,p.
(ii) For any s € S, we have | fi(s)| = | fi(s)].
(i) For any s,s" € S, the following equivalence holds: fi(s) X fi(s') <=
fils) =2 fi(¢).

Proof of Lemma 4.2.15. (Proof of (i)): Directly from (4.55).
(Proof of (ii)): We have

i)l = syl + Fis2)l + -+ 13(s,)] (4.56)
A)
= Iyl + [(s2) + -+ [v(sp)] (4.57)
= /i), (4.58)
where (A) follows from (i) of this lemma.
(Proof of (iii)): See Subsection 4.3.8. O
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Lemma 4.2.16. For any F' € %, and i € [F], the following statements (i)
and (ii) hold.

(i)

, _ JfoL10.11}p i (PR =3, (459)
B 1{00,01,10,11}  if [P3,] = 4. ‘

(i) For any s € S, we have

0 if Pp(fi(s)) =0, (4.60)

. 0
Piili) = {{00} i P (i(s)) # 0.

See Subsection 4.3.9 for the proof of Lemma 4.2.16.
Using the properties above, we prove the main result of this subsection
as the following Lemma 4.2.17.

Lemma 4.2.17. %5 ., N 3 # 0.

Proof of Lemma 4.2.17. By Lemma 4.2.12, there exists F'(f, ) € F2NFoopt-
We have )
QF) = Q(F) (4.61)

by (4.54) (cf. Remark 2.4.1).
Now, we show F' € .Z5 , N F3 as follows.

e (Proof of F e Freg): From F' € Fy C Fpop and (4.61).

e (Proof of F e Fo.dec): We first show that F satisfies Definition 2.2.3 (a).
We choose i € [F] and s € S arbitrarily and consider the following two
cases separately: the case Pp,(fi(s)) = () and the case Pp(fi(s)) # 0.

— The Pp;(fi(s)) = 0: We have
2 D2 (f (A) 2 -
Pi s NV Pi(fils) = Pho, N0 =0, (4.62)

where (A) follows from P, (fi(s)) = 0 and the first case of (4.60).
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— The case P, (f;(s)) # 0: By Lemma 4.2.2, we have |7D1%“,n(s)| < 3.
In particular, it holds that

PF )] = 3 (4.63)

by F' € .%,. Thus, we have

— . (A) _ .
Pi s VPR (fi(s) = {01,10,113 NP (fi(s)) (4.64)
® 101,10,11} N {00} (4.65)
= 0, (4.66)
where (A) follows from (4.63) and the first case of (4.59), and (B)

follows from Pg.;(f;(s)) # @ and the second case of (4.60).

These cases show that F satisfies Definition 2.2.3 (a).

Also, by F' € #, and Lemma 4.2.13, all the mappings fo, fi,..., firj—1

are injective. This proves that F' satisfies Definition 2.2.3 (b) (cf. Re-
mark 2.2.1).

(Proof of F' € Fyop): For any i € [F], we have L;(F) = L;(F) by

Lemma 4.2.15 (ii) and we have m;(F) = m;(F') by (4.61) (cf. Remark

2.4.1). Hence, we have L(F) = L(F'), which leads to F' € Fopt by
F € Fyopt-

(Proof of "i € [F],P;Z D {01,10,11}): Choose i € [F] arbitrarily.
Since |Pp,;| > 3 by F € %, we obtain 7312” D {01,10,11} applying
Lemma 4.2.16 (i).

O

4.2.4 The Class %,
Lemma 4.2.18. % ., N .Fy # 0.

Proof of Lemma 4.2.18. By Lemma 4.2.17, there exists F' € Foop N Fs.
Applying Theorem 3.1.1, there exists F1(fT,71) € Foop N F3 satisfying
|FT| = |2%]. By Lemma 4.2.14, there exists i € Ryt such that P}, =
{00,01,10,11}. Hence, FT satisfies exactly one of the following conditions
(a) and (b).
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(a) |F1| = 2,P% , ={00,01,10,11}, P2, , = {01,10,11} (by swapping the

indices of (fI,7!) and (fI,7) if necessary).
(b) |F| =1,P% , = {00,01,10,11}.

In the case (a), we have FT € Fy,p N Fy as desired. In the case (b),
we can see that the code-tuple F'(f’,7') € F@ defined as below satisfies
F' € Zyopt N Fy as desired:

folse) = f3(sn), ma(s,) =73 (s0), (4.67)
01 ifr=1,
fils)) =170 if2<r<o—-1, 7(s)=0 (4.68)
1ot ifr=o,
for s, € S, where we suppose S = {s1, 82, ..., 5, } and the notation 1 denotes

the sequence obtained by concatenating [ copies of 1 for an integer [ > 1. [

4.2.5 Proof of Theorem 4.2.1

Finally, we prove the desired Theorem 4.2.1 as follows.

Proof of Theorem 4.2.1. By Lemma 4.2.18, there exists F' € Fy o N Fy.
We have 0 € Rr by Lemma 4.2.14. We consider the following two cases
separately: the case Rr = {0, 1} and the case Rp = {0}.

e The case Rp = {0,1}: We prove F' € Z1py by showing that F' satisfies
Definition 4.2.1 (i)-(vii).

— (Proof of (i)): Directly from Lemma 4.2.13.

— (Proof of (ii)): Choose s € S arbitrarily. We first prove Pr,,(fi(s))
# 1 by contradiction assuming Pp;(fi(s)) > 1. Then by Lemma
2.3.2 (ii), we have

Pri(fi(s))  1e (4.69)
for some ¢ € C. On the other hand, by F' € .%,, we have

Pz 2 10,11 (4.70)
By (4.69) and (4.70), we obtain PZ_ N Pri(fi(s)) # 0, which

leads to F' € %9 qec. This conflicts with F' € %4 C F5 4
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Next, we prove Pj;(fi(s)0) # 1 by contradiction assuming
Pri(fi(s)0) 3 1. (4.71)

Then we have

_ (A)
B) _
C

©)

D Phw NO{1}, (4.74)
(5) {01,10,11} N {01} (4.75)
= {01} (4.76)
# 0 (4.77)

where (A) follows from Lemma 2.2.1 (ii), (B) follows from Lemma
2.2.1 (i), (C) follows from (4.71), and (D) follows from F' € %, C
#3. Hence, we obtain F' € %5 4., which conflicts with F' € .%, C
<Q‘Q—deo

(Proof of (iii)): Directly from Lemma 4.2.4 (v).

(Proof of (iv)): Choose i € [F] and s € S arbitrarily and consider
the following two cases separately: the case Pp;(fi(s)) = 0 and

the case Pp,(fi(s)) # 0:

* The case Pp;(fi(s)) = 0: We have [ Pirs| = 4 applying
Lemma 4.2.5 since i € {0,1} = R holds and f; is injective
by Lemma 4.2.13. Hence, we obtain 7;(s) = 0 by F' € %,.

* The case Pp,(fi(s)) # 0: We have [P7_ | < 3 by Lemma
4.2.2, Hence, we obtain 7;(s) = 1 by F € .Z,.

(Proof of (v)): We choose i € [F] arbitrarily and prove that if
fi(s) = Xor fi(s) = 0 for some s € S, then P¢; # {01,10,11},
which is equivalent to i = 0. Choose s € S such that fi(s) = A
or fi(s) = 0. We consider the following two cases separately: the
case f;(s) = X and the case f;(s) = 0.

« The case fi(s) = \: By Lemma 4.2.13, the mapping fi is
injective. Thus, by Lemma 2.2.2 (iii), we have Pp,; # 0.
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Hence, by Corollary 2.3.1 (ii) (a), we have
Pri # 0. (4.78)

Also, we have

. (B)

Pr; € C*\ Py, C C*\{01,10,11} = {00}, (4.79)
where (A) follows from F' € Fy C Foge, and (B) follows
from F € %, C %3. Thus, we obtain

(A) _
P2, 2 P2, 2 {oo}. (4.80)

where (A) follows from Lemma 2.2.1 (i), and (B) follows from
(4.78) and (4.79). This shows P, # {01, 10,11} as desired.
« The case f;(s) = 0: We have

(A)

Pri 2 Pis (4.81)
S oPL0) (4.82)
< 0PL(fi(s) (4.83)
o
D 0P (4.84)
D 00,1} (4.85)
00, (4.86)

where (A) follows from Lemma 2.2.1 (i), (B) follows from
Lemma 2.2.1 (ii), (C) follows from f;(s) = 0, (D) follows from
Lemma 2.2.1 (i), and (E) follows from F' € #4; C .#;. This
leads to P#,; # {01,10, 11}.
— (Proof of (vi)): We prove by contradiction assuming P, (0) > 0.
We have

, N ® © D)

Pr1 2 Pry 2 0Pp,(0) 2 0Pr,(0) > 00, (4.87)

where (A) follows from Lemma 2.2.1 (i), (B) follows from Lemma

2.2.1 (ii), (C) follows from Lemma 2.2.1 (i), and (D) follows from

Pr1(0) 0. This shows Pz, # {01,10,11}, which conflicts with
Fe 7,
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— (Proof of (vii)): We prove by contradiction assuming that there
exist ¢ € [F] and b € C* such that all of the following conditions
(a)—(c) hold.

() |Pp(b)] = 1.

(b) fi(s)e # b for any s € S and ¢ € C°UC!.
(c) (4,b) # (1,0).

We have

(A) 1.5 (B) .= (@)
PL B = PL®)+ Y |Phal = [Prib)] = 1, (4.88)

SESF’Z' (b)

where (A) follows from Lemma 2.2.3, (B) follows since Sg;(b) = ()
by the condition (b), and (C) follows from the condition (a).

We consider the following three cases separately: the case |b| = 0,
the case |[b| = 1, and the case |b| > 2.

* The case |b| = 0: By (4.88), we have |Pp;| = [P, (b)] = 1,
which conflicts with F' € %, C %#;.
* The case |b| = 1: We have

P Y PR U( U Phaw) 2 PR C oPLO)UIPE ),
SESF,i(N)

(4.89)

where (A) follows from Lemma 2.2.1 (i), (B) follows because
Sri(A) = 0 by |b] = 1 and the condition (b), and (C) follows
from Lemma 2.2.1 (ii).
On the other hand, we have P%, = {00,01, 10,11} and P%, =
{01,10,11} by F € .%,. Hence, comparing with (4.89), we
have Pho(0) = Pho(1) = Phy(1) = {0.1} and P, (0) = {1}.
Therefore, by (4.88) and |b| = 1, it must hold that (i,b) =
(1,0), which conflicts with the condition (c).

* The case |b| > 2: By the condition (a), we have
Pri(b) = {a} (4.90)
for some a € C. Then there exists £ € ST such that

fi(x) =ba, fi(xy)>=Db. (4.91)

7
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Hence, by |b| > 2, we have f;(z1) > b1be, which leads to
biby € Pi,, (4.92)

where b1by denotes the prefix of length 2 of b. By ¢ € {0,1} =
Rp and (4.92), we have ba € P, applying Lemma 4.3.2
stated in Subsection 4.3.3. Hence, there exists y € ST such
that

fi(y) = ba. (4.93)

(2

Then exactly one of f;(y1) > b and f;(y1) < b holds. Now, the
latter f;(y1) =< b holds because the former f;(y;) > b implies
a € Pp;(b) by (4.93), which conflicts with (4.90). Therefore,
there exists ¢ = c¢ycz ... ¢, € C* such that f;(y;)e =b. By the
condition (b), we have |¢| > 2 so that

filyr)eica <b. (4.94)

We have

® o ®
fity) [y sult(y)) = fi(y) = ba=b = fi(y)cica, (4.95)

where (A) follows from (4.93), and (B) follows from (4.94).
Comparing both sides, we obtain f7  (suff(y)) = cics, which

leads to
C1Co € P}%‘,Ti(lﬂ)' (496)
Also, by (4.91) and (4.94), we have f;(x1) > fi(y1)cico, which
leads to B
162 € Pri(fily))- (4.97)

By (4.96) and (4.97), we obtain Pg;(fi(y1)) N Pi .y 7 0,
which conflicts with F' € %5 gec.

e The case Rr = {0}: We define F'(f',7') € F@ as

folsr) = fo(sr),  7o(sr) = 7o(s,), (4.98)
01 ifr=1,

fls) =170 if2<r<o—1, 7i(s)=0 (4.99)
1t ifr=o,
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for s, € S, where we suppose S = {sy, $2,...,S,} and the notation
1! denotes the sequence obtained by concatenating [ copies of 1 for an
integer [ > 1. We can show that F” satisfies Definition 4.2.1 (i)—(vii) in
a similar way to the case Rr = {0, 1}.

O

4.3 Proofs of Lemmas in Chapter 4

4.3.1 Proof of Lemma 4.2.1

To prove Lemma 4.2.1, we first show the following Lemma 4.3.1.
Lemma 4.3.1. For any F € Fawpy, the following conditions (i)—(iii) hold.
(i) 73}10 = ,PI{“,I = {07 1}~

(it) For any i € [F] and b € C, if Spi(N) = 0 and (i,b) # (1,0), then
PLi(b) = 0.1},

(iii) For anyi € [F] and s € S, if PR (fi(s)) # 0, then P3,(fi(s)) = {00}.
Proof of Lemma 4.5.1. (Proof of (i)): We first show
Pry ={0,1}. (4.100)

To prove it, it suffices to show [P}, | = 2 because this implies P, 2 Pp; =
{0,1} by Lemma 2.2.1 (i).

e We obtain |Pj,| # 0 by applying Corollary 2.3.1 (ii) (a) because
P4 # 0 by Definition 4.2.1 (i) and Lemma 2.2.2 (iii).

e Also, we have |Pp,| # 1 because neither the condition (a) nor (b) of
Definition 4.2.1 (vii) holds for (i,b) = (1, A) by Definition 4.2.1 (v).

These show (4.100).
Next, we show Pj, = {0,1} by considering the following two cases sepa-
rately: the case Spo(\) = () and the case Spo(X) # 0.

e The case Spo(A) = 0: By a similar argument to derive (4.100).
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e The case Spo(A) # (): We have

PFO = U PFTO(S 2 U ,P}’,l < U {0,1} el {0, 1},
sESF0(N) sE€SF0(N) s€SF0(N)

(4.101)
where (A) follows from Lemma 2.2.1 (i), (B) follows from Definition
4.2.1 (iv) because PR (fo(s)) = Pho # 0 by Definition 4.2.1 (i) and
Lemma 2.2.2 (iii), (C) follows from (4.100), and (D) follows from Sg ()

# 0.

(Proof of (ii)): Assume Sg;(\) = 0 and (4,b) # (1,0). We consider the
following two cases separately: the case Sg;(b) = () and the case Sg;(b) # 0.

e The case Sp;(b) = 0: It suffices to show |Pf,(b)| = 2 because this
implies Pr,;(b) 2 Pp;(b) = {0,1} by Lemma 2.2.1 (i).

— We have b € {0,1} = P, by (i) of this lemma. Hence, there
exists £ € ST such that f(z) = b. Since Spi(A\) = Ski(b) = 0,
we have f;(x1) > b and thus [P, (b)| # 0.

— Also, by Definition 4.2.1 (vii), it must hold that |P};(b)| # 1 since
Sri(A) = Spi(b) = 0 and (i,0) # (1,0).
These show Pp;(b) = {0,1} as desired.
e The case Sp;(b) # 0: We have

PL.(b) U Phow = U (0,13 € {0,1) (4.102)

s€SF,i(b) s€Sp,i(b)

as desired, where (A) follows from Lemma 2.2.1 (i), (B) follows from
(i) of this lemma, and (C) follows from Sp;(b) # 0.

(Proof of (iii)): Assume Pp;(fi(s)) # 0. Then we have P, (fi(s)) # 0 by
Corollary 2.3.1 (ii) (a). Since 1 & Pp,(f;(s)) by Definition 4.2.1 (ii), it must
hold that B

Pr.i(fi(s)) = {0}. (4.103)
We have

OPL(fi(5)0) ULPE,(fi(s)1) & P2, (fi(s)) 2 {00,013}, (4.104)
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where (A) follows from Lemma 2.2.1 (ii), and (B) follows from (4.103) and
Lemma 2.3.2 (ii). Comparing both sides of (4.104), we have

1Pr(fi(s)1) = 0. (4.105)
Thus, we obtain
PRifils) E OPL(fi(5)0) ULPh,(fi(s)1) (4.106)
2 0PL(fi(s)0) (4.107)
(_) ~1 ) 1
2 0(PLUEENU( U Phaw)) (4108)
s'€SF,i(fi(s)0)
= PLUE0U( U OPhaw)  (4109)
s'€Sri(fi(s)0)
2 0PL,(fi(5)0) (4.110)
D {00}, (4.111)

where (A) follows from Lemma 2.2.1 (ii), (B) follows from (4.105), (C) follows
from Lemma 2.2.1 (i), (D) follows since Sg;(fi(s)0) = 0 by Definition 4.2.1
(iii), and (E) follows from (4.103).

U

Proof of Lemma 4.2.1. We fix F' € Fpy arbitrarily and show F' € F .,
F € Foaeer Phy = {00,01,10, 11} and P, = {01, 10, 11},

(Proof of F € #,e,): By Lemma 2.2.2 (ii), the following (4.112) holds,
which implies

Vi € [F];7s € S; PRa(fi(s) =0 (4.112)

Bl Y e [F];3s € S;mi(s) = 0 (4.113)

Bl Rr30 (4.114)

G pez,, (4.115)

where (A) follows from Definition 4.2.1 (iv), (B) follows from (2.68), and (C)

follows from Lemma 2.5.2 (i).
(Proof of P#, = {01,10, 11}): We have 0 € {0,1} = Pp, by Lemma 4.3.1
(i). Hence, there exists & € ST such that f;(z) > 0. By Definition 4.2.1 (v),

139



we have fi(x;) > 0 and thus
Pr1(0) # 0. (4.116)
Therefore, we obtain
A) 5 ®B) 5 ©
PLO) EPLOU( U Phaw) CPRO) C (1) (@17
SIESF,l(O)

where (A) follows from Lemma 2.2.1 (i), (B) follows since Sg1(0) = 0 by
Definition 4.2.1 (v), and (C) follows from (4.116) and Definition 4.2.1 (vi).
Thus, we obtain

(A)
P & P§71u< U 7?1%,,71(5,)) (4.118)
s'eSk1(N)

@ p2 (4.119)

© oPL,(0) UTPL, (1) (4.120)

D of13uipk, (1) (4.121)

D o{1yu{o,1} (4.122)
{01,10,11} (4.123)

as desired, where (A) follows from Lemma 2.2.1 (i), (B) follows since Sg1(\) =
() by Definition 4.2.1 (v), (C) follows from Lemma 2.2.1 (ii), (D) follows from
(4.117), and (E) follows from Lemma 4.3.1 (ii) since Sg1(A) = ) by Definition
421 (v).

(Proof of P%, = {00,01,10,11}): We consider the following two cases
separately: the case Spo(A) = 0 and the case Spo(A) # 0.

e The case Spo(A\) = 0: We have

2 (A) D2
P, 5 P, (4.124)
0P (0) UTPE, (1) (4.125)
© ofo,13u1PL, (1) (4.126)
D 010,13 U1{0,1} (4.127)
— {00,01,10,11} (4.128)
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as desired, where (A) follows from Lemma 2.2.1 (i), (B) follows from
Lemma 2.2.1 (ii), (C) follows from Lemma 4.3.1 (ii) since Sgo(A) = 0,
and (D) follows from Lemma 4.3.1 (ii) since Sg1(A) = () by Definition
12.1 (v).

e The case Spo(A) # 0: Let s € Spo(A) # 0. We have
Pro(fo(s)) = Prg # 0 (4.129)

by Definition 4.2.1 (i) and Lemma 2.2.2 (iii), and thus we have 15(s) = 1
by Definition 4.2.1 (iv). Hence, we have

P2, & iﬁmLJ< U Pﬁm@g> (4.130)
S’ESF,O(A)
B
D Pho(fols)) UPrrs 4131

2

(4.131)

Prolfo(s)) U P, (4.132)
{00} U P, (4.133)
(4.134)

(4.135)

S

B

{00} U {01, 10,11}
{00,01,10, 11}

as desired, where (A) follows from Lemma 2.2.1 (i), (B) follows from
s € Sro(A), (C) follows from 79(s) = 1, (D) follows from (4.129) and
Lemma 4.3.1 (iii), and (E) follows from (4.123).

(Proof of F' € %5 4ec): Since fy and f; are injective by Definition 4.2.1
(i), the code-tuple F satisfies Definition 2.2.3 (b) (cf. Remark 2.2.1). We
show that F' satisfies Definition 2.2.3 (a). We choose i € [2] and s € S
arbitrarily and show P NPE,(fi(s)) = 0 for the following two cases: the

case PP (fi(s)) = 0 and the case P, (f(s)) # 0.

e The case P, (f;(s)) = 0: We have
2 D2 (A) 2 _
Prr(s) VPri(fi(3)) = Ppre N0 =10 (4.136)
as desired, where (A) follows from Pg;(f;(s)) = 0
(i) (a).

and Corollary 2.3.1
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e The case P, (f;(s)) # 0: We have

=

Pirs NPr(fi(s) = P NPE(fi(s)) (4.137)
{01,101} N PL,(fi(s))  (4.138)
© 101,10,11} N {00} (4.139)
=0 (4.140)

as desired, where (A) follows from Pj;(f;(s)) # @ and Definition 2.2.3
(iv), (B) follows from (4.123), and (C) follows from Pp,(fi(s)) # @ and
Lemma 4.3.1 (iii).

O

4.3.2 Proof of Lemma 4.2.4

Proof of Lemma 4.2.4. (Proof of (i)): We have 77}% = {0,1} by F € #,.
Hence, by Lemma 2.3.2 (i), there exist a,b € C such that Oa, 1b € 77%1

(Proof of (i) (a)): Assume |Pz;| = 2. We prove by contradiction assum-
ing that [f;(s)] < 1 for some s € S. We consider the following two cases
separately: the case |f;(s)| = 0 and the case |f;(s)| = 1.

e The case |f;(s)] = 0: We have

_ a)
PRl +2Spi(M] < PR+ 2Ski(M)] (4.141)
®
< PR+ YD PR (4142)
S'ESFYZ'(A)
S (4.143)
2 o, (4.144)

where (A) follows from Corollary 2.3.1 (ii) (b), (B) follows since P ()]

> 2 for any s’ € Sg;(\) by (i) of this lemma, (C) follows from Lemma
2.2.3, and (D) follows directly from the assumption.

Also, by |fi(s)] = 0, we have
Sra(M)] = {s} = 1. (4.145)
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By (4.141) and (4.145), we have
Ppil =0 (4.146)

and

|SEi(\)] = 1. (4.147)

By (4.147) and Lemma 2.2.2 (iii), we obtain Pp; # 0, which conflicts
with (4.146).

e The case |fi(s)| = 1: Put fi(s) = c € C. We have

o W B ©
Pri 2 Pri 2 cPr; = c{0,1} = {c0,cl}, (4.148)

where (A) follows from Lemma 2.2.1 (i), (B) follows from Lemma 2.2.1
(ii), and (C) follows from F € .%;. Also, by (i) of this lemma, we have

Pt 2 {ca, b} (4.149)

for some a,b € C. By (4.148) and (4.149), we have |Pz,| > [{c0, c1, éb}|
= 3, which conflicts with [Pz;| = 2.

(Proof of (ii) (b)): Assume |P#,| = 2. We have

PP ( U Phaw) ©PhC (00,10} (4.150)
M)

SESF,Z'

for some a,b € C as desired, where (A) follows because Sg;(A) = 0 by (ii) (a)
of this lemma, (B) follows from Lemma 2.2.1 (i), and (C) follows from (i) of
this lemma and |PZ,| = 2.

(Proof of (iii)): Assume s # s and fi(s) = fi(s’). We have

Pri(fi(s))| + |73z27,n(s)| + |7312V,n(s/)|

@

< PRI+ D PR (4.151)
s"€Ski(fi(s))

(®)

= |[PRi(fi(s))] (4.152)

< 4 (4.153)

where (A) follows from s # s’ and f;(s) = f;(s'), and (B) follows from Lemma
2.2.3.
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Also, by (i) of this lemma, we have
Prrs] =20 [Phowl > 2. (4.154)

By (4.151) and (4.154), it must hold that |75%Z(f2(5))| — 0 and ‘7312?7Ti(5)| _
P | = 2 as desired.
(Proof of (iv)): We have

2|Ski( fi(s))]

Sralfils))| = LD (4.155)
@ ZsfesF,Afi(;)) [Prro) (4.156)
®) |7’%,Z~(fz'(8))!;|7’%,i(fi(8))| (4.157)
o Ao IPRUON (4.158)
9 4_|7D2“,2z'(fi<8))| (4.159)
5 B0 (f
< imimly e

as desired, where (A) follows since |7312w7n_(s,)| > 2 for any 5" € Sp;i(fi(s)) by (i)
of this lemma, (B) follows from Lemma 2.2.3, and (C) follows from Corollary
2.3.1 (ii) (b).

(Proof of (v)): We prove by contradiction assuming that there exist s, s’ €
S and c € C such that

fi(s") = fi(s)e. (4.161)
By (i) of this lemma, we have
Prrs) 2 ¢ (4.162)

for some ¢ € C. Also, we have

52 @ B) 1 w9 D) /
PF,i(fi(S)) 2 CPF,i(fi(S)C) = CPF,i(fi(s ) 2 CPF,TL'(SI) = c{0,1} > cc,

(4.163)

where (A) follows from Lemma 2.2.1 (ii), (B) follows from (4.161), (C) follows
from Lemma 2.2.1 (i), and (D) follows from F' € .%;. By (4.162) and (4.163),
we obtain P N Pri(fi(s)) # 0, which conflicts with F € P gec.
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(Proof of (vi)): We prove by contradiction assuming that there exist s € S
and ¢ € C such that B
Pra(fi(s)e) = {0.1}. (4.164)
By (i) of this lemma, we have
P s 2 < (4.165)

for some ¢ € C. Also, we have

52 @& B o © /
Prilfi(s)) 2 cPri(fi(s)e) 2 cPp;(fi(s)e) = {0,1} > ec,  (4.166)

where (A) follows from Lemma 2.2.1 (ii), (B) follows from Lemma 2.2.1 (i),
and (C) follows from (4.164). By (4.165) and (4.166), we obtain P} _ N

75%1(]‘}(3)) # (), which conflicts with F' € .75 gec. O

4.3.3 Proof of Lemma 4.2.5

To prove Lemma 4.2.5, we use the following Lemma 4.3.2 obtained by The-
orem 3.1.2 with k£ = 2.

Lemma 4.3.2. For any F € ooy, @ € Rp, and b = biby... by € C=2, if
blbg € P}%’,i? then b € 73;;71

Proof of Lemma 4.2.5. Assume Pg.(fi(s)) = 0 and |Sp;(fi(s))] = 1. We
prove by contradiction assuming |P% )| < 4, that is, there exists

\Ti (s
b = b1b2 € CQ \ 7312*_‘,7','(8)' (4167)
First, we put
and show
dids € P (4.169)

considering the following three cases separately: the case |f;(s)| = 0, the case
|fi(s)] = 1, and the case |f;(s)| > 2.

e The case |f;(s)] = 0: We have

_ _ B
PY(fi(s)) & Py, A0, (4.170)

where (A) follows from | f;(s)| = 0, and (B) follows from |Sg;(fi(s))| = 1
and Lemma 2.2.2 (iii). This conflicts with the assumption. Therefore,
the case | fi(s)| = 0 is impossible.
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e The case |f;(s)| = 1: Then we have f;(s) = dy by (4.168). Also, we
have dy € {0,1} = Pp,_,, by F' € F1. Thus, there exists £ € S* such
that f7 ) (z) = do. Then we have f(sz) = fi(s) [}, (x) = did2, which

leads to (4.169).

e The case |fi(s)| > 2: Directly from f;(s) > didy by (4.168).

Consequently, (4.169) holds.
By i € Rr and (4.169), we obtain d € Py, applying Lemma 4.3.2. Hence,
there exists y € ST such that

fily) = d. (4.171)

By (4.168) and (4.171), exactly one of fi(y1) = fi(s) and fi(y1) =< fi(s) holds.
Now, the latter f;(y1) < fi(s) must hold because the former f;(y1) = fi(s)
conflicts with P (fi(s)) = @ by Lemma 2.2.2 (i). Therefore, there exists
¢ € C* such that f;(y1)e = fi(s). We divide into the following three cases by
el.

e The case |¢| = 0: We have f;(y1) = fi(s), which leads to y; = s by
|Sri(fi(s))| = 1. Hence, we have
* . RN A ()
[i(8) [75) (sutt (Y)) = fi(y1) [7,) (S0t () = f7 (y) = d = [i(s)b,
(4.172)
where (A) follows from (4.171), and (B) follows from (4.168). Compar-
ing both sides, we obtain [ (suff(y)) = b. This leads to b € 771%7”(8),
which conflicts with (4.167).

e The case |e| = 1: We have f;(y1) = fi(s)c1, which conflicts with Lemma
424 (v).

e The case |¢| > 2: We have

filyr)ciea = fils), (4.173)
which leads to )

ci1cg € ’P]%“z(fz(yl)) (4.174)
Also, we have

. . (A) (B (©)
filyr) fr. o (suff(y)) = fi(y) = d = fi(s)b = fi(s) = fi(y1)erca,
(4.175)



where (A) follows from (4.171), (B) follows from (4.168), and (C) fol-
lows from (4.173). Comparing both sides, we obtain f:i(yl)(suff(y)) -
c1¢2, which leads to

162 € Phrin): (4.176)

By (4.174) and (4.176), we obtain PZ,(fi(y1)) N Pi. .y # 0, which
conflicts with F' € %5 qec.

O

4.3.4 Proof of Lemma 4.2.7 (iii)

To prove Lemma 4.2.7 (iii), we prove the following Lemmas 4.3.3 and 4.3.4.

Lemma 4.3.3. Let F' € %, € [F], and s, s’ € S, and let y(s1)7(s2) ... v(s,)
(resp. (s1)7(85) - .. v(s,)) be the y-decomposition of fi(s) (resp. fi(s')). For
any r=1,2,...,m = min{p, p'}, if one of the following conditions (a) and
(b) holds, then ~(s;) = v(s;) <= (s) = 3(s.)-

(a) r=1.
(b) r>2 and s,_1 = s,_;.

Proof of Lemma 4.3.3. Assume that the condition (a) or (b) holds.
( =) Directly from (4.24).
( <= ) We prove the contraposition. Namely, we prove ¥(s,) # 5(s.)

assuming (s,) # y(s..). Put v(s;) = ¢192... g and v(s}) = g1¢5...g,. We
consider the following two cases separately: the case |y(s,)| # |v(s.)| and

the case |y(s,)] = [v(s;)]
e The case |y(s,)| # |v(s))|: We have

(B)
Fsol D (sl # vl 156, (4.177)

where (A) follows from Lemma 4.2.7 (i), (B) follows from the assump-
tion, and (C) follows from Lemma 4.2.7 (i). This implies (s,.) # (s.)
as desired.
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e The case |y(s,)| = [y(sp)]: If [v(s0)] = [7v(s})| = 3 and g394...91 #
G54 - - - gy, then we obtain (s,) # §(s).) directly from (4.24). Thus, we
assume

g; # ¢ for some 1 < j < min{2, |y(s,)|}. (4.178)

We divide into the following two cases by which of the conditions (a)
and (b) holds: the case r = 1 and the case r > 2,s5,_1 = s/_;.

— The case r = 1: We consider the following two cases separately:
the case |P%,| = 2 and the case [P, > 3.

* The case |P%,| = 2: By Lemma 4.2.4 (ii), we have P%; =

{0a, 1b} for some a,b € C and we have |y(s1)| = |y(s})| > 2.

This shows ¢1¢9, ¢195 € {0a, 1b}. Hence, since g1g2 # g, g5 by
(4.178), we may assume

61 # g, (4.179)

Thus, we obtain

@ (B) N (O
Y(s,) = arig1g3ga--- g1 # arigi g5y .- gy = Y(s.) (4.180)

as desired, where (A) follows from the first case of (4.24) since
r=1and |Pz,| = 2, (B) follows from (4.179), and (C) follows
from the first case of (4.24) since r = 1 and |P?,| = 2.

* The case |P3;| > 3: We obtain

@ ® o,
Y(sr) = v(sr) # (s,) = F(s,) (4.181)

as desired, where (A) follows from the second case of (4.24)
since r = 1 and |Pg;| > 3, (B) follows from (4.178), and
(C) follows from the second case of (4.24) since r = 1 and
[Pl = 3.

— The case r > 2, 5,1 = s,_;: By Lemma 4.2.6 (iii), we have ¢;¢» €
Pri(fi(si-1)) and gig5 € Pi(fi(s,y))- Since s,y = s,_,, we
have

{9192, 9195} € Pii(filsr-1))- (4.182)

Now, we show
9 #F g (4.183)
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by contradiction assuming the contrary g; = ¢;. Then by (4.178),
it must hold that |y(s,)| = |y(s.)| > 2 and g2 # ¢5. Hence, we

have

91P11w7i(fi($r—1)91) U 1 Pri(fi(sr-1)d1)

(A)

= Phfilsr)) (4.184)
(B)

2 {9192, 9195} (4.185)
C /

{9205 (4.186)
2 g{0,1}, (4.187)

where (A) follows from Lemma 2.2.1 (ii), (B) follows from (4.182),
(C) follows from g; = g} and (4.183), and (D) follows from g> # ¢5.
Comparing both sides of (4.184), we obtain Pp,(fi(sr—1)g1) =
{0, 1}, which conflicts with Lemma 4.2.4 (vi). Hence, we conclude
that (4.183) holds.

We have

P 2 o gt @ {0, 13 = 2, (4.188)

where (A) follows from (4.182) and Lemma 2.3.2 (ii), and (B)
follows from (4.183). Therefore, we obtain

. (A) _ (B)_ I, (S
7(37“) = AFri(sp-1)919394 - - - g1 7é arri(sl_)919394 - - - 9y = 7(87’)
(4.189)
as desired, where (A) follows from the third case of (4.24) since
r > 2 and (4.188) hold, (B) follows from (4.183), and (C) follows
from the third case of (4.24) since r > 2 and (4.188) hold.

O

Lemma 4.3.4. Let F' € %, € [F], and s, s’ € S, and let y(s1)y(s2) ... v(s,)
(resp. 7(3'1)7(3'2) -..7(s},)) be the ~y-decomposition of fi(s) (resp. fi(s)). If
fi(s) = fi(s), then for any r = 1,2,...,m = min{p, p'}, we have ¥(s,) =

Proof of Lemma 4.3.4. Assume

fils) = fil8). (4.190)
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It suffices to prove that the following conditions (a) and (b) hold for any
r=1,2,...,m by induction for r.

(a) Y(sr) = 7(s).
(b) If r # m, then s, = ...

We fix ¢ > 1 and show that (a) and (b) hold for » = ¢ under the assumption
that (a) and (b) hold for any r =1,2,...,¢ — 1.
We first show that the condition (a) holds for r = ¢. We have

= fils) (4.191)

A)

=< fils) (4.192)

= RS ) () (4.103)

®B) . . )

D A Sn) A8, (1191)
where we suppose fi(sq,l) = A for the case ¢ = 1, and (A) follows from

(4.190), and (B) follows from the induction hypothesis. Comparing both
sides, we have

V(s V(sq1) - ¥(8p) 2 A(se)¥(Sg1a) - H(s}p)- (4.195)

Hence, at least one of ¥(s,) = ¥(s;) and ¥(s,) = ¥(s;) holds. We show that
both relations hold, that is,

Y(sq) = Y(sq) (4.196)

by contradiction. Assume that one does not hold, that is, v(s,) < 7(s;,) by
symmetry. Then we have

filsq) = (s1)v(s2) ... Y(sq-1)7(sq) (4.197)
2 () - (s)(s) (4.198)
< y(s)(sh) - v(sg_1)(sg) (4.199)
= fi(sy), (4.200)
where (A) follows from the induction hypothesis. Hence, we obtain
& o< (f(g )
sq € Spilfi(sy)) = 81,85, 5.1} = {51,582, ... 541}, (4.201)
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where (A) follows from (4.200), and (B) follows from the induction hypoth-
esis. This conflicts with the definition of y-decomposition of fi(s},). Conse-
quently, (4.196) holds.

Since ¢ = 1 or 5,1 = s;_; hold by the induction hypothesis and (4.196)
holds, we obtain v(s,) = 7(s;) by applying Lemma 4.3.3. Namely, the con-
dition (a) holds for r = g.

Next, we show that the condition (b) holds for » = q. We have

A)
filsq) = v(s1)v(s2) ... v(sq) = v(s)v(sa) ... v(sy) = filsy),  (4.202)
where (A) follows from the induction hypothesis and ~(s,) = 7(s;) proven
above. Also, if ¢ # m, then we have P}, (fi(sq)) # 0 applying Lemma 2.2.2
(i) since fi(sq) < fi(sm). Hence, by Lemma 4.2.4 (iv), we have
ISki(fi(sg))| = 1. (4.203)

By (4.202) and (4.203), it must hold that s, = s,. Namely, the condition (b)
holds for r = q. 0

Proof of Lemma 4.2.7 (iii). Let y(s1)y(s2) ... 7(s,) (vesp. v(s1)v(s5) - .. v(s,))
be the y-decomposition of f;(s) (resp. f;(s')).
(=) Assume f;(s) = fi(s’). Then we have

fi(s") = v(s)v(s2) - v (8p)7(8500) 7 (Shan) - - - Y(8))- (4.204)
Hence, we obtain
fils) = As1)4(s2) - A(s,) (4.205)
< A(s1)%(s2) 7(5p>7(5;+1)7(5/p+2) . -’7(5;/) (4.206)
= fi(s) (4.207)
as desired.

(<) Assume . _
fi(s) 2 fi(s). (4.208)
Then we have

filsm) = Y(50)7(52) Y (5m) E A7) - A(5h) = filsh),  (4.209)

where m = {p, p'} and (A) follows from Lemma 4.3.4. This implies
fi(sm) = fi(s),) (4.210)

by ( = ) of this lemma. We consider the following two cases separately:
the case m = p < p’ and the case m = p’ < p.
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e The case m = p < p’: We have

o A) / (E) / / / ry /

fi(s) = filsm) = fi(si) 2 filsi)v(Sms )V (Smng2) - A (87) = fils))
(4.211)
as desired, where (A) follows from (4.209), and (B) follows from m =

p<p.
e The case m = p’ < p: We show that this case is impossible. We have

TRy . . W ® (O
fi(sm) YV (Sms1)V(Smr2) - A(sp) = fi(s) =2 fils) = fi(s) = filsm),

(4.212)
where (A) follows from (4.208), (B) follows from m = p’, and (C) follows
from (4.210). Comparing both sides, we obtain ¥(sm,+1)¥(Sm+2) - - - ¥(S,)
= A, which leads to y(Sm41)7(Sm+2) - --7(s,) = A by Lemma 4.2.7 (i).
In particular, we have y(s;,,41) = A by m < p. This conflicts with
Lemma 4.2.6 (ii).

U
4.3.5 Proof of Lemma 4.2.8
Proof of Lemma 4.2.8. (Proof of (i) (a)): For any & € §*, we have
B)
F(s)l E sl > 2, (4.213)

where v(s1)v(s2) ...7(s,) is the y-decomposition of f;(z1), and (A) follows
from Lemma 4.2.7 (i), and (B) follows from |P%;| = 2 and Lemma 4.2.6 (ii).
For any ¢ € C, we have

cEPr;, <= ‘zeShifix) =c (4.214)
Ll oz e ST € Ciy(sy) = e (4.215)
L ozpe ST 4(s1) = apic (4.216)
L g e 8% @) = ape (4.217)
= apic€Pi, (4.218)

where v(s1)7v(s2) ...7(s,) is the y-decomposition of f;(z1), and (A) follows
from (4.213), (B) follows from |P3;| = 2 and the first case of (4.24), and
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(C) follows from (4.213). Since Pp; = {0,1} by F € ., we obtain 77}2;,1 =

{ar;0,ar;1} by (4.218) as desired.

(Proof of (i) (b)): Assume |P# ;| > 3. We consider the three cases of the
right hand side of (4.29) separately.

e The case |Pp,(fi(s))] = 0: Clearly, we have ng C {00,01,10,11} as

desired.

e The case [PL;(fi(s))| = 1,|Pf;| = 1: We have

(A)
1>

=

I8 1va

V

[Sr;(A)]
2|8k (M)
2
ZSESF,]' N |P}*‘,Tj (s) |

2
Pryl = [Pyl
2
2—-1

2
0,

(4.219)
(4.220)

(4.221)

(4.222)

(4.223)
(4.224)

where (A) follows from Lemma 4.2.4 (iv) because P # 0 holds by
[Pl = 1 and Corollary 2.3.1 (ii) (a), (B) follows since Prrys| = 2
from F € .Z, (C) follows from Lemma 2.2.1 (i), and (D) follows from
F e .7y and |Pp,| = 1. Thus, we have |Sp;(A)| = 1, that is, there

exists ' € S such that

Now, we have

Srj(A) = {s'}.
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because

—
N

A

2 < |Ph ol (4.227)
P2l - Pl (4.228)
©) .
< Pis| = Pyl (4.229)
QP2 -1 (4.230)
(®)
< 3-1 (4.231)
- 2 (4.232)

where (A) follows from Lemma 4.2.4 (i), (B) follows from Lemma 2.2.3,
(C) follows from Corollary 2.3.1 (ii) (b), (D) follows from |Pf | = 1,
and (E) follows from Lemma 4.2.2 and [P, (f;(s))] = 1.

Hence, applying the first case of (i) of this lemma, we obtain
P}%‘,i-j(s/) = {G/F,Tj(s/)o, CLF77—]-(5/)1}. (4233)

Also, by (4.226) and Lemma 4.2.4 (ii) (b), we have 75}2%(5,) = {0a, 10}
for some a,b € C. Hence, by Lemma 2.3.2 (ii), we obtain

Thus, for any £ € ST, we have

filw) = Als1)A(s2) - A(5o-1)7(s,) (4.235)
= A(s1)%(s2) (4.236)
2 4 (s2) (4.237)
2 )annw] (4.238)
© el (4.239)

where (s1)y(s2) . ..v(s,-1)7(s,) is the y-decomposition of f;(z;), and
(A) follows from (4.225) and Lemma 4.2.6 (i), (B) is obtained by ap-
plying the fifth case of (4.24) by |PL.(f;(s')] = [P, = 1, (4.226) and
(4.234), and (C) follows from (4.225) and Lemma 4.2.7 (i). This shows

P2 C farn L. (4.240)

154



Finally, we obtain

2 (A) 52 2
PF:J o PF,] U ( U PF,%J'(S”)) (4241)
S”GSFJ‘(/\)

®B) 52 2
- PF,j U PF,T']-(S/) (4.242)
©)
C {aF,Tj(s’)Oa aF,‘rj(s’)]-v aF,‘rj(s’)]-} (4243)
(2) {aFJOaa'F,]l?dF,]]-} (4244)

as desired, where (A) follows from Lemma 2.2.1 (i), (B) follows from
(4.225), (C) follows from (4.233) and (4.240), and (D) follows since
aFq(s) = ary; by (4.225) and the first case of (4.25).

e The case [Pp,(fi(s))| = 1,|Pk,| = 2: We show ¢ € P for an arbitrar-
ily fixed ¢ = c1c3 € ng.

We have
2|8k, (N)|
SOV Tj (4.245)
(A) sesm ) | P s
< Z GSF,J()\Q) ‘ i ( )’ (4246)
® |Pr;l = [Pyl
B |Prsl = Pyl 4.247
2 240
© [Py, — P},
9 1PhI- Pk (4219
D) 3 —|PL.
D % (4.249)
—2
® 3 : (4.250)
< 1 (4.251)

where (A) follows since |73%’Tj(8,)| > 2 for any s € Sp;(\) by Lemma
4.2.4 (i), (B) follows from Lemma 2.2.3, (C) follows from Corollary
2.3.1 (ii) (b), (D) follows from Lemma 4.2.2 and |Pp;(f;(s))| = 1, and
(E) follows from |Pf,;| = 2. This shows

Sp;(\) = 0. (4.252)
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Byce P;j, there exists £ € S* such that

fi@) =ec (4.253)

Then we have

Fi(@n) = A(s1)3(s2) - A(s,1)(s,) = Als1) D A(s1),  (4.254)

where v(s1)7(s2) ... v(sp-1)7(s,) is the y-decomposition f;(z;) and (A)
follows from |P7 ;| > 3 and the second case of (4.24).

By (4.252) and Lemma 4.2.6 (i), it holds that |y(s;)| > 1. We consider

the following two cases separately: the case |y(s1)| = 1 and the case
[y(s1)] = 2.
— The case |y(s1)| = 1: By (4.253) and (4.254), we have
fi(s1) =7(s1) = c1. (4.255)
We obtain
2 W5
Pr; 2 Pr; (4.256)
®
2 Clppj(cl) (4.257)
©
= aPi;(fi(s1)) (4.258)
o
> Pl o) (4.259)
© 40,1} (4.260)
3  C1Co (4261)
— ¢ (4.262)

as desired, where (A) follows from Lemma 2.2.1 (i), (B) follows
from Lemma 2.2.1 (ii), (C) follows from (4.255), (D) follows from
Lemma 2.2.1 (i), and (E) follows from F € Z.

— The case |y(s1)| > 2: By (4.253) and (4.254), we have f7(z) =
7(s1) = ¢, which leads to ¢ € Pg.

~ (Proof of (ii)): We consider the following two cases separately: the case
|Pri(fi(s))] = 0 and the [Pp;(fi(s))] > 1.

156



e The case [P};(fi(s))] = 0: We have

Pri(fi(s)| =0 <= Pp;(fi(s)) =0 (4.263)
Ll Ve Sifi(s) £ fi(s)  (4.264)
L vy eSifis) £ fi(s)  (4.265)
£ P (fils) =0 (4.266)
= PLL(fi(s) =0 (4:267)

as desired, where (A) follows from Corollary 2.3.1 (ii) (a), (B)
from Lemma 2.2.2 (i), (C) follows from Lemma 4.2.7 (iii), (D) follows
from Lemma 2.2.2 (i), and (E) follows from Corollary 2.3.1 (ii) (a).

)

)

e The case |PL,(fi(s))] > 1: Choose z € S* such that fr@) = fi(s),

and fi(x1) = fils
decomposition of f;(x1). Then by f;(x

arbitrary and let v(s1)y(s2)...7(sy) be the ~-

1) > fi(s), there exists an integer
p such that p < p’ and fi(s) = v(s1)v(s2)...7(s,). We have
fi@) = fim) (4.268)
= Als1)7(s2) - A(sp) (4.269)
= fi(s)¥(sps1) - - -(s0) (4.270)
= fils)i(sp41) (4.271)
(CYRN
= fi(s)gige, (4.272)

where ¥(s,11) = 192 - - - §1, and (A) follows since |Y(sp41)| = [7(5p41)] >
2 by Lemma 4.2.6 (ii) and Lemma 4.2.7 (i). Therefore, the set P;Z(fz(s))
is included in the set of all possible sequences as ;g € C2. We con-
sider what sequences are possible as ¢,g, € C* for the following three
cases: the case [P} | = 2, the case |P%,| > 3,|Pk;| = 1, and the case
[Pl = 3, Phyl = 2.

— The case |P#,| = 2:
* The case |Pp,(fi(s))] = 2: We have ¢1g2 C {ar,0,ar;1}
applying the third case of (4.24).
* The case |Ph,(fi(s))| = 1: By |P#;| = 2 and Lemma 4.2.4
(ii) (b), we have |PZ ;| = {0a, 1b} for some a,b € C. Thus, we
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have [P} | = [{0,1}| = 2 applying Lemma 2.3.2 (ii). Hence,
we obtain ;g2 = ar;1 applying the fifth case of (4.24).

These show ﬁ%z(fz(s)) C {ap,0,ar;1} as desired.

— The case |P%;| > 3: Then we have |Pf,(fi(s))] < 1 by Lemma
4.2.2. Combining this with [Pf;(fi(s))] > 1, we obtain

|Pra(fi(s)] = 1. (4.273)

x The case \75}%.\ = 1: We obtain g1g» = ar;0 applying the

fourth case of (4.24) by (4.273) and |Pr;| = 1. This shows
ﬁ;l(fz(s)) C {ar;0} as desired.

* The case [P} | = 2: We obtain g1g, = g1g» by the sixth case

),

of (4.24) by (4.273), |Pi,;| = 2, and |P%,| > 3. This shows
P2 (£(5)) © P2, ((s)) as desived because guge € P2, (/i(5)
by Lemma 4.2.6 (iii).

O

4.3.6 Proof of Lemma 4.2.9

Proof of Lemma 4.2.9. (Proof of (i)): Assume [Pf,| = 2. Then we have
P, = {ari0,ap;1} by Lemma 4.2.8 (i) (a). Hence, we have P},Z = {ar;}
by Lemma 2.3.2 (i). Therefore, by (3.123), we obtain d;; = ap; as desired.

(Proof of (ii)): Assume s # s’ and fi(s) = f;(s'). Then since f;(s) = fi(s)
by Lemma 4.2.7 (iii), we have

|7D}27',Ti(8)| = |7D}27‘,Ti(s’)| =2 (4274)
applying Lemma 4.2.4 (iii). Hence, by (i) of this lemma, we obtain
dF:Ti(s) == aF,T¢(S)7 dF,TZ'(S/) = aF,TZ‘(S/)' (4275)

Also, by (4.274) and Lemma 4.2.4 (ii) (a), we have Sg,(5)(A) = Skrs)(A) =
(0, in particular,
|SF,7'1(S)()‘)| 7& 17 |SF,Ti(s’)()\>| 7£ 1. (4276)

Now we show 73}27771_(8) > Oap,,(s) considering the following two cases: the
case Pgﬂ(s) > 00 and the case 73}2%(5) # 00.
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e The case 7312%1,(5) > 00: By (4.276) and the second case of (4.25), we
have ar ) = 0 and thus Pl%—',n(s) > 00 = Oapq(s)-

e The case 77%771_(5) # 00: By Lemma 4.2.4 (ii) (b), there exists b € C such

that

P2 200 2012 0ap, ), (4.277)

where (A) follows from P7_ ., # 00, and (B) follows from (4.276),
P15y 7 00, and the third case of (4.25).

Therefore, we conclude that 73}2,771,(8) > Oapy,(s)- By the same argument, we
also have P%Ti(s,) > Oapy,(s). Consequently, we have

{OaF,Ti(S)} N {OaF,Ti(S’)} C 7)}27‘,7'1'(3) n 7)}27,7'2'(3’) (:) ®7 (4278)
where (A) follows from F' € %5 gec. This shows

AFyry(s) 7 QFry(s')- (4.279)

Combining (4.275) and (4.279), we obtain the desired result. O

4.3.7 Proof of Lemma 4.2.11

To prove Lemma 4.2.11, we prove Lemmas 4.3.5 and 4.3.6 as follows.

Lemma 4.3.5. For any F' € #, and i € [F), the mapping f; is injective.
Proof of Lemma 4.3.5. Choose s,s’ € S such that fz(s) = fi(s’) arbitrarily.
We show s = ¢,

We have

; (A) T ® R © ;
[i(8)dp s = dinifi(s) = dip; fi(s) = fi(s)dp 1,1, (4.280)
where (A) follows from Lemma 3.4.1 (i), (B) follows directly from f;(s) =

fi(s'), and (C) follows from Lemma 3.4.1 (i).
Also, we have

ldp 2 09)| = |d o) (4.281)

159



because if we assume the contrary, that is, |dF,T'i(s)| =1 and |dF,7"i(s’)| =0
by symmetry, then by (4.280), we have fi(s)dF,T'i(s) = fi(s’), which conflicts
with Lemma 4.2.4 (v).

By (4.280) and (4.281), we obtain fi(s) = f;(s') and Ap sis) = A sy(sr)-
Hence, we obtain s = s’ as desired applying the contraposition of Lemma
4.2.9 (ii). 0

Lemma 4.3.6. For any F € Z,i € [F|, and s € S, if Pp,;(fi(s)) =0 or

~

7i(8) € Mg, then 751% (fi(s)) = 0.

Proof of Lemma 4.3.6. We assume that P, (f;(s)) = 0 or 7(s) € Mp holds
and prove by contradiction assuming 751% (fi(s)) # 0. Then by Lemma 2.2.2

%

(i), there exist & € S\ {s} and c € C such that

fi(s)e = fi(s). (4.282)
Thus, we have
: N NI () R
fi(s)dp 1 e = dpfils)e =2 dp i fi(s) = fils)dp 4,0, (4.283)

where (A) follows from Lemma 3.4.1 (i), (B) follows from (4.282), and (C)
follows from Lemma 3.4.1 (i).

We consider the following two cases separately: the case PP, (fi(s)) = 0
and the case 7;(s) € Mp.

e The case P, (f;(s)) = 0: We have

—0 A _ 0 (B)
G| < P2 () 2o, (1.251)

where (A) follows from Corollary 2.3.1 (ii) (b), and (B) follows from

the first case of (4.30) because Pf;(f;(s)) = 0 holds by P (fi(s)) =0
and Corollary 2.3.1 (ii) (a).

Also, we have

. A . ®) .
i) < 1)+ 1d s on| = 1| = lel < 1fils)], - (4.285)
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where (A) follows from (4.283), and (B) follows from |df . | < 1,
|dF,TZ(S)| > Oa and |C| =1

In fact, the equalities hold in (4.285), that is, we have
[fi(s) = Ifi(s)] (4.286)

because if we assume |f;(s)| < |f;(s)], then we have f;(s) < f;(s') by
(4.283), which conflicts with (4.284) and Lemma 2.2.2 (i).

By (4.283) and (4.286), we obtain
fi(s) = fils)). (4.287)

Hence, applying Lemma 4.2.9 (ii), we have dj ;. ) = @rn(s) and dj ;. (o)
= QF,(s)- In particular,

|dF,‘i'¢(s)‘ = |dF,+i(sf)| =1 (4.288)
Thus, we obtain
. (A) | : ® . © i, D)
2 = eoel < Vol = LRI
4.289

where (A) follows from (4.288), (B) follows from (4.283), (C) follows
from (4.288), and (D) follows from (4.287). This is a contradiction.

The case 7;(s) € Mp: By Lemma 4.2.9 (i), we have
Af +,(s) = OFmi(s)- (4.290)

Substituting (4.290) for (4.283), we obtain

f‘i(s>aF,7‘i(S)c j fi<8/>dF77'-i(S/)- (4291)
Also, we have
: . ) . B .
[fi()| + L= [fi(s)] + lapn| < [fils)] +1dp 00| — el < [fi($)],
(4.292)

where (A) follows from (4.291), and (B) follows from |dj ;. )| < 1 and
le| = 1.
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By (4.291) and (4.292), we have f.i(s)apm(s) < f;(s), which leads to
P .(fi(s)) 3 apqr,s)- Hence, applying Lemma 2.3.2 (i), we have
Pi(fi(s)) 3 aprsc (4.293)

for some ¢’ € C. On the other hand, by 7;(s) € Mp and Lemma 4.2.8
(i) (a), we have
Pr i) = 10790, arry() 1} (4.294)

By (4.293) and (4.294), we obtain P? iy ﬁ;z(fz(s)) # (). Hence, we
have I & 5 gec, Which conflicts with the proof of Lemma 4.2.10.
O

Proof of Lemma 4.2.11. Applying Lemma 4.2.10 in a repetitive manner, we
have

F(O)7F(1)7 ctty F(t)>F(t+1)a e 7F(t/) 6 ﬁl (4295)
and
L(F) = L(F9) = L(FY) = ... = L(FW) = L(F*Y) = ... = L(F®).
(4.296)

We prove Lemma 4.2.11 by contradiction assuming that there exists p €
Mpwy N Mpwy. By Rp = |F|, there exist ¢ € [F] and s € S such that
7:(s) = p. By (3.122) and (4.23), we have 7" (s) = Ti(t/)(s) = p and

Ti(t)(s) =DpEc ./\/lFu)

2L PO (S () = 0 (4.297)
L P (S () = 0 (4.208)
= (4.299)
LL P, (1) =0, (4.300)

where (A)s follow from (4.295) and Lemma 4.3.6. Applying Lemma 4.3.5 to
F®=1) we see that fi(t )(5) is injective, in particular,

[Spen (7 ()] = 1 (4.301)
By (4.300) and (4.301), we obtain |7312?<t,)’p| = |P127<t’),r}t’>(s)| = 4 applying
Lemma 4.2.5, which conflicts with p € M . O
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4.3.8 Proof of Lemma 4.2.15 (iii)

We can prove Lemma 4.2.15 (iii) in a similar way to prove Lemma 4.2.7 (iii)
by using the following Lemma 4.3.7 instead of Lemma 4.3.3.

Lemma 4.3.7. Let F' € %, € [F], and s, s’ € S, and let y(s1)7(s2) ... v(s,)

(resp. v(s1)7(85) ... (s},)) be the y-decomposition of fi(s) (resp. fi(s')). For
anyr=1,2,...,m =min{p, p'}, if one of the following conditions (a) and

(b) holds, then A(s,) = 1(s}) = F(5,) = (s}
(a) r=1.
(b) r>2 and s,_1 = s,_;.

Proof of Lemma 4.5.3. Assume that (a) or (b) holds.
( =) Directly from (4.55).
( <= ) We prove the contraposition. Namely, we prove %(s,) # 5(s.)

assuming y(s,) # v(s.). Put y(s,) = g192... 9 and v(s,.) = ¢4 g5 ...g,. We
consider the following two cases separately: the case |y(s,)| # |v(s.)| and

the case [1(s,)] = (s}
e The case |y(s,)| # |v(s.)|: We have

A (B)
(sl 2 (sl # S s, (4.302)

where (A) follows from Lemma 4.2.15 (i), (B) follows from the assump-
tion, and (C) follows from Lemma 4.2.15 (i). This shows %(s,.) # (s..).

o The case |y(s,)| = [v(sp): If [7(sr)] = [7(s7)] = 3 and gsg4... 90 #
G54, - - - gy, then we obtain 5(s,) # #(s!.) directly from (4.55). Thus, we
assume

gj # g; for some 1 < j < min{2, |y(s,)|}. (4.303)

Now we show that the condition (a) necessarily holds by contradiction
assuming that the condition (a) does not hold and the condition (b)
holds. Then we have |y(s,)| = |y(s))| > 2 by Lemma 4.2.6 (ii) and we
have g1go € Pi,(fi(s;—1)) and gigh € P, (fi(s._;)) by Lemma 4.2.6
(iii). Since s,_1 = s._; by the condition (b), we have

{9192, 91195} - ﬁ%,i(fi(srfl))- (4.304)
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Therefore, we have

RPNV B
{9192, 9195} < ’,P}%‘,i(fi(srfﬂ)‘ (4.305)
(B)
< PR fi(s) = [P,y (4.306)
©)
< 4-3 (4.307)
= 1 (4.308)

where (A) follows from (4.304), (B) follows from Lemma 2.2.3, and (C)
follows from F' € .%,. This leads to g192 = g1g5, which conflicts with
(4.303). Therefore, the condition (a), that is, r = 1 holds.

We consider the following two cases separately: the case |P3;| = 4 and

the case |P%,;| = 3.

— The case |P#,| = 4: We obtain

i) @ (s1) £ () L (s)) (4:300)

as desired, where (A) follows from |P,| = 4 and the first case of
(4.55), (B) follows from (4.303), and (C) follows from |P%,;| = 4
and the first case of (4.55).

— The case |P#,| = 3: We first prove

[y (s1)] = [r(s1)] = 2 (4.310)

by assuming the contrary |y(s1)| = |v(s})| = 1. Then by (4.303),
we may assume y(s1) = 0 and y(s}) = 1 without loss of generality.
Hence, we have

, W
Pri 2 Pry (4.311)
2 0PL(0) UIPE(1) (4.312)

©
D 0Ppier) YU TPE (o) (4.313)
2 0{0.13u1{0,1} (4.314)
= {00,01,10, 11}, (4.315)
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where (A) follows from Lemma 2.2.1 (i), (B) follows from Lemma
2.2.1 (ii), (C) follows from Lemma 2.2.1 (i), and (D) follows from
F e .7, C .. This conflicts with |P#,| = 3. Therefore, (4.310)
holds.

By |P},| = 3, we have PZ; = {hihy, h10, hi1} for some hihy € C2.
By (4.310), we have g1go € 731%1@' = {h1hy, h10, h11}.

x If g1go = hihs, then 7(s1) = 01 by the third case of (4.55).

* If g1go = h0, then %(s;) = 10 by the fourth case of (4.55).

% If 19> = h11, then ¥(s;) = 11 by the fourth case of (4.55).
By the same argument, we have %(s}) = 01 (resp. 10,11) if ¢ g5 =
hihy (resp. hi0,hq1). In particular, ¥(s;) = #4(s}) holds if and
only if g1g2 = g1g5. Therefore, ¥(s1) # 4(s}) is implied by (4.303)
as desired.

0

4.3.9 Proof of Lemma 4.2.16

Proof of Lemma 4.2.16. (Proof of (i)): We consider the following two cases
separately: (I) the case |Pz;| = 3; (II) the case |P3,| = 4.

(I) The case |Pg;| = 3: Choose z € S* arbitrarily, and let v(s1)y(s2) ... 7(s,)
be the y-decomposition of fi(z1). By |P#,| = 3, applying the second,
third, and fourth cases of (4.55), we have either 4(s1) > 1 or 4(s1) = 01,
in particular, f,*(m) 7 00. This implies

Pi. € {01,10,11}. (4.316)
By |PZ,| = 3, there exists ¢ = ¢1c; € C? such that
7)127‘,1' = {ci1c2,610,61}. (4.317)
Then there exists £’ € ST such that
i) = e (4.318)

Let v(s})7(s3) - .- v(s),) be the y-decomposition of f;(z}). Now we show
|v(s})| > 2 by deriving a contradiction for the following two cases

separately: the case |y(s}])| = 0 and the case |y(s})| = 1.
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— If we assume |y(s})| = 0: We have

A

Pril = PRl + ’Pzzr,n(s/lﬂ (4.319)
B
> |Pral + 1 Prasp (4.320)
©) )
(D)
> 1+3 (4.322)
= 4 (4.323)

where (A) follows from Lemma 2.2.3 and |y(s})| = 0, (B) follows
from Corollary 2.3.1 (ii) (b), (C) follows from Lemma 2.2.2 (iii)
because f; is injective by Lemma 4.2.13, and (D) follows from
F € Z,. This conflicts with [P};| = 3.

— If we assume |y(s})| = 1: We have

(A)

Pri 2 Pry (4.324)
3 a1 P; 4.325
= 1 F,z(cl) (' )
C
QP (i) (4.326)
(D) )

2 ClPF,T (s/) (4327)
0,1} (4.328)
> 6y, (4.329)

where (A) follows from Lemma 2.2.1 (i), (B) follows from Lemma
2.2.1 (ii), (C) follows since ¢; = f;(s}) by (4.318) and |vy(s})| = 1,
(D) follows from Lemma 2.2.1 (i), and (E) follows from F' € %, C
Z1. This conflicts with (4.317).

Hence, we have [y(s})| > 2 and thus v(s}) = cic; by (4.318). Therefore,
by the third case of (4.55), we obtain f(z') = fr(z}) = 5(s}) = 01,
which leads to

01 € P%,. (4.330)

Next, we show that
10,11 € P . (4.331)
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To prove it, we choose a € C arbitrarily and show that la € 73?” Since
ca € Pp; by (4.317), there exists 2” € ST such that

f1(@") = da. (4.332)

7

Let v(s7)v(s3) . .. v(s)) be the y-decomposition of fi(z7). We consider
the following two cases separately: the case |y(s})| > 2 and the case
(s = L.
— The case |y(s])| > 2: Then we have v(s}) = éa by (4.332).
Hence, by |P3;| = 3, [y(s])| > 2, and (4.317), we have 4(s{) = la

applying the fourth case of (4.55). Thus, we obtain f*(2") >
(s7) = 1a, which leads to la € P  as desired.

— The case |y(s])| = 1: We have

p 5 p 4
Fig = F (4.333)
(®)
D 1P (1) (4.334)
1P () (4.335)
(D)
2 1Pi. (4.336)
D 110,1} (4.337)
> la, (4.338)

where (A) follows from Lemma 2.2.1 (i), (B) follows from Lemma
2.2.1 (ii), (C) is obtained by applying the second case of (4.55) by
|P%;| = 3 and |y(s7)| = 1, (D) follows from Lemma 2.2.1 (i), and
(E) follows from F' € ., C F.

Therefore, we conclude that (4.331) holds. By (4.316), (4.330), and
(4.331), we obtain P% - = {01, 10, 11} as desired.

(IT) The case |77}2M] = 4: We consider the following two cases separately:
(IT-A) the case Sg;(\) # 0; (II-B) the case Sp;(A\) = 0.

(IT-A) The case Sg;(A\) # 0: Since f; is injective by Lemma 4.2.13, we
can choose s € S such that Sp;(A) = {s}. Also, we have Pp; # 0
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(II-B)

applying Lemma 2.2.2 (iii). Hence, by Lemma 4.2.2, we have
| Pfrs| < 3. In particular, it holds that |P7_ | =3 by F € .
Therefore, by the result of the case (I), we obtain

P: )= {01, 10,11}. (4.339)

,Ti(s
Since f; is injective, we can choose s € S such that s # A\. Let

Y(s1)7v(s3) .. v(8,,) be the y-decomposition of fi(s’). By Lemma
4.2.6 (i) and Sg;(A\) # (), we have

v(sy) = A (4.340)

Note that p' > 2 holds by (4.340) and s}, = s’ # . We have
fils) = Als)A(sh) - Alsy) (4.341)
= 9(s1)7(s3) (4.342)
2 5(s) (4.343)

(B)

= 00, (4.344)
where (A) follows from (4.340) and Lemma 4.2.15 (i), and (B)

follows from the fifth case of (4.55).
Hence, we have

00 € P3 . (4.345)
We obtain
, W _, B
Pi; 2 Pi. o UPE, 2 {01,10,113 U {00} = {00,01,10,11}

4.346
as desired, where (A) follows from Lemma 2.2.1 (i), and (B) (followi
from (4.339) and (4.345).

The case Sp;(A) = 0: It suffices to show that 73;Z D P, since
|PEi| = 4. Choose ¢ = c1¢c; € Pp; = {00,01,10, 11} arbitrarily.
Then there exists £ € St such that

fi(z) = e. (4.347)

Let v(s1)v(s2) ... 7(s,) be the y-decomposition of f;(z1). We con-
sider the following two cases separately: the case |y(s1)| > 2 and
the case |y(s1)| = 1. Note that we can exclude the case |y(s1)| =0
since Sg;(A) = 0.
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« The case |y(s1)| > 2: We have

Fie) = 40s0) @ (s = e, (4.348)

where (A) follows from |P%,| = 4 and the first case of (4.55),
and (B) follows from (4.347) and |y(s1)] > 2. This implies
¢ € P; , as desired.

* The case |y(s1)| = 1: We have

fils1) = 4(s1) E y(s1) © e, (4.349)

where (A) follows from |P%,| = 4 and the first case of (4.55),
and (B) follows from (4.347) and |vy(s1)| = 1.

Put j == 7;(s1). By Lemma 2.3.3, we can choose the longest
sequence ' € ST such that fi(z') = A. Then we have
Srr@)(A) = 0. Also, we have |79%7T;(x,)| > 3 by F € .
In particular, we have one of the following conditions (a) and
(b).

(a) \P%,ij(xfﬂ =3.

(b) |P1%“;rj*(m’)| =4 and SF,T;($/)<)\) = @

Therefore, from the cases (I) and (II-A) proven above, we
have 731%%7%;@,) 2 {01,10, 11}, which leads to

P}W;(xf) ={0,1} (4.350)
by Lemma 2.3.2 (i). Thus, we have
7,

A _. ® C 3
2 7)}27",1‘ 2 017)}1«*,@'(01) < Clp}ﬁ,i(fi(sl))

(D) (D) (D) D) (D)

1 1 1 1
2 aPiy 2 APheey 2 Phireay 2 2 APhse)
(:) 01{0, 1} 3 C1C2 = ¢, (4351)

where (A) follows from Lemma 2.2.1 (i), (B) follows from
Lemma 2.2.1 (ii), (C) follows from (4.349), (D)s follow from
Lemma 2.2.1 (i), and (E) follows from (4.350). Therefore, we
conclude that 731271 2 P%ji = {00,01,10,11} as desired.
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(Proof of (ii)): We have
Pri(fi(s)) #0
L PLfils) £ 0 (4.352)
— Tz c ST el (f(x) = fi(s)e, fi(x1) = fi(s)) (4.353)
L 3 e st3ee % (frx) = fis)e, fi(xn) = fi(s))  (4.354)
= Pi(fi(s) #0, (4.355)

where (A) follows from Corollary 2.3.1 (ii) (a), and (B) follows from Lemma
4.2.15 (iif).

We consider the following two cases separately: the case PP, (fi(s)) = 0
and the case Pp;(fi(s)) # 0.

e The case Pp,(fi(s)) = 0: By (4.355), the condition P, (f;(s)) = 0 is
equivalent to P ( fi(s)) = 0 as desired.

e The case Pp;(fi(s)) # 0: Then since 75; (fi(s)) # 0 holds by (4.355),

it suffices to show that 7512”(]2(3)) C {00}. Moreover, to prove this, it
suffices to show that for any x € S* such that fi(z1) = fi(s), we have
fi (@) = fi(s)00.

Choose € S such that

fi(z1) = fils). (4.356)
Let y(s1)v(s2) . . . v(s,) be the y-decomposition of f;(z1). Because f;(x1)
= fi(s) holds by (4.356) and Lemma 4.2.15 (iii), we have s = s, and
fi(s) = A(s1)7(s2) ... 5(s,) for some r =1,2,...,p— 1. For such r, we

have
fi@) = i) (4.357)
= '7:'(31)‘7(52) (s ) (Srg1) - - (8p) (4.358)
= fi(s)¥(sr41) (4.359)
2 ()00 (4.360)
as desired, where (A) follows from the fifth case of (4.55).
U
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Chapter 5

Conclusion

We considered a general class of source codes which allow a finite number of
code tables and at most k-bit decoding delay for k£ > 0.

In Chapter 2, we first formalized source codes with a finite number of
code tables as code-tuples in Section 2.1, and we stated two equivalent defi-
nitions of the class .%y_ge. of k-bit delay decodable code-tuples in Section 2.2.
To exclude some abnormal code-tuples from consideration, in Section 2.3 we
introduced the class %, of extendable code-tuples, which are code-tuples
F with Pp; # 0 for any ¢ € [F]. In Section 2.4, we defined the average
codeword length L(F') of a code-tuple F' based on a stationary distribution
of the Markov process induced by F', and we limited the scope of considera-
tion to the class #,¢, of regular code-tuples, which have a unique stationary
distribution. Then in Section 2.5, we defined the class %, of irreducible
code-tuples and introduced irreducible parts of a code-tuple F', which are
obtained by removing the transient code tables from F'.

In Chapter 3, for a fixed source distribution u, we investigated the general
properties of k-bit delay optimal code-tuples, which are code-tuples with the
optimal average codeword length in Fes N Fexy N Fpdec. Then we proved
three theorems as part of the main results.

e The first Theorem 3.1.1 claims the existence of an irreducible k-bit de-
lay optimal code-tuple F' such that 731]3,0, 731’211, e ,Pf,,‘ F|—1 are distinct.
This result gives an upper bound of the required number of code tables
for k-bit delay optimal code-tuples. Using this theorem, we proved the
existence of a k-bit delay optimal code-tuple, that is, it is not the case
that one can achieve an arbitrarily small average codeword length by
using arbitrarily many code tables.
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The second Theorem 3.1.2 states that for a k-bit delay optimal code-
tuple F'(f,7), if the first k bits of a given b € C* is a prefix of f(z)
of some £ € §*, then b itself is also a prefix of f'(2’) of some ' € S*.
This result is a generalization of the property of Huffman codes that
each internal node in the code tree has two child nodes.

The third Theorem 3.1.3 guarantees the existence of a k-bit delay
optimal code-tuple in the class i, of the code-tuples F' such that
Ph; = {0,1} for any i € [F]. Therefore, it is sufficient to consider only
the code-tuples F' such that both 0,1 € C are possible as the first bit
of codeword no matter which code table of F' we start the encoding
process from.

These theorems enable us to limit the scope of codes to be considered when
discussing k-bit delay optimal code-tuples.

In Section 4, as applications of the three theorems, for £k = 1,2, we gave a
class of code-tuples which can achieve the optimal average codeword length
N Freg N Fext N Fdec for a given source distribution .

In Section 4.1, we proved Theorem 4.1.1 that the Huffman code achieves
the optimal average codeword length in Fieg N Fexy N F1-dec. Namely,
the class of instantaneous codes with a single code table can achieve

the optimal average codeword length in Fee N Fexy N Fidec-

In Section 4.2, we proved Theorem 4.2.1 that %5 opt N Farry # 0, that
is, there exists an AIF'V code which is 2-bit delay optimal, and thus the
class of AIFV code can achieve the optimal average codeword length

in tﬂozreg N f-gext N rgé—dec'

Finally, we describe future works below.

Finding a good optimal subclass of F,eg N Fexy N Fpdqec: In Chapter 4,
we presented subclasses of Freg N Fexy N Fi-dec Which can achieve the
optimal average codeword length in Fee N Fexy N Fpodec for kb = 1,2.
What subclasses could be considered for the case & > 37

Extending to alphabetic codes: An alphabetic code is a source code
f* 8" — C* which preserves the lexicographical order of total orders
over § and C in the encoding process, that is, satisfies

‘zyeSi(@<sy = f2)<¢ W) (5.1)
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where (S,<s) and (C, <) are totally ordered sets, and <% and <}
denote the lexicographical orders over §* and C* corresponding to <g
and <g, respectively. What results will be obtained if such constraint
is imposed on our discussion?

Generalizing to d-ary coding: How can we generalize our results to d-
ary coding, in which a source sequence x € §* is encoded to a codeword
sequence over the d-ary coding alphabet C :== {0,1,2,...,d—1} instead
of {0,1} for a general integer d > 27
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Appendix A

List of Notations

AxB

Al

AZH
ASH
A*
A+

aF;

the Cartesian product of sets A and B, that is, {(a,b) : a € A, b €
B}, defined at the beginning of Section 2.

the cardinality of a set A, defined at the beginning of Section 2.
the set of all sequences of length k over a set A, defined at the
beginning of Section 2.

the set of all sequences of length greater than or equal to k over
a set A, defined at the beginning of Section 2.

the set of all sequences of length less than or equal to k£ over a
set A, defined at the beginning of Section 2.

the set of all sequences of finite length over a set A, defined at
the beginning of Section 2.

the set of all sequences of finite positive length over a set A,
defined at the beginning of Section 2.

defined in Definition 4.2.4.

the coding alphabet C = {0, 1}, at the beginning of Section 2.
the negation of ¢ € C, that is, 0 = 1,1 = 0 defined at the begin-
ning of the proof of Theorem 3.1.2.

{cb :b € A} for ¢ € C* and A C C*, defined at the beginning of
Section 2.

the prefix of length k of ¢ € C2*, defined at the beginning of
Section 2.

defined in (3.123).

defined in Definition 2.1.3.
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M

§ T )

s

AIFV

B

@
»
-+

SINRRS

LR
§ =

=

%

simplified notation of a code-tuple F(fo, f1,.-., fim-1, 70,
Tiy.-yTm—1), also written as F(f,7), defined below Definition
2.1.1.

an irreducible part of F'| defined in Definition 2.5.4.

the number of code tables of F', defined below Definition 2.1.1.
simplified notation of [|F|] = {0,1,2,...,|F| — 1}, defined below
Definition 2.1.1.

defined in Definition 3.4.1.

defined in Definition 4.2.4.

defined in Definition 4.2.5.

the set of all AIFV codes, defined in Definition 4.2.1.

the set of all m-code-tuples, defined after Definition 2.1.1.

the set of all code-tuples, defined after Definition 2.1.1.

the set of all extendable code-tuples, defined in Definition 2.3.1.
defined in Definition 3.1.3.

the set of all k-bit delay optimal code-tuples, defined in Definition
3.1.1.

the set of all regular code-tuples, defined in Definition 2.4.3.

{F € Freg N Fodec : 71 € [F;Pry # 0} = Freg N Fext N Fo-decs
defined in Definition 4.2.2.

{F € PregN Fogee Vi € [F); Ppy; = {0,1}}, defined in Definition
4.2.2.

{F € Freg N Fogee : Vi € [FY; \73%1| > 3}, defined in Definition
4.2.2.

{F € Frg N Frdee = "1 € [F];P; 2 {01,10,11}}, defined in
Definition 4.2.2.

{F € Fig N Fraee N FP :+ PEy = {00,01,10,11}, PE, =
{01,10,11}}, defined in Definition 4.2.2.

defined after Lemma 3.2.3.

defined in (3.153).

the average codeword length of a code-tuple F', defined in Defi-
nition 2.4.4.

the average codeword length of the i-th code table of F', defined
in Definition 2.4.4.

{0,1,2,...,m — 1}, defined at the beginning of Section 2.

{i € [F] : |P%;| = 2}, defined in Lemma 4.2.11.

defined in Definition 2.2.1.
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defined in Definition 2.2.1.

defined in Definition 2.2.2.

defined in Definition 2.2.2.

defined in Definition 3.1.2.

the sequence obtained by deleting the last letter of x, defined at
the beginning of Section 2.

the transition probability matrix, defined in Definition 2.4.1.

the transition probability, defined in Definition 2.4.1.

the set of all real numbers.

the set of all m-dimensional real row vectors for an integer m > 1.
the source alphabet, defined at the beginning of Section 2.

the sequence obtained by deleting the first letter of x, defined at
the beginning of Section 2.

the i-th letter of a sequence x, defined at the beginning of Section
2.

the longest common prefix of x and y, defined after Theorem
3.1.3.

x is a prefix of y, defined at the beginning of Section 2.

x =y and x # y, defined at the beginning of Section 2.

x is not a prefix of y, and y is not a prefix of x, defined after
Theorem 3.1.3.

the length of a sequence z, defined at the beginning of Section 2.
the sequence z such that xz = gy, defined at the beginning of
Section 2.

defined in Definition 4.2.3.

the empty sequence, defined at the beginning of Section 2.

the probability of occurrence of symbol s, defined at the beginning
of Subsection 2.4.

defined in Definition 2.4.3.

defined in Definition 2.1.3.
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