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Abstract

Lossless source coding is a technology to represent given data in shorter bit
lengths than the original representation without losing its contents. This
enables efficient recording of data on storage devices and high-speed trans-
mission of data over networks and plays an essential role in the advanced
information society.

Huffman coding is a widely used lossless source coding methods in vari-
ous applications such as image compression (JPEG) and video compression
(H.264). The coding scheme of Huffman coding is described as the following
system consisting of a source, an encoder, and a decoder :

• the source outputs a source sequence, a sequence of source symbols in
the source alphabet, where each output symbol follows an independent
and identical distribution;

• the encoder encodes each symbol of the source sequence to a binary
codeword according to the code table obtained by Huffman’s algorithm;

• then the decoder receives the codeword sequence, which is the concate-
nation of the codewords, and recovers the original source sequence from
the codeword sequence.

The decoder is not given explicit information on the delimitation between
the codewords in the codeword. However, the decoder can uniquely identify
the delimitation by reading the codeword sequence from the beginning of it
because of the following prefix-free property of the Huffman code table: no
codeword is a prefix of any other codeword. The decoder can decode each
codeword without any decoding delay as long as the encoder uses a prefix-free
code table. For this reason, a prefix-free code is also called an instantaneous
code. Huffman code is an instantaneous (prefix-free) code with the optimal
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average codeword length, a measure of compression performance, for a given
source distribution.

However, it is known that one can achieve a better compression perfor-
mance than Huffman coding by using a time-variant encoder with multi-
ple code tables and allowing some decoding delay. AIFV (almost instanta-
neous fixed-to-variable length) codes developed by Yamamoto, Tsuchihashi,
and Honda can attain a smaller average codeword length than Huffman codes
by using a time-variant encoder with two code tables and allowing at most 2-
bit decoding delay. Moreover, AIFV codes are generalized to AIFV-m codes,
which can achieve a smaller average codeword length than AIFV codes for
m ≥ 3, allowing m code tables and at most m-bit decoding delay.

In this thesis, we discuss a more general class of source codes with multiple
code tables considering decoding delay than AIFV-m codes and show their
properties. We first formalize source codes with a finite number of code
tables as code-tuples, and then we introduce two equivalent definitions of k-
bit delay decodable code-tuples, which allow at most k-bit decoding delay for
k ≥ 0. Then we prove three theorems related to k-bit delay optimal code-
tuples, which are defined as code-tuples with the optimal average codeword
length for a given source distribution among all the k-bit delay decodable
code-tuples. These theorems describe properties of k-bit delay decodable
code-tuples by the set of the possible first k bits of the codeword sequence
in the case of starting from each code table.

The first theorem claims that there is no need for more than one code table
such that the sets of the possible first k bits of the codeword sequence are
equal. This implies that it is not the case that one can achieve an arbitrarily
small average codeword length by using arbitrarily many code tables, and it
is sufficient for us to consider at most finitely many code tables. In particular,
this guarantees that a k-bit delay optimal code-tuple does indeed exist. Also,
the first theorem gives a concrete upper bound of the required number of code
tables for a k-bit delay optimal code-tuple.

The second theorem gives the following necessary condition for a k-bit
delay decodable code-tuple to be optimal: if the first k bits of a given binary
sequence is a prefix of some codeword sequence, then the entire given binary
sequence is also a prefix of some codeword sequence. This result is a gen-
eralization of the property of Huffman codes that each internal node in the
code tree has two child nodes.

The third theorem shows that it is sufficient to consider only the code-
tuples such that both 0 and 1 are possible as the first bit of codeword no
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matter which code table we start the encoding process from.
These three theorems enable us to limit the scope of codes to be consid-

ered when discussing k-bit delay optimal codes in theoretical analysis and
practical code construction.

As applications of the three theorems, for k = 1, 2, we give a class of k-bit
delay decodable code-tuples which include a k-bit delay optimal code-tuple
for a given source distribution. More specifically, we first prove that the
Huffman code achieves the optimal average codeword length in the class of
1-bit delay decodable code-tuples. Namely, the class of instantaneous codes
with a single code table can achieve the optimal average codeword length in
the class of 1-bit delay decodable code-tuples. Then we also prove that the
class of AIFV codes can achieve the optimal average codeword length in the
class of 2-bit delay decodable code-tuples. In particular, this result implies
that it is sufficient to consider at most two code tables to find a 2-bit delay
optimal code-tuple.

3



Acknowledgment

First of all, I would like sincerely to thank my research supervisor Dr. Ken-ichi
Iwata for his tremendous support. I would like to express my appreciation
to Professor Hirosuke Yamamoto and Professor Hiroshi Fujisaki for their
valuable comments and suggestions in the course of my research. I also wish
to thank Professor Toshiyuki Yoshida, Professor Shoichi Hirose, Professor
Mitoshi Fujimoto, and Professor Tomohiko Uyematsu for accepting to review
my doctoral dissertation and giving constructive comments for the draft.
Lastly, I would like to give my special thanks to my friends and family.

My study was supported in part by JSPS KAKENHI Grant Number
JP18H01436 and KIOXIA.

4



Contents

1 Introduction 9
1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1.1 Data Compression . . . . . . . . . . . . . . . . . . . . 9
1.1.2 Source Coding . . . . . . . . . . . . . . . . . . . . . . . 9
1.1.3 Uniquely Decodable Codes . . . . . . . . . . . . . . . . 11
1.1.4 Prefix-free Codes . . . . . . . . . . . . . . . . . . . . . 12
1.1.5 AIFV-m Codes . . . . . . . . . . . . . . . . . . . . . . 14

1.2 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Preliminaries 17
2.1 Code-tuples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 k-bit Delay Decodable Code-tuples . . . . . . . . . . . . . . . 22

2.2.1 The First Definition . . . . . . . . . . . . . . . . . . . 23
2.2.2 The Second Definition . . . . . . . . . . . . . . . . . . 31

2.3 Extendable Code-tuples . . . . . . . . . . . . . . . . . . . . . 33
2.4 Average Codeword Length of Code-Tuple . . . . . . . . . . . . 36
2.5 Irreducible Code-tuples and Irreducible Parts . . . . . . . . . 38
2.6 Proofs of Lemmas in Chapter 2 . . . . . . . . . . . . . . . . . 41

2.6.1 Proof of Lemma 2.2.4 . . . . . . . . . . . . . . . . . . . 41
2.6.2 Proof of Lemma 2.3.3 . . . . . . . . . . . . . . . . . . . 46
2.6.3 Proof of Lemma 2.4.1 . . . . . . . . . . . . . . . . . . . 47
2.6.4 Proof of Lemma 2.5.1 . . . . . . . . . . . . . . . . . . . 51
2.6.5 Proof of Lemma 2.5.2 . . . . . . . . . . . . . . . . . . . 55
2.6.6 Proof of Lemma 2.5.4 . . . . . . . . . . . . . . . . . . . 58

5



3 General Properties of k-bit Delay Decodable Optimal Codes 60
3.1 k-bit Delay Optimal Code-tuples . . . . . . . . . . . . . . . . 60

3.1.1 The First Theorem . . . . . . . . . . . . . . . . . . . . 61
3.1.2 The Second Theorem . . . . . . . . . . . . . . . . . . . 63
3.1.3 The Third Theorem . . . . . . . . . . . . . . . . . . . 64

3.2 Proof of Theorem 3.1.1 . . . . . . . . . . . . . . . . . . . . . . 64
3.3 Proof of Theorem 3.1.2 . . . . . . . . . . . . . . . . . . . . . . 68
3.4 Proof of Theorem 3.1.3 . . . . . . . . . . . . . . . . . . . . . 80
3.5 Proofs of Lemmas in Chapter 3 . . . . . . . . . . . . . . . . . 88

3.5.1 Proof of Lemma 3.1.2 . . . . . . . . . . . . . . . . . . . 88
3.5.2 Proof of Lemma 3.2.1 . . . . . . . . . . . . . . . . . . . 90
3.5.3 Proof of Lemma 3.2.2 . . . . . . . . . . . . . . . . . . . 92
3.5.4 Proof of Lemma 3.2.4 . . . . . . . . . . . . . . . . . . . 93
3.5.5 Proof of Lemma 3.3.1 . . . . . . . . . . . . . . . . . . . 94
3.5.6 Proof of Lemma 3.3.2 . . . . . . . . . . . . . . . . . . . 96
3.5.7 Proof of Lemma 3.3.3 . . . . . . . . . . . . . . . . . . . 100
3.5.8 Proof of Lemma 3.3.4 . . . . . . . . . . . . . . . . . . . 102
3.5.9 Proof of Lemma 3.4.5 . . . . . . . . . . . . . . . . . . . 107

4 Optimality of Huffman Codes and AIFV Codes 111
4.1 Optimality of Huffman Codes in the Class of 1-bit Delay De-

codable Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
4.2 Optimality of AIFV Codes in the Class of 2-bit Delay Decod-

able Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
4.2.1 The Class F1 . . . . . . . . . . . . . . . . . . . . . . . 117
4.2.2 The Class F2 . . . . . . . . . . . . . . . . . . . . . . . 118
4.2.3 The Class F3 . . . . . . . . . . . . . . . . . . . . . . . 128
4.2.4 The Class F4 . . . . . . . . . . . . . . . . . . . . . . . 131
4.2.5 Proof of Theorem 4.2.1 . . . . . . . . . . . . . . . . . . 132

4.3 Proofs of Lemmas in Chapter 4 . . . . . . . . . . . . . . . . . 137
4.3.1 Proof of Lemma 4.2.1 . . . . . . . . . . . . . . . . . . . 137
4.3.2 Proof of Lemma 4.2.4 . . . . . . . . . . . . . . . . . . . 142
4.3.3 Proof of Lemma 4.2.5 . . . . . . . . . . . . . . . . . . . 145
4.3.4 Proof of Lemma 4.2.7 (iii) . . . . . . . . . . . . . . . . 147
4.3.5 Proof of Lemma 4.2.8 . . . . . . . . . . . . . . . . . . . 152
4.3.6 Proof of Lemma 4.2.9 . . . . . . . . . . . . . . . . . . . 158
4.3.7 Proof of Lemma 4.2.11 . . . . . . . . . . . . . . . . . . 159
4.3.8 Proof of Lemma 4.2.15 (iii) . . . . . . . . . . . . . . . 163

6



4.3.9 Proof of Lemma 4.2.16 . . . . . . . . . . . . . . . . . . 165

5 Conclusion 171

A List of Notations 174

7



List of Tables

2.1 Examples of a code-tuple F (α), F (β), F (γ) . . . . . . . . . . . . 20
2.2 The set P1

F,i and P2
F,i for the code-tuples F in Table 2.1 . . . . 24

2.3 The set P̄2
F,i(fi(s)) for F := F (γ) . . . . . . . . . . . . . . . . . 24

3.1 The code-tuple F (κ) is a 2-bit delay optimal code-tuple, which
satisfies Theorem 3.1.1 (a)–(d) with F = F (ξ), where (µ(a), µ(b),
µ(c), µ(d)) = (0.1, 0.2, 0.3, 0.4) . . . . . . . . . . . . . . . . . . 61

3.2 An example of xxx ∈ S∗ such that f ∗
i (xxx) # bbb, where F (f, τ) :=

F (κ) in Table 3.1, i ∈ {0, 1}, and bbb ∈ C3 . . . . . . . . . . . . . 64
3.3 Examples of a code-tuple F (γ), F (δ), and F (ε) . . . . . . . . . . 81
3.4 P1

F,i, i ∈ [F ] and dF,i, i ∈ [F ] for the code-tuples F (γ), F (δ), and
F (ε) in Table 3.3 . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.5 lF,i, i ∈ [F ] for the code-tuples F (γ), F (δ) and F (ε) in Table 3.3 86

4.1 Examples of a code-tuple F (γ)–F (κ) . . . . . . . . . . . . . . . 115
4.2 The set P2

F,i for the code-tuples F in Table 4.1 . . . . . . . . . 116

8



Chapter 1

Introduction

1.1 Background

1.1.1 Data Compression
Data compression is a technology to represent given data in shorter bit
lengths than the original representation without compromising its utility.
This enables efficient recording of data on storage devices and high-speed
transmission of data over networks. Therefore, data compression technol-
ogy plays an essential role in the advanced information society, where vast
amounts of data are processed on computers and transmitted over networks.

Data compression is studied as source coding in information theory, a
mathematical field which deals with information mathematically, established
by Claude E. Shannon [1]. Source coding is divided into lossy source coding,
where some of the original information is lost by the compression process,
and lossless source coding, where the original information is fully preserved.
Huffman coding, stated later in Subsection 1.1.4, is an example of the widely
used lossless source coding methods in various applications such as image
compression (JPEG) and video compression (H.264). This thesis focuses on
lossless source coding.

1.1.2 Source Coding
Lossless (binary) source coding is modeled as a process of encoding a given
source sequence of source symbols of the source alphabet S to a codeword
sequence over the binary coding alphabet C := {0, 1} and then recovering the
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original source sequence from the codeword sequence; that is, encoding an
element xxx of S∗ to an element bbb of C∗ temporally and then recovering xxx from
bbb later, where S∗ and C∗ denote the set of all sequences of finite length over
S and C, respectively. We now describe one of the simplest models of source
coding, which consists of a source, an encoder, and a decoder as follows.

• Source: outputs a source sequence xxx = x1x2 . . . xn ∈ S∗, where each
output xi independently follows a fixed probability distribution µ : S →
(0, 1], that is, µ(s) is the probability of occurrence of s ∈ S.

• Encoder: reads the source sequence xxx = x1x2 . . . xn ∈ S∗ symbol by
symbol from the beginning and encodes each symbol xi to a codeword
f(xi) ∈ C∗ according to a fixed code table f : S → C∗. Then the
encoder outputs the concatenation of each codeword as a codeword
sequence, that is, the encoder outputs f ∗(x1x2 . . . xn) := f(x1)f(x2) . . .
f(xn) for the given source sequence xxx = x1x2 . . . xn ∈ S∗.

• Decoder: receives the codeword sequence f ∗(xxx) and recovers the orig-
inal source sequence xxx ∈ S∗ from f ∗(xxx). Note that for the decoder to
be able to correctly recover xxx, the code table f must be chosen so that
the mapping f ∗ : S∗ → C∗ is injective.

The behavior of the encoder and decoder is determined by the code table f .
Accordingly, we refer to a mapping f : S → C∗ as a source code or a code
and identify the encoder and decoder with f .

The compression performance of a code f is evaluated by the average
codeword length Lµ(f) defined as the expected value of the length of the
codeword.

Definition 1.1.1. The average codeword length Lµ(f) of a code f (with
respect to µ) is defined as

Lµ(f) =
∑

s∈S

µ(s)|f(s)|, (1.1)

where |f(s)| denotes the length of f(s).

Then the following problem naturally arises: how good (small) average
codeword length can be achieved under the constraint that the decoder can
correctly recover the original source sequence?
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1.1.3 Uniquely Decodable Codes
A uniquely decodable code is a source code f such that the decoder can
correctly recover the original source sequence.

Definition 1.1.2. A code f is said to be uniquely decodable if the mapping
f ∗ is injective.

It is known that a lower bound of achievable average codeword length of
uniquely decodable codes is given by the entropy of µ.

Theorem 1.1.1 ( [1]). For any uniquely decodable code f , we have

Lµ(f) ≥ H(µ), (1.2)

where H(µ) is the entropy of µ defined as

H(µ) = −
∑

s∈S

µ(s) log2 µ(s). (1.3)

Namely, uniquely decodable codes cannot achieve an average code length
smaller than the entropy. Therefore, the next focus is how close average code-
word length to the entropy can be achieved, that is, how small redundancy
η, defined as follows, can be achieved:

η := Lµ(f)−H(µ). (1.4)

By the following McMillan’s theorem, we can always achieve a redundancy
smaller than or equal to 1.

Theorem 1.1.2 (McMillan’s inequality [2]). Let S = {s1, s2, . . . , sσ}. Let
(l1, l2, . . . , lσ) be a sequence of non-negative integers. Then the following two
conditions (a) and (b) are equivalent.

(a) There exists a uniquely decodable code f such that |f(si)| = li for any
i = 1, 2, . . . , σ.

(b)
∑σ

i=1 2
−li ≤ 1.

Indeed, if we choose (l1, l2, . . . , lσ) as li = '− log2 µ(si)( for i = 1, 2, . . . , σ,
then

σ∑

i=1

2−li =
σ∑

i=1

2−$− log2 µ(si)% ≤
σ∑

i=1

2log2 µ(si) =
σ∑

i=1

µ(si) = 1 (1.5)
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and thus by Theorem 1.1.2, there exists a uniquely decodable code f such
that

Lµ(f) =
σ∑

i=1

µ(si) '− log2 µ(si)( ≤
σ∑

i=1

µ(si)(− log2 µ(si) + 1) = H(µ) + 1.

(1.6)
Namely, for any µ, there exists a uniquely decodable code f with a redun-
dancy Lµ(f)−H(µ) ≤ 1. In other words, the worst-case redundancy of the
class of uniquely decodable codes, defined as follows, is less than or equal to
1.

Definition 1.1.3. Let C be a set of codes. Then the worst-case redundancy
of C is

sup
µ∈M

(
inf
f∈C

(Lµ(f)−H(µ))

)
, (1.7)

where M denotes the set of all probability distributions.

Conversely, for a source alphabet S = {s1, s2, . . . , sσ} with σ ≥ 2, the
worst-case redundancy of the class of uniquely decodable codes is not less
than 1 for the following reason. For any uniquely decodable code f and
probability distribution µ, we have Lµ(f) ≥ 1 since each codeword must be
non-empty. On the other hand, for any ε > 0, the probability distribution µ
defined as

(µ(s1), µ(s2), . . . , µ(sσ)) =

(
δ,

1− δ

σ − 1
,
1− δ

σ − 1
, . . . ,

1− δ

σ − 1

)
(1.8)

satisfies H(µ) < ε for a sufficiently large 0 < δ < 1. Therefore, for any ε > 0,
there exists a probability distribution µ such that

Lµ(f)−H(µ) > 1− ε (1.9)

holds for any uniquely decodable code f .

1.1.4 Prefix-free Codes
The decoder receives a codeword sequence f ∗(x1x2 . . . xn), which is the con-
catenation of individual codewords f(x1), f(x2), . . . , f(xn), without explicit
information on the delimitation between the codewords. Therefore, even if f
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is uniquely decodable, the original source sequence xxx can be recovered only
after the decoder has read the entire codeword sequence in the worst case.
However, if f is a prefix-free code defined as below, then when the decoder
reads the codeword sequence from the beginning, it can instantly identify the
delimitation of each codeword at the moment the decoder reaches the end of
each codeword.

Definition 1.1.4. A code f is said to be prefix-free if for any s, s′ ∈ S, if
f(s) ) f(s′), then s = s′, where xxx ) yyy denotes that xxx is a prefix of yyy.

In other words, a code is prefix-free if and only if no codeword is a prefix of
any other codeword. A prefix-free code is also called an instantaneous code
because the decoder can identify the delimitation instantly as mentioned
above.

Regarding prefix-codes, the following Kraft’s Theorem holds.

Theorem 1.1.3 (Kraft’s inequality [3]). Let S = {s1, s2, . . . , sσ}. Let (l1, l2,
. . . , lσ) be a sequence of non-negative integers. Then the following two con-
ditions (a) and (b) are equivalent.

(a) There exists a prefix-free code f such that |f(si)| = li for any i =
1, 2, . . . , σ.

(b)
∑σ

i=1 2
−li ≤ 1.

Comparing Theorems 1.1.2 and 1.1.3, we see that for any sequence (l1, l2,
. . . , lσ), the following equivalent relation holds: there exists a uniquely decod-
able code f such that |f(si)| = li if and only if there exists a prefix-free code
f ′ such that |f ′(si)| = li. Moreover, the average codeword length of a code
f is determined only by the multiset of codeword lengths |f(s1)|, |f(s2)|, . . . ,
|f(sσ)|. This yields the following result.

Theorem 1.1.4. For any uniquely decodable code f , there exists a prefix-free
code f ′ such that Lµ(f ′) = Lµ(f).

In this sense, it is sufficient to consider only the class of prefix-free codes
instead of the whole class of uniquely decodable codes. Then the next ques-
tion is how to give a prefix-free code with the minimum average codeword
length among all prefix-free codes. Huffman [4] gave an algorithm to con-
struct a prefix-free code with the optimal average codeword length for a given
source distribution µ. The source code obtained by Huffman’s algorithm is
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called Huffman code. Huffman codes achieve the optimal average codeword
length in the class of prefix-free codes. By Theorem 1.1.4, Huffman codes
are also optimal in the class of uniquely decodable codes.

However, in the discussion so far, we assumed that a single code table is
used for coding. It is known that one can achieve a smaller average codeword
length than Huffman codes by using a time-variant encoder with multiple
code tables as mentinoned in the next subsection.

1.1.5 AIFV-m Codes
AIFV (almost instantaneous fixed-to-variable length) codes [5] developed
by Yamamoto, Tsuchihashi, and Honda can attain a smaller average code-
word length than Huffman codes by using a time-variant encoder with a pair
(f0, f1) of two code tables and allowing at most 2-bit decoding delay. Fur-
ther, AIFV-m codes [6], which is a generalization of AIFV codes, can achieve
a smaller average codeword length than AIFV codes for m ≥ 3 by allowing
a tuple (f0, f1, . . . , fm−1) of m code tables and at most m-bit decoding de-
lay (the original AIFV codes [5] are particular cases of AIFV-m codes for
m = 2). The worst-case redundancy of AIFV-m codes is given as 1/m for
m ≤ 5 as shown in [6, 7].

The literature [8–16] gives the construction methods of the optimal AIFV
codes and AIFV-m codes for a given source distribution. The coding methods
of code tables (f0, f1, . . . , fm−1) of AIFV and AIFV-m codes are studied
in [17, 18]. Extensions of AIFV-m codes are proposed in [19, 20]. Other
relevant studies include [21–23].

1.2 Contribution
The proposal for AIFV-m codes motivates us to study source codes with
multiple code tables considering some decoding delay. This thesis discusses
a more general class of such source codes than AIFV-m codes: we introduce
a notion of code-tuple, which is a source code with a finite number of code
tables, and we investigate the properties of the class of k-bit delay decodable
code-tuples, which are code-tuples allowing at most k-bit decoding delay for
k ≥ 0.

• We prove three theorems related to k-bit delay optimal code-tuples,
which are code-tuples achieving the optimal average codeword length
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for a given source distribution among all the k-bit delay decodable
code-tuples.

– The first theorem gives an upper bound of the required number
of code tables for a k-bit delay optimal code-tuples. This shows
that it is not the case that one can achieve an arbitrarily small
average codeword length by using arbitrarily many code tables, in
particular, the existence of a k-bit delay optimal code-tuple.

– The second theorem gives the following necessary condition for a
k-bit delay decodable code-tuple to be optimal: if the first k bits
of a given binary sequence is a prefix of some codeword sequence,
then the entire given binary sequence is also a prefix of some
codeword sequence. This is a generalization of the property of
Huffman codes that each internal node in the code tree has two
child nodes.

– The third theorem shows the existence of an optimal k-bit delay
decodable code-tuple F such that both 0, 1 ∈ C are possible as the
first bit of codeword no matter which code table of F we start the
encoding process from.

These theorems enable us to limit the scope of codes to be considered
when discussing k-bit delay optimal code-tuples.

• As applications of the three theorems, we give a class of code-tuples
which can achieve the optimal average codeword length in the class of
k-bit delay decodable code-tuples for k = 1, 2.

– We prove that the Huffman code achieves the optimal average
codeword length in the class of 1-bit delay decodable code-tuples
for a given source distribution µ.

– We also prove that the optimal AIFV codes can achieve the opti-
mal average codeword length in the class of 2-bit delay decodable
code-tuples for a given source distribution µ.

1.3 Organization
This thesis is organized as follows.
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• In Chapter 2, we prepare some notations, describe our data compression
scheme, and basic definitions, and show their properties.

– In Section 2.1, we formalize source codes with a finite number of
code tables as code-tuples.

– In Section 2.2, we state two equivalent definitions of the class
Fk-dec of k-bit delay decodable code-tuples in Section 2.2.

– In Section 2.3, we introduce a class Fext of extendable code-tuples,
to exclude some abnormal code-tuples from consideration.

– In Section 2.4, we define the average codeword length of a code-
tuple and introduce a class Freg of regular code-tuples.

– In Section 2.5, we define a class Firr of irreducible code-tuples and
introduce irreducible parts of a code-tuple, which are obtained by
removing the non-essential code tables from a code-tuple.

• In Chapter 3, we introduce a class Fk-opt of k-bit delay optimal code-
tuples and prove three theorems on the general properties of k-bit delay
optimal code-tuples as parts of the main results.

– In Section 3.1, we first explain the statements of the three theo-
rems.

– In Section 3.2–3.4, we give the proofs of the three theorems, re-
spectively.

• In Chapter 4, we present a class of code-tuples which can achieve the
optimal average codeword length in the class of k-bit delay decodable
code-tuples for k = 1, 2.

– In Section 4.1, we prove that the class of Huffman codes achieves
the optimal average codeword length in the class of 1-bit delay
decodable code-tuples.

– In Section 4.2, we prove that the class of AIFV codes achieves
the optimal average codeword length in the class of 2-bit delay
decodable code-tuples.

• In Chapter 5, we summarize our results and conclude with future works.

The main notations are listed in Appendix A. To clarify the flow of dis-
cussion, we relegate long proofs to the end of each chapter.
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Chapter 2

Preliminaries

We define some notations as follows. Let R denote the set of all real numbers,
and let Rm denote the set of all m-dimensional real row vectors for an integer
m ≥ 1. Let |A| denote the cardinality of a finite set A. Let A × B denote
the Cartesian product of A and B, that is, A× B := {(a, b) : a ∈ A, b ∈ B}.
Let Ak (resp. A≤k, A≥k, A∗, A+) denote the set of all sequences of length k
(resp. of length less than or equal to k, of length greater than or equal to k,
of finite length, of finite positive length) over a set A. Thus, A+ = A∗ \ {λ},
where λ denotes the empty sequence. The length of a sequence xxx is denoted
by |xxx|, in particular, |λ| = 0. The i-th letter of a sequence xxx is denoted by xi.
For a non-empty sequence xxx = x1x2 . . . xn, we define pref(xxx) := x1x2 . . . xn−1

and suff(xxx) := x2 . . . xn−1xn. Namely, pref(xxx) (resp. suff(xxx)) is the sequence
obtained by deleting the last (resp. first) letter from xxx. We say xxx ) yyy if xxx
is a prefix of yyy, that is, there exists a sequence zzz, possibly zzz = λ, such that
yyy = xxxzzz. Also, we say xxx ≺ yyy if xxx ) yyy and xxx ,= yyy. Moreover, we say xxx ,#≺ yyy
if xxx ,) yyy and xxx ,# yyy. A notation xxx ∧ yyy denotes the longest common prefix of
two sequences xxx and yyy, that is, the longest sequence zzz such that zzz ) xxx and
zzz ) yyy. If xxx ) yyy, then xxx−1yyy denotes the unique sequence zzz such that xxxzzz = yyy.
Note that a notation xxx−1 behaves like the “inverse element” of xxx as stated in
the following statements (i)–(iii).

(i) For any xxx, we have xxx−1xxx = λ.

(ii) For any xxx and yyy such that xxx ) yyy, we have xxxxxx−1yyy = yyy.

(iii) For any xxx,yyy, and zzz such that xxxyyy ) zzz, we have (xxxyyy)−1zzz = yyy−1xxx−1zzz.
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For c ∈ C, the negation of c is denoted by c̄, that is, 0̄ := 1, 1̄ := 0. Also,
for ccc ∈ C≥k, let [ccc]k denote the prefix of length k of ccc. Moreover, for ccc ∈ C∗

and A ⊆ C∗, we define cccA := {cccbbb : bbb ∈ A}. The main notations used in this
thesis are listed in Appendix A.

We now describe our data compression system. In this thesis, we consider
a data compression system consisting of a source, an encoder, and a decoder.

• Source: We consider an i.i.d.(independent and identical distribution)
source, which outputs a sequence xxx = x1x2 . . . xn of symbols of the
source alphabet S = {s1, s2, . . . , sσ}, where n and σ denote the length
of xxx and the alphabet size, respectively. Each source output follows
a fixed probability distribution (µ(s1), µ(s2), . . . , µ(sσ)), where µ(si) is
the probability of occurrence of si for i = 1, 2, . . . , σ. In this thesis we
assume that the alphabet size σ = |S| is greater than or equal to 2.

• Encoder: The encoder has m fixed code tables f0, f1, . . . , fm−1 : S →
C∗, where C = {0, 1} is the coding alphabet. The encoder reads the
source sequence xxx ∈ S∗ symbol by symbol from the beginning of xxx
and encodes them according to the code tables. For the first symbol
x1, we use an arbitrarily chosen code table from f0, f1, . . . , fm−1. For
x2, x3, . . . , xn, we determine which code table to use to encode according
to m fixed mappings τ0, τ1, . . . , τm−1 : S → [m] := {0, 1, 2, . . . ,m −
1}. More specifically, if the previous symbol xi−1 is encoded by the
code table fj, then the current symbol xi is encoded by the code table
fτj(xi−1). Hence, if we use the code table fi to encode x1, then a source
sequence xxx = x1x2 . . . xn is encoded to a codeword sequence f(xxx) :=
fi1(x1)fi2(x2) . . . fin(xn), where

ij :=

{
i if j = 1,

τij−1(xj−1) if j ≥ 2
(2.1)

for j = 1, 2, . . . , n.

• Decoder: The decoder reads the codeword sequence f(xxx) bit by bit from
the beginning of f(xxx). Each time the decoder reads a bit, the decoder
recovers as long prefix of xxx as the decoder can uniquely identify from the
prefix of f(xxx) already read. We assume that the encoder and decoder
share the index of the code table used to encode x1 in advance.

18



2.1 Code-tuples
In our data compression system described above, the behavior of the en-
coder and decoder for a given source sequence is completely determined
by m code tables f0, f1, . . . , fm−1 and m mappings τ0, τ1, . . . , τm−1 if we fix
the index of code table used to encode x1. Accordingly, we name a tuple
F (f0, f1, . . . , fm−1, τ0, τ1, . . . , τm−1) as a code-tuple F in the following Defini-
tion 2.1.1, and we identify a source code with a code-tuple F .

Definition 2.1.1. Let m be a positive integer. An m-code-tuple F (f0, f1, . . . ,
fm−1, τ0, τ1, . . . , τm−1) is a tuple of m mappings f0, f1, . . . , fm−1 : S → C∗ and
m mappings τ0, τ1, . . . , τm−1 : S → [m].

We define F (m) as the set of all m-code-tuples. Also, we define F :=
F (1) ∪ F (2) ∪ F (3) ∪ · · · . An element of F is called a code-tuple.

We write F (f0, f1, . . . , fm−1, τ0, τ1, . . . , τm−1) also as F (f, τ) or F for sim-
plicity. For F ∈ F (m), let |F | denote the number of code tables of F , that
is, |F | := m. We write [|F |] = {0, 1, 2, . . . , |F |− 1} as [F ] for simplicity.

Definition 2.1.2. For F (f, τ) ∈ F , i ∈ [F ], and bbb ∈ C∗, we define

SF,i(bbb) := {s ∈ S : fi(s) = bbb}. (2.2)

Note that fi is injective if and only if |SF,i(bbb)| ≤ 1 holds for any bbb ∈ C∗.

Example 2.1.1. Table 2.1 shows examples of a 3-code-tuple F (α), F (β), F (γ)

for S = {a, b, c, d}. We have

SF (α),0(110) = {a, c}, SF (β),1(00000000) = ∅, SF (α),2(λ) = {a, b, c, d}.
(2.3)

Example 2.1.2. We consider encoding of a source sequence xxx = x1x2x3x4 :=
badb with the code-tuple F (f, τ) := F (γ) in Table 2.1. If x1 = b is encoded
with the code table f0, then the encoding process is as follows.

• x1 = b is encoded to f0(b) = 10. The index of the next code table is
τ0(b) = 1.

• x2 = a is encoded to f1(a) = 00. The index of the next code table is
τ1(a) = 1.
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Table 2.1: Examples of a code-tuple F (α), F (β), F (γ)

s ∈ S f (α)
0 τ (α)0 f (α)

1 τ (α)1 f (α)
2 τ (α)2

a 110 0 010 0 λ 2
b λ 1 011 2 λ 2
c 110 2 1 2 λ 2
d 111 0 10 1 λ 2

s ∈ S f (β)
0 τ (β)0 f (β)

1 τ (β)1 f (β)
2 τ (β)2

a 11 1 0110 1 10 2
b λ 1 0110 1 11 2
c 101 2 01 1 1000 2
d 1011 1 0111 1 1001 2

s ∈ S f (γ)
0 τ (γ)0 f (γ)

1 τ (γ)1 f (γ)
2 τ (γ)2

a 01 0 00 1 1100 1
b 10 1 λ 0 1110 0
c 0100 0 00111 1 111000 2
d 01 2 00111 2 110 2

• x3 = d is encoded to f1(d) = 00111. The index of the next code table
is τ1(d) = 2.

• x4 = b is encoded to f2(b) = 1110. The index of the next code table is
τ2(b) = 0.

As the result, we obtain a codeword sequence ccc := f0(b)f1(a)f1(d)f2(b) =
1000001111110.

The decoding process of ccc = 1000001111110 is as follows.

• After reading the prefix 10 of ccc, the decoder can uniquely identify x1 = b
and 10 = f0(b). The decoder can also know that x2 is decoded with
fτ0(b) = f1.

• After reading the prefix 1000 = f0(c)f1(a) of ccc, the decoder still cannot
uniquely identify x2 = a because there remain three possible cases: the
case x2 = a, the case x2 = c, and the case x2 = d.

• After reading the prefix 10000 of ccc, the decoder can uniquely identify
x2 = a and 10000 = f0(b)f1(a)0. The decoder can also know that x3 is
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decoded with fτ1(a) = f1.

• After reading the prefix 100000111 = f0(b)f1(a)f1(d) of ccc, the decoder
still cannot uniquely identify x3 = d because there remain two possible
cases: the case x3 = c and the case x3 = d.

• After reading the prefix 10000011111 of ccc, the decoder can uniquely
identify x3 = d and 10000011111 = f0(b)f1(a)f1(d)11. The decoder
can also know that x4 is decoded with fτ1(d) = f2.

• After reading the prefix ccc = 1000001111110, the decoder can uniquely
identify x4 = b and 1000001111110 = f0(b)f1(a)f1(d)f2(b).

As the result, the decoder recovers the original sequence xxx = badb.

In encoding xxx = x1x2 . . . xn ∈ S∗ with a code-tuple F (f, τ), the m map-
pings τ0, τ1, . . . , τm−1 determine which code table to use to encode x2, x3, . . . ,
xn. However, there are choices of which code table to use for the first symbol
x1. For i ∈ [F ] and xxx ∈ S∗, we define f ∗

i (xxx) ∈ C∗ as the codeword sequence
in the case where x1 is encoded with fi. Also, we define τ ∗i (xxx) ∈ [F ] as the
index of the code table used next after encoding xxx in the case where x1 is
encoded with fi. We give formal definitions of f ∗

i and τ ∗i in the following
Definition 2.1.3 as recursive formulas.

Definition 2.1.3. For F (f, τ) ∈ F and i ∈ [F ], we define a mapping f ∗
i :

S∗ → C∗ and a mapping τ ∗i : S∗ → [F ] as

f ∗
i (xxx) =

{
λ if xxx = λ,

fi(x1)f ∗
τi(x1)

(suff(xxx)) if xxx ,= λ,
(2.4)

τ ∗i (xxx) =

{
i if xxx = λ,

τ ∗τi(x1)
(suff(xxx)) if xxx ,= λ

(2.5)

for xxx = x1x2 . . . xn ∈ S∗.

Example 2.1.3. We consider F (f, τ) := F (γ)(f (γ), τ (γ)) of Table 2.1. Then
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f ∗
0 (badb) and τ ∗0 (badb) is given as follows (cf. Example 2.1.2):

f ∗
0 (badb) = f0(b)f

∗
1 (adb) (2.6)

= f0(b)f1(a)f
∗
1 (db) (2.7)

= f0(b)f1(a)f1(d)f
∗
2 (b) (2.8)

= f0(b)f1(a)f1(d)f2(b)f
∗
0 (λ) (2.9)

= 1000001111110, (2.10)

τ ∗0 (badb) = τ ∗1 (adb) = τ ∗1 (db) = τ ∗2 (b) = τ ∗0 (λ) = 0. (2.11)

The following Lemma 2.1.1 follows from Definition 2.1.3.

Lemma 2.1.1. For any F (f, τ) ∈ F , i ∈ [F ], and xxx,yyy ∈ S∗, the following
statements (i)–(iii) hold.

(i) f ∗
i (xxxyyy) = f ∗

i (xxx)f
∗
τ∗i (xxx)

(yyy).

(ii) τ ∗i (xxxyyy) = τ ∗τ∗i (xxx)(y
yy).

(iii) If xxx ) yyy, then f ∗
i (xxx) ) f ∗

i (yyy).

2.2 k-bit Delay Decodable Code-tuples
In Example 2.1.2, despite f0(b)f1(a) = 1000, to uniquely identify x1x2 =
ba, it is required to read 10000 including the additional 1 bit. Namely,
a decoding delay of 1 bit occurs to decode x2 = a. Similarly, despite
f0(b)f0(a)f1(d) = 100000111, to uniquely identify x1x2x3 = bad, it is re-
quired to read 10000011111 including the additional 2 bits. Namely, a de-
coding delay of 2 bits occurs to decode x3 = d. In general, in the decoding
process with F (γ) in Table 2.1, it is required to read the additional at most
2 bits for the decoder to uniquely identify each symbol of a given source
sequence. We say a code-tuple is k-bit delay decodable if the decoder can
always uniquely identify each source symbol by reading the additional k bits
of the codeword sequence. The code-tuple F (γ) is an example of a 2-bit
delay decodable code-tuple. In this section, we state two equivalent formal
definitions of a k-bit delay decodable code-tuple.
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2.2.1 The First Definition
To state the first definition of a k-bit delay decodable code-tuple, we first
introduce the following Definitions 2.2.1 and 2.2.2.

Definition 2.2.1. For an integer k ≥ 0, F (f, τ) ∈ F , i ∈ [F ], and bbb ∈ C∗,
we define

Pk
F,i(bbb) := {ccc ∈ Ck : xxx ∈ S+, f ∗

i (xxx) # bbbccc, fi(x1) # bbb}, (2.12)

P̄k
F,i(bbb) := {ccc ∈ Ck : xxx ∈ S+, f ∗

i (xxx) # bbbccc, fi(x1) 1 bbb}. (2.13)

Namely, Pk
F,i(bbb) (resp. P̄k

F,i(bbb)) is the set of all ccc ∈ Ck such that there exists
xxx = x1x2 . . . xn ∈ S+ satisfying f ∗

i (xxx) # bbbccc and fi(x1) # bbb (resp. fi(x1) 1 bbb).

Definition 2.2.2. For F (f, τ) ∈ F , i ∈ [F ], and bbb ∈ C∗, we define

P∗
F,i(bbb) := P0

F,i(bbb) ∪ P1
F,i(bbb) ∪ P2

F,i(bbb) ∪ · · · , (2.14)

P̄∗
F,i(bbb) := P̄0

F,i(bbb) ∪ P̄1
F,i(bbb) ∪ P̄2

F,i(bbb) ∪ · · · . (2.15)

We write Pk
F,i(λ) (resp. P̄k

F,i(λ)) as Pk
F,i (resp. P̄k

F,i) for simplicity. Also,
we write P∗

F,i(λ) (resp. P̄∗
F,i(λ)) as P∗

F,i (resp. P̄∗
F,i). We have

Pk
F,i

(A)
= {ccc ∈ Ck : xxx ∈ S+, f ∗

i (xxx) # ccc} (B)
= {ccc ∈ Ck : xxx ∈ S∗, f ∗

i (xxx) # ccc},
(2.16)

where (A) follows from (2.12), and (B) is justified as follows. The relation
“⊆” holds by S+ ⊆ S∗. We show the relation “⊇”. We choose ccc ∈ Ck such
that f ∗

i (xxx) # ccc for some xxx ∈ S∗ arbitrarily and show that f ∗
i (xxx

′) # ccc for some
xxx′ ∈ S+. The case xxx ∈ S+ is trivial. In the case xxx ∈ {λ} = S∗ \ S+, then
since ccc ) f ∗

i (xxx) = f ∗
i (λ) = λ by (2.4), we have ccc = λ, which leads to that

any xxx′ ∈ S+ satisfies f ∗
i (xxx

′) # λ = ccc. Hence, the relation “⊇” holds.

Example 2.2.1. We consider F (f, τ) := F (β) in Table 2.1. First, we confirm
P3

F,0(bbb) = {100, 101, 111} for bbb = 101 as follows.

• 100 ∈ P3
F,0(bbb) holds because xxx = cc satisfies f ∗

0 (xxx) = 1011000 # bbb100
and f0(x1) = 101 # bbb.

• 101 ∈ P3
F,0(bbb) holds because xxx = da satisfies f ∗

0 (xxx) = 10110110 # bbb101
and f0(x1) = 1011 # bbb.
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Table 2.2: The set P1
F,i and P2

F,i for the code-tuples F in Table 2.1
F ∈ F P1

F,0 P1
F,1 P1

F,2 P2
F,0 P2

F,1 P2
F,2

F (α) {0, 1} {0, 1} ∅ {01, 10, 11} {01, 10} ∅
F (β) {0, 1} {0} {1} {01, 10, 11} {01} {10, 11}
F (γ) {0, 1} {0, 1} {1} {01, 10} {00, 01, 10} {11}

Table 2.3: The set P̄2
F,i(fi(s)) for F := F (γ)

s ∈ S P̄2
F,0(f0(s)) P̄2

F,1(f1(s)) P̄2
F,2(f2(s))

a {00} {11} ∅
b ∅ {00} {00}
c ∅ ∅ ∅
d {00} ∅ {00, 01}

• 111 ∈ P3
F,0(bbb) holds because xxx = cbb satisfies f ∗

0 (xxx) = 1011111 # bbb111
and f0(x1) = 101 # bbb.

Next, we confirm P̄3
F,0(bbb) = {101} for bbb = 101 as follows.

• 101 ∈ P̄3
F,0(bbb) holds because xxx = da satisfies f ∗

0 (xxx) = 10110110 # bbb101
and f0(x1) = 1011 1 bbb.

Also, we confirm P̄0
F,1(bbb) = {λ} for bbb = 011 as follows.

• λ ∈ P̄0
F,1(bbb) holds because xxx = a satisfies f ∗

1 (xxx) = 0110 # bbb = bbbλ and
f1(x1) = 0110 1 bbb.

Example 2.2.2. Table 2.2 shows P1
F,i and P2

F,i for the code-tuples F in Table
2.1. Also, Table 2.3 shows P̄2

F,i(fi(s)) for F (f, τ) := F (γ) in Table 2.1.

We show the basic properties of the sets Pk
F,i(bbb) and P̄k

F,i(bbb) as the follow-
ing Lemmas 2.2.1 and 2.2.2.

Lemma 2.2.1. For any integer k ≥ 0, F (f, τ) ∈ F , i ∈ [F ], and bbb ∈ C∗,
the following statements (i) and (ii) hold.

(i)
Pk

F,i(bbb) = P̄k
F,i(bbb) ∪

( ⋃

s∈SF,i(bbb)

Pk
F,τi(s)

)
. (2.17)
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(ii) If k ≥ 1, then
P̄k

F,i(bbb) = 0Pk−1
F,i (bbb0) ∪ 1Pk−1

F,i (bbb1). (2.18)

Proof of Lemma 2.2.1. (Proof of (i)): For any ccc ∈ Ck, we have

ccc ∈ Pk
F,i(bbb)

(A)⇐⇒ ∃xxx ∈ S+; (f ∗
i (xxx) # bbbccc, fi(x1) # bbb) (2.19)

⇐⇒ (∃xxx ∈ S+; (f ∗
i (xxx) # bbbccc, fi(x1) 1 bbb))

or (∃xxx ∈ S+; (f ∗
i (xxx) # bbbccc, fi(x1) = bbb)) (2.20)

(B)⇐⇒ ccc ∈ P̄k
F,i(bbb) or ∃xxx ∈ S+; (f ∗

i (xxx) # bbbccc, fi(x1) = bbb) (2.21)
(C)⇐⇒ ccc ∈ P̄k

F,i(bbb) or ∃xxx ∈ S+; (f ∗
τi(x1)(suff(xxx)) # ccc, fi(x1) = bbb) (2.22)

⇐⇒ ccc ∈ P̄k
F,i(bbb) or ∃s ∈ S; ∃xxx ∈ S∗; (f ∗

τi(s)(xxx) # ccc, fi(s) = bbb) (2.23)
⇐⇒ ccc ∈ P̄k

F,i(bbb) or ∃s ∈ SF,i(bbb);
∃xxx ∈ S∗; f ∗

τi(s)(xxx) # ccc (2.24)
(D)⇐⇒ ccc ∈ P̄k

F,i(bbb) or ∃s ∈ SF,i(bbb);ccc ∈ Pk
F,τi(s) (2.25)

⇐⇒ ccc ∈ P̄k
F,i(bbb) or ccc ∈

⋃

s∈SF,i(bbb)

Pk
F,τi(s) (2.26)

⇐⇒ ccc ∈ P̄k
F,i(bbb) ∪

( ⋃

s∈SF,i(bbb)

Pk
F,τi(s)

)
(2.27)

as desired, where (A) follows from (2.12), (B) follows from (2.13), (C) follows
from (2.4), and (D) follows from (2.16).

(Proof of (ii)): For any ccc ∈ Ck, we have

ccc ∈ P̄k
F,i(bbb)

(A)⇐⇒ ∃xxx ∈ S+; (f ∗
i (xxx) # bbbccc, fi(x1) 1 bbb) (2.28)

⇐⇒ ∃xxx ∈ S+; (f ∗
i (xxx) # bbbc1suff(ccc), fi(x1) # bbbc1) (2.29)

⇐⇒ (c1 = 0, ∃xxx ∈ S+; (f ∗
i (xxx) # bbb0suff(ccc), fi(x1) # bbb0))

or (c1 = 1, ∃xxx ∈ S+; (f ∗
i (xxx) # bbb1suff(ccc), fi(x1) # bbb1)) (2.30)

(B)⇐⇒ (c1 = 0, suff(ccc) ∈ Pk−1
F,i (bbb0)) or (c1 = 1, suff(ccc) ∈ Pk−1

F,i (bbb1)) (2.31)
⇐⇒ ccc ∈ 0Pk−1

F,i (bbb0) or ccc ∈ 1Pk−1
F,i (bbb1) (2.32)

⇐⇒ ccc ∈ 0Pk−1
F,i (bbb0) ∪ 1Pk−1

F,i (bbb1) (2.33)

as desired, where (A) follows from (2.13), and (B) follows from (2.12). !
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Lemma 2.2.2. For any F (f, τ) ∈ F and i ∈ [F ], the following statements
(i)–(iii) hold.

(i) For any bbb ∈ C∗, the following equivalence relation holds: P̄0
F,i(bbb) ,=

∅ ⇐⇒ ∃s ∈ S; fi(s) 1 bbb.

(ii) There exists s ∈ S such that P̄0
F,i(fi(s)) = ∅.

(iii) If |SF,i(λ)| ≤ 1, in particular fi is injective, then P̄0
F,i ,= ∅.

Proof of Lemma 2.2.2. (Proof of (i)): We have

λ ∈ P̄0
F,i(bbb)

(A)⇐⇒ ∃xxx ∈ S+; (f ∗
i (xxx) # bbb, fi(x1) 1 bbb) ⇐⇒ ∃s ∈ S; fi(s) 1 bbb

(2.34)
as desired, where (A) follows from (2.13).

(Proof of (ii)): Let s ∈ arg max{|fi(s′)| : s′ ∈ S}. Then there is no
s′ ∈ S such that fi(s) ≺ fi(s′). Hence, by (i) of this lemma, we obtain
P̄0

F,i(fi(s)) = ∅.
(Proof of (iii)): By |SF,i(λ)| ≤ 1 and the assumption that |S| ≥ 2, there

exists s ∈ S such that fi(s) ,= λ. This is equivalent to P̄0
F,i ,= ∅ by (i) of this

lemma. !

We consider the situation where the decoder has already read the prefix bbb′

of a given codeword sequence and identified a prefix x1x2 . . . xl of the original
sequence xxx. Then we have bbb′ = fi1(x1)fi2(x2) . . . fil(xl)bbb for some bbb ∈ C∗. Put
i := il+1 and let {s1, s2, . . . , sr} be the set of all symbols s ∈ S such that
fi(s) = bbb. Then there are the following r + 1 possible cases for the next
symbol xl+1: the case xl+1 = s1, the case xl+1 = s2, . . . , the case xl+1 = sr,
and the case fi(xl+1) 1 bbb. For a code-tuple F to be k-bit delay decodable,
the decoder must always be able to distinguish these r + 1 cases by reading
the following k bits of the codeword sequence. Namely, it is required that
the r + 1 sets listed below are disjoint:

• Pk
F,τi(s1)

, the set of all possible following k bits in the case xl+1 = s1,

• Pk
F,τi(s2)

, the set of all possible following k bits in the case xl+1 = s2,

• · · · ,

• Pk
F,τi(sr)

, the set of all possible following k bits in the case xl+1 = sr,
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• P̄k
F,i(bbb), the set of all possible following k bits in the case fi(xl+1) 1 bbb.

Example 2.2.3. We obtain f ∗
0 (xxx) = 1000001111110 by encoding xxx := badb

with F (f, τ) := F (γ) in Table 2.1 (cf. Example 2.1.2). We consider the
decoding process of f ∗

0 (xxx).

• First, we suppose that the decoder already read the prefix bbb′ = 1000 of
f ∗
0 (xxx) and identified x1 = b. Then we have bbb′ = f0(x1)00 and SF,1(00) =
{a}, and the next symbol x2 is decoded with fτ0(b) = f1. Now, there are
two possible cases for x2: the case x2 = a and the case f1(x2) 1 00
(i.e., x2 = c or x2 = d). The decoder can distinguish these two cases
by reading the following 2 bits because

– P2
F,τ1(a)

, the set of all possible following 2 bits in the case x2 = a,
and

– P̄2
F,1(00), the set of all possible following 2 bits in the case f1(x2) 1

bbb,

are disjoint: P2
F,τ1(a)

∩ P̄2
F,1(f1(a)) = {00, 01, 10} ∩ {11} = ∅. Since

the following 2 bits are 00 ∈ P2
F,τ1(a)

, the decoder can identify x2 = a
indeed.

• Next, we suppose that the decoder already read the prefix bbb′ = 100000
of f ∗

0 (xxx) and identified x1x2 = ba. Then we have bbb′ = f ∗
0 (x1x2)00 and

SF,1(00) = {a}, and the next symbol x3 is decoded with fτ1(a) = f1.
Now, there are two possible cases for x3: the case x3 = a and the case
f1(x3) 1 00 (i.e., x3 = c or x3 = d). The decoder can distinguish these
two cases by reading the following 2 bits because

– P2
F,τ1(a)

, the set of all possible following 2 bits in the case x3 = a,
and

– P̄2
F,1(00), the set of all possible following 2 bits in the case f1(x3) 1

bbb,

are disjoint: P2
F,τ1(a)

∩ P̄2
F,1(f1(a)) = {00, 01, 10} ∩ {11} = ∅. Since the

following 2 bits are 11 ∈ P̄2
F,1(00), the decoder can identify f1(x3) 1 00,

in particular, x3 ,= a indeed.
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• Lastly, we suppose that the decoder already read the prefix bbb′ = 100000111
of f ∗

0 (xxx) and identified x1x2 = ba. Then we have bbb′ = f ∗
0 (ba)00111 and

SF,1(00111) = {c, d}. Now, there are two possible cases for x3: the
case x3 = c and the case x3 = d. The decoder can distinguish these two
cases by reading the following 2 bits because

– P2
F,τ1(c)

, the set of all possible following 2 bits in the case x2 = c,
and

– P2
F,τ1(d)

, the set of all possible following 2 bits in the case x2 = d,

are disjoint: P2
F,τ1(c)

∩ P2
F,τ1(d)

= {00, 01, 10} ∩ {11} = ∅. Since the
following 2 bits are 11 ∈ P2

F,τ1(d)
, the decoder can identify x3 = d

indeed.

Based on the discussion above, the first definition of a k-bit delay decod-
able code is given as the following Definition 2.2.3.

Definition 2.2.3. Let k ≥ 0 be an integer. A code-tuple F (f, τ) is said to
be k-bit delay decodable if the following conditions (a) and (b) hold.

(a) For any i ∈ [F ] and s ∈ S, it holds that Pk
F,τi(s)

∩ P̄k
F,i(fi(s)) = ∅.

(b) For any i ∈ [F ] and s, s′ ∈ S, if s ,= s′ and fi(s) = fi(s′), then
Pk

F,τi(s)
∩ Pk

F,τi(s′)
= ∅.

For an integer k ≥ 0, we define Fk-dec as the set of all k-bit delay decodable
code-tuples, that is,

Fk-dec := {F ∈ F : F is k-bit delay decodable}. (2.35)

Example 2.2.4. We confirm F (f, τ) := F (γ) in Table 2.1 is 2-bit delay
decodable as follows.

First, we see that F satisfies Definition 2.2.3 (a) as follows (cf. Tables
2.2 and 2.3).

• P2
F,τ0(a)

∩ P̄2
F,0(f0(a)) = P2

F,0 ∩ P̄2
F,0(f0(a)) = {01, 10} ∩ {00} = ∅.

• P2
F,τ0(b)

∩ P̄2
F,0(f0(b)) = P2

F,1 ∩ P̄2
F,0(f0(b)) = {00, 01, 10} ∩ ∅ = ∅.

• P2
F,τ0(c)

∩ P̄2
F,0(f0(c)) = P2

F,0 ∩ P̄2
F,0(f0(c)) = {01, 10} ∩ ∅ = ∅.
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• P2
F,τ0(d)

∩ P̄2
F,0(f0(d)) = P2

F,2 ∩ P̄2
F,0(f0(d)) = {11} ∩ {00} = ∅.

• P2
F,τ1(a)

∩ P̄2
F,1(f1(a)) = P2

F,1 ∩ P̄2
F,1(f1(a)) = {00, 01, 10} ∩ {11} = ∅.

• P2
F,τ1(b)

∩ P̄2
F,1(f1(b)) = P2

F,0 ∩ P̄2
F,1(f1(b)) = {01, 10} ∩ {00} = ∅.

• P2
F,τ1(c)

∩ P̄2
F,1(f1(c)) = P2

F,1 ∩ P̄2
F,1(f1(c)) = {00, 01, 10} ∩ ∅ = ∅.

• P2
F,τ1(d)

∩ P̄2
F,1(f1(d)) = P2

F,2 ∩ P̄2
F,1(f1(d)) = {11} ∩ ∅ = ∅.

• P2
F,τ2(a)

∩ P̄2
F,2(f2(a)) = P2

F,1 ∩ P̄2
F,2(f2(a)) = {00, 01, 10} ∩ ∅ = ∅.

• P2
F,τ2(b)

∩ P̄2
F,2(f2(b)) = P2

F,0 ∩ P̄2
F,2(f2(b)) = {01, 10} ∩ {00} = ∅.

• P2
F,τ2(c)

∩ P̄2
F,2(f2(c)) = P2

F,2 ∩ P̄2
F,2(f2(c)) = {11} ∩ ∅ = ∅.

• P2
F,τ2(d)

∩ P̄2
F,2(f2(d)) = P2

F,2 ∩ P̄2
F,2(f2(d)) = {11} ∩ {00, 01} = ∅.

Next, we see that F satisfies Definition 2.2.3 (b) as follows (cf. Table
2.2).

• P2
F,τ0(a)

∩ P2
F,τ0(d)

= P2
F,0 ∩ P2

F,2 = {01, 10} ∩ {11} = ∅.

• P2
F,τ1(c)

∩ P2
F,τ1(d)

= P2
F,1 ∩ P2

F,2 = {00, 01, 10} ∩ {11} = ∅.

Consequently, we have F ∈ F2-dec.

Example 2.2.5. In a similar way to Example 2.2.4, we can see that the
code-tuple F (α) in Table 2.1 is 2-bit delay decodable. We give some more
examples as follows.

• For F (f, τ) := F (α), we have F ,∈ F1-dec because P1
F,τ0(b)

∩P̄1
F,0(f0(b)) =

{0, 1} ∩ {1} = {1} ,= ∅.

• For F (f, τ) := F (β), for any integer k ≥ 0, we have F ,∈ Fk-dec because
Pk

F,τ1(a)
∩ Pk

F,τ1(b)
= Pk

F,1 ∩ Pk
F,1 = Pk

F,1 ,= ∅.

• For F (f, τ) := F (γ), we have F ,∈ F1-dec because P1
F,τ1(c)

∩ P1
F,τ1(d)

=
{0, 1} ∩ {1} = {1} ,= ∅.
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Remark 2.2.1. If all the code tables f0, f1, . . . , f|F |−1 are injective, then
Definition 2.2.3 (b) holds since there are no i ∈ [F ] and s, s′ ∈ S such that
s ,= s and fi(s) ,= fi(s′).

If k = 0, then the converse also holds as seen below. We consider Defini-
tion 2.2.3 (b) for the case k = 0. Then by (2.16), we have Pk

F,τi(s)
∩Pk

F,τi(s′)
=

{λ} ∩ {λ} = {λ} ,= ∅ for any i ∈ [F ] and s, s′ ∈ S. Hence, for F to satisfy
Definition 2.2.3 (b), it is required that for any i ∈ [F ] and s, s′ ∈ S, if s ,= s′,
then fi(s) ,= fi(s′), that is, f0, f1, . . . , f|F |−1 are injective.

Remark 2.2.2. A k-bit delay decodable code-tuple F is not necessarily uniquely
decodable, that is, the mappings f ∗

0 , f
∗
1 , . . . , f

∗
|F |−1 are not necessarily injective.

For example, for F (γ) ∈ F2-dec in Table 2.1, we have f (γ)
0

∗
(bc) = 1000111 =

f (γ)
0

∗
(bd). In general, it is possible that the decoder cannot uniquely recover

the last few symbols of the original source sequence in the case where the rest
of the codeword sequence is less than k bits. In such a case, we should append
additional information for practical use.

For k-bit delay decodable code-tuples, the following Lemma 2.2.3 holds.

Lemma 2.2.3. For any integer k ≥ 0, F (f, τ) ∈ Fk-dec, i ∈ [F ], and bbb ∈ C∗,
we have

|Pk
F,i(bbb)| = |P̄k

F,i(bbb)|+
∑

s∈SF,i(bbb)

|Pk
F,τi(s)|. (2.36)

Proof of Lemma 2.2.3. We have

|Pk
F,i(bbb)|

(A)
= |P̄k

F,i(bbb) ∪
( ⋃

s∈SF,i(bbb)

Pk
F,τi(s)

)
| (2.37)

(B)
= |P̄k

F,i(bbb)|+ |
⋃

s∈SF,i(bbb)

Pk
F,τi(s)| (2.38)

(C)
= |P̄k

F,i(bbb)|+
∑

s∈SF,i(bbb)

|Pk
F,τi(s)| (2.39)

as desired, where (A) follows from Lemma 2.2.1 (i), (B) follows from F ∈
Fk-dec and Definition 2.2.3 (a), and (C) follows from F ∈ Fk-dec and Defini-
tion 2.2.3 (b). !
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2.2.2 The Second Definition
We give the second definition of a k-bit delay decodable codes. We first fix
F (f, τ) ∈ F and i ∈ [F ] and consider a situation where a source sequence
xxx′ ∈ S∗ is encoded with F starting from the code table fi. Then the source
sequence xxx′ is encoded to the codeword sequence f ∗

i (xxx
′), and the decoder

reads it bit by bit from the beginning. Let bbb ) f ∗
i (xxx

′) be the sequence the
decoder has read by a certain moment of the decoding process. If bbb = f ∗

i (xxx)
for some xxx ∈ S∗, then there are two possible cases, xxx ) xxx′ and xxx ,) xxx′. The
k-bit delay decodability requires that it is always possible for the decoder to
distinguish the two cases, xxx ) xxx′ and xxx ,) xxx′, by reading the following k bits
ccc ∈ Ck of the codeword sequence f ∗

i (xxx), that is, for any pair (xxx,ccc) ∈ S∗ × Ck,
the decoder can distinguish the two cases, xxx ) xxx′ and xxx ,) xxx′ according to
the pair (xxx,ccc). Thus, F is k-bit delay decodable if and only if for any pair
(xxx,ccc) ∈ S∗ × Ck, it holds that (xxx,ccc) is f ∗

i -positive or f ∗
i -negative defined as

follows.

Definition 2.2.4. Let F (f, τ) ∈ F and i ∈ [F ].

(i) A pair (xxx,ccc) ∈ S∗ × C∗ is said to be f ∗
i -positive if for any xxx′ ∈ S∗, if

f ∗
i (xxx)ccc ) f ∗

i (xxx
′), then xxx ) xxx′.

(ii) A pair (xxx,ccc) ∈ S∗ × C∗ is said to be f ∗
i -negative if for any xxx′ ∈ S∗, if

f ∗
i (xxx)ccc ) f ∗

i (xxx
′), then xxx ,) xxx′.

Then the second definition of a k-bit delay decodable code-tuple is given
as follows.

Definition 2.2.5. Let k ≥ 0 be an integer. A code-tuple F is said to be
k-bit delay decodable if for any i ∈ [F ] and (xxx,ccc) ∈ S∗ × Ck, the pair (xxx,ccc)
is f ∗

i -positive or f ∗
i -negative.

Note that it is possible that a pair (xxx,ccc) ∈ S∗ × C∗ is f ∗
i -positive and f ∗

i -
negative simultaneously. A pair (xxx,ccc) ∈ S∗×C∗ is f ∗

i -positive and f ∗
i -negative

simultaneously if and only if there is no sequence xxx′ satisfying f ∗
i (xxx)ccc )

f ∗
i (xxx

′).
The two definitions of a k-bit delay decodable code-tuple, Definitions 2.2.3

and 2.2.5, are indeed equivalent as shown in the following Lemma 2.2.4, which
proof is deferred to Subsection 2.6.1.

Lemma 2.2.4. For any F (f, τ) ∈ F , the following conditions (a) and (b)
are equivalent.

31



(a) For any i ∈ [F ] and (xxx,ccc) ∈ S∗ × Ck, the pair (xxx,ccc) is f ∗
i -positive or

f ∗
i -negative.

(b) The code-tuple F satisfies Definition 2.2.3 (a) and (b).

The classes Fk-dec, k = 0, 1, 2, . . . form a hierarchical structure F0-dec ⊆
F1-dec ⊆ F2-dec ⊆ · · · . Namely, the following Lemma 2.2.5 holds.

Lemma 2.2.5. For any two non-negative integers k, k′, if k ≤ k′, then
Fk-dec ⊆ Fk′-dec.

Proof of Lemma 2.2.5. Let F (f, τ) ∈ Fk-dec. Fix i ∈ [F ] and (xxx,ccc′) ∈ S∗ ×
Ck′ arbitrarily. It suffices to prove that (xxx,ccc′) is f ∗

i -positive or f ∗
i -negative.

Let ccc be the prefix of ccc′ of length k. Then for any xxx′ ∈ S∗ such that
f ∗
i (xxx)ccc

′ ) f ∗
i (x

′x′x′), we have f ∗
i (xxx)ccc ) f ∗

i (xxx)ccc
′ ) f ∗

i (xxx
′). Namely, f ∗

i (xxx)ccc
′ )

f ∗
i (xxx

′) implies f ∗
i (xxx)ccc ) f ∗

i (xxx
′). Hence, by Definition 2.2.4, if (xxx,ccc′) is f ∗

i -
positive (resp. f ∗

i -negative), then also (xxx,ccc) is f ∗
i -positive (resp. f ∗

i -negative),
respectively. Therefore, it follows that F (f, τ) ∈ Fk′-dec from F (f, τ) ∈
Fk-dec. !

The following Lemma 2.2.6 claims that a 0-bit delay decodable code-tuple
(i.e., an instantaneous code) is always uniquely decodable (cf. Remark 2.2.1).

Lemma 2.2.6. For any F (f, τ) ∈ F0-dec and i ∈ [F ], the following state-
ments (i) and (ii) hold.

(i) For any xxx ∈ S∗, the pair (xxx,λ) is f ∗
i -positive.

(ii) f ∗
i is injective.

Proof of Lemma 2.2.6. (Proof of (i)): By F ∈ F0-dec, the pair (xxx,λ) is f ∗
i -

positive or f ∗
i -negative. However, since f ∗

i (xxx) ) f ∗
i (xxx) and xxx ) xxx, the pair

(xxx,λ) must be f ∗
i -positive.

(Proof of (ii)): By (i) of this lemma, we have

∀xxx,xxx′ ∈ S∗; (f ∗
i (xxx) ) f ∗

i (xxx
′) =⇒ xxx ) xxx′) . (2.40)

Choose yyy,yyy′ ∈ S∗ such f ∗
i (yyy) = f ∗

i (yyy
′) arbitrarily. Then we have f ∗

i (yyy) )
f ∗
i (yyy

′) and f ∗
i (yyy

′) ) f ∗
i (yyy). Thus, by (2.40), we obtain yyy ) yyy′ and yyy′ ) yyy,

that is, yyy = yyy′. Consequently, f ∗
i is injective. !
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A 0-bit delay decodable code-tuple is also characterized as a code-tuple
all of which code tables are prefix-free as below.

Definition 2.2.6. For F (f, τ) ∈ F and i ∈ [F ], the mapping fi is said to
be prefix-free if for any s, s′ ∈ S, if fi(s) ) fi(s′), then s = s′.

Lemma 2.2.7. A code-tuple F (f, τ) satisfies F ∈ F0-dec if and only if for
any i ∈ [F ], the mapping fi is prefix-free.

Proof of Lemma 2.2.7. (Necessity) Assume F ∈ F0-dec and choose i ∈ [F ]
arbitrarily. By Lemma 2.2.6 (i), the pair (xxx,λ) is f ∗

i -positive. Thus, (2.40)
holds. In particular, we have

∀s, s′ ∈ S; (f ∗
i (s) ) f ∗

i (s
′) =⇒ s ) s′) . (2.41)

Since s ) s′ implies s = s′, the mapping fi is prefix-free.
(Sufficiency) Assume that for any i ∈ [F ], the mapping fi is prefix-free.

To prove F ∈ F0-dec, it suffices to prove (2.40) for arbitrarily fixed i ∈ [F ].
We prove it by induction for |xxx|.

For the base case |xxx| = 0, clearly we have xxx ) xxx′ for any xxx′ ∈ S∗.
Let l ≥ 1 and assume that (2.40) is true for the case |xxx| < l as the

induction hypothesis. We prove (2.40) for the case |xxx| = l. Choose xxx′ ∈ S∗

such that f ∗
i (xxx) ) f ∗

i (xxx
′) arbitrarily. Then by (2.4), we have

fi(x1)f
∗
τ∗i (x1)(suff(xxx)) ) fi(x

′
1)f

∗
τ∗i (x

′
1)
(suff(xxx′)). (2.42)

Thus, fi(x1) ) fi(x′
1) or fi(x1) # fi(x′

1) holds. Hence, since fi is prefix-free,
we obtain

x1 = x′
1. (2.43)

By (2.42) and (2.43), we have fi(x1)f ∗
τ∗i (x1)

(suff(xxx)) ) fi(x1)f ∗
τ∗i (x

′
1)
(suff(xxx′)).

Thus, we have f ∗
τ∗i (x1)

(suff(xxx)) ) f ∗
τ∗i (x

′
1)
(suff(xxx′)). By the induction hypothe-

sis,
suff(xxx) ) suff(xxx′). (2.44)

By (2.43) and (2.44), we obtain xxx ) xxx′. !

2.3 Extendable Code-tuples

For the code-tuple F (α) in Table 2.1, we can see that f (α)
2

∗
(xxx) = λ for any

xxx ∈ S∗. To exclude such abnormal and useless code-tuples, we introduce a
class Fext in the following Definition 2.3.1.
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Definition 2.3.1. A code-tuple F is said to be extendable if P1
F,i ,= ∅ for

any i ∈ [F ]. We define Fext as the set of all extendable code-tuples, that is,

Fext := {F ∈ F : ∀i ∈ [F ];P1
F,i ,= ∅}. (2.45)

Example 2.3.1. The code-tuple F (α) in Table 2.1 is not extendable because
P1

F (α),2
= ∅ by Table 2.2. The code-tuples F (β) and F (γ) in Table 2.1 are

extendable.

The following Lemma 2.3.1 shows that for an extendable code-tuple F (f, τ),
we can extend the length of f ∗

i (xxx) as long as we want by appending symbols
to xxx appropriately.

Lemma 2.3.1. A code-tuple F (f, τ) is extendable if and only if for any
i ∈ [F ] and integer l ≥ 0, there exists xxx ∈ S∗ such that |f ∗

i (xxx)| ≥ l.

Proof of Lemma 2.3.1. (Sufficiency) Fix i ∈ [F ] arbitrarily. Applying the
assumption with l = 1, we see that there exists xxx ∈ S∗ such that |f ∗

i (xxx)| ≥ 1.
Then there exists c ∈ C such that f ∗

i (xxx) # c, which leads to c ∈ P1
F,i by

(2.16), that is, P1
F,i ,= ∅ as desired.

(Necessity) Assume F ∈ Fext. We prove by induction for l. The base case
l = 0 is trivial. We consider the induction step for l ≥ 1. By the induction
hypothesis, there exists xxx ∈ S∗ such that

|f ∗
i (xxx)| ≥ l − 1. (2.46)

Also, by F ∈ Fext, there exists c ∈ P1
F,τ∗i (xxx)

. By (2.16), there exists yyy ∈ S∗

such that
f ∗
τ∗i (xxx)

(yyy) # c. (2.47)

Thus, we obtain

|f ∗
i (xxxyyy)|

(A)
= |f ∗

i (xxx)|+ |f ∗
τ∗i (xxx)

(yyy)|
(B)

≥ (l − 1) + 1 = l, (2.48)

where (A) follows from Lemma 2.1.1 (i), and (B) follows from (2.46) and
(2.47). This completes the induction. !

This property yields the following Lemma 2.3.2 and Corollary 2.3.1.

Lemma 2.3.2. Let k, k′ be two integers such that 0 ≤ k ≤ k′. For any
F (f, τ) ∈ Fext, i ∈ [F ], bbb ∈ C∗, and ccc ∈ Ck, the following statements (i) and
(ii) hold.
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(i) ccc ∈ Pk
F,i(bbb) ⇐⇒ ∃ccc′ ∈ Ck′−k;cccccc′ ∈ Pk′

F,i(bbb).

(ii) ccc ∈ P̄k
F,i(bbb) ⇐⇒ ∃ccc′ ∈ Ck′−k;cccccc′ ∈ P̄k′

F,i(bbb).

Proof of Lemma 2.3.2. We prove (i) only because (ii) follows by the similar
argument.

( =⇒ ) Assume ccc ∈ Pk
F,i(bbb). Then by (2.12), there exists xxx ∈ S+ such

that
f ∗
i (xxx) # bbbccc, (2.49)

fi(x1) # bbb. (2.50)

By F ∈ Fext and Lemma 2.3.1, there exists yyy ∈ S∗ such that

|f ∗
τ∗i (xxx)

(yyy)| ≥ k′ − k. (2.51)

Hence, we have

|f ∗
i (xxxyyy)|

(A)
= |f ∗

i (xxx)|+ |f ∗
τ∗i (xxx)

(yyy)|
(B)

≥ |bbbccc|+ k′ − k, (2.52)

where (A) follows from Lemma 2.1.1 (i), and (B) follows from (2.49) and
(2.51). By (2.49) and (2.52), there exists ccc′ ∈ Ck′−k such that

f ∗
i (xxxyyy) # bbbcccccc′. (2.53)

Equations (2.50) and (2.53) lead to cccccc′ ∈ Pk′
F,i(bbb) by (2.12).

( ⇐= ) Assume that there exists ccc′ ∈ Ck′−k such that cccccc′ ∈ Pk′
F,i(bbb). Then

by (2.12), there exists xxx ∈ S+ such that f ∗
i (xxx) # bbbcccccc′ and fi(x1) # bbb. This

clearly implies f ∗
i (xxx) # bbbccc and fi(x1) # bbb, which leads to ccc ∈ Pk

F,i(bbb) by
(2.12). !

Corollary 2.3.1. For any F ∈ Fext, i ∈ [F ], and bbb ∈ C∗, the following
statements (i) and (ii) hold.

(i) (a) For any integer k ≥ 0, the following equivalence holds: Pk
F,i(bbb) =

∅ ⇐⇒ P0
F,i(bbb) = ∅.

(b) For any integers k and k′ such that 0 ≤ k ≤ k′, we have |Pk
F,i(bbb)| ≤

|Pk′
F,i(bbb)|.

(ii) (a) For any integer k ≥ 0, the following equivalence holds: P̄k
F,i(bbb) =

∅ ⇐⇒ P̄0
F,i(bbb) = ∅.
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(b) For any integers k and k′ such that 0 ≤ k ≤ k′, we have |P̄k
F,i(bbb)| ≤

|P̄k′
F,i(bbb)|.

Also, the following Lemma 2.3.3 gives a lower bound of the length of a
codeword sequence for F ∈ Fext ∩ Fk-dec. See Subsection 2.6.2 for the proof
of Lemma 2.3.3.

Lemma 2.3.3. For any integer k ≥ 0, F (f, τ) ∈ Fext ∩ Fk-dec, i ∈ [F ], and
xxx ∈ S∗, we have |f ∗

i (xxx)| ≥ 6|xxx|/|F |7.

2.4 Average Codeword Length of Code-Tuple
We introduce the average codeword length L(F ) of a code-tuple F . From
now on, we fix an arbitrary probability distribution µ of the source symbols,
that is, a real-valued function µ : S → R such that

∑
s∈S µ(s) = 1 and

0 < µ(s) ≤ 1 for any s ∈ S. Note that we exclude the case where µ(s) = 0
for some s ∈ S without loss of generality.

First, for F (f, τ) ∈ F and i, j ∈ [F ], we define the transition probability
Qi,j(F ) as the probability of using the code table fj next after using the code
table fi in the encoding process.

Definition 2.4.1. For F (f, τ) ∈ F and i, j ∈ [F ], we define the transition
probability Qi,j(F ) as

Qi,j(F ) :=
∑

s∈S,τi(s)=j

µ(s). (2.54)

We also define the transition probability matrix Q(F ) as the following |F |×
|F | matrix:





Q0,0(F ) Q0,1(F ) · · · Q0,|F |−1(F )
Q1,0(F ) Q1,1(F ) · · · Q1,|F |−1(F )

...
... . . . ...

Q|F |−1,0(F ) Q|F |−1,1(F ) · · · Q|F |−1,|F |−1(F )




. (2.55)

We fix F ∈ F and consider the encoding process with F . Let Ii ∈ [F ]
be the index of the code table used to encode the i-th symbol of a source
sequence for i = 1, 2, 3, . . .. Then {Ii}i=1,2,3,... is a Markov process with the
transition probability matrix Q(F ). We consider a stationary distribution of
the Markov process {Ii}i=1,2,3,..., formally defined as follows.
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Definition 2.4.2. For F ∈ F , a solution πππ = (π0, π1, . . . , π|F |−1) ∈ R|F | of
the following simultaneous equations (2.56) and (2.57) is called a stationary
distribution of F :






πππQ(F ) = πππ, (2.56)∑

i∈[F ]

πi = 1. (2.57)

A code-tuple has at least one stationary distribution without a negative
element as shown in the following Lemma 2.4.1. See Subsection 2.6.3 for the
proof of Lemma 2.4.1.

Lemma 2.4.1. For any F ∈ F , there exists a stationary distribution πππ =
(π0, π1, . . . , π|F |−1) of F such that πi ≥ 0 for any i ∈ [F ].

As stated later in Definition 2.4.4, the average codeword length L(F ) of
F is defined depending on the stationary distribution πππ of F . However, it is
possible that a code-tuple has multiple stationary distributions. Therefore,
we limit the scope of consideration to a class Freg defined as the following
Definition 2.4.3, which is the class of code-tuples with a unique stationary
distribution.

Definition 2.4.3. A code-tuple F is said to be regular if F has a unique
stationary distribution. We define Freg as the set of all regular code-tuples,
that is,

Freg := {F ∈ F : F is regular}. (2.58)
For F ∈ Freg, we define πππ(F ) = (π0(F ), π1(F ), . . . , π|F |−1(F )) as the unique
stationary distribution of F .

Since the transition probability matrix Q(F ) depends on µ, it might seem
that the class Freg also depends on µ. However, we show later as Lemma
2.5.2 that in fact Freg is independent of µ. More precisely, whether a code-
tuple F (f, τ) belongs to Freg depends only on τ0, τ1, . . . , τ|F |−1. We also note
that for any F ∈ Freg, the unique stationary distribution πππ(F ) of F satisfies
πi(F ) ≥ 0 for any i ∈ [F ] by Lemma 2.4.1.

The asymptotical performance (i.e., average codeword length per sym-
bol) of a regular code-tuple does not depend on which code table we start
encoding: the average codeword length L(F ) of a regular code-tuple F
is the weighted sum of the average codeword lengths of the code tables
f0, f1, . . . , f|F |−1 weighted by the stationary distribution πππ(F ). Namely, L(F )
is defined as the following Definition 2.4.4.
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Definition 2.4.4. For F (f, τ) ∈ F and i ∈ [F ], we define the average
codeword length Li(F ) of the single code table fi : S → C∗ as

Li(F ) :=
∑

s∈S

|fi(s)| · µ(s). (2.59)

For F ∈ Freg, we define the average codeword length L(F ) of the code-tuple
F as

L(F ) :=
∑

i∈[F ]

πi(F )Li(F ). (2.60)

Example 2.4.1. We consider F := F (γ) of Table 2.1, where (µ(a), µ(b), µ(c),
µ(d)) = (0.1, 0.2, 0.3, 0.4). We have

Q(F ) =




0.4 0.2 0.4
0.2 0.4 0.4
0.2 0.1 0.7



 . (2.61)

The simultaneous equations (2.56) and (2.57) have the unique solution πππ(F )
= (π0(F ), π1(F ), π2(F )) = (1/4, 5/28, 4/7). Hence, we have F ∈ Freg. Also,
we have

L0(F ) = 2.6, L1(F ) = 3.7, L2(F ) = 4.2. (2.62)

Therefore, the average codeword length L(F ) of the code-tuple F is given as

L(F ) = π0(F )L0(F ) + π1(F )L1(F ) + π2(F )L2(F ) ≈ 3.7107. (2.63)

Remark 2.4.1. Note that Q(F ), Li(F ), L(F ), and πππ(F ) depend on µ. How-
ever, since we are now discussing on a fixed µ, the average codeword length
Li(F ) of fi (resp. the transition probability matrix Q(F )) is determined only
by the mapping fi (resp. τ0, τ1, . . . , τ|F |−1) and therefore the stationary distri-
bution πππ(F ) of a regular code-tuple F is also determined only by τ0, τ1, . . . , τ|F |−1.

2.5 Irreducible Code-tuples and Irreducible Parts
As we can see from (2.60), the code tables fi of F (f, τ) ∈ Freg such that
πi(F ) = 0 does not contribute to L(F ). It is useful to remove such non-
essential code tables and obtain an irreducible code-tuple: we say that a

38



regular code-tuple F is irreducible if πi(F ) > 0 for any i ∈ [F ] as formally
defined later in Definition 2.5.3. In this section, we introduce an irreducible
part of F ∈ Freg, which is an irreducible code-tuple obtained by removing
all the code tables fi such that πi(F ) = 0 from F . The formal definition of
an irreducible part of F is stated using a notion of homomorphism defined
in the following Definition 2.5.1.

Definition 2.5.1. For F (f, τ), F ′(f ′, τ ′) ∈ F , a mapping ϕ : [F ′] → [F ] is
called a homomorphism from F ′ to F if

f ′
i(s) = fϕ(i)(s), (2.64)

ϕ(τ ′i(s)) = τϕ(i)(s) (2.65)

for any i ∈ [F ′] and s ∈ S.

Given a homomorphism of code-tuples, the following Lemma 2.5.1 holds
between the two code-tuples. See Appendix 2.6.4 for the proof of Lemma
2.5.1.

Lemma 2.5.1. For any F (f, τ), F ′(f ′, τ ′) ∈ F and a homomorphism ϕ :
[F ′] → [F ] from F ′ to F , the following statements (i)–(vi) hold.

(i) For any i ∈ [F ′] and xxx ∈ S∗, we have f ′∗
i (xxx) = f ∗

ϕ(i)(xxx) and ϕ(τ ′∗i (xxx)) =
τ ∗ϕ(i)(xxx).

(ii) For any i ∈ [F ′] and bbb ∈ C∗, we have P∗
F ′,i(bbb) = P∗

F,ϕ(i)(bbb) and P̄∗
F ′,i(bbb) =

P̄∗
F,ϕ(i)(bbb).

(iii) For any stationary distribution πππ′ = (π′
0, π

′
1, . . . , π

′
|F ′|−1) of F ′, the vec-

tor πππ = (π0, π1, . . . , π|F |−1) ∈ R|F | defined as

πj =
∑

j′∈Aj

π′
j′ for j ∈ [F ] (2.66)

is a stationary distribution of F , where

Ai := {i′ ∈ [F ′] : ϕ(i′) = i} (2.67)

for i ∈ [F ].

(iv) If F ∈ Fext, then F ′ ∈ Fext.
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(v) If F, F ′ ∈ Freg, then L(F ′) = L(F ).

(vi) For any integer k ≥ 0, if F ∈ Fk-dec, then F ′ ∈ Fk-dec.

We also introduce the set RF for F ∈ F as the following Definition 2.5.2.
We state in Lemma 2.5.2 that we can characterize a regular code-tuple F by
RF .

Definition 2.5.2. For F (f, τ) ∈ F , we define RF as

RF := {i ∈ [F ] : ∀j ∈ [F ]; ∃xxx ∈ S∗; τ ∗j (xxx) = i}. (2.68)

Namely, RF is the set of indices i of the code tables such that for any j ∈ [F ],
there exists xxx ∈ S∗ such that τ ∗j (xxx) = i.

Example 2.5.1. First, we consider F (f, τ) := F (α) in Table 2.1. Then we
confirm RF = {2} as follows.

• 0 ,∈ RF because there exists no xxx ∈ S∗ such that τ ∗2 (xxx) = 0.

• 1 ,∈ RF because there exists no xxx ∈ S∗ such that τ ∗2 (xxx) = 1.

• 2 ∈ RF because τ ∗0 (bc) = τ ∗1 (c) = τ ∗2 (λ) = 2.

Next, we consider F (f, τ) := F (β) in Table 2.1. Then we confirm RF = ∅
as follows.

• 0 ,∈ RF because there exists no xxx ∈ S∗ such that τ ∗1 (xxx) = 0.

• 1 ,∈ RF because there exists no xxx ∈ S∗ such that τ ∗2 (xxx) = 1.

• 2 ,∈ RF because there exists no xxx ∈ S∗ such that τ ∗1 (xxx) = 2.

Lastly, we consider F (f, τ) := F (γ) in Table 2.1. Then we confirm RF =
{0, 1, 2} as follows.

• 0 ∈ RF because τ ∗0 (λ) = τ ∗1 (b) = τ ∗2 (b) = 0.

• 1 ∈ RF because τ ∗0 (b) = τ ∗1 (λ) = τ ∗2 (a) = 1.

• 2 ∈ RF because τ ∗0 (d) = τ ∗1 (d) = τ ∗2 (λ) = 2.

Lemma 2.5.2. For any F ∈ F , the following statements (i) and (ii) hold.
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(i) F ∈ Freg if and only if RF ,= ∅.

(ii) If F ∈ Freg, then for any i ∈ [F ], the following equivalence relation
holds: πi(F ) > 0 ⇐⇒ i ∈ RF .

The proof of Lemma 2.5.2 is given in Subsection 2.6.5.
Since RF does not depend on µ, we can see from Lemma 2.5.2 (i) that

the class Freg is determined independently of µ as mentioned before.
By Lemma 2.5.2 (ii), a regular code-tuple F (f, τ) satisfies πi(F ) > 0 for

any i ∈ [F ] if and only if F is an irreducible code-tuple defined as follows.

Definition 2.5.3. A code-tuple F is said to be irreducible if RF = [F ]. We
define Firr as the set of all irreducible code-tuples, that is, Firr := {F ∈ F :
RF = [F ]}.

Note that Firr ⊆ Freg since F ∈ Freg is equivalent to RF ,= ∅ by Lemma
2.5.2 (i).

Now we define an irreducible part F̄ of a code-tuple F as the following
Definition 2.5.4.

Definition 2.5.4. An irreducible code-tuple F̄ is called an irreducible part
of a code-tuple F if there exists an injective homomorphism ϕ : [F̄ ] → [F ]
from F̄ to F .

The following property of F̄ is immediately from Definition 2.5.4 and
Lemma 2.5.1 (iv)–(vi).

Lemma 2.5.3. For any integer k ≥ 0, F ∈ Freg ∩ Fext ∩ Fk-dec, and an
irreducible part F̄ of F , we have F̄ ∈ Firr ∩Fext ∩Fk-dec and L(F̄ ) = L(F ).

The existence of an irreducible part is guaranteed as the following Lemma
2.5.4. See Appendix 2.6.6 for the proof of Lemma 2.5.4.

Lemma 2.5.4. For any F ∈ Freg, there exists an irreducible part F̄ of F .

2.6 Proofs of Lemmas in Chapter 2

2.6.1 Proof of Lemma 2.2.4
Proof of Lemma 2.2.4. ((a) =⇒ (b)): We show the contraposition. Assume
that (b) does not hold. We consider the following two cases separately: the
case where Definition 2.2.3 (a) is false and the case where Definition 2.2.3
(b) is false.
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• The case where Definition 2.2.3 (a) is false: Then there exist i ∈ [F ],
s ∈ S, and ccc ∈ Pk

F,τi(s)
∩ P̄k

F,i(fi(s)). By (2.13) and (2.16), there exist
xxx ∈ S∗ and xxx′ ∈ S+ such that

f ∗
τi(s)(xxx) # ccc, (2.69)

f ∗
i (xxx

′) # fi(s)ccc, (2.70)
fi(x

′
1) 1 fi(s). (2.71)

We have
f ∗
i (sxxx)

(A)
= fi(s)f

∗
τi(s)(xxx)

(B)

# fi(s)ccc, (2.72)
where (A) follows from (2.4), and (B) follows from (2.69). By (2.72)
and s ) sxxx, the pair (s, ccc) is not f ∗

i -negative. On the other hand, since
s ,= x′

1 by (2.71), we have s ,) xxx′. Hence, by (2.70), the pair (s, ccc) is not
f ∗
i -positive. Since the pair (s, ccc) is neither f ∗

i -positive nor f ∗
i -negative,

the condition (a) does not hold.

• The case where Definition 2.2.3 (b) is false: Then there exist i ∈ [F ],
s, s′ ∈ S, and ccc ∈ Pk

F,τi(s)
∩ Pk

F,τi(s′)
such that s ,= s′ and

fi(s) = fi(s
′). (2.73)

By (2.16), there exist xxx,xxx′ ∈ S∗ such that

f ∗
τi(s)(xxx) # ccc, (2.74)

f ∗
τi(s′)(xxx

′) # ccc. (2.75)
Thus, we have

f ∗
i (sxxx)

(A)
= fi(s)f

∗
τi(s)(xxx)

(B)

# fi(s)ccc, (2.76)

f ∗
i (s

′xxx′)
(C)
= fi(s

′)f ∗
τi(s′)(xxx

′)
(D)
= fi(s)f

∗
τi(s′)(xxx

′)
(E)

# fi(s)ccc, (2.77)

where (A) follows from (2.4), (B) follows from (2.74), (C) follows from
(2.4), (D) follows from (2.73), and (E) follows from (2.75). By (2.76)
and s ) sxxx, the pair (s, ccc) is not f ∗

i -negative. On the other hand, by
s ,) s′xxx and (2.77), the pair (s, ccc) is not f ∗

i -positive. Since the pair
(s, ccc) is neither f ∗

i -positive nor f ∗
i -negative, the condition (a) does not

hold.
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((b) =⇒ (a)): We show the contraposition. Assume that (a) does not
hold. Then there exist i ∈ [F ] and (xxx,ccc) ∈ S∗ × Ck such that (xxx,ccc) is neither
f ∗
i -positive nor f ∗

i -negative. Thus, there exist xxx′,xxx′′ ∈ S∗ such that

f ∗
i (xxx)ccc ) f ∗

i (xxx
′), (2.78)

f ∗
i (xxx)ccc ) f ∗

i (xxx
′′), (2.79)

xxx ) xxx′, (2.80)

xxx ,) xxx′′. (2.81)

We consider the following two cases separately: the case xxx # xxx′′ and the
case xxx ,# xxx′′.

• The case xxx # xxx′′: By Lemma 2.1.1 (iii), we have

f ∗
i (xxx) # f ∗

i (xxx
′′). (2.82)

Hence, by (2.79), it must hold that ccc = λ. Namely, only k = 0 is
possible now.
Since (2.81) and xxx # xxx′′ lead to xxx 1 xxx′′, there exists uuu ∈ S+ such that
xxx = xxx′′uuu. Defining j := τ ∗i (xxx

′′), we have

f ∗
i (xxx)

(A)
= f ∗

i (xxx
′′)f ∗

j (uuu)
(B)
= f ∗

i (xxx)f
∗
j (uuu)

(C)
= f ∗

i (xxx)fj(u1)f
∗
τj(u1)(suff(uuu)),

(2.83)

where (A) follows from Lemma 2.1.1 (i), (B) follows because we have
f ∗
i (xxx) ) f ∗

i (xxx
′′) by (2.79) and we have f ∗

i (xxx) # f ∗
i (xxx

′′) by (2.82), and
(C) follows from (2.4). Comparing both sides of (2.83), we obtain

fj(u1) = λ (2.84)

and f ∗
τj(u1)

(suff(uuu)) = λ.

We now show that (b) does not hold dividing into two cases by whether
fj is injective.

– If fj is not injective, then F does not satisfy Definition 2.2.3 (b)
by k = 0 and Remark 2.2.1.
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– If fj is injective, then by Lemma 2.2.2 (iii)

P̄0
F,j ,= ∅ (2.85)

by (2.13). We see that F does not satisfy Definition 2.2.3 (a)
because

P0
F,τj(u1) ∩ P̄0

F,j(fj(u1))
(A)
= P0

F,τj(u1) ∩ P̄0
F,j (2.86)

(B)
= {λ} ∩ P̄0

F,j (2.87)
(C)
= {λ} ∩ {λ} (2.88)
= {λ} (2.89)
,= ∅, (2.90)

where (A) follows from (2.84), (B) follows from (2.16), and (C)
follows from (2.85).

• The case xxx ,# xxx′′: By (2.81) and xxx ,# xxx′′, there exist zzz, zzz′′ ∈ S+ such
that

xxx = yyyzzz, (2.91)
xxx′′ = yyyzzz′′, (2.92)
z1 ,= z′′1 , (2.93)

where yyy := xxx ∧ xxx′′. Defining zzz′ := zxzxzx−1xxx′, defined by (2.80), we have

xxx′ = xxxxxx−1xxx′ = yzxyzxyzx−1xxx = yzyzyz′, (2.94)

z1 = z′1. (2.95)

Then defining j := τ ∗i (yyy), we have

f ∗
i (yyy)fj(z

′
1)f

∗
τj(z′1)

(suff(zzz′))

(A)
= f ∗

i (yyy)f
∗
j (zzz

′)
(B)
= f ∗

i (yyyzzz
′)

(C)
= f ∗

i (xxx
′)

(D)

# f ∗
i (xxx)ccc, (2.96)

where (A) follows from (2.4), (B) follows from Lemma 2.1.1 (i), (C)
follows from (2.94), and (D) follows from (2.78). Similarly, by (2.79)
and (2.92), we have

f ∗
i (yyy)fj(z

′′
1 )f

∗
τj(z′′1 )

(suff(zzz′′))

= f ∗
i (yyy)f

∗
j (zzz

′′) = f ∗
i (yyyzzz

′′) = f ∗
i (xxx

′′) # f ∗
i (xxx)ccc. (2.97)
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Also, we have

f ∗
i (xxx)ccc

(A)
= f ∗

i (yyyzzz)ccc
(B)
= f ∗

i (yyy)f
∗
j (zzz)ccc

(C)
= f ∗

i (yyy)fj(z1)f
∗
τj(z1)(suff(zzz))ccc,

(2.98)

where (A) follows from (2.91), (B) follows from Lemma 2.1.1 (i), and
(C) follows from (2.4).
Thus, we have

fj(z
′
1)f

∗
τj(z′1)

(suff(zzz′))
(A)

# fj(z1)f
∗
τj(z1)(suff(zzz))ccc (2.99)

(B)
= fj(z

′
1)f

∗
τj(z′1)

(suff(zzz))ccc (2.100)
# fj(z

′
1)ccc

′, (2.101)

where ccc′ := [f ∗
τj(z′1)

(suff(zzz))ccc]k, (A) follows from (2.96) and (2.98), and
(B) follows from (2.95). Similarly, we have

fj(z
′′
1 )f

∗
τj(z′′1 )

(suff(zzz′′))
(A)

# fj(z1)f
∗
τj(z1)(suff(zzz))ccc (2.102)

(B)
= fj(z

′
1)f

∗
τj(z′1)

(suff(zzz))ccc (2.103)
# fj(z

′
1)ccc

′, (2.104)

where (A) follows from (2.97) and (2.98), and (B) follows from (2.95).
By (2.101), we have f ∗

τj(z′1)
(suff(zzz′)) # ccc′, which leads to

ccc′ ∈ Pk
F,τj(z′1)

(2.105)

by (2.16).
By (2.104), at least one of fj(z′1) ) fj(z′′1 ) and fj(z′1) # fj(z′′1 ) holds. We
may assume fj(z′1) ) fj(z′′1 ) by symmetry. We consider the following
two cases separately: the case fj(z′1) ≺ fj(z′′1 ) and the case fj(z′1) =
fj(z′′1 ).

– the case fj(z′1) ≺ fj(z′′1 ): We have

f ∗
j (zzz

′′)
(A)
= fj(z

′′
1 )f

∗
τj(z′′1 )

(suff(zzz′′))
(B)

# fj(z
′
1)ccc

′, (2.106)
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where (A) follows from (2.4), and (B) follows from (2.104). By
(2.106) and fj(z′1) ≺ fj(z′′1 ), we obtain

ccc′ ∈ P̄k
F,j(fj(z

′
1)) (2.107)

by (2.13). By (2.105) and (2.107), the code-tuple F does not
satisfy Definition 2.2.3 (a).

– the case fj(z′1) = fj(z′′1 ): We have

fj(z
′
1)f

∗
τj(z′′1 )

(suff(zzz′′))
(A)
= fj(z

′′
1 )f

∗
τj(z′′1 )

(suff(zzz′′))
(B)

# fj(z
′
1)ccc

′,

(2.108)

where (A) follows from fj(z′1) = fj(z′′1 ), and (B) follows from
(2.104). This shows f ∗

τj(z′′1 )
(suff(zzz′′)) # ccc′, which leads to

ccc′ ∈ Pk
F,τj(z′′1 )

(2.109)

by (2.16). By fj(z′1) = fj(z′′1 ), (2.93), (2.105), and (2.109), the
code-tuple F does not satisfy Definition 2.2.3 (b).

!

2.6.2 Proof of Lemma 2.3.3
Proof of Lemma 2.3.3. It suffices to show that |f ∗

i (xxx)| ≥ 1 holds for any
i ∈ [F ] and xxx ∈ S |F |. We prove by contradiction assuming that there exist
i ∈ [F ] and xxx = x1x2 . . . x|F | ∈ S |F | such that f ∗

i (xxx) = λ. Then by pigeonhole
principle, we can choose integers p, q such that 0 ≤ p < q ≤ |F | and

τ ∗i (x1x2 . . . xp) = τ ∗i (x1x2 . . . xq) =: j. (2.110)

We have

τ ∗j (xp+1xp+2 . . . xq)
(A)
= τ ∗τ∗i (x1x2...xp)(xp+1xp+2 . . . xq)

(B)
= τ ∗i (x1x2 . . . xq)

(C)
= j,

(2.111)

where (A) follows from (2.110), (B) follows from Lemma 2.1.1 (ii), and (C)
follows from (2.110). Thus, we obtain

Pk
F,τj(xp+1)

(A)

⊇ Pk
F,τ∗j (xp+1xp+2)

(A)

⊇ · · ·
(A)

⊇ Pk
F,τ∗j (xp+1xp+2...xq)

(B)
= Pk

F,j, (2.112)
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where (A)s follow from Lemma 2.2.1 (i) and (ii) and f ∗
i (xxx) = λ, and (B)

follows from (2.111).
We consider the following two cases separately: the case P̄k

F,j ,= ∅ and the
case P̄k

F,j = ∅.

• The case P̄k
F,j ,= ∅: We have

Pk
F,τj(xp+1) ∩ P̄k

F,j

(A)

⊇ Pk
F,j ∩ P̄k

F,j

(B)

⊇ P̄k
F,j ∩ P̄k

F,j = P̄k
F,j

(C)

,= ∅, (2.113)

where (A) follows from (2.112), (B) follows from Lemma 2.2.1 (i), and
(C) follows from the assumption. Therefore, F does not satisfy Defini-
tion 2.2.3 (a), which conflicts with F ∈ Fk-dec.

• The case P̄k
F,j = ∅: By Corollary 2.3.1 (ii) (a), we have P̄0

F,j = ∅. Hence,
by Lemma 2.2.2 (iii), we have |S| ≥ 2 so that there exists s ∈ S such
that s ,= xp+1 and fj(s) = λ = fj(xp+1). We have

Pk
F,τj(xp+1) ∩ Pk

F,τj(s)

(A)

⊇ Pk
F,j ∩ Pk

F,τj(s) (2.114)
(B)

⊇ Pk
F,τj(s) ∩ Pk

F,τj(s) (2.115)

= Pk
F,τj(s) (2.116)

(C)

,= ∅, (2.117)

where (A) follows from (2.112), (B) follows from Lemma 2.2.1 (i) and
(ii), and (C) follows from F ∈ Fext and Corollary 2.3.2 (i) (a). There-
fore, F does not satisfy Definition 2.2.3 (b), which conflicts with F ∈
Fk-dec.

!

2.6.3 Proof of Lemma 2.4.1
In preparation for the proof, we introduce the following Definition 2.6.1 and
Lemma 2.6.1.

Definition 2.6.1. Let F (f, τ) ∈ F . A set I ⊆ [F ] is said to be closed if for
any i ∈ I and s ∈ S, it holds that τi(s) ∈ I.
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Lemma 2.6.1. For any F ∈ F and xxx = (x0, x1, . . . , x|F |−1) ∈ R|F |, if

xxxQ(F ) = xxx, (2.118)

then both of I+ := {i ∈ [F ] : xi > 0} and I− := {i ∈ [F ] : xi < 0} are closed.

Proof of Lemma 2.6.1. By symmetry, it suffices to prove only that I+ is
closed. We have

∑

i∈I+

∑

j∈I+

xjQj,i(F ) +
∑

i∈I+

∑

j∈[F ]\I+

xjQj,i(F )

=
∑

i∈I+

∑

j∈[F ]

xjQj,i(F ) (2.119)

(A)
=

∑

i∈I+

xi (2.120)

(B)
=

∑

i∈I+

xi

∑

j∈[F ]

Qi,j(F ) (2.121)

=
∑

i∈I+

∑

j∈[F ]

xiQi,j(F ) (2.122)

=
∑

i∈I+

∑

j∈I+

xiQi,j(F ) +
∑

i∈I+

∑

j∈[F ]\I+

xiQi,j(F ) (2.123)

(C)
=

∑

i∈I+

∑

j∈I+

xjQj,i(F ) +
∑

i∈I+

∑

j∈[F ]\I+

xiQi,j(F ), (2.124)

where (A) follows from (2.118), (B) follows from
∑

j∈[F ] Qi,j(F ) = 1 for any
i ∈ [F ], and (C) is obtained by exchanging the roles of i and j in the first
term. Therefore, we have

0
(A)

≥
∑

i∈I+

∑

j∈[F ]\I+

xjQj,i(F )
(B)
=

∑

i∈I+

∑

j∈[F ]\I+

xiQi,j(F )
(C)

≥ 0, (2.125)

where (A) follows since xj ≤ 0 for any j ∈ [F ] \ I+, (B) is obtained by
eliminating the first terms from the leftmost and rightmost sides of (2.124),
and (C) follows since xi > 0 for any i ∈ I+. This shows

∑

i∈I+

∑

j∈[F ]\I+

xiQi,j(F ) = 0. (2.126)
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Since xi > 0 holds for any i ∈ I+, it must hold that Qi,j(F ) = 0 for any
i ∈ I+ and j ∈ [F ] \I+. This implies that for any i ∈ I+ and s ∈ S, we have
τi(s) ∈ I+; that is, I+ is closed as desired. !

Proof of Lemma 2.4.1. Equation (2.56) can be rewritten as

πππA = 000, (2.127)

where A = (Ai,j) := Q(F ) − E and E is the identity matrix. We have
detA = 0 because the sum of each row of A equals 0: for any i ∈ [F ], we
have

∑

j∈[F ]

Ai,j =
∑

j∈[F ]

(Qi,j(F )− δij) (2.128)

=
∑

j∈[F ]

Qi,j(F )−
∑

j∈[F ]

δij (2.129)

=
∑

j∈[F ]

Qi,j(F )− 1 (2.130)

=
∑

j∈[F ]

∑

s∈S,τi(s)=j

µ(s)− 1 (2.131)

=
∑

s∈S

µ(s)− 1 (2.132)

= 0, (2.133)

where δij denotes Kronecker delta. Thus, the dimension of the null space
of A is greater than or equal to 1. In particular, Equation (2.127), which
is equivalent to (2.56), has a non-trivial solution πππ ,= 000. We choose such
πππ = (π0, π1, . . . , π|F |−1) ,= 000. Then both of I+ := {i ∈ [F ] : πi > 0} and
I− := {i ∈ [F ] : πi < 0} are closed by Lemma 2.6.1. Hence, we have

∀i ∈ I+;
∀j ∈ [F ] \ I+;Qi,j(F ) = 0, (2.134)

∀i ∈ I−;
∀j ∈ [F ] \ I−;Qi,j(F ) = 0. (2.135)

Since πππ ,= 000, we have
∑

i∈[F ] |πi| > 0 and thus we can define πππ′ =

(π′
0, π

′
1, . . . , π

′
|F |−1) ∈ R|F | as

π′
i =

|πi|∑
i∈[F ] |πi|

(2.136)
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for i ∈ [F ]. This vector πππ′ is a desired stationary distribution of F . In fact,
by the definition, πππ′ clearly satisfies (2.57) and π′

i ≥ 0 for any i ∈ [F ]. Also,
we can see that πππ′ satisfies (2.56) because for any j ∈ [F ], we have

( ∑

i∈[F ]

|πi|
)( ∑

i∈[F ]

π′
iQi,j(F )

)
(2.137)

(A)
=

∑

i∈[F ]

|πi|Qi,j(F ) (2.138)

=
∑

i∈I+

πiQi,j(F )−
∑

i∈I−

πiQi,j(F ) (2.139)

(B)
=






∑
i∈I+ πiQi,j(F ) if j ∈ I+,

−
∑

i∈I− πiQi,j(F ) if j ∈ I−,

0 otherwise,
(2.140)

(C)
=






∑
i∈I+ πiQi,j(F ) +

∑
i∈I− πiQi,j(F ) if j ∈ I+,

−
∑

i∈I+ πiQi,j(F )−
∑

i∈I− πiQi,j(F ) if j ∈ I−,

0 otherwise,
(2.141)

=






∑
i∈[F ] πiQi,j(F ) if j ∈ I+,

−
∑

i∈[F ] πiQi,j(F ) if j ∈ I−,

0 otherwise,
(2.142)

(D)
=






πj if j ∈ I+,

−πj if j ∈ I−,

0 otherwise,
(2.143)

= |πj| (2.144)
(E)
=

( ∑

i∈[F ]

|πi|
)
π′
j, (2.145)

where (A) follows from (2.136), (B) follows from (2.134) and (2.135), (C) fol-
lows from (2.134) and (2.135), (D) follows since πππ is a stationary distribution
of F , and (E) follows from (2.136). !
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2.6.4 Proof of Lemma 2.5.1
Proof of Lemma 2.5.1. (Proof of (i)): We first show that f ′∗

i (xxx) = f ∗
ϕ(i)(xxx)

for any i ∈ [F ′] and xxx ∈ S∗ by induction for |xxx|. For the base case |xxx| = 0,
we have f ′∗

i (λ) = λ = f ∗
ϕ(i)(λ) by (2.4). We consider the induction step for

|xxx| ≥ 1. We have

f ′∗
i (xxx)

(A)
= f ′

i(x1)f
′∗
τ ′i(x1)(suff(xxx)) (2.146)

(B)
= fϕ(i)(x1)f

′∗
τ ′i(x1)(suff(xxx)) (2.147)

(C)
= fϕ(i)(x1)f

∗
ϕ(τ ′i(x1))(suff(xxx)) (2.148)

(D)
= fϕ(i)(x1)f

∗
τϕ(i)(x1)(suff(xxx)) (2.149)

(E)
= f ∗

ϕ(i)(xxx) (2.150)

as desired, where (A) follows from (2.4), (B) follows from (2.64), (C) follows
from the induction hypothesis, (D) follows from (2.65), and (E) follows from
(2.4).

Next, we show that ϕ(τ ′∗i (xxx)) = τ ∗ϕ(i)(xxx) for any i ∈ [F ′] and xxx ∈ S∗ by
induction for |xxx|. For the base case |xxx| = 0, we have ϕ(τ ′∗i (λ)) = ϕ(i) =
τ ∗ϕ(i)(λ) by (2.5). We consider the induction step for |xxx| ≥ 1. We have

ϕ(τ ′∗i (xxx))
(A)
= ϕ(τ ′∗τ ′i(x1)(suff(xxx)))

(B)
= τ ∗ϕ(τ ′i(x1))(suff(xxx)) (2.151)

(C)
= τ ∗τϕ(i)(x1)(suff(xxx))

(D)
= τ ∗ϕ(i)(xxx) (2.152)

as desired, where (A) follows from (2.5), (B) follows from the induction hy-
pothesis, (C) follows from (2.65), and (D) follows from (2.5).

(Proof of (ii)): For any ccc ∈ C∗, we have

ccc ∈ P∗
F ′,i(bbb)

(A)⇐⇒ ∃xxx ∈ S+; (f ′∗
i (xxx) # bbbccc, f ′

i(x1) # bbb) (2.153)
(B)⇐⇒ ∃xxx ∈ S+; (f ∗

ϕ(i)(xxx) # bbbccc, fϕ(i)(x1) # bbb) (2.154)
(C)⇐⇒ ccc ∈ P∗

F,ϕ(i)(bbb), (2.155)

where (A) follows from (2.12), (B) follows from (i) of this lemma, and (C)
follows from (2.12). This shows that P∗

F ′,i(bbb) = P∗
F,ϕ(i)(bbb). We can prove

P̄∗
F ′,i(bbb) = P̄∗

F,ϕ(i)(bbb) by the same way using (2.13).
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(Proof of (iii)): For any i′ ∈ [F ′] and j ∈ [F ], we have
∑

j′∈Aj

Qi′,j′(F
′)

(A)
=

∑

j′∈Aj

∑

s∈S
τ ′
i′ (s)=j′

µ(s) (2.156)

=
∑

s∈S
τ ′
i′ (s)∈Aj

µ(s) (2.157)

(B)
=

∑

s∈S
ϕ(τ ′

i′ (s))=j

µ(s) (2.158)

(C)
=

∑

s∈S
τϕ(i′)(s)=j

µ(s) (2.159)

(D)
= Qϕ(i′),j(F ) (2.160)
= Qi,j(F ), (2.161)

where i := ϕ(i′) and (A) follows from (2.54), (B) follows from (2.67), (C)
follows from (2.65), and (D) follows from (2.54). Thus, for any j ∈ [F ], we
have

πj =
∑

j′∈Aj

π′
j′ (2.162)

(A)
=

∑

j′∈Aj

∑

i′∈[F ′]

π′
i′Qi′,j′(F

′) (2.163)

=
∑

j′∈Aj

∑

i∈[F ]

∑

i′∈Ai

π′
i′Qi′,j′(F

′) (2.164)

=
∑

i∈[F ]

∑

i′∈Ai

π′
i′

∑

j′∈Aj

Qi′,j′(F
′) (2.165)

(B)
=

∑

i∈[F ]

∑

i′∈Ai

π′
i′Qi,j(F ) (2.166)

=
∑

i∈[F ]

Qi,j(F )
∑

i′∈Ai

π′
i′ (2.167)

=
∑

i∈[F ]

Qi,j(F )πi, (2.168)
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where (A) follows since πππ′ satisfies (2.56), and (B) follows from (2.161) and
i′ ∈ Ai. Also, we have

∑

i∈[F ]

πi =
∑

i∈[F ]

∑

i′∈Ai

π′
i′ =

∑

i′∈[F ′]

π′
i′

(A)
= 1, (2.169)

where (A) follows since πππ′ satisfies (2.57). By (2.168) and (2.169), πππ is a
stationary distribution of F .

(Proof of (iv)): We have

F ∈ Fext ⇐⇒ ∀i ∈ [F ];P1
F,i ,= ∅ (2.170)

=⇒ ∀i′ ∈ [F ′];P1
F,ϕ(i′) ,= ∅ (2.171)

(A)⇐⇒ ∀i′ ∈ [F ′];P1
F ′,i′ ,= ∅ (2.172)

⇐⇒ F ′ ∈ Fext, (2.173)

where (A) follows from (ii) of this lemma.
(Proof of (v)): By F, F ′ ∈ Freg, the code-tuples F and F ′ have the unique

stationary distributions πππ(F ) and πππ(F ′), respectively. By (iii) of this lemma,
we have

∀j ∈ [F ]; πj(F ) =
∑

j′∈Aj

πj′(F
′), (2.174)

where
Ai := {i′ ∈ [F ′] : ϕ(i′) = i} (2.175)
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for i ∈ [F ]. Therefore, we have

L(F ′) =
∑

i′∈[F ′]

πi′(F
′)Li′(F

′) (2.176)

=
∑

i∈[F ]

∑

i′∈Ai

πi′(F
′)Li′(F

′) (2.177)

(A)
=

∑

i∈[F ]

∑

i′∈Ai

πi′(F
′)Lϕ(i′)(F ) (2.178)

(B)
=

∑

i∈[F ]

∑

i′∈Ai

πi′(F
′)Li(F ) (2.179)

=
∑

i∈[F ]

Li(F )
∑

i′∈Ai

πi′(F
′) (2.180)

(C)
=

∑

i∈[F ]

πi(F )Li(F ) (2.181)

= L(F ) (2.182)

as desired, where (A) follows from (2.64) (cf. Remark 2.4.1), (B) follows from
(2.175) and i′ ∈ Ai, and (C) follows from (2.174).

(Proof of (vi)): For any i ∈ [F ′] and s ∈ S, we have

Pk
F ′,τ ′i(s)

∩ P̄k
F ′,i(f

′
i(s))

(A)
= Pk

F,ϕ(τ ′i(s))
∩ P̄k

F,ϕ(i)(f
′
i(s)) (2.183)

(B)
= Pk

F,τϕ(i)(s)
∩ P̄k

F,ϕ(i)(fϕ(i)(s)) (2.184)
(C)
= ∅, (2.185)

where (A) follows from (ii) of this lemma, (B) follows from (2.64) and (2.65),
and (C) follows from F ∈ Fk-dec. Namely, F ′ satisfies Definition 2.2.3 (a).

Choose i ∈ [F ′] and s, s′ ∈ S such that s ,= s′ and f ′
i(s) = f ′

i(s
′) arbitrar-

ily. Then by (2.64), we have

fϕ(i)(s) = f ′
i(s) = f ′

i(s
′) = fϕ(i)(s

′). (2.186)

Thus, we obtain

Pk
F ′,τ ′i(s)

∩ Pk
F ′,τ ′i(s

′)

(A)
= Pk

F,ϕ(τ ′i(s))
∩ Pk

F,ϕ(τ ′i(s
′))

(B)
= Pk

F,τϕ(i)(s)
∩ Pk

F,τϕ(i)(s′)

(C)
= ∅,

(2.187)

where (A) follows from (ii) of this lemma, (B) follows from (2.65), (C) follows
from (2.186) and F ∈ Fk-dec. Namely, F ′ satisfies Definition 2.2.3 (b). !
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2.6.5 Proof of Lemma 2.5.2
To prove Lemma 2.5.2, we first prove the following Lemmas 2.6.2–2.6.4. Lem-
mas 2.6.2 and 2.6.3 relate to closed sets defined in Subsection 2.6.3.

Lemma 2.6.2. For any F ∈ F , the following statements (i) and (ii) hold.

(i) RF is closed.

(ii) For any non-empty closed set I ⊆ [F ], we have RF ⊆ I.

Proof of Lemma 2.6.2. (Proof of (i)): Choose i ∈ RF and s ∈ S arbitrarily.
For any j ∈ [F ], there exists xxx ∈ S∗ such that τ ∗j (xxx) = i, which leads to

τ ∗j (xxxs)
(A)
= ττ∗j (xxx)(s) = τi(s), (2.188)

where (A) follows from Lemma 2.1.1 (ii). This shows τi(s) ∈ RF .
(Proof of (ii)): Choose i ∈ RF arbitrarily. We prove i ∈ I by contradic-

tion assuming the contrary i ,∈ I. Since I ,= ∅, we can choose j ∈ I. By
i ∈ RF , there exists xxx = x1x2 . . . xn ∈ S∗ such that τ ∗j (xxx) = i. We define
il := τ ∗j (x1x2 . . . xl) for l = 0, 1, 2, . . . , n. Since i0 = τ ∗j (λ) = j ∈ I and
in = τ ∗j (xxx) = i ,∈ I, there exists an integer 0 ≤ l < n such that il ∈ I and
il+1 = τil(xl+1) ,∈ I. This conflicts with that I is closed. !

Lemma 2.6.3. For any F ∈ F and non-empty closed set I ⊆ [F ], the
following statements (i) and (ii) hold.

(i) There exist F ′ ∈ F (|I|) and an injective homomorphism ϕ : [F ′] → [F ]
from F ′ to F such that I = ϕ([F ′]) := {ϕ(i) : i ∈ [F ′]}.

(ii) There exists a stationary distribution πππ = (π0, π1, . . . , π|F |−1) of F such
that πi = 0 for any i ∈ [F ] \ I.

Proof of Lemma 2.6.3. (Proof of (i)): Suppose I = {i0, i1, . . . , im−1}, where
i0 < i1 < · · · < im−1 and m = |I|. We define a mapping ϕ : [m] → [F ] as
ϕ(j) = ij for j ∈ [m]. Since ϕ is injective and ϕ([m]) = I, we can consider
the inverse mapping ϕ−1 : I → [m], which maps ϕ(i) to i for any i ∈ [m].
Also, we define F ′(f ′, τ ′) ∈ F (m) as

f ′
i(s) = fϕ(i)(s), (2.189)
τ ′i(s) = ϕ−1(τϕ(i)(s)) (2.190)
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for i ∈ [F ′] and s ∈ S. Since I is closed, we have τϕ(i)(s) ∈ I and thus
τ ′i(s) = ϕ−1(τϕ(i)(s)) ∈ [m] = [F ′]; that is, F ′ is indeed well-defined. We
can see that ϕ is a homomorphism from F ′ to F directly from (2.189) and
(2.190).

(Proof of (ii)): By (i) of this lemma, there exist F ′ ∈ F and an injective
homomorphism ϕ : [F ′] → [F ] from F ′ to F such that

ϕ([F ′]) = I. (2.191)

By Lemma 2.4.1, we can choose a stationary distribution πππ′ of F ′. By Lemma
2.5.1 (iii), the vector πππ ∈ R|F | defined as (2.66) is a stationary distribution
of F . This vector πππ is a desired stationary distribution because Ai = {i′ ∈
[F ′] : ϕ(i′) = i} = ∅ holds for any i ∈ [F ] \ I by (2.191). !
Lemma 2.6.4. For any F ∈ F , If RF = ∅, then there exist p, q ∈ [F ] such
that Ip ∩ Iq = ∅, where Ii := {τ ∗i (xxx) : xxx ∈ S∗} for i ∈ [F ].
Proof of Lemma 2.6.4. We first show that for any i, j ∈ [F ], we have

j ∈ Ii =⇒ Ij ⊆ Ii. (2.192)

Assume j ∈ Ii and choose p ∈ Ij arbitrarily. Then there exists xxx ∈ S∗ such
that τ ∗j (xxx) = p. Also, by j ∈ Ii, there exists yyy ∈ S∗ such that τ ∗i (yyy) = j.
Therefore, we have

τ ∗i (yxyxyx)
(A)
= τ ∗τ∗i (yyy)(xxx) = τ ∗j (xxx) = p, (2.193)

where (A) follows from Lemma 2.1.1 (ii). This leads to p ∈ Ii and thus we
obtain (2.192).

Now, we prove Lemma 2.6.4 by proving its contraposition. Namely, we
show RF ,= ∅ assuming that

∀i, j ∈ [F ]; Ii ∩ Ij ,= ∅. (2.194)

We can see that
RF =

⋂

i∈[F ]

Ii (2.195)

because for any j ∈ [F ], it holds that

j ∈
⋂

i∈[F ]

Ii ⇐⇒ ∀i ∈ [F ]; j ∈ Ii (2.196)

⇐⇒ ∀i ∈ [F ]; ∃xxx ∈ S∗; τ ∗i (xxx) = j (2.197)
⇐⇒ j ∈ RF . (2.198)
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Thus, to show RF ,= ∅, it suffices to show that
⋂

i∈[r]

Ii ,= ∅ (2.199)

for any r = 1, 2, . . . , |F | since the case r = |F | gives the desired result.
We prove (2.199) by induction for r. The base case r = 1 is trivial

since I0 9 0. We consider the induction step for r ≥ 2. By the induction
hypothesis, we have

⋂
i∈[r−1] Ii ,= ∅. Therefore, we can choose j ∈ [F ] such

that j ∈ Ii for any i ∈ [r− 1]. By (2.192), we have Ij ⊆ Ii for any i ∈ [r− 1]
and thus

Ij ⊆
⋂

i∈[r−1]

Ii. (2.200)

Hence, we obtain

⋂

i∈[r]

Ii =
( ⋂

i∈[r−1]

Ii

)
∩ Ir−1

(A)

⊇ Ij ∩ Ir−1

(B)

,= ∅ (2.201)

as desired, where (A) follows from (2.200), and (B) follows from (2.194). !

Proof of Lemma 2.5.2. (Proof of (i)): (Necessity) We assume RF = ∅ and
show that F has two distinct stationary distributions. By Lemma 2.6.4, we
can choose p, q ∈ [F ] such that

Ip ∩ Iq = ∅. (2.202)

We can see that Ip is not empty since Ip 9 p and also see that Ip is closed
because for any i ∈ Ip, we have

{τi(s) : s ∈ S} ⊆ {τ ∗i (xxx) : xxx ∈ S∗} = Ii

(A)

⊆ Ip, (2.203)

where (A) follows from (2.192). By the same argument, also Iq is a non-
empty closed set. Therefore, by Lemma 2.6.3 (ii), there exist stationary
distributions πππ = (π0, π1, . . . , π|F |−1) and πππ′ = (π′

0, π
′
1, . . . , π

′
|F |−1) of F such

that
∀i ∈ [F ] \ Ip; πi = 0 (2.204)

and
∀i ∈ [F ] \ Iq; π

′
i = 0. (2.205)
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Since πππ satisfies (2.57), we have πj > 0 for some j ∈ [F ]. By (2.204) and
(2.202), it must hold that j ∈ Ip ⊆ [F ]\Iq. Hence, we obtain π′

j = 0 < πj by
(2.205). This shows πππ ,= πππ′. Therefore, we conclude that F has two distinct
stationary distributions as desired.

(Sufficiency) We prove RF = ∅ assuming that there exist two distinct
stationary distributions πππ = (π0, π1, . . . , π|F |−1) and πππ′ = (π′

0, π
′
1, . . . , π

′
|F |−1)

of F . Then xxx = (x0, x1, . . . , x|F |−1) := πππ − πππ′ ,= 000 satisfies

xxxQ(F ) = πππQ(F )− πππ′Q(F )
(A)
= πππ − πππ′ = xxx, (2.206)

∑

i∈[F ]

xi =
∑

i∈[F ]

πi −
∑

i∈[F ]

π′
i

(B)
= 1− 1 = 0, (2.207)

where (A) follows from (2.56), and (B) follows from (2.57). Thus, by xxx ,= 000
and (2.207), both of I+ := {i ∈ [F ] : xi > 0} and I− := {i ∈ [F ] : xi < 0} are
non-empty sets. Also, both of I+ and I− are closed by (2.206) and Lemma
2.6.1 stated in Subsection 2.6.3. Therefore, by Lemma 2.6.2 (ii), we obtain
RF ⊆ I+ and RF ⊆ I−, which conclude RF ⊆ I+ ∩ I− = ∅ as desired.

(Proof of (ii)): We show RF = I+ := {i ∈ [F ] : πi(F ) > 0}.
(RF ⊆ I+) By (2.57), the set I+ is not empty. Also, by (2.56) and

Lemma 2.6.1 stated in Subsection 2.6.3, the set I+ is closed. Hence, we
obtain RF ⊆ I+ by Lemma 2.6.2 (ii).

(RF ⊇ I+) Since RF is closed by Lemma 2.6.2 (i), we see from Lemma
2.6.3 (ii) that the unique stationary distribution πππ(F ) satisfies πi(F ) = 0 for
any i ∈ [F ] \ RF . Therefore, we obtain RF ⊇ I+. !

2.6.6 Proof of Lemma 2.5.4
The proof of Lemma 2.5.4 relies on Lemmas 2.6.2 and 2.6.3 stated in Sub-
section 2.6.5.

Proof of Lemma 2.5.4. Since RF is closed by Lemma 2.6.2 (i), we see from
Lemma 2.6.3 (i) that there exist F̄ (f̄ , τ̄) ∈ F and an injective homomorphism
ϕ : [F̄ ] → [F ] from F ′ to F such that ϕ([F̄ ]) = RF . Now, it suffices to show
F̄ ∈ Firr.

For any i, j ∈ [F̄ ], there exists xxx ∈ S∗ such that

τ ∗ϕ(i)(xxx) = ϕ(j) (2.208)
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by ϕ(j) ∈ ϕ([F̄ ]) = RF . Thus, for any i, j ∈ [F ], we have

τ̄ ∗i (xxx) = ϕ−1(ϕ(τ̄ ∗i (xxx)))
(A)
= ϕ−1(τ ∗ϕ(i)(xxx))

(B)
= ϕ−1(ϕ(j)) = j, (2.209)

where (A) follows from Lemma 2.5.1 (i), and (B) follows from (2.208). There-
fore, F̄ ∈ Firr holds. !
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Chapter 3

General Properties of k-bit Delay
Decodable Optimal Codes

3.1 k-bit Delay Optimal Code-tuples
In this chapter, we consider code-tuples which achieve the optimal average
codeword length in Freg ∩ Fext ∩ Fk-dec for an integer k ≥ 0.

Definition 3.1.1. Let k ≥ 0 be an integer. A code-tuple F ∈ Freg ∩ Fext ∩
Fk-dec is said to be k-bit delay optimal if L(F ) ≤ L(F ′) holds for any F ′ ∈
Freg ∩ Fext ∩ Fk-dec. We define Fk-opt as the set of all k-bit delay optimal
code-tuples, that is,

Fk-opt := {F ∈ F : F is k-bit delay optimal.} = arg min
F∈Freg∩Fext∩Fk-dec

L(F ).

(3.1)

Note that Fk-opt depends on the probability distribution µ of the source
symbols, and we are now discussing on an arbitrarily fixed µ.

Example 3.1.1. Let (µ(a), µ(b), µ(c), µ(d)) = (0.1, 0.2, 0.3, 0.4). Then the
code-tuple F (κ) in Table 3.1 is a 2-bit delay optimal code-tuple with L(F (κ)) ≈
1.8667.

We now prove three theorems which enable us to limit the scope of code-
tuples to be considered when discussing k-bit delay optimal code-tuples. In
Subsections 3.1.1–3.1.3, we state the three theorems as Theorem 3.1.1–3.1.3
and give their proofs in Section 3.2–3.4, respectively.
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Table 3.1: The code-tuple F (κ) is a 2-bit delay optimal code-tuple, which sat-
isfies Theorem 3.1.1 (a)–(d) with F = F (ξ), where (µ(a), µ(b), µ(c), µ(d)) =
(0.1, 0.2, 0.3, 0.4)

s ∈ S f (ξ)
0 τ (ξ)0 f (ξ)

1 τ (ξ)1 f (ξ)
2 τ (ξ)2 f (ξ)

3 τ (ξ)3

a 0010 2 100 1 1100 1 010 0
b 0011 0 00 0 11 2 011 1
c 000 1 01 1 01 1 100 0
d λ 2 1 2 10 0 1 2

s ∈ S f (κ)
0 τ (κ)0 f (κ)

1 τ (κ)1

a 100 0 1100 0
b 00 0 11 1
c 01 0 01 0
d 1 1 10 0

3.1.1 The First Theorem
The first theorem claims that for any F ∈ Freg ∩ Fext ∩ Fk-dec, there exists
F † ∈ Firr∩Fext∩Fk-dec such that L(F †) ≤ L(F ) and Pk

F †,0,P
k
F †,1, . . . ,P

k
F †,|F †|−1

are distinct. Namely, it suffices to consider only irreducible code-tuples with
at most 2(2

k) code tables to achieve a small average codeword length. In
particular, it is not the case that one can achieve an arbitrarily small av-
erage codeword length by using arbitrarily many code tables. To state the
theorem, we prepare the following Definition 3.1.2.

Definition 3.1.2. For an integer k ≥ 0 and F ∈ F , we define Pk
F as

Pk
F := {Pk

F,i : i ∈ [F ]}. (3.2)

Example 3.1.2. For F (γ) in Table 2.1, we have

P0
F (γ) = {{λ}}, P1

F (γ) = {{0, 1}, {1}}, (3.3)
P2

F (γ) = {{01, 10}, {00, 01, 10}, {11}}. (3.4)

The following Lemma 3.1.1 holds by Lemma 2.5.1 (ii).

Lemma 3.1.1. For any integer k ≥ 0, F ∈ Freg, and an irreducible part F̄
of F , we have Pk

F̄ ⊆ Pk
F .
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Using Definition 3.1.2, we state the desired theorem as follows.

Theorem 3.1.1. For any integer k ≥ 0 and F ∈ Freg ∩Fext ∩Fk-dec, there
exists F † ∈ F satisfying the following conditions (a)–(d).

(a) F † ∈ Firr ∩ Fext ∩ Fk-dec.

(b) L(F †) ≤ L(F ).

(c) Pk
F † ⊆ Pk

F .

(d) |Pk
F † | = |F †|.

Note that Pk
F,0,Pk

F,1, . . . ,Pk
F,|F |−1 are distinct if and only if |Pk

F | = |F |.

Example 3.1.3. Let (µ(a), µ(b), µ(c), µ(d)) = (0.1, 0.2, 0.3, 0.4) and F :=
F (ξ) in Table 3.1. Then we have F ∈ Freg ∩ Fext ∩ F2-dec, L(F ) ≈ 1.98644,
and P2

F = {{00, 01, 10, 11}, {01, 10, 11}}. The code-tuple F † := F (κ) in Table
3.1 satisfies Theorem 3.1.1 (a)–(d) because RF † = {0, 1} = [F †], L(F †) ≈
1.8667 ≤ L(F ), and P2

F † = {{00, 01, 10, 11}, {01, 10, 11}}.

Example 3.1.4. We confirm that Theorem 3.1.1 holds for k = 0. Choose
F ∈ Freg ∩ Fext ∩ F0-dec arbitrarily and define F †(f †, τ †) ∈ F (1) as

f †
0(s) = fp(s), (3.5)
τ †0 (s) = 0 (3.6)

for s ∈ S, where
p ∈ arg min

i∈[F ]
Li(F ). (3.7)

Namely, F † is the 1-code-tuple consisting of the most efficient code table of
F .

We can see that F † satisfies Theorem 3.1.1 (a)–(d) as follows.

(a) We obtain F † ∈ Firr directly from |F †| = 1. By F ∈ F0-dec and Lemma
2.2.7, all code tables of F are prefix-free. In particular, f †

0 = fp is
prefix-free and thus F † ∈ F0-dec. Moreover, since f †

0 is prefix-free and
|S| ≥ 2, we have f †

0(s) ,= λ for some s ∈ S, which shows F † ∈ Fext.
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(b) We have

L(F †) = L0(F
†)

(A)
= Lp(F ) =

∑

i∈[F ]

πi(F )Lp(F )
(B)

≤
∑

i∈[F ]

πi(F )Li(F ) = L(F ),

(3.8)

where (A) follows from (3.5), and (B) follows from (3.7).

(c) By P0
F † = {{λ}} = P0

F .

(d) By |P0
F † | = |{{λ}}| = 1 = |F †|.

As a consequence of Theorem 3.1.1, we can prove the existence of a k-
bit delay optimal code-tuple as the following Lemma 3.1.2 which proof is
relegated to Subsection 3.5.1.

Lemma 3.1.2. For any integer k ≥ 0, there exists a k-bit delay optimal
code-tuple, equivalently, Fk-opt ,= ∅.

3.1.2 The Second Theorem
The second theorem gives a necessary condition for F ∈ Freg ∩Fext ∩Fk-dec
to be k-bit delay optimal. Recall that every internal node in a code-tree of
Huffman code has two child nodes because of its optimality. This leads to
that any bit sequence is a prefix of the codeword sequence of some source
sequence. More formally,

∀bbb ∈ C∗; ∃xxx ∈ S∗; fHuff(xxx) # bbb, (3.9)

where fHuff(xxx) is the codeword sequence of xxx with the Huffman code. The
following Theorem 3.1.2 is a generalization of this property of Huffman codes
to k-bit delay decodable code-tuples for k ≥ 0.

Theorem 3.1.2. For any integer k ≥ 0, F ∈ Fk-opt, i ∈ RF , and bbb ∈ C≥k,
if [bbb]k ∈ Pk

F,i, then bbb ∈ P∗
F,i.

Remark 3.1.1. A Huffman code is represented by a 0-bit delay decodable
1-code-tuple F ∈ F (1) ∩ F0-dec. We have F ∈ F0-opt by the optimality of
Huffman codes. Applying Theorem 3.1.2 to F with k = 0, we obtain

∀bbb ∈ C∗;bbb ∈ P∗
F,0, (3.10)

which is equivalent to (3.9), and thus Theorem 3.1.2 is indeed a generalization
of the property (3.9) of Huffman codes.
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Table 3.2: An example of xxx ∈ S∗ such that f ∗
i (xxx) # bbb, where F (f, τ) := F (κ)

in Table 3.1, i ∈ {0, 1}, and bbb ∈ C3

i
bbb

000 001 010 011 100 101 110 111

0 bb ba cb ca a dc dd db
1 - - cb ca db da a ba

Example 3.1.5. For F (f, τ) := F (κ) in Table 3.1, we have F ∈ F2-opt for
(µ(a), µ(b), µ(c), µ(d)) = (0.1, 0.2, 0.3, 0.4) (cf. Example 3.1.1). Theorem
3.1.2 claims that for any i ∈ RF = {0, 1} and bbb ∈ C≥2 such that b1b2 ∈ P2

F,i,
it holds that bbb ∈ P∗

F,i, that is, there exists xxx ∈ S∗ such that f ∗
i (xxx) # bbb.

For i ∈ {0, 1} and bbb ∈ C3 such that b1b2 ∈ P2
F,i, Table 3.2 shows an

example of xxx ∈ S∗ such that f ∗
i (xxx) # bbb. For example, we have f ∗

0 (ca) # 011
and f ∗

1 (ba) # 111. Note that b1b2 ∈ P2
F,i does not hold for (i, bbb) = (1, 000)

and (i, bbb) = (1, 001).

3.1.3 The Third Theorem
The third theorem enables us to assume without loss of generality that a
k-bit delay optimal code-tuple F satisfies P1

F,i = {0, 1} for any i ∈ [F ], that
is, F belongs to the class Ffork defined as follows.

Definition 3.1.3. We define Ffork as

Ffork := {F ∈ F : ∀i ∈ [F ],P1
F,i = {0, 1}}, (3.11)

that is, Ffork is the set of all code-tuples F such that PF,0 = PF,1 = · · · =
PF,|F |−1 = {0, 1}.

Theorem 3.1.3. For any integer k ≥ 0 and F ∈ Freg ∩Fext ∩Fk-dec, there
exists F ′ ∈ Freg ∩ Fext ∩ Fk-dec ∩ Ffork such that L(F ′) = L(F ).

Corollary 3.1.1. For any integer k ≥ 0, we have Fk-opt ∩ Ffork ,= ∅.

3.2 Proof of Theorem 3.1.1
As a preparation for the proof of Theorem 3.1.1, we state the following Lem-
mas 3.2.1–3.2.4. See Subsection 3.5.2–3.5.4 for the proofs of Lemmas 3.2.1,
3.2.2, and 3.2.4, respectively.
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Lemma 3.2.1. Let k ≥ 0 be an integer and let F (f, τ) and F ′(f ′, τ ′) be
code-tuples such that |F | = |F ′|. Assume that the following conditions (a)
and (b) hold.

(a) fi(s) = f ′
i(s) for any i ∈ [F ] and s ∈ S.

(b) Pk
F,τi(s)

= Pk
F,τ ′i(s)

for any i ∈ [F ] and s ∈ S.

Then the following statements (i)–(iii) hold.

(i) For any i ∈ [F ′] and bbb ∈ C∗, we have Pk
F,i(bbb) = Pk

F ′,i(bbb) and P̄k
F,i(bbb) =

P̄k
F ′,i(bbb).

(ii) If F ∈ Fext, then F ′ ∈ Fext.

(iii) If F ∈ Fk-dec, then F ′ ∈ Fk-dec.

Lemma 3.2.2. For any F (f, τ) ∈ Firr, I ⊆ [F ], and p ∈ I, the code-tuple
F ′(f ′, τ ′) ∈ F (|F |) defined as (3.12) and (3.13) satisfies F ′ ∈ Freg:

f ′
i(s) = fi(s), (3.12)

τ ′i(s) =

{
p if τi(s) ∈ I,
τi(s) if τi(s) ,∈ I

(3.13)

for i ∈ [F ′] and s ∈ S.

Lemma 3.2.3. For any F ∈ F , there exists (h0, h1, . . . , h|F |−1) ∈ R|F | sat-
isfying

∀i ∈ [F ];L(F ) = Li(F ) +
∑

j∈[F ]

(hj − hi)Qi,j(F ). (3.14)

See [24, Sec. 8.2] for proof of Lemma 3.2.3. The vector h called “bias”
defined as [24, (8.2.2)] satisfies (3.14) of this thesis. This fact is shown as [24,
(8.2.12)] in [24, Theorem 8.2.6], where g, r, and P in [24, (8.2.12)] correspond
to the notations of this thesis as follows:

g =





L(F )
L(F )

...
L(F )




, r =





L0(F )
L1(F )

...
L|F |−1(F )




, P = Q(F ). (3.15)

A real vector (h0, h1, . . . , h|F |−1) satisfying (3.14) is not unique. We refer
to arbitrarily chosen one of them as h(F ) = (h0(F ), h1(F ), . . . , h|F |−1(F )).
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Lemma 3.2.4. For any F (f, τ), F ′(f ′, τ ′) ∈ Freg such that |F | = |F ′|, if the
following conditions (a) and (b) hold, then L(F ′) ≤ L(F ).

(a) Li(F ) = Li(F ′) for any i ∈ [F ].

(b) hτi(s)(F ) ≥ hτ ′i(s)
(F ) for any i ∈ [F ] and s ∈ S.

Using these lemmas, we now prove Theorem 3.1.1.

Proof of Theorem 3.1.1. We fix an integer k ≥ 0 arbitrarily and prove The-
orem 3.1.1 by induction for |F |. For the base case |F | = 1, the code-tuple
F † := F satisfies (a)–(d) of Theorem 3.1.1 as desired. We now consider the
induction step for |F | ≥ 2.

We consider an irreducible part F̄ (f̄ , τ̄) of F . By Lemmas 2.5.3 and 3.1.1,
the following statements (ā)–(c̄) hold (cf. (a)–(c) of Theorem 3.1.1).

(ā) F̄ ∈ Firr ∩ Fext ∩ Fk-dec.

(b̄) L(F̄ ) = L(F ).

(c̄) Pk
F̄ ⊆ Pk

F .

Therefore, if |Pk
F̄ | = |F̄ |, then F † := F̄ satisfies (a)–(d) of Theorem 3.1.1

as desired. Thus, we now assume |Pk
F̄ | < |F̄ |. Then we can choose i′, j′ ∈

[F̄ ] such that i′ ,= j′ and Pk
F̄ ,i′ = Pk

F̄ ,j′ by pigeonhole principle. We define
F ′(f ′, τ ′) ∈ F (|F̄ |) as

f ′
i(s) = f̄i(s), (3.16)

τ ′i(s) =

{
p if τ̄i(s) ∈ I,
τ̄i(s) if τ̄i(s) ,∈ I

(3.17)

for i ∈ [F ′] and s ∈ S, where

I := {i ∈ [F̄ ] : Pk
F̄ ,i = Pk

F̄ ,i′(= Pk
F̄ ,j′)} (3.18)

and we choose
p ∈ argmin

i∈I
hi(F̄ ) (3.19)

arbitrarily.
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Then we obtain F ′ ∈ Freg by applying Lemma 3.2.2 since F̄ ∈ Firr. Also,
we obtain F ′ ∈ Fext ∩ Fk-dec and

Pk
F ′ = Pk

F̄ (3.20)

for any i ∈ [F ′] by applying Lemma 3.2.1 (i)–(iii) since f̄i(s) = f ′
i(s) and

Pk
F̄ ,τ̄i(s)

= Pk
F̄ ,τ ′i(s)

for any i ∈ [F̄ ] and s ∈ S by (3.16) and (3.17). Moreover,
we can see

L(F ′) ≤ L(F̄ ) (3.21)

by applying Lemma 3.2.4 because F ′ satisfies (a) (resp. (b)) of Lemma 3.2.4
by (3.16) (resp. (3.17)–(3.19)).

Since |I| ≥ |{i′, j′}| ≥ 2, we have I \ {p} ,= ∅. Also, for any i ∈ I \ {p},
we have i ,∈ RF ′ since for any j ∈ [F ′] \ {i}, there exists no xxx ∈ S∗ such that
τ ′∗j (xxx) = i by (3.17). Therefore, we have

RF ′ ! [F ′]. (3.22)

For an irreducible part F̄ ′ of F ′, we have

|F̄ ′| = |RF ′ |
(A)
< |F ′| = |F̄ | = |RF | ≤ |F |, (3.23)

where (A) follows from (3.22). Therefore, by applying the induction hy-
pothesis to F̄ ′, we can see that there exists F † ∈ F satisfying the following
conditions (a†)–(d†).

(a†) F † ∈ Firr ∩ Fext ∩ Fk-dec.

(b†) L(F †) ≤ L(F̄ ′).

(c†) Pk
F † ⊆ Pk

F̄ ′ .

(d†) |Pk
F † | = |F †|.

We can see that F † is a desired code-tuple, that is, F † satisfies (a)–(d) of
Theorem 3.1.1 as follows. First, (a) and (d) are directly from (a†) and (d†),
respectively. We obtain (b) as follows:

L(F †)
(A)

≤ L(F̄ ′)
(B)
= L(F ′)

(C)

≤ L(F̄ )
(D)
= L(F ), (3.24)
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where (A) follows from (b†), (B) follows from Lemma 2.5.3, (C) follows from
(3.21), and (D) follows from Lemma 2.5.3. The condition (c) holds because

Pk
F †

(A)

⊆ Pk
F̄ ′

(B)

⊆ Pk
F ′

(C)
= Pk

F̄

(D)

⊆ Pk
F , (3.25)

where (A) follows from (c†), (B) follows from Lemma 3.1.1, (C) follows from
(3.20), and (D) follows from Lemma 3.1.1. !

3.3 Proof of Theorem 3.1.2
Proof of Theorem 3.1.2. We prove by contradiction assuming that there exist
p ∈ RF and bbb = b1b2 . . . bl ∈ C≥k such that

bbb ,∈ P∗
F,p, b1b2 . . . bk ∈ Pk

F,p. (3.26)

Without loss of generality, we assume p = |F | − 1 and bbb is the shortest
sequence satisfying (3.26). Because we have l > k by (3.26), we have
pref(bbb) # b1b2 . . . bk ∈ Pk

F,|F |−1. Since bbb is the shortest sequence satisfying
(3.26), it must hold that pref(bbb) ∈ P∗

F,|F |−1. Hence, by F ∈ Fext and Lemma
2.3.2 (i), we have ddd = d1d2 . . . dl := pref(bbb)b̄l ∈ P∗

F,|F |−1. Namely, we have

ddd ∈ P∗
F,|F |−1, pref(ddd)d̄l = bbb ,∈ P∗

F,|F |−1. (3.27)

We state the key idea of the proof as follows. By (3.27), whenever the
decoder reads a prefix pref(ddd) of the codeword sequence, the decoder can
know that the following bit is dl without reading it. Hence, the bit dl gives
no information and is unnecessary for the k-bit delay decodability of the
mapping f ∗

|F |−1. We consider obtaining another code-tuple F ′′ ∈ Freg ∩
Fext∩Fk-dec such that L(F ′′) < L(F ) by removing this redundant bit, which
leads to a contradiction to F ∈ Fk-opt as desired. However, naive removing
a bit may impair the k-bit delay decodability of the other mappings f ∗

i for
i ∈ [|F |− 1]. Accordingly, we first define a code-tuple F ′ which is essentially
equivalent to F by adding some duplicates of the code tables to F . Then
by making changes to the replicated code tables instead of the original code
tables, we obtain the desired F ′′ without affecting the k-bit delay decodability
of f ∗

i for i ∈ [|F |− 1].
We define the code-tuple F ′ as follows. Put L := |F |(|ddd| + 1) and

M := |S≤L|. We number all the sequences of S≤L as zzz(0), zzz(1), zzz(2), . . . , zzz(M−1)
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in any order but zzz(0) := λ. For zzz′ ∈ S≤L, we define 〈zzz′〉 := |F | − 1 +
t, where t is the integer such that zzz(t) = zzz′. Note that 〈λ〉 = |F | − 1
since zzz(0) = λ. We define the code-tuple F ′ ∈ F (|F |−1+M) consisting of
f ′
0, f

′
1, . . . , f

′
|F |−1, f

′
〈zzz(1)〉, f

′
〈zzz(2)〉, . . . , f

′
〈zzz(M−1)〉 and τ ′0, τ

′
1, . . . , τ

′
|F |−1, τ

′
〈zzz(1)〉, τ

′
〈zzz(2)〉,

. . . , τ ′〈zzz(M−1)〉 as

f ′
i(s) =

{
fτ∗〈λ〉(zzz)(s) if i = 〈zzz〉 for some zzz ∈ S≤L,

fi(s) otherwise,
(3.28)

τ ′i(s) =






〈zzzs〉 if i = 〈zzz〉 for some zzz ∈ S≤L−1,

τ ∗〈λ〉(zzzs) if i = 〈zzz〉 for some zzz ∈ SL,

τi(s) otherwise
(3.29)

for i ∈ [F ′] and s ∈ S. Then F ′ satisfies the following Lemma 3.3.1. See
Subsection 3.5.5 for the proof of Lemma 3.3.1.

Lemma 3.3.1. For any zzz ∈ S≤L, the following statements (i) and (ii) hold.

(i) τ ′∗〈λ〉(zzz) = 〈zzz〉.

(ii) 〈zzz〉 ∈ RF ′.

Lemma 3.3.1 (i) claims that the code table in F ′ used next after encoding
zzz ∈ S≤L starting from f ′

〈λ〉 is f ′
〈zzz〉, which is a duplicate of the code table in F

used next after encoding zzz starting from f〈λ〉. This leads to the equivalency
of F and F ′ shown next.

We confirm that F ′ is equivalent to F , that is, F ′ ∈ Freg ∩ Fext ∩ Fk-dec
and L(F ′) = L(F ). We obtain F ′ ∈ Freg from Lemma 3.3.1 (ii) and Lemma
2.5.2 (i). To prove F ′ ∈ Fext ∩ Fk-dec and L(F ′) = L(F ) by using Lemma
2.5.1, we show that a mapping ϕ : [F ′] → [F ] defined as the following (3.30)
is a homomorphism:

ϕ(i) =

{
i if i ∈ [F ],

τ ∗〈λ〉(zzz) if i = 〈zzz〉 for some zzz ∈ S≤L
(3.30)

for i ∈ [F ′]. The case i = |F |−1 = 〈λ〉 applies to both of the first and second
cases of (3.30). However, this case is consistent since τ ∗〈λ〉(zzz) = τ ∗〈λ〉(λ) =
〈λ〉 = i. We see that ϕ satisfies (2.64) directly from (3.28) and (3.30). We
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confirm that ϕ satisfies also (2.65) as follows:

ϕ(τ ′i(s))
(A)
=






ϕ(〈zzzs〉) if i = 〈zzz〉 for some zzz ∈ S≤L−1,

ϕ(τ ∗〈λ〉(zzzs)) if i = 〈zzz〉 for some zzz ∈ SL,

ϕ(τi(s)) otherwise,
(3.31)

(B)
=






τ ∗〈λ〉(zzzs) if i = 〈zzz〉 for some zzz ∈ S≤L−1,

τ ∗〈λ〉(zzzs) if i = 〈zzz〉 for some zzz ∈ SL,

τi(s) otherwise,
(3.32)

(C)
=

{
ττ∗〈λ〉(zzz)(s) if i = 〈zzz〉 for some zzz ∈ S≤L,

τi(s) otherwise,
(3.33)

(D)
= τϕ(i)(s), (3.34)

where (A) follows from (3.29), (B) follows from (3.30), (C) follows from
Lemma 2.1.1 (ii), and (D) follows from (3.30). Hence, by Lemma 2.5.1 (iv)–
(vi), we obtain F ′ ∈ Fext ∩ Fk-dec and L(F ′) = L(F ).

Now, we define a code-tuple F ′′ ∈ F (|F ′|) as

f ′′
i (s) =






f ′∗
〈λ〉(zzz)

−1pref(ddd)ddd−1(f ′∗
〈λ〉(zzzs))

if i = 〈zzz〉 and f ′∗
〈λ〉(zzz) ≺ ddd ) f ′∗

〈λ〉(zzzs) for some zzz ∈ S≤L,

f ′
i(s) otherwise,

(3.35)
τ ′′i (s) = τ ′i(s) (3.36)

for i ∈ [F ′′] and s ∈ S.
Intuitively, (3.35) means that F ′′ is obtained by removing the bit dl from

codeword sequences of F ′ such that f ′∗
〈λ〉(zzz) # ddd.

Then F ′′ satisfies the following Lemma 3.3.2. See Subsection 3.5.6 for the
proof of Lemma 3.3.2.

Lemma 3.3.2. The following statements (i)–(iii) hold.

(i) For any zzz ∈ S≤L and xxx ∈ S≤L−|zzz|, we have

f ′′∗
〈zzz〉(xxx) =

{
f ′∗
〈λ〉(zzz)

−1pref(ddd)ddd−1(f ′∗
〈λ〉(zzzxxx)) if f ′∗

〈λ〉(zzz) ≺ ddd ) f ′∗
〈λ〉(zzzxxx),

f ′∗
〈zzz〉(xxx) otherwise.

(3.37)
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(ii) For any zzz ∈ S≤L and s, s′ ∈ S, if f ′′
〈zzz〉(s) ≺ f ′′

〈zzz〉(s
′), then f ′

〈zzz〉(s) ≺
f ′
〈zzz〉(s

′).

(iii) For any xxx ∈ S≥L, we have |f ∗
〈λ〉(xxx)| = |f ′∗

〈λ〉(xxx)| ≥ |ddd|+1 and |f ′′∗
〈λ〉(xxx)| ≥

|ddd|.

We show that F ′′ ∈ Freg ∩ Fext ∩ Fk-dec and L(F ′′) < L(F ′) (= L(F ) as
shown above), which conflicts with F ∈ Fk-opt and completes the proof of
Theorem 3.1.2.

(Proof of F ′′ ∈ Freg): From F ′ ∈ Freg and (3.36).
(Proof of F ′′ ∈ Fext): Choose j ∈ [F ′′] arbitrarily. Since 〈λ〉 ∈ RF ′ =

RF ′′ by Lemma 3.3.1 (ii) and (3.36), there exists xxx ∈ S∗ such that

τ ′′∗j (xxx) = 〈λ〉. (3.38)

Also, we can choose xxx′ ∈ SL such that

f ′∗
〈λ〉(xxx

′) # ddd (3.39)

by Lemma 3.3.2 (iii). We have

|f ′′∗
j (xxxxxx′)| (A)

= |f ′′∗
j (xxx)|+ |f ′′∗

τ ′′∗j (xxx)(xxx
′)| (3.40)

≥ |f ′′∗
τ ′′∗j (xxx)(xxx

′)| (3.41)
(B)
= |f ′′∗

〈λ〉(xxx
′)| (3.42)

(C)
= |f ′∗

〈λ〉(λ)
−1pref(ddd)ddd−1f ′∗

〈λ〉(xxx
′)| (3.43)

= |f ′∗
〈λ〉(xxx

′)|− 1 (3.44)
(D)

≥ |ddd| (3.45)
≥ 1, (3.46)

where (A) follows from Lemma 2.1.1 (i), (B) follows from (3.38), (C) follows
from (3.39) and the first case of (3.37), and (D) follows from Lemma 3.3.2
(iii). Hence, by (2.16), P1

F ′′,j ,= ∅ holds for any j ∈ [F ′′], which leads to
F ′′ ∈ Fext as desired.

(Proof of L(F ′′) < L(F ′)): For any i ∈ [F ′′] and s ∈ S, we have |f ′′
i (s)| ≤

|f ′
i(s)| by (3.35). Hence, for any i ∈ [F ′′], we have

πi(F
′)Li(F

′′) ≤ πi(F
′)Li(F

′). (3.47)
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By Lemma 3.3.2 (iii), we can choose xxx = x1x2 . . . xL ∈ SL such that
f ′∗
〈λ〉(xxx) # ddd. Since f ′∗

〈λ〉(λ) ≺ ddd ) f ′∗
〈λ〉(xxx), there exists exactly one integer r

such that
f ′∗
〈λ〉(x1x2 . . . xr−1) ≺ ddd ) f ′∗

〈λ〉(x1x2 . . . xr), (3.48)

which leads to

|f ′′
〈zzz〉(xr)|

(A)
= |f ′∗

〈λ〉(zzz)
−1pref(ddd)ddd−1(f ′∗

〈λ〉(zzzxr))| = |f ′
〈zzz〉(xr)|− 1 < |f ′

〈zzz〉(xr)|,
(3.49)

where zzz := x1x2 . . . xr−1, and (A) follows from (3.48) and the first case of
(3.35). This leads to

π〈zzz〉(F
′)L〈zzz〉(F

′′) < π〈zzz〉(F
′)L〈zzz〉(F

′) (3.50)

because π〈zzz〉(F ′) > 0 by Lemma 3.3.1 (ii) and Lemma 2.5.2 (ii).
Hence, we have

L(F ′′) =
∑

i∈[F ′′]

πi(F
′′)Li(F

′′) (3.51)

(A)
=

∑

i∈[F ′′]

πi(F
′)Li(F

′′) (3.52)

=
∑

i∈[F ′′]\{〈zzz〉}

πi(F
′)Li(F

′′) + π〈zzz〉(F
′)L〈zzz〉(F

′′) (3.53)

(B)

≤
∑

i∈[F ′′]\{〈zzz〉}

πi(F
′)Li(F

′) + π〈zzz〉(F
′)L〈zzz〉(F

′′) (3.54)

(C)
<

∑

i∈[F ′′]\{〈zzz〉}

πi(F
′)Li(F

′) + π〈zzz〉(F
′)L〈zzz〉(F

′) (3.55)

=
∑

i∈[F ′]

πi(F
′)Li(F

′) (3.56)

= L(F ′) (3.57)

as desired, where (A) follows from (3.36), (B) follows from (3.47), and (C)
follows from (3.50).

(Proof of F ′′ ∈ Fk-dec): To prove F ′′ ∈ Fk-dec, we use the following
Lemma 3.3.3, where J := ([F ′] \ 〈λ〉) ∪ {〈zzz〉 : zzz ∈ SL} = [F ′] \ {〈zzz〉 : zzz ∈
S≤L−1}. See Subsection 3.5.7 for the proof of Lemma 3.3.3.
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Lemma 3.3.3. The following statements (i)–(iii) hold.

(i) For any xxx ∈ S∗ and ccc ∈ C≤k, if f ′′∗
〈λ〉(xxx) # ccc, then f ′∗

〈λ〉(xxx) # ccc. Therefore,
we have Pk

F ′,〈λ〉 ⊇ Pk
F ′′,〈λ〉 by (2.16).

(ii) For any i ∈ J and s ∈ S, we have f ′′
i (s) = f ′

i(s).

(iii) For any i ∈ J and bbb ∈ C∗, we have Pk
F ′′,i(bbb) ⊆ Pk

F ′,i(bbb) and P̄k
F ′′,i(bbb) ⊆

P̄k
F ′,i(bbb).

Also, for zzz ∈ S∗, we define a mapping ψzzz : C∗ → C∗ as

ψzzz(bbb) =

{
f ′∗
〈λ〉(zzz)

−1dddpref(ddd)−1(f ′∗
〈λ〉(zzz)bbb) if f ′∗

〈λ〉(zzz) ) pref(ddd) ≺ f ′∗
〈λ〉(zzz)bbb,

bbb otherwise
(3.58)

for bbb ∈ C∗. Then ψzzz satisfies the following Lemma 3.3.4.

Lemma 3.3.4. The following statements (i)–(iii) hold.

(i) For any zzz ∈ S∗ and bbb, bbb′ ∈ C∗, if bbb ) bbb′, then ψzzz(bbb) ) ψzzz(bbb′).

(ii) For any zzz ∈ S≤L, xxx ∈ S≤L−|zzz|, and ccc ∈ C∗, we have

ψzzz(f
′′∗
〈zzz〉(xxx)ccc) =

{
pref(f ′∗

〈zzz〉(xxx)) if f ′∗
〈λ〉(zzz) ≺ f ′∗

〈λ〉(zxzxzx) = ddd, ccc = λ,

f ′∗
〈zzz〉(xxx)ψzxzxzx(ccc) otherwise.

(3.59)

(iii) For any zzz ∈ SL and bbb ∈ C∗, we have ψzzz(bbb) = bbb.

See Subsection 3.5.8 for the proof of Lemma 3.3.4.
By Lemma 3.3.4 (ii) with ccc = λ, it holds that ψzzz(f ′′∗

〈zzz〉(xxx)) = f ′∗
〈zzz〉(xxx) in

most cases. Thus, we can intuitively interpret the mapping ψzzz as a kind of
an inverse transformation of (3.37). We prove k-bit delay decodability of F ′′

later by attributing it to k-bit delay decodability of F ′ using ψzzz.
Now we prove F ′′ ∈ Fk-dec. We first show that F ′′ satisfies Definition

2.2.3 (a). Namely, we show that Pk
F ′′,τ ′i(s)

∩ P̄k
F ′′,i(f

′′
i (s)) = ∅ for any i ∈ [F ′′]

and s ∈ S dividing into the following two cases: the case i ∈ J and the case
i ∈ [F ′′] \ J .
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• The case i ∈ J : Then for any i ∈ J and s ∈ S, we have

Pk
F ′′,τ ′′i (s) ∩ P̄k

F ′′,i(f
′′
i (s))

(A)

⊆ Pk
F ′,τ ′′i (s) ∩ P̄k

F ′,i(f
′′
i (s)) (3.60)

(B)
= Pk

F ′,τ ′i(s)
∩ P̄k

F ′,i(f
′
i(s)) (3.61)

(C)
= ∅, (3.62)

where (A) follows from Lemma 3.3.3 (i) (iii) since τ ′′i (s) ∈ [F ], (B)
follows from Lemma 3.3.3 (ii) and (3.36), and (C) follows from F ′ ∈
Fk-dec.

• The case i ∈ [F ′′] \ J : We prove by contradiction assuming that there
exist zzz ∈ S≤L−1, s ∈ S, and ccc ∈ P̄k

F ′′,〈zzz〉(f
′′
〈zzz〉(s)) ∩ Pk

F ′′,〈zzzs〉. By ccc ∈
P̄k

F ′′,〈zzz〉(f
′′
〈zzz〉(s)) and (2.13), there exist xxx ∈ SL−|zzz| and yyy ∈ S∗ such that

f ′′∗
〈zzz〉(xxxyyy) # f ′′

〈zzz〉(s)ccc (3.63)

and
f ′′
〈zzz〉(x1) 1 f ′′

〈zzz〉(s). (3.64)

By Lemma 2.3.1, we may assume

|f ′′∗
〈zxzxzx〉(yyy)| ≥ max{k, 1}. (3.65)

By (3.64) and Lemma 3.3.2 (ii), we obtain

f ′
〈zzz〉(x1) 1 f ′

〈zzz〉(s). (3.66)

This shows that f ′
〈zzz〉 is not prefix-free, which conflicts with F ′ ∈ Fk-dec

in the case k = 0 by Lemma 2.2.7. Thus, we consider the case k ≥ 1,
that is,

ccc ,= λ. (3.67)

Equation (3.63) leads to

f ′′∗
〈zzz〉(xxxyyy) # f ′′

〈zzz〉(s)ccc
(A)
=⇒ ψzzz(f

′′∗
〈zzz〉(xxxyyy)) # ψzzz(f

′′
〈zzz〉(s)ccc) (3.68)

(B)⇐⇒ ψzzz(f
′′∗
〈zzz〉(xxx)f

′′∗
〈zzzxxx〉(yyy)) # ψzzz(f

′′
〈zzz〉(s)ccc) (3.69)

(C)⇐⇒ f ′∗
〈zzz〉(xxx)ψzzzxxx(f

′′∗
〈zzzxxx〉(yyy)) # f ′

〈zzz〉(s)ψzzzs(ccc) (3.70)
(D)⇐⇒ f ′∗

〈zzz〉(xxx)f
′′∗
〈zzzxxx〉(yyy) # f ′

〈zzz〉(s)ψzzzs(ccc), (3.71)
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where (A) follows from Lemma 3.3.4 (i), (B) follows from Lemma 2.1.1
(i) and Lemma 3.3.1 (i), (C) follows from (3.65), (3.67), and the second
case of (3.59), and (D) follows from Lemma 3.3.4 (iii) and |zxzxzx| = L.
Then by (3.66) and (3.71), we have

f ′∗
〈zzz〉(xxx)[f

′′∗
〈zzzxxx〉(yyy)]k # f ′

〈zzz〉(s)[ψzzzs(ccc)]k. (3.72)

Also, we have

[f ′′∗
〈zzzxxx〉(yyy)]k ∈ Pk

F ′′,〈zxzxzx〉

(A)

⊆ Pk
F ′,〈zxzxzx〉, (3.73)

where (A) follows from Lemma 3.3.3 (iii) and 〈zxzxzx〉 ∈ SL ⊆ J . Hence,
by (2.16) there exists yyy′ ∈ S∗ such that f ′∗

〈zzzxxx〉(yyy
′) # [f ′′∗

〈zzzxxx〉(yyy)]k, which
leads to

f ′∗
〈zzz〉(xxxyyy

′) = f ′∗
〈zzz〉(xxx)f

′∗
〈zzzxxx〉(yyy

′) # f ′∗
〈zzz〉(xxx)[f

′′∗
〈zzzxxx〉(yyy)]k

(A)

# f ′
〈zzz〉(s)[ψzzzs(ccc)]k,

(3.74)

where (A) follows from (3.72). Equations (3.66) and (3.74) show

[ψzzzs(ccc)]k ∈ P̄k
F ′,〈zzz〉(f

′
〈zzz〉(s)) (3.75)

by (2.13).
On the other hand, by ccc ∈ Pk

F ′′,〈zzzs〉 and (2.16), there exist xxx ∈ SL−|zzzs|

and yyy ∈ S∗ such that
f ′′∗
〈zzzs〉(xxxyyy) # ccc. (3.76)

By Lemma 2.3.1, we may assume

|f ′′∗
〈zzzsxxx〉(yyy)| ≥ k ≥ 1. (3.77)

We have

f ′∗
〈zzzs〉(xxx)f

′′∗
〈zzzsxxx〉(yyy)

(A)
= f ′∗

〈zzzs〉(xxx)ψzzzsxxx(f
′′∗
〈zzzsxxx〉(yyy))

(B)
= ψzzzs(f

′′∗
〈zzzs〉(xxxyyy))

(C)

# ψzzzs(ccc),

(3.78)

where (A) follows from Lemma 3.3.4 (iii) and |zzzsxxx| = L, (B) follows
from (3.77) and the second case of (3.59), and (C) follows from (3.76)
and Lemma 3.3.4 (i).
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Hence, we have
f ′∗
〈zzzs〉(xxx)[f

′′∗
〈zzzsxxx〉(yyy)]k # [ψzzzs(ccc)]k. (3.79)

Also, we have

[f ′′∗
〈zzzsxxx〉(yyy)]k ∈ Pk

F ′′,〈zzzsxxx〉

(A)

⊆ Pk
F ′,〈zzzsxxx〉, (3.80)

where (A) follows from Lemma 3.3.3 (iii) and 〈zzzsxxx〉 ∈ SL ⊆ J . Hence,
there exists yyy′ ∈ S∗ such that f ′∗

〈zzzxxx〉(yyy
′) # [f ′′∗

〈zzzsxxx〉(yyy)]k, which leads to

f ′∗
〈zzzs〉(xxxyyy

′) = f ′∗
〈zzzs〉(xxx)f

′∗
〈zzzxxxs〉(yyy

′) # f ′∗
〈zzzs〉(xxx)[f

′′∗
〈zzzsxxx〉(yyy)]k

(A)

# [ψzzzs(ccc)]k, (3.81)

where (A) follows from (3.79). This shows

[ψzzzs(ccc)]k ∈ Pk
F ′,〈zzzs〉 (3.82)

by (2.16). By (3.75) and (3.82), the code-tuple F ′ does not satisfy
Definition 2.2.3 (a), which conflicts with F ′ ∈ Fk-dec.

Consequently, F ′′ satisfies Definition 2.2.3 (a).
Next, we show that F ′′ satisfies Definition 2.2.3 (b). Namely, we show

that for any i ∈ [F ′′] and s, s′ ∈ S such that s ,= s′ and f ′′
i (s) = f ′′

i (s
′), we

have Pk
F ′,τ ′i(s)

∩ Pk
F ′,τ ′i(s

′) = ∅. We prove for the following two cases: the case
i ∈ J and the case i ∈ [F ′′] \ J .

• The case i ∈ J : Then for any i ∈ J and s, s′ ∈ S such that s ,= s′ and
f ′′
i (s) = f ′′

i (s
′), we have

f ′
i(s) = f ′

i(s
′) (3.83)

by Lemma 3.3.3 (ii), and we have

Pk
F ′′,τ ′′i (s) ∩ Pk

F ′′,τ ′′i (s′)

(A)

⊆ Pk
F ′,τ ′′i (s) ∩ Pk

F ′,τ ′′i (s′)

(B)
= Pk

F ′,τ ′i(s)
∩ Pk

F ′,τ ′i(s
′)

(C)
= ∅,

(3.84)

where (A) follows from Lemma 3.3.3 (i) (iii) since τ ′′i (s), τ ′′i (s′) ∈ [F ],
(B) follows from (3.36), and (C) follows from F ′ ∈ Fk-dec and (3.83).

• The case i ∈ [F ′′] \ J : We prove by contradiction assuming that there
exists zzz ∈ S≤L−1, s, s′ ∈ S, and ccc ∈ Pk

F ′′,〈zzzs〉 ∩ Pk
F ′′,〈zzzs′〉 such that s ,= s′

and
f ′′
〈zzz〉(s) = f ′′

〈zzz〉(s
′). (3.85)
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By the similar way to derive (3.82), we obtain

[ψzzzs(ccc)]k ∈ Pk
F ′,〈zzzs〉 (3.86)

from ccc ∈ Pk
F ′′,〈zzzs〉. By (3.85) and Lemma 3.3.4 (i), we have

ψ〈zzz〉(f
′′
〈zzz〉(s)) = ψ〈zzz〉(f

′′
〈zzz〉(s

′)). (3.87)

By Lemma 3.3.4 (ii), exactly one of f ′
〈zzz〉(s) = f ′

〈zzz〉(s
′), f ′

〈zzz〉(s) ≺ f ′
〈zzz〉(s

′),
and f ′

〈zzz〉(s) 1 f ′
〈zzz〉(s

′) holds. Therefore, f ′
〈zzz〉 is not prefix-free, which

conflicts with F ′ ∈ Fk-dec in the case k = 0 by Lemma 2.2.7. We
consider the case k ≥ 1, that is,

ccc ,= λ. (3.88)

We consider the following two cases separately: the case f ′
〈zzz〉(s) =

f ′
〈zzz〉(s

′) and the case f ′
〈zzz〉(s) ≺ f ′

〈zzz〉(s
′). Note that we may exclude the

case f ′
〈zzz〉(s) 1 f ′

〈zzz〉(s
′) by symmetry.

– The case f ′
〈zzz〉(s) = f ′

〈zzz〉(s
′): By (3.58), we have ψzzzs(ccc) = ψzzzs′(ccc)

and thus
[ψzzzs(ccc)]k = [ψzzzs′(ccc)]k

(A)
∈ Pk

F ′,〈zzzs′〉, (3.89)

where (A) is obtained from ccc ∈ Pk
F ′′,〈zzzs′〉 by the similar way to

derive (3.82).
By (3.86), (3.89), and f ′

〈zzz〉(s) = f ′
〈zzz〉(s

′), the code-tuple F ′ does
not satisfy Definition 2.2.3 (b), which conflicts with F ′ ∈ Fk-dec.

– The case f ′
〈zzz〉(s) ≺ f ′

〈zzz〉(s
′): Then by (3.87) and Lemma 3.3.4 (ii),

it must hold that

f ′∗
〈λ〉(zzz) ≺ f ′∗

〈λ〉(zzzs
′) = ddd (3.90)

and
f ′
〈zzz〉(s) = pref(f ′

〈zzz〉(s
′)). (3.91)
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Thus, we have

f ′
〈zzz〉(s)dl

(A)
= pref(f ′

〈zzz〉(s
′))dl (3.92)

= f ′∗
〈λ〉(zzz)

−1f ′∗
〈λ〉(zzz)pref(f

′
〈zzz〉(s

′))dl (3.93)
(B)
= f ′∗

〈λ〉(zzz)
−1pref(f ′∗

〈λ〉(zzzs
′))dl (3.94)

(C)
= f ′∗

〈λ〉(zzz)
−1pref(ddd)dl (3.95)

= f ′∗
〈λ〉(zzz)

−1ddd (3.96)
(D)
= f ′∗

〈λ〉(zzz)
−1f ′∗

〈λ〉(zzzs
′) (3.97)

(E)
= f ′∗

〈λ〉(zzz)
−1f ′∗

〈λ〉(zzz)f
′
〈zzz〉(s

′) (3.98)
= f ′

〈zzz〉(s
′), (3.99)

where (A) follows from (3.91), (B) follows from Lemma 2.1.1 (i)
and Lemma 3.3.1 (i), (C) follows from (3.90), (D) follows from
(3.90), and (E) follows from Lemma 2.1.1 (i) and Lemma 3.3.1
(i).
Also, we have

pref(ddd)
(A)
= pref(f ′∗

〈λ〉(zzzs
′)) (3.100)

= pref(f ′∗
〈λ〉(zzz)f

′
〈zzz〉(s

′)) (3.101)
(B)
= pref(f ′∗

〈λ〉(zzz)f
′
〈zzz〉(s)dl) (3.102)

= f ′∗
〈λ〉(zzz)f

′
〈zzz〉(s) (3.103)

= f ′∗
〈λ〉(zzzs), (3.104)

where (A) follows from (3.90), and (B) follows from (3.99).
By ccc ∈ Pk

F ′′,〈zzzs′〉 and (2.16), there exist xxx ∈ SL−|zzzs′| and yyy ∈ S∗

such that
f ′′∗
〈zzzs′〉(xxxyyy) # ccc. (3.105)

By Lemma 2.3.1, we may assume

|f ′′∗
〈zzzs′xxx〉(yyy)| ≥ k ≥ 1. (3.106)
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We have

f ′
〈zzz〉(s

′)f ′∗
〈zzzs′〉(xxx)f

′′∗
〈zzzs′xxx〉(yyy)

(A)
= f ′

〈zzz〉(s
′)ψzzzs′(f

′′∗
〈zzzs′〉(xxx)f

′′∗
〈zzzs′xxx〉(yyy)) (3.107)

(B)
= f ′

〈zzz〉(s
′)ψzzzs′(f

′′∗
〈zzzs′〉(xxxyyy)) (3.108)

(C)

# f ′
〈zzz〉(s

′)ψzzzs′(ccc) (3.109)
(D)
= f ′

〈zzz〉(s)dlψzzzs′(ccc) (3.110)
(E)
= f ′

〈zzz〉(s)dlccc (3.111)
= f ′

〈zzz〉(s)pref(ddd)
−1dddpref(ddd)−1(pref(ddd)ccc) (3.112)

(F)
= f ′

〈zzz〉(s)f
′∗
〈λ〉(zzzs)

−1dddpref(ddd)−1(f ′∗
〈λ〉(zzzs)ccc) (3.113)

(G)
= f ′

〈zzz〉(s)ψzzzs(ccc), (3.114)

where (A) follows from (3.106) and the second case of (3.59), (B)
follows from Lemma 2.1.1 (i) and Lemma 3.3.1 (i), (C) follows
from (3.105) and Lemma 3.3.4 (i), (D) follows from (3.99), (E)
follows from the second case of (3.58) because f ′∗

〈λ〉(zzzs
′) ) pref(ddd)

does not hold by (3.90), (F) follows from (3.104), and (G) follows
from the first case of (3.58) because f ′∗

〈λ〉(zzzs) = pref(f ′∗
〈λ〉(zzzs

′)) =
pref(ddd) ≺ f ′∗

〈λ〉(zzzs)ccc by (3.90), (3.91), and (3.88).
Hence, by f ′

〈zzz〉(s) ≺ f ′
〈zzz〉(s

′), we have

f ′
〈zzz〉(s

′)f ′∗
〈zzzs′〉(xxx)[f

′′∗
〈zzzs′xxx〉(yyy)]k # f ′

〈zzz〉(s)[ψzzzs(ccc)]k. (3.115)

Also, we have

[f ′′∗
〈zzzs′xxx〉(yyy)]k ∈ Pk

F ′′,〈zzzs′xxx〉

(A)

⊆ Pk
F ′,〈zzzs′xxx〉, (3.116)

where (A) follows from Lemma 3.3.3 (iii) and 〈zzzs′xxx〉 ∈ SL ⊆ J .
Hence, there exists yyy′ ∈ S∗ such that f ′∗

〈zzzs′xxx〉(yyy
′) # [f ′′∗

〈zzzs′xxx〉(yyy)]k,
which leads to

f ′∗
〈zzz〉(s

′xxxyyy′) = f ′
〈zzz〉(s

′)f ′∗
〈zzzs′〉(xxx)f

′∗
〈zzzs′xxx〉(yyy

′) (3.117)
# f ′

〈zzz〉(s
′)f ′∗

〈zzzs′〉(xxx)[f
′∗
〈zzzs′xxx〉(yyy

′)]k (3.118)
(A)

# f ′
〈zzz〉(s)[ψzzzs(ccc)]k, (3.119)
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where (A) follows from (3.115). The assumption that f ′
〈zzz〉(s) ≺

f ′
〈zzz〉(s

′) and (3.117) shows that

[ψzzzs(ccc)]k ∈ P̄k
F ′,〈zzz〉(f

′
〈zzz〉(s)) (3.120)

by (2.13). By (3.86) and (3.120), the code-tuple F ′ does not satisfy
Definition 2.2.3 (a), which conflicts with F ′ ∈ Fk-dec.

Consequently, F ′′ satisfies Definition 2.2.3 (b). !

3.4 Proof of Theorem 3.1.3
The outline of the proof is as follows. First, we define an operation called
rotation which transforms a code-tuple F ∈ Fext into another code-tuple
F̂ ∈ F . Next, we show that for any F ∈ Freg ∩ Fext ∩ Fk-dec, we have
F̂ ∈ Freg ∩ Fext ∩ Fk-dec and L(F̂ ) = L(F ). Namely, the rotation preserves
“the key properties” of a code-tuple. Then we prove Theorem 3.1.3 by showing
that any F ∈ Freg ∩Fext ∩Fk-dec can be transformed into some F ′ ∈ Freg ∩
Fext∩Fk-dec∩Ffork by rotation in a repetitive manner without changing the
average codeword length.

Definition 3.4.1. For F (f, τ) ∈ Fext, we define F̂ (f̂ , τ̂) ∈ F as follows.
For i ∈ [F ] and s ∈ S,

f̂i(s) =

{
fi(s)dF,τi(s) if P1

F,i = {0, 1},
suff(fi(s)dF,τi(s)) if P1

F,i ,= {0, 1},
(3.121)

τ̂i(s) = τi(s), (3.122)

where

dF,i =






0 if P1
F,i = {0},

1 if P1
F,i = {1},

λ if P1
F,i = {0, 1}.

(3.123)

The operation which transforms a given F ∈ Fext into F̂ ∈ F defined above
is called rotation.

Example 3.4.1. Table 3.4 shows P1
F,i, i ∈ [F ] and dF,i, i ∈ [F ] for the code-

tuples F (γ), F (δ), and F (ε) in Table 3.3.

80



Table 3.3: Examples of a code-tuple F (γ), F (δ), and F (ε)

s ∈ S f (γ)
0 τ (γ)0 f (γ)

1 τ (γ)1 f (γ)
2 τ (γ)2

a 01 0 00 1 1100 1
b 10 1 λ 0 1110 0
c 0100 0 00111 1 111000 2
d 01 2 00111 2 110 2

s ∈ S f (δ)
0 τ (δ)0 f (δ)

1 τ (δ)1 f (δ)
2 τ (δ)2

a 01 0 00 1 100 1
b 10 1 λ 0 110 0
c 0100 0 00111 1 110001 2
d 011 2 001111 2 101 2

s ∈ S f (ε)
0 τ (ε)0 f (ε)

1 τ (ε)1 f (ε)
2 τ (ε)2

a 01 0 00 1 00 1
b 10 1 λ 0 10 0
c 0100 0 00111 1 100011 2
d 0111 2 0011111 2 011 2

Example 3.4.2. In Table 3.3, F (δ) is obtained by applying rotation to F (γ),
that is, F (δ) = F̂ (γ). Also, F (ε) is obtained by applying rotation to F (δ), that
is, F (ε) = F̂ (δ). Furthermore, we obtain F (ε) itself by applying rotation to
F (ε), that is, F (ε) = F̂ (ε).

Directly from Definition 3.4.1, we can see that for any F (f, τ) ∈ Fext, i ∈
[F ], and s ∈ S, we have

dF,if̂i(s) = fi(s)dF,τi(s). (3.124)

This relation (3.124) is generalized to the following Lemma 3.4.1.

Table 3.4: P1
F,i, i ∈ [F ] and dF,i, i ∈ [F ] for the code-tuples F (γ), F (δ), and

F (ε) in Table 3.3
F P1

F,0 dF,0 P1
F,1 dF,1 P1

F,2 dF,2
F (γ) {0, 1} λ {0, 1} λ {1} 1
F (δ) {0, 1} λ {0, 1} λ {1} 1
F (ε) {0, 1} λ {0, 1} λ {0, 1} λ
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Lemma 3.4.1. For any F (f, τ) ∈ Fext, i ∈ [F ], and xxx ∈ S∗, we have

dF,if̂ ∗
i (xxx) = f ∗

i (xxx)dF,τ∗i (xxx). (3.125)

Proof of Lemma 3.4.1. We prove the lemma by induction for |xxx|.
For the base case |xxx| = 0, we have

dF,if̂ ∗
i (xxx) = dF,if̂ ∗

i (λ)
(A)
= dF,iλ = λdF,i

(B)
= f ∗

i (λ)dF,τ∗i (λ) = f ∗
i (xxx)dF,τ∗i (xxx)

(3.126)
as desired, where (A) and (B) follow from (2.4).

Let l ≥ 1 and assume that (3.125) holds for any xxx′ ∈ S∗ such that |xxx′| < l
as the induction hypothesis. We prove that (3.125) holds for any xxx ∈ S l. We
have

dF,if̂ ∗
i (xxx)

(A)
= dF,if̂i(x1)f̂ ∗

τi(x1)(suff(xxx)) (3.127)
(B)
= fi(x1)dF,τi(x1)f̂

∗
τi(x1)(suff(xxx)) (3.128)

(C)
= fi(x1)f

∗
τi(x1)(suff(xxx))dF,τ∗τi(x1)(suff(xxx))

(3.129)
(D)
= fi(x1)f

∗
τi(x1)(suff(xxx))dF,τ∗i (xxx) (3.130)

(E)
= f ∗

i (xxx)dF,τ∗i (xxx) (3.131)

as desired, where (A) follows from (2.4), (B) follows from (3.124), (C) follows
from the induction hypothesis, (D) follows from (2.5), and (E) follows from
from (2.4). !

Example 3.4.3. For F (f, τ) := F (γ) of Table 3.3, we have F̂ = F (δ) as seen
in Example 3.4.2. We can see dF,2f̂ ∗

2 (bbc) = 1f̂2(b)f̂0(b)f̂1(c) = 11101000
and f ∗

2 (bbc)dF,τ∗2 (bbc) = f ∗
2 (bbc)dF,1 = f2(b)f0(b)f1(c) = 11101000. Hence,

we confirm dF,2f̂ ∗
2 (bbc) = f ∗

2 (bbc)dF,τ∗2 (bbc).

Next, we prove that if F ∈ Freg ∩ Fext ∩ Fk-dec, then F̂ ∈ Freg ∩ Fext ∩
Fk-dec and L(F̂ ) = L(F ). To prove it, we show the following Lemmas 3.4.2–
3.4.4.

Lemma 3.4.2. For any integer k ≥ 0 and F (f, τ) ∈ Fk-dec ∩ Fext, we have
F̂ (f̂ , τ̂) ∈ Fk-dec.

Lemma 3.4.3. For any F (f, τ) ∈ Fext, we have F̂ (f̂ , τ̂) ∈ Fext.
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Lemma 3.4.4. For any F ∈ Freg, we have F̂ ∈ Freg and L(F̂ ) = L(F ).

The proof of Lemma 3.4.2 relies on Lemma 3.4.5 whose proof is relegated
to Subsection 3.5.9.

Lemma 3.4.5. Let F (f, τ) ∈ Fext. There exists no tuple (k, i,xxx,xxx′) satisfy-
ing all of the following conditions (a)–(c), where k is a non-negative integer,
i ∈ [F ], and xxx,xxx′ ∈ S∗.

(a) F ∈ Fk-dec.

(b) |f̂ ∗
i (xxx)|+ k ≤ |f̂ ∗

i (xxx
′)|.

(c) xxx′ ≺ xxx.

Proof of Lemma 3.4.2. Fix i ∈ [F ] and (xxx,ccc) ∈ S∗ × Ck arbitrarily. Also,
choose xxx′ ∈ S∗ such that

f̂ ∗
i (xxx)ccc ) f̂ ∗

i (xxx
′) (3.132)

arbitrarily. Then, we have dF,if̂ ∗
i (xxx)ccc ) dF,if̂ ∗

i (xxx
′). From Lemma 3.4.1, we

have f ∗
i (xxx)dF,τ∗i (xxx)ccc ) f ∗

i (xxx
′)dF,τ∗i (xxx′). By (3.123), there exists xxx′′ ∈ S∗ such

that
dF,τ∗i (x′x′x′) ) f ∗

τ∗i (xxx
′)(xxx

′′). (3.133)

Defining ccc′ := [dF,τ∗i (xxx)ccc]k, we have

f ∗
i (xxx)ccc

′ ) f ∗
i (xxx)dF,τ∗i (xxx)ccc (3.134)

(A)
= dF,if̂ ∗

i (xxx)ccc (3.135)
(B)

) dF,if̂ ∗
i (xxx

′) (3.136)
(C)
= f ∗

i (xxx
′)dF,τ∗i (xxx′) (3.137)

(D)

) f ∗
i (xxx

′)f ∗
τ∗i (xxx

′)(xxx
′′) (3.138)

(E)
= f ∗

i (xxx
′xxx′′), (3.139)

where (A) follows from Lemma 3.4.1, (B) follows from (3.132), (C) follows
from Lemma 3.4.1, (D) follows from (3.133), and (E) follows Lemma 2.1.1
(i).

In general, exactly one of the following conditions holds: xxx ) xxx′; xxx 1
xxx;xxx ,#≺ xxx′. Now, xxx 1 xxx′ is impossible because if we assume xxx 1 xxx′, then
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the tuple (k, i,xxx) satisfies the conditions (a)–(c) of Lemma 3.4.5, where the
condition (b) follows from by (3.132). Thus, it suffices to consider the case
where either xxx ) xxx′ or xxx ,#≺ xxx′ holds.

By F ∈ Fk-dec, the pair (xxx,ccc′) is f ∗
i -positive or f ∗

i -negative. If (xxx,ccc′)
is f ∗

i -positive (resp. f ∗
i -negative), then we have xxx ) xxx′xxx′′ (resp. xxx ,) xxx′xxx′′)

by (3.139). This implies that xxx ) xxx′ (resp. xxx ,#≺ xxx′) holds since xxx 1 xxx′ is
impossible. Since xxx′ is chosen arbitrarily, the pair (xxx,ccc) is f̂ ∗

i -positive (resp.
f̂ ∗
i -negative), respectively. Therefore, we have F̂ ∈ Fk-dec. !

Proof of Lemma 3.4.3. Fix i ∈ [F ] arbitrarily. By F ∈ Fext and Lemma
2.3.1, there exists xxx ∈ S∗ such that |f ∗

i (xxx)| ≥ 2. For such xxx, we have

|f̂ ∗
i (xxx)|

(A)
= |f ∗

i (xxx)|+ |dF,τ∗i (xxx)|− |dF,i|
(B)

≥ 1, (3.140)

where (A) follows since dF,if̂ ∗
i (xxx) = f ∗

i (xxx)dF,τ∗i (xxx) by Lemma 3.4.1, and (B)
follows from |f ∗

i (xxx)| ≥ 2, |dF,τ∗i (xxx)| ≥ 0, and |dF,i| ≤ 1. Therefore, we have
F̂ ∈ Fext. !

Proof of Lemma 3.4.4. By (3.122), for any i, j ∈ [F ], we have Qi,j(F̂ ) =

Qi,j(F ) (cf. Remark 2.4.1). Thus, we have F̂ ∈ Freg, and for any i ∈ [F ], we
have

πi(F̂ ) = πi(F ). (3.141)

Also, for any i ∈ [F ], we have

Li(F̂ )
(A)
=

{∑
s∈S |fi(s)dF,τi(s)| · µ(s) if i ,∈ B,

∑
s∈S |suff(fi(s)dF,τi(s))| · µ(s) if i ∈ B,

(3.142)

=

{
Li(F ) +

∑
s∈S |dF,τi(s)| · µ(s) if i ,∈ B

Li(F ) +
∑

s∈S |dF,τi(s)| · µ(s)− 1 if i ∈ B,
(3.143)

(B)
=

{
Li(F ) +

∑
j∈B Qi,j(F ) if i ,∈ B,

Li(F ) +
∑

j∈B Qi,j(F )− 1 if i ∈ B,
(3.144)

where B := {i ∈ [F ] : P1
F,i ,= {0, 1}}, (A) follows from (3.123), and (B)
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follows from (3.121). Therefore, we obtain

L(F̂ ) =
∑

i∈[F ]

πi(F̂ )Li(F̂ ) (3.145)

=
∑

i∈[F ]\B

πi(F̂ )Li(F̂ ) +
∑

i∈B

πi(F̂ )Li(F̂ ) (3.146)

(A)
=

∑

i∈[F ]\B

πi(F )(Li(F ) +
∑

j∈B

Qi,j(F ))

+
∑

i∈B

πi(F )(Li(F ) +
∑

j∈B

Qi,j(F )− 1) (3.147)

=
∑

i∈[F ]\B

πi(F )Li(F ) +
∑

i∈B

πi(F )Li(F )

+
∑

i∈[F ]\B

∑

j∈B

πi(F )Qi,j(F ) +
∑

i∈B

∑

j∈B

πi(F )Qi,j(F )−
∑

i∈B

πi(F )

(3.148)

=
∑

i∈[F ]

πi(F )Li(F ) +
∑

i∈[F ]

∑

j∈B

πi(F )Qi,j(F )−
∑

j∈B

πj(F ) (3.149)

(B)
=

∑

i∈[F ]

πi(F )Li(F ) +
∑

i∈[F ]

∑

j∈B

πi(F )Qi,j(F )−
∑

j∈B

∑

i∈[F ]

πi(F )Qi,j(F )

(3.150)

=
∑

i∈[F ]

πi(F )Li(F ) (3.151)

= L(F ), (3.152)

where (A) follows from (3.141) and (3.144), and (B) follows from (2.56). !
To prove Theorem 3.1.3, for an integer k ≥ 0, F ∈ Fk-dec ∩ Fext, and

i ∈ [F ], we define lF,i as

lF,i := min{|f ∗
i (xxx) ∧ f ∗

i (xxx
′)| : xxx,xxx′ ∈ S∗, f ∗

i (xxx) ,#≺ f ∗
i (xxx

′)}. (3.153)

Example 3.4.4. Table 3.5 shows lF,i, i ∈ [F ] for the code-tuples F (γ), F (δ)

and F (ε) in Table 3.3.

Note that

lF,i = 0
(A)⇐⇒ P1

F,i = {0, 1} (B)⇐⇒ dF,i = 0, (3.154)
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Table 3.5: lF,i, i ∈ [F ] for the code-tuples F (γ), F (δ) and F (ε) in Table 3.3
F lF,0 lF,1 lF,2
F (γ) 0 0 2
F (δ) 0 0 1
F (ε) 0 0 0

where (A) follows from (3.153), and (B) follows from (3.123).
The following Lemma 3.4.6 guarantees that the right hand side of (3.153)

is well-defined.

Lemma 3.4.6. For any integer k ≥ 0, F (f, τ) ∈ Fk-dec ∩ Fext, and i ∈ [F ],
there exist xxx,xxx′ ∈ S∗ such that f ∗

i (xxx) ,#≺ f ∗
i (xxx

′).

Proof of Lemma 3.4.6. We prove by contradiction assuming that there exist
an integer k ≥ 0, F (f, τ) ∈ Fk-dec ∩ Fext, and i ∈ [F ] such that for any
xxx,xxx′ ∈ S∗, we have f ∗

i (xxx) ) f ∗
i (xxx

′) or f ∗
i (xxx) # f ∗

i (xxx
′).

Choose two distinct symbols s, s′ ∈ S arbitrarily. Then we have f ∗
i (s) )

f ∗
i (s

′) or f ∗
i (s) # f ∗

i (s
′) by the assumption, and we may assume f ∗

i (s) )
f ∗
i (s

′) by symmetry. By F ∈ Fext and Lemma 2.3.1, we can choose xxx,xxx′ ∈ S∗

such that
|f ∗

i (sxxx)| = |f ∗
i (s

′xxx′)| ≥ |f ∗
i (s)|+ k. (3.155)

Then by the assumption, we have

f ∗
i (sxxx) ) f ∗

i (s
′xxx′) or f ∗

i (sxxx) # f ∗
i (s

′xxx′). (3.156)

By (3.155) and (3.156), it holds that

f ∗
i (sxxx) = f ∗

i (s
′xxx′) # f ∗

i (s)ccc (3.157)

for some ccc ∈ Ck. By (3.157) and s ) sxxx, the pair (s, ccc) ∈ S1 × Ck is not
f ∗
i -negative. Also, by (3.157) and s ,) s′xxx, the pair (s, ccc) is not f ∗

i -positive.
Consequently, the pair (s, ccc) ∈ S1 × Ck ⊂ S∗ × Ck is neither f ∗

i -positive nor
f ∗
i -negative. This conflicts with F ∈ Fk-dec. !

Now we state the proof of Theorem 3.1.3 as follows.

Proof of Theorem 3.1.3. For non-negative integer t = 0, 1, 2, . . ., we define
F (t)(f (t), τ (t)) ∈ F as follows.

F (t) :=

{
F if t = 0,

F̂ (t−1) if t ≥ 1,
(3.158)
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that is, F (t) is the code-tuple obtained by applying t times rotation to F .
From F (0) = F ∈ Freg ∩ Fext ∩ Fk-dec and Lemmas 3.4.2–3.4.4, for any

t ≥ 0, we have F (t) ∈ Freg ∩ Fext ∩ Fk-dec and L(F (t)) = L(F ). Therefore,
to prove Theorem 3.1.3, it suffices to prove that there exists an integer t̄ ≥ 0
such that F (t̄) ∈ Ffork. Furthermore, by (3.154), it suffices to prove that for
some integer t̄ ≥ 0, we have lF (t̄),0 = lF (t̄),1 = · · · = lF (t̄),|F |−1 = 0.

Fix i ∈ [F ] and choose xxx,xxx′ ∈ S∗ such that

f ∗
i
(t)(xxx) ,#≺ f ∗

i
(t)(xxx′), (3.159)

|f ∗
i
(t)(xxx) ∧ f ∗

i
(t)(xxx′)| = lF (t),i. (3.160)

Then we have

dF,if
∗
i
(t+1)(xxx)

(A)
= f ∗

i
(t)(xxx)dF,τ∗i (xxx)

(B)

,#≺ f ∗
i
(t)(xxx′)dF,τ∗i (xxx)

(C)
= dF,if

∗
i
(t+1)(xxx′),

(3.161)
where (A) follows from Lemma 3.4.1, (B) follows from (3.159), and (C) follows
from Lemma 3.4.1. Hence, we obtain

f ∗
i
(t+1)(xxx) ,#≺ f ∗

i
(t+1)(xxx′). (3.162)

We have

lF (t),i
(A)
= |f ∗

i
(t)(xxx) ∧ f ∗

i
(t)(xxx′)| (3.163)

(B)
= |(f ∗

i
(t)(xxx)dF (t),τ∗i (xxx)

) ∧ (f ∗
i
(t)(xxx′)dF (t),τ∗i (xxx

′))| (3.164)
(C)
= |(dF (t),if

∗
i
(t+1)(xxx)) ∧ (dF (t),if

∗
i
(t+1)(xxx′))| (3.165)

= |dF (t),i|+ |f ∗
i
(t+1)(xxx) ∧ f ∗

i
(t+1)(xxx′)| (3.166)

(D)

≥ |dF (t),i|+ lF (t+1),i, (3.167)

where (A) follows from (3.160), (B) follows from Lemma 3.4.1, (C) follows
from (3.162), and (D) follows from (3.162). By (3.154) and (3.167), we
have lF (t+1),i = 0 if lF (t),i = 0 and lF (t+1),i < lF (t),i if lF (t),i > 0. Therefore,
lF (t),i = 0 for any t ≥ lF (0),i. Consequently, we obtain F (t̄) ∈ Ffork, where
t̄ := max{lF,0, lF,1, . . . , lF,|F |−1}. !
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3.5 Proofs of Lemmas in Chapter 3

3.5.1 Proof of Lemma 3.1.2
Proof of lemma 3.1.2. For m ∈ {1, 2, . . . ,M := 2(2

k)}, the number of possi-
ble tuples (τ0, τ1, . . . , τm−1) (i.e., a tuple of m mappings from S to [m]) is
m|S|m, in particular, finite. Hence, the number of possible vectors πππ(F ′) =
(π0(F ′), π1(F ′), . . . , πm−1(F ′)) of a code-tuple F ′ ∈ F ′ is also finite (cf. Re-
mark 2.4.1), where

F ′ := {F ′ ∈ Firr ∩ Fext ∩ Fk-dec : |F ′| ≤ M}. (3.168)

Therefore, D := {πi(F ′) : F ′ ∈ F ′, i ∈ [F ′]} is a finite set and has the
minimum value δ := minD. Note that δ > 0 holds since πi(F ′) > 0 for any
F ′ ∈ F ′ and i ∈ [F ′] by F ′ ⊆ Firr and Lemma 2.5.2 (ii).

Now, we define

F ′′ := {F ′(f ′, τ ′) ∈ F ′ :
∑

i∈[F ′],s∈S

|f ′
i(s)| ≤

l

δν
}, (3.169)

where l := 'log2 |S|( and ν := mins∈S µ(s). Note that

0 < ν ≤ 1

|S| . (3.170)

Then F ′′ is not empty because F̃ (f̃0, τ̃0) ∈ F (1) defined as the following
(3.171) is in F ′′:

f̃0(sr) = b(r), τ̃0(sr) = 0 (3.171)

for r = 0, 1, 2, . . . , σ − 1, where S = {s0, s1, . . . , sσ−1} and b(r) denotes the
binary representation of length l of the integer r. In fact, we obtain F̃ ∈ F ′′

by
∑

i∈[F̃ ],s∈S

|f̃i(s)| =
∑

s∈S

|f̃0(s)| = |S|l
(A)

≤ l

ν

(B)

≤ l

δν
, (3.172)

where (A) follows from (3.170), and (B) follows from 0 < δ ≤ 1. Since F ′′ is
a non-empty and finite set, there exists F ∗ ∈ F ′′ such that

L(F ∗) = min
F ′′∈F ′′

L(F ′′). (3.173)
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To complete the proof, it suffices to show that L(F ∗) ≤ L(F ) for any F ∈
Freg ∩ Fext ∩ Fk-dec.

First, we can see that L(F ∗) ≤ L(F ′) for any F ′ ∈ F ′ because for any
F ′(f ′, τ ′) ∈ F ′ \ F ′′, we have

L(F ′) =
∑

i∈[F ′]

πi(F
′)Li(F

′) (3.174)

=
∑

i∈[F ′]

πi(F
′)
∑

s∈S

µ(s)|f ′
i(s)| (3.175)

(A)

≥ δν
∑

i∈[F ′],s∈S

|f ′
i(s)| (3.176)

(B)
> δν · l

δν
(3.177)

= l (3.178)
= L(F̃ ) (3.179)
(C)

≥ L(F ∗), (3.180)

where (A) follows from the definitions of δ and ν, (B) follows from F ′ ,∈ F ′′,
and (C) follows from (3.173). Hence, we have

L(F ∗) = min
F ′∈F ′

L(F ′). (3.181)

By Theorem 3.1.1, for any F ∈ Freg ∩ Fext ∩ Fk-dec, there exists F ′ ∈
Firr∩Fext∩Fk-dec such that L(F ′) ≤ L(F ) and |Pk

F ′ | = |F ′|. Then we have
F ′ ∈ F ′ because

|F ′| = |Pk
F ′ | ≤ |P(Ck)| = 2(2

k) = M, (3.182)

where P(Ck) denotes the power set of Ck. Therefore, for any F ∈ Freg ∩
Fext ∩ Fk-dec, we have

L(F ) ≥ L(F ′)
(A)

≥ L(F ∗) (3.183)

as desired, where (A) follows from (3.181). !
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3.5.2 Proof of Lemma 3.2.1
Proof of Lemma 3.2.1. (Proof of (i)): We prove only Pk

F,i(bbb) ⊇ Pk
F ′,i(bbb) for

any i ∈ [F ] and bbb ∈ C∗ because we can prove Pk
F,i(bbb) ⊆ Pk

F ′,i(bbb), P̄k
F,i(bbb) ⊇

P̄k
F ′,i(bbb), and P̄k

F,i(bbb) ⊆ P̄k
F ′,i(bbb) in the similar way. To prove Pk

F,i(bbb) ⊇ Pk
F ′,i(bbb),

it suffices to prove that for any (i,xxx, bbb, ccc) ∈ [F ]× S+ × C∗ × C≤k, we have

(f ′∗
i (xxx) # bbbccc, f ′

i(x1) # bbb) =⇒ ∃xxx′ ∈ S+; (f ∗
i (xxx

′) # bbbccc, fi(x
′
1) # bbb) (3.184)

because this shows that for any i ∈ [F ′], bbb ∈ C∗, and ccc ∈ Ck, we have

ccc ∈ Pk
F ′,i(bbb)

(A)⇐⇒ ∃xxx ∈ S+; (f ′∗
i (xxx) # bbbccc, fi(x1) # bbb) (3.185)

(B)
=⇒ ∃xxx′ ∈ S+; (f ∗

i (xxx
′) # bbbccc, fi(x

′
1) # bbb) (3.186)

(C)⇐⇒ ccc ∈ Pk
F,i(bbb) (3.187)

as desired, where (A) follows from (2.12), (B) follows from (3.184), and (C)
follows from (2.12).

Choose (i,xxx, bbb, ccc) ∈ [F ]× S+ × C∗ × C≤k arbitrarily and assume

f ′∗
i (xxx) # bbbccc (3.188)

and
f ′
i(x1) # bbb. (3.189)

Then we have
fi(x1)

(A)
= f ′

i(x1)
(B)

# bbb, (3.190)

where (A) follows from the assumption (a) of this lemma, and (B) follows
from (3.189).

We prove (3.184) by induction for |xxx|. For the base case |xxx| = 1, we have

f ∗
i (xxx) = fi(x1)

(A)
= f ′

i(x1) = f ′∗
i (xxx)

(B)

# bbbccc, (3.191)

where (A) follows from the assumption (a) of this lemma, and (B) follows
from (3.188). By (3.191) and (3.190), the claim (3.184) holds for the base
case |xxx| = 1.

We consider the induction step for |xxx| ≥ 2. We have

fi(x1)f
′∗
τ ′i(x1)(suff(xxx))

(A)
= f ′

i(x1)f
′∗
τ ′i(x1)(suff(xxx))

(B)
= f ′∗

i (xxx)
(C)

# bbbccc, (3.192)
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where (A) follows from the assumption (a) of this lemma, (B) follows from
(2.4), and (C) follows from (3.188). Therefore, fi(x1) # bbbccc or fi(x1) ≺ bbbccc
holds. In the case fi(x1) # bbbccc, clearly xxx′ := x1 satisfies f ∗

i (xxx
′) # bbbccc and

fi(x′
1) = fi(x1) # bbb by (3.190) as desired. Thus, now we assume fi(x1) ≺ bbbccc.

Then we have

|fi(x1)
−1bbbccc| = −|fi(x1)|+ |bbb|+ |ccc| (A)

= −|f ′
i(x1)|+ |bbb|+ |ccc|

(B)

≤ |ccc| ≤ k,
(3.193)

where (A) follows from the assumption (a) of this lemma, and (B) follows
from (3.189). By (3.192), we have

f ′∗
τ ′i(x1)(suff(xxx)) # fi(x1)

−1bbbccc. (3.194)

By (3.193) and (3.194), we can apply the induction hypothesis to (τ ′i(x1),
suff(xxx),λ, fi(x1)−1bbbccc). Hence, there exists xxx′ ∈ S∗ such that f ∗

τ ′i(x1)
(xxx′) #

fi(x1)−1bbbccc, which leads to fi(x1)−1bbbccc ∈ Pk′

F,τ ′i(x1)
by (2.16), where k′ :=

|fi(x1)−1bbbccc|. By Lemma 2.3.2 (i), there exists ccc′ ∈ Ck−k′ such that

fi(x1)
−1bbbcccccc′ ∈ Pk

F,τ ′i(x1)

(A)
= Pk

F,τi(x1), (3.195)

where (A) follows from the assumption (b) of this lemma. By (2.16), there
exists xxx′′ ∈ S∗ such that

f ∗
τi(x1)(xxx

′′) # fi(x1)
−1bbbcccccc′ # fi(x1)

−1bbbccc. (3.196)

Thus, we have

f ∗
i (x1xxx

′′)
(A)
= fi(x1)f

∗
τi(x1)(xxx

′′) (3.197)
(B)

# fi(x1)fi(x1)
−1bbbccc (3.198)

= bbbccc, (3.199)

where (A) follows from (2.4), and (B) follows from (3.196). The induction is
completed by (3.190) and (3.199).

(Proof of (ii)): We have

F ∈ Fext ⇐⇒ ∀i ∈ [F ];P1
F,i ,= ∅ (3.200)

(A)⇐⇒ ∀i ∈ [F ′];P1
F ′,i ,= ∅ (3.201)

⇐⇒ F ′ ∈ Fext, (3.202)
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where (A) follows from (i) of this lemma.
(Proof of (iii)): For any i ∈ [F ′] and s ∈ S, we have

Pk
F ′,τ ′i(s)

∩ P̄k
F ′,i(f

′
i(s))

(A)
= Pk

F,τ ′i(s)
∩ P̄k

F,i(f
′
i(s))

(B)
= Pk

F,τi(s) ∩ P̄k
F,i(fi(s))

(C)
= ∅,

(3.203)

where (A) follows from (i) of this lemma, (B) follows from the assumptions
(a) and (b), and (C) follows from F ∈ Fk-dec. Namely, F ′ satisfies Definition
2.2.3 (a).

For any i ∈ [F ′] and s, s′ ∈ S such that s ,= s′ and f ′
i(s) = f ′

i(s
′), we have

fi(s) = fi(s
′) (3.204)

by the assumption (a), and we have

Pk
F ′,τ ′i(s)

∩ Pk
F ′,τ ′i(s

′)

(A)
= Pk

F,τ ′i(s)
∩ Pk

F,τ ′i(s
′)

(B)
= Pk

F,τi(s) ∩ Pk
F,τi(s′)

(C)
= ∅, (3.205)

where (A) follows from (i) of this lemma, (B) follows from the assumptions
(b), and (C) follows from F ∈ Fk-dec and (3.204). Namely, F ′ satisfies
Definition 2.2.3 (b). !

3.5.3 Proof of Lemma 3.2.2
Proof of Lemma 3.2.2. We show RF ′ 9 p since this implies F ′ ∈ Freg by
Lemma 2.5.2 (i). Namely, we show that for any j ∈ [F ′], there exists xxx ∈ S∗

such that τ ′∗j (xxx) = p.
For j = p, the sequence xxx := λ satisfies τ ′∗j (xxx) = p by (2.5). Thus, we now

consider the case j ,= p. Choose j ∈ [F ′] \ {p} arbitrarily. Since p ∈ RF by
F ∈ Firr, there exists xxx = x1x2 . . . xn ∈ S+ such that τ ∗j (xxx) = p. Let r ≥ 1
be the minimum positive integer such that

τ ∗j (x1x2 . . . xr) ∈ I. (3.206)

Note that there exists such an integer r ≤ n since τ ∗j (xxx) = τ ∗j (x1x2 . . . xn) =
p ∈ I. We show that

τ ′∗j (x1x2 . . . xr′) = τ ∗j (x1x2 . . . xr′) (3.207)
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for any r′ = 1, 2, . . . , r − 1 by induction for r′. For the base case r′ = 0, we
have τ ′∗j (λ) = j = τ ∗j (λ) by (2.5). We consider the induction step for r′ ≥ 1.
We have

τ ′∗j (x1x2 . . . xr′)
(A)
= τ ′τ ′∗j (x1x2...xr′−1)

(xr′) (3.208)
(B)
= τ ′τ∗j (x1x2...xr′−1)

(xr′) (3.209)
(C)
= ττ∗j (x1x2...xr′−1)(xr′) (3.210)
(D)
= τ ∗j (x1x2 . . . xr′) (3.211)

as desired, where (A) follows from Lemma 2.1.1 (ii), (B) follows from the
induction hypothesis, (C) is obtained by applying the second case of (3.13)
since ττ∗j (x1x2...xr′−1)(xr′) = τ ∗j (x1x2 . . . xr′) ,∈ I by r′ ≤ r − 1 and the mini-
mality of r, and (D) follows from Lemma 2.1.1 (ii).

Thus, we obtain

τ ′∗j (x1x2 . . . xr)
(A)
= τ ′τ ′∗j (x1x2...xr−1)(xr)

(B)
= τ ′τ∗j (x1x2...xr−1)(xr)

(C)
= p (3.212)

as desired, where (A) follows from Lemma 2.1.1 (ii), (B) follows from (3.207),
and (C) follows from (3.206) and the first case of (3.13). !

3.5.4 Proof of Lemma 3.2.4
Proof of Lemma 3.2.4. Let p ∈ arg min

i∈[F ]
(hi(F )− hi(F ′)). Then it holds that

∀i ∈ [F ];hi(F
′)− hp(F

′) ≤ hi(F )− hp(F ). (3.213)

We have
∑

i∈[F ]

(hi(F )− hp(F ))Qp,i(F ) =
∑

i∈[F ]

(hi(F )− hp(F ))
∑

s∈S
τp(s)=i

µ(s) (3.214)

=
∑

i∈[F ]

∑

s∈S
τp(s)=i

(hi(F )− hp(F ))µ(s) (3.215)

=
∑

i∈[F ]

∑

s∈S
τp(s)=i

(hτp(s)(F )− hp(F ))µ(s) (3.216)

=
∑

s∈S

(hτp(s)(F )− hp(F ))µ(s). (3.217)
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Similarly, we have
∑

i∈[F ]

(hi(F )− hp(F ))Qp,i(F
′) =

∑

s∈S

(hτ ′p(s)(F )− hp(F ))µ(s). (3.218)

Hence, we obtain

L(F ′)
(A)
= Lp(F

′) +
∑

i∈[F ]

(hi(F
′)− hp(F

′))Qp,i(F
′) (3.219)

(B)

≤ Lp(F
′) +

∑

i∈[F ]

(hi(F )− hp(F ))Qp,i(F
′) (3.220)

(C)
= Lp(F

′) +
∑

s∈S

(hτ ′p(s)(F )− hp(F ))µ(s) (3.221)

(D)

≤ Lp(F ) +
∑

s∈S

(hτp(s)(F )− hp(F ))µ(s) (3.222)

(E)
= Lp(F ) +

∑

i∈[F ]

(hi(F )− hp(F ))Qp,i(F ) (3.223)

(F)
= L(F ) (3.224)

as desired, where (A) follows from (3.14), (B) follows from (3.213), (C) follows
from (3.218), (D) follows from the assumptions (a) and (b) of this lemma,
(E) follows from (3.217), and (F) follows from (3.14). !

3.5.5 Proof of Lemma 3.3.1
Proof of Lemma 3.3.1. (Proof of (i)): We prove by induction for |zzz|. For the
base case |zzz| = 0, we have τ ′∗〈λ〉(λ) = 〈λ〉 by (2.5). We consider the induction
step for |zzz| ≥ 1. We have

τ ′∗〈λ〉(zzz)
(A)
= τ ′τ ′∗〈λ〉(pref(zzz))(zn)

(B)
= τ ′〈pref(zzz)〉(zn)

(C)
= 〈zzz〉, (3.225)

where zzz = z1z2 . . . zn and (A) follows from Lemma 2.1.1 (ii), (B) follows from
the induction hypothesis, and (C) follows from the first case of (3.29).

(Proof of (ii)): It suffices to show that 〈λ〉 ∈ RF ′ because it guarantees
that for any j ∈ [F ′], there exists xxx ∈ S∗ such that τ ′∗j (xxx) = 〈λ〉, which leads
to that for any zzz ∈ S≤L, we have

τ ′∗j (xxxzzz)
(A)
= τ ′∗τ ′∗j (xxx)(zzz) = τ ′∗〈λ〉(zzz)

(B)
= 〈zzz〉 (3.226)
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as desired, where (A) follows from Lemma 2.1.1 (ii), and (B) follows from (i)
of this lemma.

To prove 〈λ〉 ∈ RF ′ , we show that there exists xxx ∈ S∗ such that τ ′∗j (xxx) =
〈λ〉 for the following two cases separately: (I) the case j ∈ [F ] and (II) the
case j = [F ′] \ [F ].

(I) The case j ∈ [F ]: By the assumption that p = 〈λ〉 ∈ RF , there
exists xxx = x1x2 . . . xn′ ∈ S∗ such that τ ∗j (xxx) = 〈λ〉. We choose the
shortest xxx among such sequences. Then we can see τ ′∗j (x1x2 . . . xr) =
τ ∗j (x1x2 . . . xr) for any r = 0, 1, 2, . . . , n by induction for r. For the
base case r = 0, we have τ ′∗j (λ) = j = τ ∗j (λ) by (2.5). We consider the
induction step for r ≥ 1. We have

τ ′∗j (x1x2 . . . xr)
(A)
= τ ′τ ′∗j (x1x2...xr−1)(xr) (3.227)
(B)
= τ ′τ∗j (x1x2...xr−1)(xr) (3.228)
(C)
= ττ∗j (x1x2...xr−1)(xr) (3.229)
(D)
= τ ∗j (x1x2 . . . xr) (3.230)

as desired, where (A) follows from (2.5), (B) follows from the in-
duction hypothesis, (C) follows from the third case of (3.29) since
τ ∗j (x1x2 . . . xr−1) ∈ [F ] \ {〈λ〉} by the definition of xxx, and (D) follows
from Lemma 2.1.1 (ii). Therefore, we obtain τ ′∗j (xxx) = τ ∗j (xxx) = 〈λ〉 as
desired.

(II) The case where j = [F ′] \ [F ]: Then we have j = 〈zzz〉 for some zzz ∈ S≤L.
Choose z′z′z′ = z′1z

′
2 . . . z

′
n′ ∈ SL−|zzz|+1 arbitrarily. We have

τ ′∗〈λ〉(zzzzzz
′)

(A)
= τ ′τ ′∗〈λ〉(zzzpref(zzz′))(z

′
n′) (3.231)

(B)
= τ ′〈zzzpref(zzz′)〉(z

′
n′)

(C)
= τ ∗〈λ〉(zzzzzz

′) (3.232)
= τ ∗|F |−1(zzzzzz

′) ∈ [F ], (3.233)

where (A) follows from Lemma 2.1.1 (ii), (B) follows from (i) of this
lemma and zzzpref(zzz′) ∈ S≤L, and (C) follows from the second case
of (3.29) and zzzpref(zzz′) ∈ SL. Hence, by the discussion for the case (I)
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above, there exists xxx′ ∈ S∗ such that τ ′∗τ ′∗〈λ〉(zzzzzz′)(xxx
′) = 〈λ〉. Thus, xxx := zzz′xxx′

satisfies

τ ′∗〈zzz〉(xxx) = τ ′∗〈zzz〉(zzz
′xxx′)

(A)
= τ ′∗τ ′∗〈λ〉(zzz)(z

zz′xxx′)
(B)
= τ ′∗〈λ〉(zzzzzz

′xxx′)
(C)
= τ ′∗τ ′∗〈λ〉(zzzzzz′)(x

xx′) = 〈λ〉,
(3.234)

where (A) follows from (i) of this lemma, (B) follows from Lemma 2.1.1
(ii), and (C) follows from Lemma 2.1.1 (ii).

!

3.5.6 Proof of Lemma 3.3.2
Proof of Lemma 3.3.2. (Proof of (i)): We prove by the induction for |xxx|. For
the base case |xxx| = 0, we have f ′′∗

〈zzz〉(λ) = λ = f ′∗
〈zzz〉(λ) by (2.4). We consider

the induction step for |xxx| ≥ 1 choosing zzz ∈ S≤L arbitrarily and dividing into
the following two cases: the case f ′∗

〈λ〉(zzz) ≺ ddd ) f ′∗
〈λ〉(zzzxxx) and the other case.

• The case f ′∗
〈λ〉(zzz) ≺ ddd ) f ′∗

〈λ〉(zzzxxx): We consider the following two cases
separately: the case f ′∗

〈λ〉(zzz) ≺ ddd ) f ′∗
〈λ〉(zzzx1) and the case f ′∗

〈λ〉(zzzx1) ≺
ddd ) f ′∗

〈λ〉(zzzxxx).

– The case f ′∗
〈λ〉(zzz) ≺ ddd ) f ′∗

〈λ〉(zzzx1): We have

f ′′∗
〈zzz〉(xxx)

(A)
= f ′′

〈zzz〉(x1)f
′′∗
〈zzzx1〉(suff(xxx)) (3.235)

(B)
= f ′∗

〈zzz〉(zzz)
−1pref(ddd)ddd−1f ′∗

〈λ〉(zzzx1)f
′′∗
〈zzzx1〉(suff(xxx)) (3.236)

(C)
= f ′∗

〈zzz〉(zzz)
−1pref(ddd)ddd−1f ′∗

〈λ〉(zzzx1)f
′∗
〈zzzx1〉(suff(xxx)) (3.237)

(D)
= f ′∗

〈zzz〉(zzz)
−1pref(ddd)ddd−1f ′∗

〈λ〉(zzzxxx), (3.238)

where (A) follows from (2.4) and Lemma 3.3.1 (i), (B) follows
from the first case of (3.35) and f ′∗

〈λ〉(zzz) ≺ ddd ) f ′∗
〈λ〉(zzzx1), (C)

follows from the second case of (3.37) by the induction hypothesis
and f ′∗

〈λ〉(zzzx1) ,≺ ddd, and (D) follows from (2.4).
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– The case f ′∗
〈λ〉(zzzx1) ≺ ddd ) f ′∗

〈λ〉(zzzxxx): We have

f ′′∗
〈zzz〉(xxx)

(A)
= f ′′

〈zzz〉(x1)f
′′∗
〈zzzx1〉(suff(xxx)) (3.239)

(B)
= f ′

〈zzz〉(x1)f
′′∗
〈zzzx1〉(suff(xxx)) (3.240)

(C)
= f ′

〈zzz〉(x1)f
′∗
〈λ〉(zzzx1)

−1pref(ddd)ddd−1(f ′∗
〈λ〉(zzzxxx)) (3.241)

(D)
= f ′∗

〈zzz〉(zzz)
−1pref(ddd)ddd−1f ′∗

〈λ〉(zzzxxx), (3.242)

where (A) follows from (2.4) and Lemma 3.3.1 (i), (B) follows from
the second case of (3.35) since ddd ,) f ′∗

〈λ〉(zzzx1), (C) follows from the
first case of (3.37) by the induction hypothesis and f ′∗

〈λ〉(zzzx1) ≺
ddd ) f ′∗

〈λ〉(zzzxxx), and (D) follows from (2.4).

• The other case: We have

f ′′∗
〈zzz〉(xxx)

(A)
= f ′′

〈zzz〉(x1)f
′′∗
〈zzzx1〉(suff(xxx)) (3.243)

(B)
= f ′

〈zzz〉(x1)f
′′∗
〈zzzx1〉(suff(xxx)) (3.244)

(C)
= f ′

〈zzz〉(x1)f
′∗
〈zzzx1〉(suff(xxx)) (3.245)

(D)
= f ′∗

〈zzz〉(xxx), (3.246)

where (A) follows from (2.4) and Lemma 3.3.1 (i), (B) follows from the
second case of (3.35) since f ′∗

〈λ〉(zzz) ≺ ddd ) f ′∗
〈λ〉(zzzx1) does not hold, (C)

follows from the second case of (3.37) by the induction hypothesis and
that f ′∗

〈λ〉(zzz) ≺ ddd ) f ′∗
〈λ〉(zzzx1) does not hold, and (D) follows from (2.4).

(Proof of (ii)): Assume that

f ′′
〈zzz〉(s) ≺ f ′′

〈zzz〉(s
′). (3.247)

In the case f ′∗
〈λ〉(zzz) ,≺ ddd, we have

f ′
〈zzz〉(s)

(A)
= f ′′

〈zzz〉(s)
(B)
≺ f ′′

〈zzz〉(s
′)

(C)
= f ′

〈zzz〉(s
′) (3.248)

as desired, where (A) follows from the second case of (3.35) and f ′∗
〈λ〉(zzz) ,≺ ddd,

(B) follows from (3.247), and (C) follows from the second case of (3.35) and
f ′∗
〈λ〉(zzz) ,≺ ddd.

We consider the case f ′∗
〈λ〉(zzz) ≺ ddd dividing into four cases by whether

ddd ) f ′∗
〈λ〉(zzzs) and whether ddd ) f ′∗

〈λ〉(zzzs
′).
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• The case ddd ) f ′∗
〈λ〉(zzzs), ddd ) f ′∗

〈λ〉(zzzs
′): We have

f ′∗
〈λ〉(zzz)

−1pref(ddd)ddd−1(f ′∗
〈λ〉(zzz)f

′∗
〈zzz〉(s)) (3.249)

(A)
= f ′∗

〈λ〉(zzz)
−1pref(ddd)ddd−1f ′∗

〈λ〉(zzzs) (3.250)
(B)
= f ′′

〈zzz〉(s) (3.251)
(C)
≺ f ′′

〈zzz〉(s
′) (3.252)

(D)
= f ′∗

〈λ〉(zzz)
−1pref(ddd)ddd−1f ′∗

〈λ〉(zzzs
′) (3.253)

(E)
= f ′∗

〈λ〉(zzz)
−1pref(ddd)ddd−1(f ′∗

〈λ〉(zzz)f
′
〈zzz〉(s

′)), (3.254)

where (A) follows from Lemma 2.1.1 (i) and Lemma 3.3.1 (i), (B) fol-
lows from the first case of (3.35) and ddd ) f ′∗

〈λ〉(zzzs), (C) follows from
(3.247), (D) follows from the first case of (3.35) and ddd ) f ′∗

〈λ〉(zzzs
′), and

(E) follows from Lemma 2.1.1 (i) and Lemma 3.3.1 (i). Comparing
both sides of (3.254), we obtain f ′

〈zzz〉(s) ≺ f ′
〈zzz〉(s

′) as desired.

• The case ddd ) f ′∗
〈λ〉(zzzs), ddd ,) f ′∗

〈λ〉(zzzs
′): We show that this case is impos-

sible. We have

f ′∗
〈λ〉(zzzs

′)
(A)
= f ′∗

〈λ〉(zzz)f
′
〈zzz〉(s

′) (3.255)
(B)
= f ′∗

〈λ〉(zzz)f
′′
〈zzz〉(s

′) (3.256)
(C)
1 f ′∗

〈λ〉(zzz)f
′′
〈zzz〉(s) (3.257)

(D)
= f ′∗

〈λ〉(zzz)f
′∗
〈λ〉(zzz)

−1dddpref(ddd)−1f ′∗
〈λ〉(zzzs) (3.258)

= dddpref(ddd)−1ddd (3.259)
# ddd, (3.260)

where (A) follows from Lemma 2.1.1 (i) and Lemma 3.3.1 (i), (B) fol-
lows from the second case of (3.35) and ddd ,) f ′∗

〈λ〉(zzzs
′), (C) follows from

(3.247), and (D) follows from the first case of (3.35) and ddd ) f ′∗
〈λ〉(zzzs).

This conflicts with ddd ,) f ′∗
〈λ〉(zzzs

′).
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• The case ddd ,) f ′∗
〈λ〉(zzzs), ddd ) f ′∗

〈λ〉(zzzs
′): We have

f ′∗
〈λ〉(zzzs)

(A)
= f ′∗

〈λ〉(zzz)f
′
〈zzz〉(s) (3.261)

(B)
= f ′∗

〈λ〉(zzz)f
′′
〈zzz〉(s) (3.262)

(C)
≺ f ′∗

〈λ〉(zzz)f
′′
〈zzz〉(s

′) (3.263)
(D)
= f ′∗

〈λ〉(zzz)f
′∗
〈λ〉(zzz)

−1dddpref(ddd)−1f ′∗
〈λ〉(zzzs

′) (3.264)
= dddpref(ddd)−1f ′∗

〈λ〉(zzzs
′), (3.265)

where (A) follows from Lemma 2.1.1 (i) and Lemma 3.3.1 (i), (B) fol-
lows from the second case of (3.35) and ddd ,) f ′∗

〈λ〉(zzzs), (C) follows from
(3.247), and (D) follows from the first case of (3.35) and ddd ) f ′∗

〈λ〉(zzzs
′).

Therefore, we have at least one of f ′∗
〈λ〉(zzzs) ≺ ddd and f ′∗

〈λ〉(zzzs) # ddd. Since
ddd ,) f ′∗

〈λ〉(zzzs), we have f ′∗
〈λ〉(zzzs) ≺ ddd. Thus, we have f ′∗

〈λ〉(zzzs) ≺ ddd )
f ′∗
〈λ〉(zzzs

′), which leads to f ′
〈zzz〉(s) ≺ f ′

〈zzz〉(s
′) as desired.

• The case ddd ,) f ′∗
〈λ〉(zzzs), ddd ,) f ′∗

〈λ〉(zzzs
′): We have

f ′
〈zzz〉(s)

(A)
= f ′′

〈zzz〉(s)
(B)
≺ f ′′

〈zzz〉(s
′)

(C)
= f ′

〈zzz〉(s
′) (3.266)

as desired, where (A) follows from the second case of (3.35) and ddd ,)
f ′∗
〈λ〉(zzzs), (B) follows from (3.247), and (C) follows from the second case

of (3.35) and ddd ,) f ′∗
〈λ〉(zzzs

′).

(Proof of (iii)): Choose xxx ∈ S≥L arbitrarily. We have

|f ′∗
〈λ〉(xxx)|

(A)
= |f ∗

〈λ〉(xxx)|
(B)

≥
⌊
|xxx|
|F |

⌋
≥

⌊
L

|F |

⌋
(C)
=

⌊
|F |(|ddd|+ 1)

|F |

⌋
= |ddd|+ 1,

(3.267)
where (A) follows from Lemma 2.5.1 (i) since ϕ defined in (3.30) is a homo-
morphism from F ′ to F , (B) follows from Lemma 2.3.3, and (C) follows from
the definition of L. Also, we have

|f ′′∗
〈λ〉(xxx)|

(A)

≥ min{|f ′∗
〈λ〉(xxx)|, |f ′∗

〈λ〉(zzz)
−1pref(ddd)ddd−1(f ′∗

〈λ〉(zzzxxx))|} (3.268)
= min{|f ′∗

〈zzz〉(xxx)|, |f ′∗
〈zzz〉(xxx)|− 1} (3.269)

(B)

≥ |ddd|, (3.270)

where (A) follows from (i) of this lemma, and (B) follows from (3.267). !
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3.5.7 Proof of Lemma 3.3.3
Proof of Lemma 3.3.3. (Proof of (i)): Assume

f ′′∗
〈λ〉(xxx) # ccc. (3.271)

We consider the following two cases separately: the case ddd ) f ′∗
〈λ〉(xxx) and the

case ddd ,) f ′∗
〈λ〉(xxx).

• The case ddd ) f ′∗
〈λ〉(xxx): We have

f ′′∗
〈λ〉(xxx)

(A)
= pref(ddd)ddd−1f ′∗

〈λ〉(xxx) # pref(ddd), (3.272)

where (A) follows from the first case of (3.37) and ddd ) f ′∗
〈λ〉(xxx). Compar-

ing (3.271) and (3.272), we have pref(ddd) # ccc since |pref(ddd)| ≥ k ≥ |ccc|.
Therefore, by ddd ) f ′∗

〈λ〉(xxx), we obtain f ′∗
〈λ〉(xxx) # ddd # pref(ddd) # ccc as

desired.

• The case ddd ,) f ′∗
〈λ〉(xxx): We have

f ′∗
〈λ〉(xxx)

(A)
= f ′′∗

〈λ〉(xxx)
(B)

# ccc, (3.273)

where (A) follows from the second case of (3.37) and ddd ,) f ′∗
〈λ〉(xxx), and

(B) follows from (3.271).

(Proof of (ii)): For i ∈ [F ]\{〈λ〉}, we have f ′′
i (s) = f ′

i(s) directly from the
second case of (3.35). We consider the case where i = 〈zzz〉 for some zzz ∈ SL.
Then we have f ′∗

〈λ〉(zzz) ,≺ ddd because |f ′∗
〈λ〉(zzz)| ≥ |ddd| + 1 by Lemma 3.3.2 (iii).

Therefore, by the second case of (3.35), we obtain f ′′
i (s) = f ′

i(s).
(Proof of (iii)): We prove only that Pk

F ′′,i(bbb) ⊆ Pk
F ′,i(bbb) for any i ∈ J

and bbb ∈ C∗ because we can prove P̄k
F ′′,i(bbb) ⊆ P̄k

F ′,i(bbb) in the similar way.
To prove Pk

F ′′,i(bbb) ⊆ Pk
F ′,i(bbb), it suffices to prove that for any (i,xxx, bbb, ccc) ∈

J × S+ × C∗ × C≤k, we have

(f ′′∗
i (xxx) # bbbccc, f ′′

i (x1) # bbb) =⇒ ∃xxx′ ∈ S+; (f ′∗
i (xxx

′) # bbbccc, f ′
i(x

′
1) # bbb) (3.274)

because this shows that for any i ∈ J , bbb ∈ C∗, and ccc ∈ Ck, we have

ccc ∈ Pk
F ′′,i(bbb)

(A)⇐⇒ ∃xxx ∈ S+; (f ′′∗
i (xxx) # bbbccc, f ′′

i (x1) # bbb) (3.275)
(B)
=⇒ ∃xxx′ ∈ S+; (f ′∗

i (xxx
′) # bbbccc, f ′

i(x
′
1) # bbb) (3.276)

(C)⇐⇒ ccc ∈ Pk
F ′,i(bbb) (3.277)
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as desired, where (A) follows from (2.12), (B) follows from (3.274), and (C)
follows from (2.12).

Choose (i,xxx, bbb, ccc) ∈ [F ]× S+ × C∗ × C≤k arbitrarily and assume

f ′′∗
i (xxx) # bbbccc (3.278)

and
f ′′
i (x1) # bbb. (3.279)

Then we have
f ′
i(x1)

(A)
= f ′′

i (x1)
(B)

# bbb, (3.280)
where (A) follows from (ii) of this lemma, and (B) follows from (3.279).

We prove (3.274) by induction for |xxx|. For the base case |xxx| = 1, we have

f ′∗
i (xxx) = f ′

i(x1)
(A)
= f ′′

i (x1) = f ′′∗
i (xxx)

(B)

# bbbccc (3.281)

as desired, where (A) follows from (ii) of this lemma, and (B) follows from
(3.278). By (3.281) and (3.280), the claim (3.274) holds for the base case
|xxx| = 1.

We consider the induction step for |xxx| ≥ 2. We have

f ′
i(x1)f

′′∗
τ ′′i (x1)(suff(xxx))

(A)
= f ′′

i (x1)f
′′∗
τ ′′i (x1)(suff(xxx))

(B)
= f ′′∗

i (xxx)
(C)

# bbbccc, (3.282)

where (A) follows from (ii) of this lemma, (B) follows from (2.4), and (C)
follows from (3.278).

Therefore, f ′
i(x1) # bbbccc or f ′

i(x1) ≺ bbbccc holds. In the case f ′
i(x1) # bbbccc, the

sequence xxx′ := x1 satisfies f ′∗
i (xxx

′) # bbbccc and f ′
i(x

′
1) = f ′

i(x1) # bbb by (3.280) as
desired. Thus, now we assume f ′

i(x1) ≺ bbbccc. Then we have

|f ′
i(x1)

−1bbbccc| = −|f ′
i(x1)|+ |bbb|+ |ccc| (A)

= −|f ′′
i (x1)|+ |bbb|+ |ccc|

(B)

≤ |ccc| ≤ k,
(3.283)

where (A) follows from (ii) of this lemma, and (B) follows from (3.279). By
(3.282), we have

f ′′∗
τ ′′i (x1)(suff(xxx)) # f ′

i(x1)
−1bbbccc. (3.284)

We can see that there exists xxx′ ∈ S+ such that

f ′∗
τ ′′i (x1)(xxx

′) # f ′
i(x1)

−1bbbccc (3.285)

as follows.
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• The case τ ′′i (x1) = 〈λ〉: By (3.283), we can apply (i) of this lemma to
obtain that xxx′ := suff(xxx) satisfies (3.285) from (3.284).

• The case τ ′′i (x1) ∈ J : By (3.283) and (3.284), we can apply the induc-
tion hypothesis to (τ ′′i (x1), suff(xxx),λ, f ′

i(x1)−1bbbccc).

Therefore, we have

f ′∗
i (x1xxx

′)
(A)
= f ′

i(x1)f
′∗
τ ′i(x1)(xxx

′)
(B)
= f ′

i(x1)f
′∗
τ ′′i (x1)(xxx

′)
(C)

# f ′
i(x1)f

′
i(x1)

−1bbbccc = bbbccc,

(3.286)

where (A) follows from (2.4), (B) follows from (3.36), and (C) follows from
(3.285). The induction is completed by (3.280) and (3.286). !

3.5.8 Proof of Lemma 3.3.4
Proof of Lemma 3.3.4. (Proof of (i)): Assume that

bbb ) bbb′. (3.287)

In the case f ′∗
〈λ〉(zzz) ,) pref(ddd), we have

ψzzz(bbb)
(A)
= bbb

(B)

) bbb′
(C)
= ψzzz(bbb

′), (3.288)

where (A) follows from the second case of (3.58) and f ′∗
〈λ〉(zzz) ,) pref(ddd), (B)

follows from (3.287), and (C) follows from the second case of (3.58) and
f ′∗
〈λ〉(zzz) ,) pref(ddd).

We consider the case f ′∗
〈λ〉(zzz) ) pref(ddd) dividing into four cases by whether

pref(ddd) ≺ f ′∗
〈λ〉(zzz)bbb and whether pref(ddd) ≺ f ′∗

〈λ〉(zzz)bbb
′.

• The case pref(ddd) ≺ f ′∗
〈λ〉(zzz)bbb, pref(ddd) ≺ f ′∗

〈λ〉(zzz)bbb
′: We have

ψzzz(bbb)
(A)
= f ′∗

〈λ〉(zzz)
−1dddpref(ddd)−1(f ′∗

〈λ〉(zzz)bbb) (3.289)
(B)

) f ′∗
〈λ〉(zzz)

−1dddpref(ddd)−1(f ′∗
〈λ〉(zzz)bbb

′) (3.290)
(C)
= ψzzz(bbb

′) (3.291)

as desired, where (A) follows from the first case of (3.58) and pref(ddd) ≺
f ′∗
〈λ〉(zzz)bbb, (B) follows from (3.287), and (C) follows from the first case of

(3.58) and pref(ddd) ≺ f ′∗
〈λ〉(zzz)bbb

′.
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• The case pref(ddd) ≺ f ′∗
〈λ〉(zzz)bbb, pref(ddd) ,≺ f ′∗

〈λ〉(zzz)bbb
′: This case is impossible

because (3.287) leads to pref(ddd) ≺ f ′∗
〈λ〉(zzz)bbb ) f ′∗

〈λ〉(zzz)bbb
′, which conflicts

with pref(ddd) ,≺ f ′∗
〈λ〉(zzz)bbb

′.

• The case pref(ddd) ,≺ f ′∗
〈λ〉(zzz)bbb, pref(ddd) ≺ f ′∗

〈λ〉(zzz)bbb
′: By (3.287), we have

f ′∗
〈λ〉(zzz)bbb ) f ′∗

〈λ〉(zzz)bbb
′. (3.292)

By (3.292) and pref(ddd) ≺ f ′∗
〈λ〉(zzz)bbb

′, exactly one of pref(ddd) ≺ f ′∗
〈λ〉(zzz)bbb and

pref(ddd) # f ′∗
〈λ〉(zzz)bbb holds. Since the former does not hold by pref(ddd) ,≺

f ′∗
〈λ〉(zzz)bbb, the latter holds:

f ′∗
〈λ〉(zzz)bbb ) pref(ddd). (3.293)

Thus, we have

ψzzz(bbb)
(A)
= bbb (3.294)
= f ′∗

〈λ〉(zzz)
−1f ′∗

〈λ〉(zzz)bbb (3.295)
(B)

) f ′∗
〈λ〉(zzz)

−1pref(ddd) (3.296)
) f ′∗

〈λ〉(zzz)
−1dddpref(ddd)−1(f ′∗

〈λ〉(zzz)bbb
′) (3.297)

(C)
= ψzzz(bbb

′), (3.298)

where (A) follows from the second case of (3.58) and pref(ddd) ,≺ f ′∗
〈λ〉(zzz)bbb,

(B) follows from (3.293), and (C) follows from the first case of (3.58)
and pref(ddd) ≺ f ′∗

〈λ〉(zzz)bbb
′.

• The case pref(ddd) ,≺ f ′∗
〈λ〉(zzz)bbb, pref(ddd) ,≺ f ′∗

〈λ〉(zzz)bbb
′: We have

ψzzz(bbb)
(A)
= bbb

(B)

) bbb′
(C)
= ψzzz(bbb

′) (3.299)

as desired, where (A) follows from the second case of (3.58) and pref(ddd) ,≺
f ′∗
〈λ〉(zzz)bbb, (B) follows from (3.287), and (C) follows from the second case

of (3.58) and pref(ddd) ,≺ f ′∗
〈λ〉(zzz)bbb

′.

(Proof of (ii)): We consider the following three cases separately: (I) the
case f ′∗

〈λ〉(zzz) ) pref(ddd) ≺ f ′∗
〈λ〉(zxzxzx), (II) the case f ′∗

〈λ〉(zzzxxx) ) pref(ddd) ≺ f ′∗
〈λ〉(zzzxxx)ccc,

and (III) the other case.
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(I) The case f ′∗
〈λ〉(zzz) ) pref(ddd) ≺ f ′∗

〈λ〉(zxzxzx): We have

f ′∗
〈λ〉(zzz) ≺ ddd ) f ′∗

〈λ〉(zxzxzx) (3.300)

since

pref(ddd)d̄l
(A)

,∈ P∗
F,〈λ〉

(B)
= P∗

F ′,〈λ〉, (3.301)
where (A) follows from (3.27), and (B) follows from Lemma 2.5.1 (ii)
since ϕ defined in (3.30) is a homomorphism from F ′ to F . Therefore,
by the second case of (3.58), we obtain

f ′′∗
〈zzz〉(xxx) = f ′∗

〈λ〉(zzz)
−1pref(ddd)ddd−1(f ′∗

〈λ〉(zzzxxx)). (3.302)

We consider the following two cases separately: (I-A) the case f ′∗
〈λ〉(zzz) ≺

f ′∗
〈λ〉(zxzxzx) = ddd, ccc = λ and (I-B) the other case.

(I-A) The case f ′∗
〈λ〉(zzz) ≺ f ′∗

〈λ〉(zxzxzx) = ddd, ccc = λ: We have

f ′∗
〈λ〉(zzz)f

′′∗
〈zzz〉(xxx)ccc

(A)
= f ′∗

〈λ〉(zzz)f
′∗
〈λ〉(zzz)

−1pref(ddd)ddd−1(f ′∗
〈λ〉(zzzxxx))ccc (3.303)

(B)
= f ′∗

〈λ〉(zzz)f
′∗
〈λ〉(zzz)

−1pref(ddd)ddd−1dddccc (3.304)
(C)
= pref(ddd) (3.305)
,1 pref(ddd), (3.306)

where (A) follows from (3.302), (B) follows from f ′∗
〈λ〉(zxzxzx) = ddd, and

(C) follows from ccc = λ.
Hence, we have

ψzzz(f
′′∗
〈zzz〉(xxx)ccc)

(A)
= f ′′∗

〈zzz〉(xxx)ccc (3.307)
(B)
= f ′∗

〈λ〉(zzz)
−1pref(ddd)ddd−1f ′∗

〈λ〉(zzzxxx)ccc (3.308)
(C)
= f ′∗

〈λ〉(zzz)
−1pref(f ′∗

〈λ〉(zzzxxx))ddd
−1ddd (3.309)

(D)
= f ′∗

〈λ〉(zzz)
−1f ′∗

〈λ〉(zzz)pref(f
′∗
〈zzz〉(xxx)))ddd

−1ddd (3.310)
= pref(f ′∗

〈zzz〉(xxx)) (3.311)

as desired, where (A) follows from the second case of (3.58) and
(3.306), (B) follows from (3.302), (C) follows from f ′∗

〈λ〉(zxzxzx) = ddd
and ccc = λ, and (D) follows from Lemma 2.1.1 (i), Lemma 3.3.1
(i), and f ′∗

〈λ〉(zzz) ≺ f ′∗
〈λ〉(zxzxzx).
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(I-B) The other case: Then by (3.300), we have

ddd ≺ f ′∗
〈λ〉(zxzxzx)ccc, (3.312)

since it does not hold that f ′∗
〈λ〉(zzz) ≺ f ′∗

〈λ〉(zxzxzx) = ddd, ccc = λ by the
assumption of the case (I-B).
We have

f ′∗
〈λ〉(zzz)f

′′∗
〈zzz〉(xxx)ccc

(A)
= f ′∗

〈λ〉(zzz)f
′∗
〈λ〉(zzz)

−1pref(ddd)ddd−1(f ′∗
〈λ〉(zzzxxx))ccc (3.313)

(B)
1 f ′∗

〈λ〉(zzz)f
′∗
〈λ〉(zzz)

−1pref(ddd)ddd−1ddd (3.314)
= pref(ddd) (3.315)
(C)

# f ′∗
〈λ〉(zzz) (3.316)

as desired, where (A) follows from (3.302), (B) follows from (3.312),
and (C) follows from the assumption of the case (I).
Hence, we have

ψzzz(f
′′
〈zzz〉(xxx)ccc)

(A)
= f ′∗

〈λ〉(zzz)
−1dddpref(ddd)−1(f ′∗

〈λ〉(zzz)f
′′∗
〈zzz〉(xxx)ccc) (3.317)

(B)
= f ′∗

〈λ〉(zzz)
−1dddpref(ddd)−1(f ′∗

〈λ〉(zzz)f
′∗
〈λ〉(zzz)

−1pref(ddd)ddd−1(f ′∗
〈λ〉(zzzxxx)ccc))

(3.318)
= f ′∗

〈zzz〉(xxx)ccc (3.319)
(C)
= f ′∗

〈zzz〉(xxx)ψzxzxzx(ccc), (3.320)

where (A) follows from the first case of (3.58), (3.315), and (3.316),
(B) follows from (3.302), and (C) follows from the second case of
(3.58) and the assumption of the case (I).

(II) The case f ′∗
〈λ〉(zzzxxx) ) pref(ddd) ≺ f ′∗

〈λ〉(zzzxxx)ccc: Then since ddd ,) f ′∗
〈λ〉(zzzxxx), we

have
f ′′∗
〈zzz〉(xxx) = f ′∗

〈zzz〉(xxx) (3.321)
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applying the second case of (3.37). Therefore, we have

f ′∗
〈λ〉(zzz) ) f ′∗

〈λ〉(zzzxxx) (3.322)
(A)

) pref(ddd) (3.323)
(A)
≺ f ′∗

〈λ〉(zzzxxx)ccc (3.324)
(B)
= f ′∗

〈λ〉(zzz)f
′∗
〈zzz〉(xxx)ccc (3.325)

(C)
= f ′∗

〈λ〉(zzz)f
′′∗
〈zzz〉(xxx)ccc, (3.326)

where (A)s follow from the assumption of the case (II), (B) follows from
Lemma 2.1.1 (i) and Lemma 3.3.1 (i), and (C) follows from (3.321).
Hence, we have

ψzzz(f
′′∗
〈zzz〉(xxx)ccc)

(A)
= f ′∗

〈λ〉(zzz)
−1dddpref(ddd)−1(f ′∗

〈λ〉(zzz)f
′′∗
〈zzz〉(xxx)ccc) (3.327)

(B)
= f ′∗

〈λ〉(zzz)
−1dddpref(ddd)−1(f ′∗

〈λ〉(zzz)f
′∗
〈zzz〉(xxx)ccc) (3.328)

(C)
= f ′∗

〈λ〉(zzz)
−1dddpref(ddd)−1(f ′∗

〈λ〉(zxzxzx)ccc) (3.329)
= f ′∗

〈zzz〉(xxx)f
′∗
〈zzz〉(xxx)

−1f ′∗
〈λ〉(zzz)

−1dddpref(ddd)−1(f ′∗
〈λ〉(zxzxzx)ccc) (3.330)

(D)
= f ′∗

〈zzz〉(xxx)f
′∗
〈λ〉(zxzxzx)

−1dddpref(ddd)−1(f ′∗
〈λ〉(zxzxzx)ccc) (3.331)

(E)
= f ′∗

〈zzz〉(xxx)ψzxzxzx(ccc) (3.332)

as desired, where (A) follows from the first case of (3.58), (3.323), and
(3.326), (B) follows from (3.321), (C) follows from Lemma 2.1.1 (i) and
Lemma 3.3.1 (i), (D) follows from Lemma 2.1.1 (i) and Lemma 3.3.1
(i), and (E) follows from the first case of (3.58) and the assumption of
the case (II).

(III) The other case: The following implication holds:

f ′∗
〈λ〉(zzz) ≺ ddd ) f ′∗

〈λ〉(zxzxzx) =⇒ f ′∗
〈λ〉(zzz) ) pref(ddd) ≺ f ′∗

〈λ〉(zxzxzx) (3.333)

Now, it does not hold that f ′∗
〈λ〉(zzz) ) pref(ddd) ≺ f ′∗

〈λ〉(zxzxzx) by the assump-
tion of the case (III). Hence, by the contraposition of (3.333), we see
that f ′∗

〈λ〉(zzz) ≺ ddd ) f ′∗
〈λ〉(zxzxzx) does not hold. Therefore, we obtain

f ′′∗
〈zzz〉(xxx) = f ′∗

〈zzz〉(xxx) (3.334)
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applying the second case of (3.37).
By the assumption of the case (III), neither f ′∗

〈λ〉(zzz) ) pref(ddd) ≺ f ′∗
〈λ〉(zxzxzx)

nor f ′∗
〈λ〉(zzzxxx) ) pref(ddd) ≺ f ′∗

〈λ〉(zzzxxx)ccc hold. Hence, the following condition
does not hold:

f ′∗
〈λ〉(zzz) ) pref(ddd) ≺ f ′∗

〈λ〉(zzzxxx)ccc
(A)
= f ′∗

〈λ〉(zzz)f
′′∗
〈zzz〉(xxx)ccc, (3.335)

where (A) follows from (3.334). Therefore, by the second case of (3.58),
we have

ψzzz(f
′′∗
〈zzz〉(xxx)ccc) = f ′′∗

〈zzz〉(xxx)ccc. (3.336)

Thus, we have

f ′∗
〈zzz〉(xxx)ψzxzxzx(ccc)

(A)
= f ′′∗

〈zzz〉(xxx)ψzxzxzx(ccc)
(B)
= f ′′∗

〈zzz〉(xxx)ccc
(C)
= ψzzz(f

′′∗
〈zzz〉(xxx)ccc) (3.337)

as desired, where (A) follows from (3.334), (B) follows from the second case of
(3.58) since f ′∗

〈λ〉(zzzxxx) ) pref(ddd) ≺ f ′∗
〈λ〉(zzzxxx)ccc does not hold by the assumption

of the case (III), and (C) follows from (3.336).
(Proof of (iii)): We have f ′∗

〈λ〉(zzz) ,) pref(ddd) because |f ′∗
〈λ〉(zzz)| > |ddd| by

Lemma 3.3.2 (iii). Hence, by the second case of (3.58), we obtain ψ〈zzz〉(bbb) = bbb
as desired. !

3.5.9 Proof of Lemma 3.4.5
To state the proof of Lemma 3.4.5, first we prove the following Lemma 3.5.1.

Lemma 3.5.1. For F (f, τ) ∈ F , i ∈ [F ], and xxx,xxx′ ∈ S∗, if xxx′ ) xxx and
f ∗
i (xxx) = f ∗

i (xxx
′), then P1

F,τ∗i (xxx
′) ⊇ P1

F,τ∗i (xxx)
.

Proof of Lemma 3.5.1. Choose c ∈ P1
F,τ∗i (xxx)

arbitrarily. Then there exists
yyy ∈ S∗ such that

f ∗
τ∗i (xxx)

(yyy) # c. (3.338)
We have

f ∗
i (xxx

′)c
(A)
= f ∗

i (xxx)c (3.339)
(B)

) f ∗
i (xxx)f

∗
τ∗i (xxx)

(yyy) (3.340)
= f ∗

i (xxx
′xxx′−1xxx)f ∗

τ∗i (xxx
′xxx′−1xxx)(yyy) (3.341)

(C)
= f ∗

i (xxx
′)f ∗

τ∗i (xxx
′)(xxx

′−1xxxyyy), (3.342)
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where (A) follows from the assumption, (B) follows from (3.338), and (C)
follows from Lemma 2.1.1. This yields c ) f ∗

τ∗i (xxx
′)(xxx

′−1xxxyyy), which implies
c ∈ P1

F,τ∗i (xxx
′). !

Proof of Lemma 3.4.5. Let (k, i,xxx,xxx′) be a tuple satisfying all of the condi-
tions (a)–(c), and we lead a contradiction.

By the condition (c) and Lemma 2.1.1 (iii), we have

f ∗
i (xxx

′) ) f ∗
i (xxx). (3.343)

Also, we have

|f ∗
i (xxx)dF,τ∗i (xxx)|+ k

(A)
= |dF,if̂ ∗

i (xxx)|+ k
(B)

≤ |dF,if̂ ∗
i (xxx

′)| (C)
= |f ∗

i (xxx
′)dF,τ∗i (xxx′)|,

(3.344)
where (A) follows from Lemma 3.4.1, (B) follows from the condition (b), (C)
follows from Lemma 3.4.1. Hence, we have

|f ∗
i (xxx

′)| ≥ |f ∗
i (xxx)|+ |dF,τ∗i (xxx)|+ k − |dF,τ∗i (xxx′)|. (3.345)

This yields

−1
(A)

≤ |dF,τ∗i (xxx)|+ k − |dF,τ∗i (xxx′)|
(B)

≤ 0, (3.346)

where (A) follows since 0 ≤ |dF,τ∗i (xxx)| ≤ 1 and 0 ≤ |dF,τ∗i (xxx′)| ≤ 1, and (B)
follows from (3.343) and (3.345). Therefore, the following two cases are
possible: the case |dF,τ∗(xxx)| + k − |dF,τ∗(xxx′)| = 0 and the case |dF,τ∗(xxx)| + k −
|dF,τ∗(xxx′)| = −1.

• The case |dF,τ∗i (xxx)|+ k− |dF,τ∗i (xxx′)| = 0: Then by (3.345) and (3.343), we
obtain

f ∗
i (xxx) = f ∗

i (xxx
′). (3.347)

Also, the assumption that |dF,τ∗i (xxx)|+ k− |dF,τ∗i (xxx′)| = 0 implies that the
tuple (k, |dF,τ∗i (xxx)|, |dF,τ∗i (xxx′)|) is equal to one of (0, 0, 0), (0, 1,−1), (1, 0,
−1). Now, the last case (k, |dF,τ∗i (xxx)|, |dF,τ∗i (xxx′)|) = (1, 0,−1) is impossi-
ble because

|dF,τ∗i (xxx)| = 0
(A)⇐⇒ P1

F,τ∗i (xxx)
= {0, 1} (3.348)

(B)
=⇒ P1

F,τ∗i (xxx
′) = {0, 1} (3.349)

(C)⇐⇒ |dF,τ∗i (xxx′)| = 0, (3.350)
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where (A) follows from (3.123), (B) follows since P1
F,τ∗i (xxx

′) ⊇ P1
F,τ∗i (xxx)

by Lemma 3.5.1, and (C) follows from (3.123). Hence, we must have
k = 0 and thus obtain F ∈ F0-dec by the condition (a). Therefore, by
(3.347) and Lemma 2.2.6 (ii), we obtain xxx = xxx′, which conflicts with
the condition (b).

• The case |dF,τ∗i (xxx)| + k − |dF,τ∗i (xxx′)| = −1: Then we must have k =
|dF,τ∗i (xxx)| = 0 and |dF,τ∗i (xxx′)| = 1 since |dF,τ∗i (xxx)| ≥ 0 and |dF,τ∗i (xxx′)| ≤ 1.
Hence, we have

F ∈ F0-dec (3.351)
by k = 0 and the condition (a), and we have

P1
F,τ∗i (xxx

′) = {dF,τ∗i (xxx′)} (3.352)

by |dF,τ∗i (xxx′)| = 1 and (3.123).
Also, we have

|f ∗
i (xxx

′)|
(A)

≤ |f ∗
i (xxx)|

(B)

≤ |f ∗
i (xxx

′)|+ 1, (3.353)
where (A) follows from (3.343), and (B) follows from (3.345) and
|dF,τ∗i (xxx)| + k − |dF,τ∗i (xxx′)| = −1. Therefore, we have either |f ∗

i (xxx)| =
|f ∗

i (xxx
′)| or |f ∗

i (xxx)| + 1 = |f ∗
i (xxx

′)|. If we assume |f ∗
i (xxx)| = |f ∗

i (xxx
′)|, then

f ∗
i (xxx) = f ∗

i (xxx
′) holds by (3.343). Then by (3.351) and Lemma 2.2.6

(ii), we obtain xxx = xxx′, which conflicts with the condition (b). Hence,
we have

|f ∗
i (xxx)| = |f ∗

i (xxx
′)|+ 1. (3.354)

By the condition (b), there exists zzz = z1z2 . . . zn ∈ S+ such that xxx =
xxx′zzz. For such zzz, we have

|f ∗
i (xxx

′)|+ |f ∗
τ∗i (xxx

′)(zzz)|
(A)
= |f ∗

i (xxx
′zzz)| = |f ∗

i (xxx)|
(B)
= |f ∗

i (xxx
′)|+ 1, (3.355)

where (A) follows from Lemma 2.1.1 (i), and (B) follows from (3.354).
Choose s ∈ S\{zn} and define zzz′ := suff(zzz)s. By F ∈ Fext and Lemma
2.3.1, we can choose yyy ∈ S∗ such that

|f ∗
τ∗i (xxx

′)(zzz
′yyy)| ≥ 1. (3.356)

Then by (3.352), we have

f ∗
τ∗i (xxx

′)(zzz)
(A)
= dF,τ∗i (xxx′)

(B)

) f ∗
τ∗i (xxx

′)(zzz
′yyy), (3.357)
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where (A) follows since |f ∗
τ∗i (xxx

′)(zzz)| = 1 by (3.355), and (B) follows from
(3.356). By (3.351), (3.357) and Lemma 2.2.6 (i), we obtain zzz ) zzz′yyy.
This conflicts with the definition of zzz′.

!
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Chapter 4

Optimality of Huffman Codes and
AIFV Codes

In this chapter, by applying the three theorems in the previous chapter, we
prove that the class of Huffman codes (resp. AIFV codes) achieves the optimal
average codeword length in Freg∩Fext∩F1-dec (resp. Freg∩Fext∩F2-dec) in
Section 4.1 (resp. Section 4.2). Note that we are now discussing an arbitrarily
fixed source distribution µ.

4.1 Optimality of Huffman Codes in the Class
of 1-bit Delay Decodable Codes

The main result of this subsection is the following Theorem 4.1.1 that the
Huffman code achieves the optimal average codeword length in Freg∩Fext∩
F1-dec.

Theorem 4.1.1. For any F ∈ Freg ∩ Fext ∩ F1-dec, we have

L(F ) ≥ LHuff , (4.1)

where LHuff is the average codeword length of the Huffman code.

The proof of Theorem 4.1.1 relies on the following Lemma 4.1.1.

Lemma 4.1.1. Freg ∩ Fext ∩ F1-dec ∩ Ffork ⊆ F0-dec.
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Proof of Lemma 4.1.1. Choose F (f, τ) ∈ Freg ∩ Fext ∩ F1-dec ∩ Ffork arbi-
trarily. We prove F ∈ F0-dec by showing that for i ∈ [F ] and xxx ∈ S∗, the
pair (xxx,λ) is f ∗

i -positive, that is, for any i ∈ [F ] and xxx,xxx′ ∈ S∗ such that
f ∗
i (xxx) ) f ∗

i (xxx
′), we have xxx ) xxx′.

Choose xxx,xxx′ ∈ S∗ such that f ∗
i (xxx) ) f ∗

i (xxx
′) arbitrarily. Since F ∈ Ffork,

we have P1
F,τ∗i (xxx)

= {0, 1}, that is, there exist yyy0, yyy1 ∈ S∗ such that f ∗
τ∗i (xxx)

(yyy0) #
0 and f ∗

τ∗i (xxx)
(yyy1) # 1. Hence, we have

f ∗
i (xxxyyy0)

(A)
= f ∗

i (xxx)f
∗
τ∗i (xxx)

(yyy0) # f ∗
i (xxx)0, (4.2)

f ∗
i (xxxyyy1)

(B)
= f ∗

i (xxx)f
∗
τ∗i (xxx)

(yyy1) # f ∗
i (xxx)1, (4.3)

where (A) and (B) follow from Lemma 2.1.1 (i). Since xxx ) xxxyyy0,xxx ) xxxyyy1, and
F ∈ F1-dec, the pairs (xxx, 0), (xxx, 1) are f ∗

i -positive.
By f ∗

i (xxx) ) f ∗
i (xxx

′) and F ∈ Fext, there exist c, c′ ∈ C and xxx′′ ∈ S∗ such
that f ∗

i (xxx)c ) f ∗
i (xxx

′)c′ ) f ∗
i (xxx

′xxx′′). Since (xxx, 0) and (xxx, 1) are f ′∗
i -positive,

we have xxx ) xxx′xxx′′. Therefore, we have either (a) or (b) of the following
conditions: (a) xxx ) xxx′; (b) xxx 1 xxx′. To complete the proof, it suffices to prove
that (a) is true. Now we prove it by contradiction assuming that (b) is true,
that is, there exists zzz = z1z2 . . . zn ∈ S+ such that xxx = xxx′zzz.

By xxx 1 xxx′, Lemma 2.1.1 (iii), and f ∗
i (xxx) ) f ∗

i (xxx
′), we have

f ∗
i (xxx

′) = f ∗
i (xxx). (4.4)

Choose s ∈ S \ {zn} and define zzz′ = pref(zzz)s. By F ′ ∈ Fext, we can
choose yyy′ ∈ S∗ and c′ ∈ C such that

f ∗
τ ′∗i (xxx

′)(zzz
′yyy′) # c′. (4.5)

By (4.4) and (4.5), we have

f ∗
i (xxx)c = f ∗

i (xxx
′)c′ ) f ∗

i (xxx
′)f ∗

τ ′∗i (xxx
′)(zzz

′yyy′)
(A)
= f ∗

i (xxx
′zzz′yyy′), (4.6)

where (A) follows from Lemma 2.1.1 (i). Since the pairs (xxx, 0) and (xxx, 1)
are f ∗

i -positive (in particular, (xxx, c′) is f ∗
i -positive), we have xxx ) xxx′zzz′yyy′. By

xxx = xxx′zzz, we have xxx′zzz ) xxx′zzz′yyy′. Hence, we obtain zzz ) zzz′yyy′. This conflicts with
the definition of zzz′. !
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Proof of Theorem 4.1.1. Choose F ∈ Freg ∩ Fext ∩ F1-dec arbitrarily. By
Theorem 3.1.3, there exists F ′ ∈ Freg ∩ Fext ∩ F1-dec ∩ Ffork such that
L(F ′) = L(F ). By Theorem 3.1.1, there exists F † ∈ Firr∩Fext∩F0-dec such
that L(F †) ≤ L(F ′) and

|F †| (A)
= |P1

F † |
(B)

≤ |P1
F ′ |

(C)
= |{{0, 1}}| = 1, (4.7)

where (A) follows from Theorem 3.1.1 (d), (B) follows from Theorem 3.1.1
(c), and (C) follows from F ′ ∈ Ffork. By Lemma 4.1.1, we have F ′ ∈ Firr ∩
Fext ∩ F1-dec ⊆ F0-dec. Hence, by Lemma 2.2.6, the only code table f †

0 of
F † is injective, and thus F † is a uniquely decodable code with a single code
table. Therefore, by McMillan’s Theorem [2], we have L(F †) ≥ LHuff so that

L(F ) = L(F ′) ≥ L(F †) ≥ LHuff (4.8)

as desired. !

4.2 Optimality of AIFV Codes in the Class of
2-bit Delay Decodable Codes

In this section, we prove that the class of AIFV codes achieves the optimal
average codeword length in Freg ∩ Fext ∩ F2-dec. The class of AIFV codes
FAIFV is formalized with our notations as the following Definition 4.2.1.

Definition 4.2.1. We define FAIFV as the set of all F (f, τ) ∈ F (2) satisfying
all of the following conditions (i)–(vii).

(i) f0 and f1 are injective.

(ii) For any i ∈ [2] and s ∈ S, it holds that P̄1
F,i(fi(s)) ,9 1 and P̄1

F,i(fi(s)0) ,9
1.

(iii) For any i ∈ [2] and s, s′ ∈ S, it holds that fi(s′) ,= fi(s)0.

(iv) For any i ∈ [2] and s ∈ S, it holds that

τi(s) =

{
0 if P̄0

F,i(fi(s)) = ∅,
1 if P̄0

F,i(fi(s)) ,= ∅.
(4.9)
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(v) For any s ∈ S, it holds that f1(s) ,= λ and f1(s) ,= 0.

(vi) P̄1
F,1(0) ,9 0.

(vii) For any i ∈ [2] and bbb ∈ C∗, if |P̄1
F,i(bbb)| = 1, then at least one of the

following conditions (a) and (b) hold.

(a) fi(s)ccc = bbb for some s ∈ S and ccc ∈ C0 ∪ C1.
(b) (i, bbb) = (1, 0).

Example 4.2.1. The code-tuple F (κ) in Table 4.1 is in FAIFV.

Now, the desired theorem, the optimality of AIFV codes in Freg ∩Fext ∩
F2-dec, can be stated as follows.

Theorem 4.2.1. F2-opt ∩ FAIFV ,= ∅.

Theorem 4.2.1 claims that there exists an optimal AIFV code, that is,
the class of AIFV codes achieves the optimal average codeword length in
Freg∩Fext∩F2-dec. We prove Theorem 4.2.1 through this section. To prove
this, we introduce four classes of code-tuples F0, F1, F2, F3 and F4, as
follows.

Definition 4.2.2. We define F0,F1, F2, F3 and F4 as follows.

• F0 = Freg ∩ Fext ∩ F2-dec = {F ∈ Freg ∩ F2-dec : ∀i ∈ [F ];P1
F,i ,= ∅}.

• F1 = Freg∩Fext∩F2-dec∩Ffork = {F ∈ Freg∩F2-dec : ∀i ∈ [F ];P1
F,i =

{0, 1}}.

• F2 = {F ∈ Freg ∩ F2-dec : ∀i ∈ [F ]; |P2
F,i| ≥ 3}.

• F3 = {F ∈ Freg ∩ F2-dec : ∀i ∈ [F ];P2
F,i ⊇ {01, 10, 11}}.

• F4 = {F ∈ Freg ∩ F2-dec ∩ F (2) : P2
F,0 = {00, 01, 10, 11},P2

F,1 =
{01, 10, 11}}.

By the definitions, the classes defined above form a hierarchical structure
as follows:

F0 ⊇ F1

(A)

⊇ F2 ⊇ F3 ⊇ F4

(B)

⊇ FAIFV, (4.10)

where (A) follows from Lemma 2.3.2 (i), and (B) is stated as the following
Lemma 4.2.1, which proof is in Subsection 4.3.1.
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Table 4.1: Examples of a code-tuple F (γ)–F (κ)

s ∈ S f (γ)
0 τ (γ)0 f (γ)

1 τ (γ)1 f (γ)
2 τ (γ)2

a 01 0 00 1 1100 1
b 10 1 λ 0 1110 0
c 0100 0 00111 1 111000 2
d 01 2 00111 2 110 2

s ∈ S f (δ)
0 τ (δ)0 f (δ)

1 τ (δ)1 f (δ)
2 τ (δ)2

a 01 0 00 1 100 1
b 10 1 λ 0 110 0
c 0100 0 00111 1 110001 2
d 011 2 001111 2 101 2

s ∈ S f (ε)
0 τ (ε)0 f (ε)

1 τ (ε)1 f (ε)
2 τ (ε)2

a 01 0 00 1 00 1
b 10 1 λ 0 10 0
c 0100 0 00111 1 100011 2
d 0111 2 0011111 2 011 2

s ∈ S f (ζ)
0 τ (ζ)0 f (ζ)

1 τ (ζ)1 f (ζ)
2 τ (ζ)2

a 10 0 01 1 00 1
b 11 1 λ 0 10 0
c 1000 0 01001 1 100011 2
d 1001 2 0100100 2 011 2

s ∈ S f (η)
0 τ (η)0 f (η)

1 τ (η)1 f (η)
2 τ (η)2

a 01 0 01 1 00 1
b 1 1 1 0 101 0
c 0001 0 01001 1 100011 2
d 001 2 0100100 2 011 2

s ∈ S f (θ)
0 τ (θ)0 f (θ)

1 τ (θ)1 f (θ)
2 τ (θ)2

a 01 0 01 1 10 1
b 1 1 1 0 011 0
c 0001 0 01001 1 010011 2
d 001 2 0100100 2 111 2
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s ∈ S f (ι)
0 τ (ι)0 f (ι)

1 τ (ι)1

a 01 1 01 1
b 1 1 1 0
c 0001 0 01001 1
d 001 1 0100100 1

s ∈ S f (κ)
0 τ (κ)0 f (κ)

1 τ (κ)1

a 100 0 1100 0
b 00 0 11 1
c 01 0 01 0
d 1 1 10 0

Table 4.2: The set P2
F,i for the code-tuples F in Table 4.1

F ∈ F P2
F,0 P2

F,1 P2
F,2

F (γ) {01, 10} {00, 01, 10} {11} F ∈ F0 \ F1

F (δ) {01, 10} {00, 01, 10} {10, 11} F ∈ F0 \ F1

F (ε) {01, 10} {00, 01, 10} {00, 01, 10} F ∈ F1 \ F2

F (ζ) {10, 11} {01, 10, 11} {00, 01, 10} F ∈ F0 \ F1

F (η) {00, 01, 10, 11} {01, 10, 11} {00, 01, 10} F ∈ F2 \ F3

F (θ) {00, 01, 10, 11} {01, 10, 11} {01, 10, 11} F ∈ F3 \ F4

F (ι) {00, 01, 10, 11} {01, 10, 11} F ∈ F4 \ FAIFV

F (κ) {00, 01, 10, 11} {01, 10, 11} F ∈ FAIFV

Lemma 4.2.1. F4 ⊇ FAIFV.

Example 4.2.2. The rightmost column of Table 4.2 indicates the class to
which each code-tuple in Table 4.1 belongs.

Noting that F2-opt = argminF∈F0 L(F ), we have F2-opt∩F0 ,= ∅ directly
from Definition 3.1.1 and Lemma 3.1.2. Starting from this, we sequentially
prove F2-opt∩Fi ,= ∅ for i = 1, 2, 3, 4, in Subsection 4.2.1–4.2.4, respectively.
Then in Subsection 4.2.5, we finally prove the desired Theorem 4.2.1 from
F2-opt ∩ F4 ,= ∅.

We use the following Lemma 4.2.2 throughout this section.

Lemma 4.2.2. For any integer k ≤ 2, F (f, τ) ∈ F2-dec ∩ Fext, i ∈ [F ], and
s ∈ S, we have |P̄k

F,i(fi(s))|+ |P2
F,τi(s)

| ≤ 4.
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Proof of Lemma 4.2.2. We have

|P̄k
F,i(fi(s))|+ |P2

F,τi(s)|
(A)

≤ |P̄2
F,i(fi(s))|+ |P2

F,τi(s)|
(B)

≤ |P2
F,i(fi(s))| ≤ 4(4.11)

as desired, where (A) follows from k ≤ 2, F ∈ Fext, and Corollary 2.3.1 (ii)
(b), and (B) follows from F ∈ F2-dec and Lemma 2.2.3. !

4.2.1 The Class F1

Since F1 = Freg∩Fext∩F2-dec∩Ffork, we obtain the following Lemma 4.2.3
immediately from Corollary 3.1.1.

Lemma 4.2.3. F2-opt ∩ F1 ,= ∅.

We enumerate the basic properties of F1 as the following Lemmas 4.2.4
and 4.2.5. See subsections 4.3.2 and 4.3.3 for the proofs of Lemmas 4.2.4 and
4.2.5, respectively.

Lemma 4.2.4. For any F (f, τ) ∈ F1 and i ∈ [F ], the following statements
(i)–(vi) hold.

(i) P2
F,i ⊇ {0a, 1b} for some a, b ∈ C. In particular, |P2

F,i| ≥ 2.

(ii) If |P2
F,i| = 2, then the following statements (a) and (b) hold.

(a) For any s ∈ S, we have |fi(s)| ≥ 2.
(b) P2

F,i = P̄2
F,i = {0a, 1b} for some a, b ∈ C.

(iii) For any s, s′ ∈ S, if s ,= s′ and fi(s) = fi(s′), then |P2
F,τi(s)

| =

|P2
F,τi(s′)

| = 2.

(iv) For any s ∈ S, we have

|SF,i(fi(s))| ≤
{
1 if P̄0

F,i(fi(s)) ,= ∅,
2 if P̄0

F,i(fi(s)) = ∅.
(4.12)

(v) For any s, s′ ∈ S, we have fi(s′) ,= fi(s)0 and fi(s′) ,= fi(s)1.

(vi) For any s ∈ S, we have |P̄1
F,i(fi(s)0)| ≤ 1 and |P̄1

F,i(fi(s)1)| ≤ 1.

Lemma 4.2.5. For any F (f, τ) ∈ F2-opt ∩ F1, i ∈ RF and s ∈ S, if
P̄0

F,i(fi(s)) = ∅ and |SF,i(fi(s))| = 1, then |P2
F,τi(s)

| = 4.
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4.2.2 The Class F2

In this subsection, we prove F2-opt∩F2 ,= ∅ and some properties of the class
F2.

• First, we define an operation called dot operation, which transforms a
given code-tuple F ∈ F1 into the code-tuple Ḟ defined as Definition
4.2.4.

• Next, we consider the code-tuple ̂̇F , obtained from F by applying dot
operation firstly and rotation secondly. We show that ̂̇F ∈ F1 and
L( ̂̇F ) = L(F ) hold for any F ∈ F1.

• Then we show that we can transform any F ∈ F2-opt ∩ F1 into some
F ′ ∈ F2-opt ∩ F2 by repeating dot operation and rotation alternately.
This shows F2-opt ∩ F2 ,= ∅ since F2-opt ∩ F1 ,= ∅ by Lemma 4.2.3.

To state the definition of Ḟ , we first introduce the decomposition of a
codeword called γ-decomposition. Fix F (f, τ) ∈ F1, i ∈ [F ], and s ∈ S, and
define S≺

F,i(fi(s)) := {s′ ∈ S : fi(s′) ≺ fi(s)}. By Lemma 2.2.2 (i), we have
|P̄0

F,i(fi(s
′))| ,= ∅ for any s′ ∈ S≺

F,i(fi(s)), which leads to |SF,i(fi(s′))| = 1 by
Lemma 4.2.4 (iv). Thus, without loss of generality, we may assume

fi(s1) ≺ fi(s2) ≺ · · · ≺ fi(sρ), (4.13)

where S≺
F,i(fi(s)) = {s1, s2, . . . , sρ−1} and sρ := s. Then there uniquely exist

γ(s1), γ(s2), . . . , γ(sρ) ∈ C∗ such that

fi(sr) =

{
γ(s1) if r = 1,

fi(sr−1)γ(sr) if r = 2, 3, . . . , ρ
(4.14)

for any r = 1, 2, . . . , ρ. We can represent fi(s) as

fi(s) = γ(s1)γ(s2) . . . γ(sρ). (4.15)

Definition 4.2.3. For F (f, τ) ∈ F1, i ∈ [F ], and s ∈ S, we define γ-
decomposition of fi(s) as the representation in (4.15). Note that sρ = s.

Example 4.2.3. We consider F (f, τ) := F (ε) in Table 4.1.
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• First, we consider the γ-decomposition of f1(d). We have S≺
F,1(f1(d)) =

{a, b, c}. Since f1(b) = λ ≺ f1(a) = 00 ≺ f1(c) = 00111. Thus, we
obtain the γ-decomposition of f1(d) as

f1(d) = γ(s1)γ(s2)γ(s3)γ(s4), (4.16)

where
s1 = b, s2 = a, s3 = c, s4 = d, (4.17)

γ(s1) = λ, γ(s2) = 00, γ(s3) = 111, γ(s4) = 11. (4.18)

• Next, we consider the γ-decomposition of f0(c). We have S≺
F,0(f0(c)) =

{a}. Thus we obtain the γ-decomposition as

f0(c) = γ(s1)γ(s2), (4.19)

where
s1 = a, s2 = c, (4.20)

γ(s1) = 01, γ(s2) = 00. (4.21)

We show the basic properties of γ-decomposition as the following Lemma
4.2.6.

Lemma 4.2.6. For any F (f, τ) ∈ F1, i ∈ [F ] and s ∈ S, the following
statements (i)–(iii) hold, where γ(s1)γ(s2) . . . γ(sρ) is the γ-decomposition of
fi(s).

(i) SF,i(λ) ,= ∅ ⇐⇒ fi(s1) = γ(s1) = λ.

(ii) For any r = 1, 2, . . . , ρ, if r ≥ 2 or |P2
F,i| = 2, then |γ(sr)| ≥ 2.

(iii) For any r = 2, . . . , ρ, we have g1g2 ∈ P̄2
F,i(fi(sr−1)), where γ(sr) =

g1g2 . . . gl.

Proof of Lemma 4.2.6. (Proof of (i)): Directly from the definition of
γ-decomposition.

(Proof of (ii)): We prove for the following two cases separately: the case
r ≥ 2 and the case r = 1, |P2

F,i| = 2.

• The case r ≥ 2: We have |γ(sr)| ≥ 1 by (4.13). If we assume γ(sr) = c
for some c ∈ C, then fi(sr) = fi(sr−1)γ(sr) = fi(sr−1)c holds, which
conflicts with Lemma 4.2.4 (v). This shows |γ(sr)| ≥ 2 as desired.
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• The case r = 1, |P2
F,i| = 2: By Lemma 4.2.4 (ii) (a), we have |γ(s1)| =

|fi(s1)| ≥ 2.

(Proof of (iii)): By (ii) of this lemma, we have |γ(sr)| ≥ 2. Hence, we have
fi(sr) = fi(sr−1)γ(sr) # fi(sr−1)g1g2, which leads to g1g2 ∈ P̄2

F,i(fi(sr−1)) as
desired. !

Using γ-decomposition, we now state the definition of Ḟ as the following
Definition 4.2.4.

Definition 4.2.4. For F (f, τ) ∈ F1, we define Ḟ (ḟ , τ̇) ∈ F (|F |) as

ḟi(s) := γ̇(s1)γ̇(s2) . . . γ̇(sρ), (4.22)

τ̇i(s) := τi(s) (4.23)

for i ∈ [F ] and s ∈ S. Here, γ̇(sr) is defined as

γ̇(sr) :=






aF,ig1g3g4 . . . gl if r = 1, |P2
F,i| = 2,

γ(sr) if r = 1, |P2
F,i| ≥ 3,

āF,τi(sr−1)g1g3g4 . . . gl if r ≥ 2, |P̄1
F,i(fi(sr−1))| = 2,

āF,τi(sr−1)0g3g4 . . . gl if r ≥ 2, |P̄1
F,i(fi(sr−1))| = 1, |P̄1

F,τi(sr−1)
| = 1,

āF,τi(sr−1)1g3g4 . . . gl if r ≥ 2, |P̄1
F,i(fi(sr−1))| = 1,

|P̄1
F,τi(sr−1)

| = 2, |P2
F,τi(sr−1)

| = 2,

γ(sr) if r ≥ 2, |P̄1
F,i(fi(sr−1))| = 1,

|P̄1
F,τi(sr−1)

| = 2, |P2
F,τi(sr−1)

| ≥ 3
(4.24)

for r = 1, 2, . . . , ρ, where γ(s1)γ(s2) . . . γ(sρ) is the γ-decomposition of fi(s)
and γ(sr) = g1g2 . . . gl. Also, aF,i ∈ C is defined by the following recursive
formula:

aF,i :=






aF,τi(s′) if SF,i(λ) = {s′} for some s′ ∈ S ′,

0 if |SF,i(λ)| ,= 1,P2
F,i 9 00,

1 if |SF,i(λ)| ,= 1,P2
F,i ,9 00,

(4.25)

and āF,i denotes the negation of aF,i, that is, āF,i := 1− aF,i.
We refer to the operation of obtaining the code-tuple Ḟ from a given code-

tuple F ∈ F1 as dot operation.
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Remark 4.2.1. In Definition 4.2.4, it holds that |γ(sr)| < 2 only if r = 1
and |P2

F,i| ≥ 3 by Lemma 4.2.6 (ii). Hence, the right hand side of (4.24) has
enough length so that γ̇(sr) is well-defined for every case.

Example 4.2.4. We consider F (f, τ) := F (ε) in Table 4.1. Then aF,i, i ∈ [F ]
are given as follows.

• aF,0 = 1 applying the third case of (4.25) since |SF,0(λ)| ,= 1 and P2
F,0 ,9

00.

• aF,2 = 0 applying the second case of (4.25) since |SF,2(λ)| ,= 1 and
P2

F,0 9 00.

• aF,1 = aF,0 = 1 applying the first case of (4.25) since |SF,1(λ)| = {b}.

The codeword ḟ0(c) is obtained as follows since the γ-decomposition of
f0(c) is given as (4.19)–(4.21).

• we have γ̇(s1) = aF,00 = 10 applying the first case of (4.24) since
|P2

F,0| = 2,

• we have γ̇(s2) = āF,τ0(s1)0 = āF,10 = 00 applying the third case of (4.24)
since |P̄1

F,0(f0(s1))| = |P̄1
F,0(01)| = 2.

Therefore, we obtain ḟ0(c) = γ̇(s1)γ̇(s2) = 1000.
The codeword ḟ1(d) is obtained as follows since the γ-decomposition of

f1(d) is given as (4.16)–(4.18).

• we have γ̇(s1) = γ(s1) = λ applying the second case of (4.24) since
|P2

F,1| ≥ 3,

• we have γ̇(s2) = āF,τ0(s1)1 = āF,01 = 01 applying the fifth case of
(4.24) since |P̄1

F,1(f1(s1))| = |P̄1
F,1| = 1, |P̄1

F,τ1(s1)
| = |P̄1

F,0| = 2, and
|P2

F,τ1(s1)
| = |P2

F,0| = 2,

• we have γ̇(s3) = āF,τ1(s2)00 = āF,11 = 001 applying the fourth case of
(4.24) since |P̄1

F,1(f1(s2))| = |P̄1
F,1(00)| = 1 and |P̄1

F,τ1(s2)
| = |P̄1

F,1| = 1.

Therefore, we obtain ḟ1(d) = γ̇(s1)γ̇(s2)γ̇(s3) = 01001.
The code table F (ζ) in Table 4.1 is obtained as Ḟ (ε). Moreover, the code

table F (η) in Table 4.1 is obtained as F̂ (ζ)(= ̂̇F (ε)).
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Now we enumerate some properties of Ḟ as the following Lemmas 4.2.7–
4.2.9.

Lemma 4.2.7. For any F (f, τ) ∈ F1 and i ∈ [F ], the following statements
(i)–(iii) hold.

(i) Let s ∈ S and let γ(s1)γ(s2) . . . γ(sρ) be the γ-decomposition of fi(s).
Then we have |γ̇(sr)| = |γ(sr)| for any r = 1, 2, . . . , ρ.

(ii) For any s ∈ S, we have |ḟi(s)| = |fi(s)|.

(iii) For any s, s′ ∈ S, the following equivalence holds: fi(s) ) fi(s′) ⇐⇒
ḟi(s) ) ḟi(s′).

Proof of Lemma 4.2.7. (Proof of (i)): Directly from (4.24).
(Proof of (ii)): We have

|ḟi(s)| = |γ̇(s1)|+ |γ̇(s2)|+ · · ·+ |γ̇(sρ)| (4.26)
(A)
= |γ(s1)|+ |γ(s2)|+ · · ·+ |γ(sρ)| (4.27)
= |fi(s)|, (4.28)

where (A) follows from (i) of this lemma.
(Proof of (iii)): See Subsection 4.3.4. !

Lemma 4.2.8. For any F (f, τ) ∈ F1 and i ∈ [F ], the following statements
(i) and (ii) hold.

(i) (a) If |P2
F,i| = 2, then P2

Ḟ ,i
= {aF,i0, aF,i1}.

(b) For any s ∈ S, if |P2
F,j| ≥ 3, then

P2
Ḟ ,j

⊆






{00, 01, 10, 11} if |P̄1
F,i(fi(s))| = 0,

{aF,j0, aF,j1, āF,j1} if |P̄1
F,i(fi(s))| = 1, |P̄1

F,j| = 1,

P2
F,j if |P̄1

F,i(fi(s))| = 1, |P̄1
F,j| = 2,

(4.29)
where j := τi(s) = τ̇i(s).
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(ii) For any s ∈ S, we have

P̄2
Ḟ ,i

(ḟi(s)) ⊆






∅ if |P̄1
F,i(fi(s))| = 0,

{āF,j0, āF,j1} if |P̄1
F,i(fi(s))| ≥ 1, |P2

F,j| = 2,

{āF,j0} if |P̄1
F,i(fi(s))| ≥ 1, |P2

F,j| ≥ 3, |P̄1
F,j| = 1,

P̄2
F,i(fi(s)) if |P̄1

F,i(fi(s))| ≥ 1, |P2
F,j| ≥ 3, |P̄1

F,j| = 2,
(4.30)

where j := τi(s) = τ̇i(s).

See Subsection 4.3.5 for the proof of Lemma 4.2.8.
The next lemma relates to dF,i and aF,i defined in Definitions 3.4.1 and

4.2.4, respectively.

Lemma 4.2.9. For any F (f, τ) ∈ F1 and i ∈ [F ], the following statements
(i) and (ii) hold.

(i) If |P2
F,i| = 2, then dḞ ,i = aF,i.

(ii) For any s, s′ ∈ S, if s ,= s′ and ḟi(s) = ḟi(s′), then dḞ ,τ̇i(s)
= aF,τi(s) ,=

aF,τi(s′) = dḞ ,τ̇i(s′)
.

See Subsection 4.3.6 for the proof of Lemma 4.2.9.
Using the properties above, we now prove the following Lemma 4.2.10.

Lemma 4.2.10. For any F ∈ F1, we have ̂̇F ∈ F1 and L( ̂̇F ) = L(F ).

Proof of Lemma 4.2.10. It suffices to prove the following three statements
(i)–(iii) for any F ∈ F1.

(i) ̂̇F ∈ F2-dec.

(ii) P1
̂̇F ,i

= {0, 1} for any i ∈ [F ].

(iii) ̂̇F ∈ Freg and L( ̂̇F ) = L(F ).

(Proof of (i)): It suffices to prove Ḟ ∈ F2-dec because this implies ̂̇F ∈
F2-dec by Lemma 3.4.1 (iv).

We first show that Ḟ satisfies Definition 2.2.3 (a). Choose i ∈ [F ] and
s ∈ S arbitrarily and put j := τi(s). We consider the following two cases
separately: the case |P̄1

F,i(fi(s))| = 0 and the case |P̄1
F,i(fi(s))| ≥ 1.
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• The case |P̄1
F,i(fi(s))| = 0: We have

P2
Ḟ ,j

∩P̄2
Ḟ ,i

(ḟi(s))
(A)

⊆ {00, 01, 10, 11}∩P̄2
Ḟ ,i

(ḟi(s))
(B)

⊆ {00, 01, 10, 11}∩∅ = ∅
(4.31)

as desired, where (A) follows from |P̄1
F,i(fi(s))| = 0 and the first case

of (4.29), and (B) follows from |P̄1
F,i(fi(s))| = 0 and the first case of

(4.30).

• The case |P̄1
F,i(fi(s))| ≥ 1: We consider the following three cases sepa-

rately: the case |P2
F,j| = 2, the case |P2

F,j| ≥ 3, |P̄1
F,j| = 1, and the case

|P2
F,j| ≥ 3, |P̄1

F,j| = 2.

– The case |P2
F,j| = 2: We have

P2
Ḟ ,j

∩ P̄2
Ḟ ,i

(ḟi(s))
(A)
= {aF,j0, aF,j1} ∩ P̄2

Ḟ ,i
(ḟi(s)) (4.32)

(B)

⊆ {aF,j0, aF,j1} ∩ {āF,j0, āF,j1} (4.33)
= ∅ (4.34)

as desired, where (A) follows from |P2
F,j| = 2 and Lemma 4.2.8

(i) (a), and (B) follows from |P̄1
F,i(fi(s))| ≥ 1, |P2

F,j| = 2, and the
second case of (4.30).

– The case |P2
F,j| ≥ 3: Then we have |P̄1

F,i(fi(s))| ≤ 1 by Lemma
4.2.2. Combining this with |P̄1

F,i(fi(s))| ≥ 1, we obtain

|P̄1
F,i(fi(s))| = 1. (4.35)

∗ The case |P̄1
F,j| = 1: We have

P2
Ḟ ,j

∩ P̄2
Ḟ ,i

(ḟi(s))

(A)

⊆ {aF,j0, aF,j1, āF,j1} ∩ P̄2
Ḟ ,i

(ḟi(s)) (4.36)
(B)

⊆ {aF,j0, aF,j1, āF,j1} ∩ {āF,j0} (4.37)
= ∅, (4.38)

where (A) follows from (4.35), |P̄1
F,j| = 1, and the second case

of (4.29), and (B) follows from |P̄1
F,i(fi(s))| ≥ 1, |P2

F,j| ≥ 3,
|P̄1

F,j| = 1, and the third case of (4.30).
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∗ The case |P̄1
F,j| = 2: We have

P2
Ḟ ,j

∩P̄2
Ḟ ,i

(ḟi(s))
(A)

⊆ P2
F,j∩P̄2

Ḟ ,i
(ḟi(s))

(B)

⊆ P2
F,j∩P̄2

F,i(fi(s))
(C)
= ∅,

(4.39)
where (A) follows from (4.35), |P̄1

F,j| = 2, and the third case of
(4.29), (B) follows from |P̄1

F,i(fi(s))| ≥ 1, |P2
F,j| ≥ 3, |P̄1

F,j| =
2, and the fourth case of (4.30), and (C) follows from F ∈
F2-dec.

These cases show that Ḟ satisfies Definition 2.2.3 (a).
Next, we show that Ḟ satisfies Definition 2.2.3 (b). Choose i ∈ [F ] and

s, s′ ∈ S such that
s ,= s′, ḟi(s) = ḟi(s

′) (4.40)

arbitrarily and put j := τi(s). Since (4.40) and Lemma 4.2.7 (iii) lead to
fi(s) = fi(s′), we have

|P2
F,τi(s)| = |P2

F,τi(s′)| = 2 (4.41)

applying Lemma 4.2.4 (iii). Hence, we obtain

P2
Ḟ ,τi(s)

∩ P2
Ḟ ,τi(s′)

(A)
= {aF,τi(s)0, aF,τi(s)1} ∩ {aF,τi(s′)0, aF,τi(s′)1}

(B)
= ∅ (4.42)

as desired, where (A) follows from (4.41) and Lemma 4.2.8 (i) (a), and (B)
follows since aF,τi(s) ,= aF,τi(s′) by (4.40) and Lemma 4.2.9 (ii).

(Proof of (ii)): We prove for the following two cases separately: (I) the
case SF,i(λ) = ∅; (II) the case SF,i(λ) ,= ∅.

(I) The case SF,i(λ) = ∅: It suffices to show
∀c ∈ C; ∃xxx ∈ S∗; ḟ ∗

i (xxx) # dḞ ,ic (4.43)

because this implies that for any c ∈ C, there exists xxx ∈ S∗ such that

dḞ ,ic
(A)

) ḟ ∗
i (xxx) ) ḟ ∗

i (xxx)dḞ ,τ∗i (xxx)

(B)
= dḞ ,i

̂̇f
∗

i (xxx), (4.44)

where (A) follows from (4.43), and (B) follows from Lemma 3.4.1 (i).
This shows that ̂̇f

∗

i (xxx) # c for some xxx ∈ S∗, which leads to c ∈ P1
̂̇F ,i

as desired. Thus, we prove (4.43) considering the following two cases
separately: the case |P2

F,i| = 2 and the case |P2
F,i| ≥ 3.
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• The case |P2
F,i| = 2: For any c ∈ C, we have

P2
Ḟ ,i

(A)
= {aF,i0, aF,i1}

(B)
= {dḞ ,i0, dḞ ,i1} 9 dḞ ,ic, (4.45)

where (A) follows from Lemma 4.2.8 (i) (a), and (B) follows from
Lemma 4.2.9 (i). Hence, there exists xxx ∈ S+ such that ḟ ∗

Ḟ ,i
(xxx) #

dḞ ,ic as desired.
• The case |P2

F,i| ≥ 3: Choose c ∈ C arbitrarily. We have P1
F,i =

{0, 1} 9 c by F ∈ F1. Hence, there exists xxx = x1x2 . . . xn ∈ S+

such that f ∗
i (xxx) # c. Let γ(s1)γ(s2) . . . γ(sρ) be the γ-decomposition

of fi(x1). We have

ḟ ∗
i (xxx) # ḟi(x1) # γ̇(s1)

(A)
= γ(s1)

(B)

# c, (4.46)

where (A) follows from |P2
F,i| ≥ 3 and the second case of (4.24),

and (B) follows from SF,i(λ) = ∅ and Lemma 4.2.6 (i).
Since c is arbitrarily chosen, we have P1

Ḟ ,i
= {0, 1} by (4.46).

This implies dḞ ,i = λ by (3.123). Therefore, by (4.46), we obtain
ḟ ∗
i (xxx) # c = dḞ ,ic for any c ∈ C as desired.

(II) The case SF,i(λ) ,= ∅: By Lemma 2.3.3, we can choose the longest
sequence xxx ∈ S+ such that f ∗

i (xxx) = λ. Then SF,τ∗i (xxx)
(λ) = ∅. Hence,

from the result of the case (I) above, we have P2
̂̇F ,τ∗i (xxx)

= {0, 1}. Thus,
we obtain

P2
̂̇F ,i

(A)

⊇ P2
̂̇F ,τ∗i (x1)

(A)

⊇ P2
̂̇F ,τ∗i (x1x2)

(A)

⊇ · · ·
(A)

⊇ P2
̂̇F ,τ∗i (xxx)

= {0, 1} (4.47)

as desired, where (A)s follow from Lemma 2.2.1 (i).

(Proof of (iii)): We have

Q(F )
(A)
= Q(Ḟ )

(B)
= Q( ̂̇F ), (4.48)

where (A) follows from (4.23), and (B) follows from (3.122) (cf. Remark
2.4.1). Hence, F ∈ Freg implies ̂̇F ∈ Freg. Also, we have

L(F )
(A)
= L(Ḟ )

(B)
= L( ̂̇F ), (4.49)

where (A) follows from (4.48) and Lemma 4.2.7 (ii) (cf. Remark 2.4.1), and
(B) follows from Lemma 3.4.1 (iii). !
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For F ∈ F1 and an integer t ≥ 0, we define

F (t) =

{
F if t = 0,
̂̇
F (t−1) if t > 0.

(4.50)

Namely, F (t) is the code-tuple obtained by applying dot operation and rota-
tion to F t times. We now prove that any code-tuple of F1 is transformed
into a code-tuple of F2 by repeating of dot operation and rotation, that is,
MF (t) = ∅ holds for a sufficiently large t, where MF := {i ∈ [F ] : |P2

F,i| = 2}.
To prove this fact, we use the following Lemma 4.2.11. See Subsection 4.3.7
for the proof of Lemma 4.2.11.

Lemma 4.2.11. For any F ∈ F2-opt ∩ F1 ∩ Firr and two integers t and t′

such that 0 ≤ t < t′, it holds that MF (t) ∩MF (t′) = ∅.

Lemma 4.2.12. F2-opt ∩ F2 ,= ∅.

Proof of Lemma 4.2.12. By Lemma 4.2.3, there exists F ∈ F2-opt ∩ F1. By
Lemmas 2.5.3 and 2.5.4, we may assume F ∈ Firr without loss of generality.
Consider |F | + 1 code-tuples F (0), F (1), . . . , F (|F |). Because Lemma 4.2.11
shows that the |F | + 1 sets MF (0) ,MF (1) , . . . ,MF (|F |) are disjoint, there ex-
ists an integer t̄ ∈ {0, 1, 2, . . . , |F |} such that MF (t̄) = ∅. This shows that
|P2

F (t̄),i
| ≥ 3 for any i ∈ [F ]. Since F (t̄) ∈ F2-opt ∩ F1 by Lemma 4.2.10, we

obtain F (t̄) ∈ F2-opt ∩ F2. !

We state some properties of F2 as the following Lemmas 4.2.13 and 4.2.14.

Lemma 4.2.13. For any F (f, τ) ∈ F2 and i ∈ [F ], the mapping fi is
injective.

Proof of Lemma 4.2.13. For any s ∈ S, we have

|SF,i(fi(s))| =
3|SF,i(fi(s))|

3

(A)

≤
∑

s′∈SF,i(fi(s))
|P2

F,τi(s′)
|

3

(B)

≤
|P2

F,i(fi(s))|
3

≤ 4

3
,

(4.51)
where (A) follows since |P2

F,τi(s′)
| ≥ 3 for any s′ ∈ SF,i(fi(s)) from F ∈ F2,

and (B) follows from Lemma 2.2.3. Therefore, we have |SF,i(fi(s))| ≤ 1 for
any s ∈ S. This shows that fi is injective as desired. !
Lemma 4.2.14. For any F (f, τ) ∈ F2-opt ∩ F2, there exists i ∈ RF such
that |P2

F,i| = 4.
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Proof of Lemma 4.2.14. Choose p ∈ RF . By Lemma 2.2.2 (ii), there ex-
ists s ∈ S such that P̄0

F,p(fp(s)) = ∅. Also, by Lemma 4.2.13, we have
|SF,p(fp(s))| = 1. Hence, by Lemma 4.2.5, we obtain |P2

F,i| = 4 for i := τp(s).
By p ∈ RF , for any j ∈ [F ], there exists xxx ∈ S∗ such that τ ∗j (xxx) = p,

which leads to
τ ∗j (xxxs)

(A)
= ττ∗j (xxx)(s) = τp(s) = i, (4.52)

where (A) follows from Lemma 2.1.1 (ii). This shows i ∈ RF . !

4.2.3 The Class F3

In this subsection, we prove F2-opt ∩ F3 ,= ∅, which proof is outlined as
follows.

• First, we define the code-tuple F̈ as Definition 4.2.5 for a given code-
tuple F ∈ F2.

• Then we show that F̈ ∈ F2-opt ∩ F3 holds for any F ∈ F2-opt ∩ F2.
This shows F2-opt ∩ F3 ,= ∅ since F2-opt ∩ F2 ,= ∅ by Lemma 4.2.12.

Definition 4.2.5. For F (f, τ) ∈ F2, we define F̈ (f̈ , τ̈) ∈ F (|F |) as

f̈i(s) := γ̈(s1)γ̈(s2) . . . γ̈(sρ), (4.53)

τ̈i(s) := τi(s) (4.54)

for i ∈ [F ] and s ∈ S. Here, γ̈(sr) is defined as

γ̈(sr) =






γ(sr) if r = 1, |P2
F,i| = 4,

1 if r = 1, |P2
F,i| = 3, |γ(sr)| = 1,

01g3g4 . . . gl if r = 1, |P2
F,i| = 3, |γ(sr)| ≥ 2, g1ḡ2 ,∈ P2

F,i,

1g2g3g4 . . . gl if r = 1, |P2
F,i| = 3, |γ(sr)| ≥ 2, g1ḡ2 ∈ P2

F,i,

00g3g4 . . . gl if r ≥ 2
(4.55)

for r = 1, 2, . . . , ρ, where γ(s1)γ(s2) . . . γ(sρ) is the γ-decomposition of fi(s)
and γ(sr) = g1g2 . . . gl.

Example 4.2.5. We consider F (f, τ) := F (η) in Table 4.1.
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• The γ-decomposition of f0(d) is f0(d) = γ(s1), where γ(s1) = 001.
We have γ̈(s1) = γ(s1) = 001 applying the first case of (4.55) since
|P2

F,0| = 4. Hence, we have f̈0(d) = γ̈(s1) = 001.

• The γ-decomposition of f1(c) is f1(c) = γ(s1)γ(s2), where γ(s1) = 01
and γ(s2) = 001. We have γ̈(s1) = 01 applying the third case of (4.55)
since |P2

F,1| = 3 and 00 ,∈ P2
F,1. We have γ̈(s2) = 001 applying the fifth

case of (4.55). Hence, we have f̈1(c) = γ̈(s1)γ̈(s2) = 01001.

• The γ-decomposition of f1(b) is f1(b) = γ(s1), where γ(s1) = 1. We
have γ̈(s1) = 1 applying the second case of (4.55) since |P2

F,1| = 3 and
|γ(s1)| = 1. Hence, we have f̈1(b) = γ̈(s1) = 1.

• The γ-decomposition of f2(d) is f2(d) = γ(s1), where γ(s1) = 011. We
have γ̈(s1) = 111 applying the fourth case of (4.55) since |P2

F,2| = 3

and 01 ∈ P2
F,2. Hence, we have f̈2(d) = γ̈(s1) = 111.

The code table F (θ) in Table 4.1 is obtained as F̈ (η).

We state some properties of F̈ as the following Lemmas 4.2.15 and 4.2.16
(cf. Lemmas 4.2.7 and 4.2.8).

Lemma 4.2.15. For any F (f, τ) ∈ F2 and i ∈ [F ], the following statements
(i)–(iii) hold.

(i) Let s ∈ S and let γ(s1)γ(s2) . . . γ(sρ) be the γ-decomposition of fi(s).
Then we have |γ̈(sr)| = |γ(sr)| for any r = 1, 2, . . . , ρ.

(ii) For any s ∈ S, we have |f̈i(s)| = |fi(s)|.

(iii) For any s, s′ ∈ S, the following equivalence holds: fi(s) ) fi(s′) ⇐⇒
f̈i(s) ) f̈i(s′).

Proof of Lemma 4.2.15. (Proof of (i)): Directly from (4.55).
(Proof of (ii)): We have

|f̈i(s)| = |γ̈(s1)|+ |γ̈(s2)|+ · · ·+ |γ̈(sρ)| (4.56)
(A)
= |γ(s1)|+ |γ(s2)|+ · · ·+ |γ(sρ)| (4.57)
= |fi(s)|, (4.58)

where (A) follows from (i) of this lemma.
(Proof of (iii)): See Subsection 4.3.8. !
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Lemma 4.2.16. For any F ∈ F2 and i ∈ [F ], the following statements (i)
and (ii) hold.

(i)

P2
F̈ ,i

=

{
{01, 10, 11} if |P2

F,i| = 3,

{00, 01, 10, 11} if |P2
F,i| = 4.

(4.59)

(ii) For any s ∈ S, we have

P̄2
F̈ ,i

(f̈i(s)) =

{
∅ if P̄0

F,i(fi(s)) = ∅,
{00} if P̄0

F,i(fi(s)) ,= ∅.
(4.60)

See Subsection 4.3.9 for the proof of Lemma 4.2.16.
Using the properties above, we prove the main result of this subsection

as the following Lemma 4.2.17.

Lemma 4.2.17. F2-opt ∩ F3 ,= ∅.

Proof of Lemma 4.2.17. By Lemma 4.2.12, there exists F (f, τ) ∈ F2∩F2-opt.
We have

Q(F̈ ) = Q(F ) (4.61)

by (4.54) (cf. Remark 2.4.1).
Now, we show F̈ ∈ F2-opt ∩ F3 as follows.

• (Proof of F̈ ∈ Freg): From F ∈ F2 ⊆ Freg and (4.61).

• (Proof of F̈ ∈ F2-dec): We first show that F̈ satisfies Definition 2.2.3 (a).
We choose i ∈ [F̈ ] and s ∈ S arbitrarily and consider the following two
cases separately: the case P̄0

F,i(fi(s)) = ∅ and the case P̄0
F,i(fi(s)) ,= ∅.

– The P̄0
F,i(fi(s)) = ∅: We have

P2
F̈ ,τ̈i(s)

∩ P̄2
F̈ ,i

(f̈i(s))
(A)
= P2

F̈ ,τ̈i(s)
∩ ∅ = ∅, (4.62)

where (A) follows from P̄0
F,i(fi(s)) = ∅ and the first case of (4.60).
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– The case P̄0
F,i(fi(s)) ,= ∅: By Lemma 4.2.2, we have |P2

F,τi(s)
| ≤ 3.

In particular, it holds that

|P2
F,τi(s)| = 3 (4.63)

by F ∈ F2. Thus, we have

P2
F̈ ,τ̈i(s)

∩ P̄2
F̈ ,i

(f̈i(s))
(A)
= {01, 10, 11} ∩ P̄2

F̈ ,i
(f̈i(s)) (4.64)

(B)
= {01, 10, 11} ∩ {00} (4.65)
= ∅, (4.66)

where (A) follows from (4.63) and the first case of (4.59), and (B)
follows from P̄0

F,i(fi(s)) ,= ∅ and the second case of (4.60).

These cases show that F̈ satisfies Definition 2.2.3 (a).
Also, by F ∈ F2 and Lemma 4.2.13, all the mappings f0, f1, . . . , f|F |−1

are injective. This proves that F̈ satisfies Definition 2.2.3 (b) (cf. Re-
mark 2.2.1).

• (Proof of F̈ ∈ F2-opt): For any i ∈ [F ], we have Li(F̈ ) = Li(F ) by
Lemma 4.2.15 (ii) and we have πi(F̈ ) = πi(F ) by (4.61) (cf. Remark
2.4.1). Hence, we have L(F̈ ) = L(F ), which leads to F̈ ∈ F2-opt by
F ∈ F2-opt.

• (Proof of ∀i ∈ [F̈ ];P2
F̈ ,i

⊇ {01, 10, 11}): Choose i ∈ [F̈ ] arbitrarily.
Since |P2

F,i| ≥ 3 by F ∈ F2, we obtain P2
F̈ ,i

⊇ {01, 10, 11} applying
Lemma 4.2.16 (i).

!

4.2.4 The Class F4

Lemma 4.2.18. F2-opt ∩ F4 ,= ∅.

Proof of Lemma 4.2.18. By Lemma 4.2.17, there exists F ∈ F2-opt ∩ F3.
Applying Theorem 3.1.1, there exists F †(f †, τ †) ∈ F2-opt ∩ F3 satisfying
|F †| = |P2

F † |. By Lemma 4.2.14, there exists i ∈ RF † such that P2
F †,i =

{00, 01, 10, 11}. Hence, F † satisfies exactly one of the following conditions
(a) and (b).
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(a) |F †| = 2,P2
F †,0 = {00, 01, 10, 11},P2

F †,1 = {01, 10, 11} (by swapping the
indices of (f †

0 , τ
†
0 ) and (f †

1 , τ
†
1 ) if necessary).

(b) |F †| = 1,P2
F †,0 = {00, 01, 10, 11}.

In the case (a), we have F † ∈ F2-opt ∩ F4 as desired. In the case (b),
we can see that the code-tuple F ′(f ′, τ ′) ∈ F (2) defined as below satisfies
F ′ ∈ F2-opt ∩ F4 as desired:

f ′
0(sr) := f †

0(sr), τ ′0(sr) := τ †0 (sr), (4.67)

f ′
1(sr) =






01 if r = 1,

1r−10 if 2 ≤ r ≤ σ − 1,

1σ−1 if r = σ,

τ ′1(sr) = 0 (4.68)

for sr ∈ S, where we suppose S = {s1, s2, . . . , sσ} and the notation 1l denotes
the sequence obtained by concatenating l copies of 1 for an integer l ≥ 1. !

4.2.5 Proof of Theorem 4.2.1
Finally, we prove the desired Theorem 4.2.1 as follows.

Proof of Theorem 4.2.1. By Lemma 4.2.18, there exists F ∈ F2-opt ∩ F4.
We have 0 ∈ RF by Lemma 4.2.14. We consider the following two cases
separately: the case RF = {0, 1} and the case RF = {0}.

• The case RF = {0, 1}: We prove F ∈ FAIFV by showing that F satisfies
Definition 4.2.1 (i)–(vii).

– (Proof of (i)): Directly from Lemma 4.2.13.
– (Proof of (ii)): Choose s ∈ S arbitrarily. We first prove P̄1

F,i(fi(s))
,9 1 by contradiction assuming P̄1

F,i(fi(s)) 9 1. Then by Lemma
2.3.2 (ii), we have

P̄2
F,i(fi(s)) 9 1c (4.69)

for some c ∈ C. On the other hand, by F ∈ F4, we have

P2
F,τi(s) 9 10, 11. (4.70)

By (4.69) and (4.70), we obtain P2
F,τi(s)

∩ P̄2
F,i(fi(s)) ,= ∅, which

leads to F ,∈ F2-dec. This conflicts with F ∈ F4 ⊆ F2-dec.
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Next, we prove P̄1
F,i(fi(s)0) ,9 1 by contradiction assuming

P̄1
F,i(fi(s)0) 9 1. (4.71)

Then we have

P2
F,τi(s) ∩ P̄2

F,i(fi(s))
(A)

⊇ P2
F,τi(s) ∩ 0P1

F,i(fi(s)0) (4.72)
(B)

⊇ P2
F,τi(s) ∩ 0P̄1

F,i(fi(s)0) (4.73)
(C)

⊇ P2
F,τi(s) ∩ 0{1}, (4.74)

(D)

⊇ {01, 10, 11} ∩ {01} (4.75)
= {01} (4.76)
,= ∅ (4.77)

where (A) follows from Lemma 2.2.1 (ii), (B) follows from Lemma
2.2.1 (i), (C) follows from (4.71), and (D) follows from F ∈ F4 ⊆
F3. Hence, we obtain F ,∈ F2-dec, which conflicts with F ∈ F4 ⊆
F2-dec.

– (Proof of (iii)): Directly from Lemma 4.2.4 (v).
– (Proof of (iv)): Choose i ∈ [F ] and s ∈ S arbitrarily and consider

the following two cases separately: the case P̄0
F,i(fi(s)) = ∅ and

the case P̄0
F,i(fi(s)) ,= ∅:

∗ The case P̄0
F,i(fi(s)) = ∅: We have |P2

F,τi(s)
| = 4 applying

Lemma 4.2.5 since i ∈ {0, 1} = RF holds and fi is injective
by Lemma 4.2.13. Hence, we obtain τi(s) = 0 by F ∈ F4.

∗ The case P̄0
F,i(fi(s)) ,= ∅: We have |P2

F,τi(s)
| ≤ 3 by Lemma

4.2.2, Hence, we obtain τi(s) = 1 by F ∈ F4.

– (Proof of (v)): We choose i ∈ [F ] arbitrarily and prove that if
fi(s) = λ or fi(s) = 0 for some s ∈ S, then P2

F,i ,= {01, 10, 11},
which is equivalent to i = 0. Choose s ∈ S such that fi(s) = λ
or fi(s) = 0. We consider the following two cases separately: the
case fi(s) = λ and the case fi(s) = 0.
∗ The case fi(s) = λ: By Lemma 4.2.13, the mapping fi is

injective. Thus, by Lemma 2.2.2 (iii), we have P̄0
F,i ,= ∅.
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Hence, by Corollary 2.3.1 (ii) (a), we have

P̄2
F,i ,= ∅. (4.78)

Also, we have

P̄2
F,i

(A)

⊆ C2 \ P2
F,i

(B)

⊆ C2 \ {01, 10, 11} = {00}, (4.79)

where (A) follows from F ∈ F4 ⊆ F2-dec, and (B) follows
from F ∈ F4 ⊆ F3. Thus, we obtain

P2
F,i

(A)

⊇ P̄2
F,i

(B)
= {00}. (4.80)

where (A) follows from Lemma 2.2.1 (i), and (B) follows from
(4.78) and (4.79). This shows P2

F,i ,= {01, 10, 11} as desired.
∗ The case fi(s) = 0: We have

P2
F,i

(A)

⊇ P̄2
F,i (4.81)

(B)

⊇ 0P1
F,i(0) (4.82)

(C)
= 0P1

F,i(fi(s)) (4.83)
(D)

⊇ 0P1
F,τi(s) (4.84)

(E)
= 0{0, 1} (4.85)
9 00, (4.86)

where (A) follows from Lemma 2.2.1 (i), (B) follows from
Lemma 2.2.1 (ii), (C) follows from fi(s) = 0, (D) follows from
Lemma 2.2.1 (i), and (E) follows from F ∈ F4 ⊆ F1. This
leads to P2

F,i ,= {01, 10, 11}.
– (Proof of (vi)): We prove by contradiction assuming P̄1

F,1(0) 9 0.
We have

P2
F,1

(A)

⊇ P̄2
F,1

(B)

⊇ 0P1
F,1(0)

(C)

⊇ 0P̄1
F,1(0)

(D)
9 00, (4.87)

where (A) follows from Lemma 2.2.1 (i), (B) follows from Lemma
2.2.1 (ii), (C) follows from Lemma 2.2.1 (i), and (D) follows from
P̄1

F,1(0) 9 0. This shows P2
F,1 ,= {01, 10, 11}, which conflicts with

F ∈ F4.
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– (Proof of (vii)): We prove by contradiction assuming that there
exist i ∈ [F ] and bbb ∈ C∗ such that all of the following conditions
(a)–(c) hold.
(a) |P̄1

F,i(bbb)| = 1.
(b) fi(s)ccc ,= bbb for any s ∈ S and ccc ∈ C0 ∪ C1.
(c) (i, bbb) ,= (1, 0).
We have

|P1
F,i(bbb)|

(A)
= |P̄1

F,i(bbb)|+
∑

s∈SF,i(bbb)

|P1
F,τi(s)|

(B)
= |P̄1

F,i(bbb)|
(C)
= 1, (4.88)

where (A) follows from Lemma 2.2.3, (B) follows since SF,i(bbb) = ∅
by the condition (b), and (C) follows from the condition (a).
We consider the following three cases separately: the case |bbb| = 0,
the case |bbb| = 1, and the case |bbb| ≥ 2.
∗ The case |bbb| = 0: By (4.88), we have |P1

F,i| = |P1
F,i(bbb)| = 1,

which conflicts with F ∈ F4 ⊆ F1.
∗ The case |bbb| = 1: We have

P2
F,i

(A)
= P̄2

F,i∪
( ⋃

s∈SF,i(λ)

P2
F,τi(s)

)
(B)
= P̄2

F,i

(C)
= 0P1

F,i(0)∪1P1
F,i(1),

(4.89)
where (A) follows from Lemma 2.2.1 (i), (B) follows because
SF,i(λ) = ∅ by |bbb| = 1 and the condition (b), and (C) follows
from Lemma 2.2.1 (ii).
On the other hand, we have P2

F,0 = {00, 01, 10, 11} and P2
F,1 =

{01, 10, 11} by F ∈ F4. Hence, comparing with (4.89), we
have P1

F,0(0) = P1
F,0(1) = P1

F,1(1) = {0, 1} and P1
F,1(0) = {1}.

Therefore, by (4.88) and |bbb| = 1, it must hold that (i, bbb) =
(1, 0), which conflicts with the condition (c).

∗ The case |bbb| ≥ 2: By the condition (a), we have

P̄1
F,i(bbb) = {a} (4.90)

for some a ∈ C. Then there exists xxx ∈ S+ such that

f ∗
i (xxx) # bbba, fi(x1) 1 bbb. (4.91)
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Hence, by |bbb| ≥ 2, we have fi(x1) 1 b1b2, which leads to

b1b2 ∈ P2
F,i, (4.92)

where b1b2 denotes the prefix of length 2 of bbb. By i ∈ {0, 1} =
RF and (4.92), we have bbbā ∈ P∗

F,i applying Lemma 4.3.2
stated in Subsection 4.3.3. Hence, there exists yyy ∈ S+ such
that

f ∗
i (yyy) # bbbā. (4.93)

Then exactly one of fi(y1) 1 bbb and fi(y1) ) bbb holds. Now, the
latter fi(y1) ) bbb holds because the former fi(y1) 1 bbb implies
ā ∈ P̄1

F,i(bbb) by (4.93), which conflicts with (4.90). Therefore,
there exists ccc = c1c2 . . . cl ∈ C∗ such that fi(y1)ccc = bbb. By the
condition (b), we have |ccc| ≥ 2 so that

fi(y1)c1c2 ) bbb. (4.94)

We have

fi(y1)f
∗
τi(y1)(suff(yyy)) = f ∗

i (yyy)
(A)

# bbbā # bbb
(B)

# fi(y1)c1c2, (4.95)

where (A) follows from (4.93), and (B) follows from (4.94).
Comparing both sides, we obtain f ∗

τi(y1)
(suff(yyy)) # c1c2, which

leads to
c1c2 ∈ P2

F,τi(y1). (4.96)

Also, by (4.91) and (4.94), we have fi(x1) 1 fi(y1)c1c2, which
leads to

c1c2 ∈ P̄2
F,i(fi(y1)). (4.97)

By (4.96) and (4.97), we obtain P̄2
F,i(fi(y1)) ∩ P2

F,τi(y1)
,= ∅,

which conflicts with F ∈ F2-dec.

• The case RF = {0}: We define F ′(f ′, τ ′) ∈ F (2) as

f ′
0(sr) := f0(sr), τ ′0(sr) := τ0(sr), (4.98)

f ′
1(sr) =






01 if r = 1,

1r−10 if 2 ≤ r ≤ σ − 1,

1σ−1 if r = σ,

τ ′1(sr) = 0 (4.99)
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for sr ∈ S, where we suppose S = {s1, s2, . . . , sσ} and the notation
1l denotes the sequence obtained by concatenating l copies of 1 for an
integer l ≥ 1. We can show that F ′ satisfies Definition 4.2.1 (i)–(vii) in
a similar way to the case RF = {0, 1}.

!

4.3 Proofs of Lemmas in Chapter 4

4.3.1 Proof of Lemma 4.2.1
To prove Lemma 4.2.1, we first show the following Lemma 4.3.1.

Lemma 4.3.1. For any F ∈ FAIFV, the following conditions (i)–(iii) hold.

(i) P1
F,0 = P1

F,1 = {0, 1}.

(ii) For any i ∈ [F ] and b ∈ C, if SF,i(λ) = ∅ and (i, b) ,= (1, 0), then
P1

F,i(b) = {0, 1}.

(iii) For any i ∈ [F ] and s ∈ S, if P̄0
F,i(fi(s)) ,= ∅, then P̄2

F,i(fi(s)) = {00}.

Proof of Lemma 4.3.1. (Proof of (i)): We first show

P1
F,1 = {0, 1}. (4.100)

To prove it, it suffices to show |P̄1
F,1| = 2 because this implies P1

F,1 ⊇ P̄1
F,1 =

{0, 1} by Lemma 2.2.1 (i).

• We obtain |P̄1
F,1| ,= 0 by applying Corollary 2.3.1 (ii) (a) because

|P̄0
F,1| ,= 0 by Definition 4.2.1 (i) and Lemma 2.2.2 (iii).

• Also, we have |P̄1
F,1| ,= 1 because neither the condition (a) nor (b) of

Definition 4.2.1 (vii) holds for (i, bbb) = (1,λ) by Definition 4.2.1 (v).

These show (4.100).
Next, we show P1

F,0 = {0, 1} by considering the following two cases sepa-
rately: the case SF,0(λ) = ∅ and the case SF,0(λ) ,= ∅.

• The case SF,0(λ) = ∅: By a similar argument to derive (4.100).
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• The case SF,0(λ) ,= ∅: We have

P1
F,0

(A)

⊇
⋃

s∈SF,0(λ)

P1
F,τ0(s)

(B)
=

⋃

s∈SF,0(λ)

P1
F,1

(C)
=

⋃

s∈SF,0(λ)

{0, 1} (D)
= {0, 1},

(4.101)
where (A) follows from Lemma 2.2.1 (i), (B) follows from Definition
4.2.1 (iv) because P̄0

F,0(f0(s)) = P̄0
F,0 ,= ∅ by Definition 4.2.1 (i) and

Lemma 2.2.2 (iii), (C) follows from (4.100), and (D) follows from SF,0(λ)
,= ∅.

(Proof of (ii)): Assume SF,i(λ) = ∅ and (i, b) ,= (1, 0). We consider the
following two cases separately: the case SF,i(b) = ∅ and the case SF,i(b) ,= ∅.

• The case SF,i(b) = ∅: It suffices to show |P̄1
F,1(b)| = 2 because this

implies P1
F,i(b) ⊇ P̄1

F,i(b) = {0, 1} by Lemma 2.2.1 (i).

– We have b ∈ {0, 1} = P1
F,i by (i) of this lemma. Hence, there

exists xxx ∈ S+ such that f ∗
i (xxx) # b. Since SF,i(λ) = SF,i(b) = ∅,

we have fi(x1) 1 b and thus |P̄1
F,i(b)| ,= 0.

– Also, by Definition 4.2.1 (vii), it must hold that |P̄1
F,i(b)| ,= 1 since

SF,i(λ) = SF,i(b) = ∅ and (i, b) ,= (1, 0).

These show P1
F,i(b) = {0, 1} as desired.

• The case SF,i(b) ,= ∅: We have

P1
F,i(b)

(A)

⊇
⋃

s∈SF,i(b)

P1
F,τi(s)

(B)
=

⋃

s∈SF,i(b)

{0, 1} (C)
= {0, 1} (4.102)

as desired, where (A) follows from Lemma 2.2.1 (i), (B) follows from
(i) of this lemma, and (C) follows from SF,i(b) ,= ∅.

(Proof of (iii)): Assume P̄0
F,i(fi(s)) ,= ∅. Then we have P̄1

F,i(fi(s)) ,= ∅ by
Corollary 2.3.1 (ii) (a). Since 1 ,∈ P̄1

F,i(fi(s)) by Definition 4.2.1 (ii), it must
hold that

P̄1
F,i(fi(s)) = {0}. (4.103)

We have

0P1
F,i(fi(s)0) ∪ 1P1

F,i(fi(s)1)
(A)
= P̄2

F,i(fi(s))
(B)

⊆ {00, 01}, (4.104)
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where (A) follows from Lemma 2.2.1 (ii), and (B) follows from (4.103) and
Lemma 2.3.2 (ii). Comparing both sides of (4.104), we have

1P1
F,i(fi(s)1) = ∅. (4.105)

Thus, we obtain

P̄2
F,i(fi(s))

(A)
= 0P1

F,i(fi(s)0) ∪ 1P1
F,i(fi(s)1) (4.106)

(B)
= 0P1

F,i(fi(s)0) (4.107)
(C)
= 0

(
P̄1

F,i(fi(s)0) ∪
( ⋃

s′∈SF,i(fi(s)0)

P1
F,τi(s′)

))
(4.108)

= 0P̄1
F,i(fi(s)0) ∪

( ⋃

s′∈SF,i(fi(s)0)

0P1
F,τi(s′)

)
(4.109)

(D)
= 0P̄1

F,i(fi(s)0) (4.110)
(E)
= {00}, (4.111)

where (A) follows from Lemma 2.2.1 (ii), (B) follows from (4.105), (C) follows
from Lemma 2.2.1 (i), (D) follows since SF,i(fi(s)0) = ∅ by Definition 4.2.1
(iii), and (E) follows from (4.103).

!

Proof of Lemma 4.2.1. We fix F ∈ FAIFV arbitrarily and show F ∈ Freg,
F ∈ F2-dec, P2

F,0 = {00, 01, 10, 11} and P2
F,1 = {01, 10, 11}.

(Proof of F ∈ Freg): By Lemma 2.2.2 (ii), the following (4.112) holds,
which implies

∀i ∈ [F ]; ∃s ∈ S; P̄0
F,i(fi(s)) = ∅ (4.112)

(A)
=⇒ ∀i ∈ [F ]; ∃s ∈ S; τi(s) = 0 (4.113)
(B)
=⇒ RF 9 0 (4.114)
(C)
=⇒ F ∈ Freg, (4.115)

where (A) follows from Definition 4.2.1 (iv), (B) follows from (2.68), and (C)
follows from Lemma 2.5.2 (i).

(Proof of P2
F,1 = {01, 10, 11}): We have 0 ∈ {0, 1} = P1

F,1 by Lemma 4.3.1
(i). Hence, there exists xxx ∈ S+ such that f ∗

1 (xxx) # 0. By Definition 4.2.1 (v),
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we have f1(x1) 1 0 and thus

P̄1
F,1(0) ,= ∅. (4.116)

Therefore, we obtain

P1
F,1(0)

(A)
= P̄1

F,1(0) ∪
( ⋃

s′∈SF,1(0)

P1
F,τ1(s′)

)
(B)
= P̄1

F,1(0)
(C)
= {1}, (4.117)

where (A) follows from Lemma 2.2.1 (i), (B) follows since SF,1(0) = ∅ by
Definition 4.2.1 (v), and (C) follows from (4.116) and Definition 4.2.1 (vi).
Thus, we obtain

P2
F,1

(A)
= P̄2

F,1 ∪
( ⋃

s′∈SF,1(λ)

P2
F,τ1(s′)

)
(4.118)

(B)
= P̄2

F,1 (4.119)
(C)
= 0P1

F,1(0) ∪ 1P1
F,1(1) (4.120)

(D)
= 0{1} ∪ 1P1

F,1(1) (4.121)
(E)
= 0{1} ∪ 1{0, 1} (4.122)
= {01, 10, 11} (4.123)

as desired, where (A) follows from Lemma 2.2.1 (i), (B) follows since SF,1(λ) =
∅ by Definition 4.2.1 (v), (C) follows from Lemma 2.2.1 (ii), (D) follows from
(4.117), and (E) follows from Lemma 4.3.1 (ii) since SF,1(λ) = ∅ by Definition
4.2.1 (v).

(Proof of P2
F,0 = {00, 01, 10, 11}): We consider the following two cases

separately: the case SF,0(λ) = ∅ and the case SF,0(λ) ,= ∅.

• The case SF,0(λ) = ∅: We have

P2
F,0

(A)

⊇ P̄2
F,0 (4.124)

(B)
= 0P1

F,0(0) ∪ 1P1
F,1(1) (4.125)

(C)
= 0{0, 1} ∪ 1P1

F,1(1) (4.126)
(D)
= 0{0, 1} ∪ 1{0, 1} (4.127)
= {00, 01, 10, 11} (4.128)
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as desired, where (A) follows from Lemma 2.2.1 (i), (B) follows from
Lemma 2.2.1 (ii), (C) follows from Lemma 4.3.1 (ii) since SF,0(λ) = ∅,
and (D) follows from Lemma 4.3.1 (ii) since SF,1(λ) = ∅ by Definition
4.2.1 (v).

• The case SF,0(λ) ,= ∅: Let s ∈ SF,0(λ) ,= ∅. We have

P̄0
F,0(f0(s)) = P̄0

F,0 ,= ∅ (4.129)

by Definition 4.2.1 (i) and Lemma 2.2.2 (iii), and thus we have τ0(s) = 1
by Definition 4.2.1 (iv). Hence, we have

P2
F,0

(A)
= P̄2

F,0 ∪
( ⋃

s′∈SF,0(λ)

P2
F,τ0(s′)

)
(4.130)

(B)

⊇ P̄2
F,0(f0(s)) ∪ P2

F,τ0(s) (4.131)
(C)
= P̄2

F,0(f0(s)) ∪ P2
F,1 (4.132)

(D)
= {00} ∪ P2

F,1 (4.133)
(E)
= {00} ∪ {01, 10, 11} (4.134)
= {00, 01, 10, 11} (4.135)

as desired, where (A) follows from Lemma 2.2.1 (i), (B) follows from
s ∈ SF,0(λ), (C) follows from τ0(s) = 1, (D) follows from (4.129) and
Lemma 4.3.1 (iii), and (E) follows from (4.123).

(Proof of F ∈ F2-dec): Since f0 and f1 are injective by Definition 4.2.1
(i), the code-tuple F satisfies Definition 2.2.3 (b) (cf. Remark 2.2.1). We
show that F satisfies Definition 2.2.3 (a). We choose i ∈ [2] and s ∈ S
arbitrarily and show P2

F,τi(s)
∩ P̄2

F,i(fi(s)) = ∅ for the following two cases: the
case P̄0

F,i(fi(s)) = ∅ and the case P̄0
F,i(fi(s)) ,= ∅.

• The case P̄0
F,i(fi(s)) = ∅: We have

P2
F,τi(s) ∩ P̄2

F,i(fi(s))
(A)
= P2

F,τi(s) ∩ ∅ = ∅ (4.136)

as desired, where (A) follows from P̄0
F,i(fi(s)) = ∅ and Corollary 2.3.1

(ii) (a).
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• The case P̄0
F,i(fi(s)) ,= ∅: We have

P2
F,τi(s) ∩ P̄2

F,i(fi(s))
(A)
= P2

F,1 ∩ P̄2
F,i(fi(s)) (4.137)

(B)
= {01, 10, 11} ∩ P̄2

F,i(fi(s)) (4.138)
(C)
= {01, 10, 11} ∩ {00} (4.139)
= ∅ (4.140)

as desired, where (A) follows from P̄0
F,i(fi(s)) ,= ∅ and Definition 2.2.3

(iv), (B) follows from (4.123), and (C) follows from P̄0
F,i(fi(s)) ,= ∅ and

Lemma 4.3.1 (iii).

!

4.3.2 Proof of Lemma 4.2.4
Proof of Lemma 4.2.4. (Proof of (i)): We have P1

F,i = {0, 1} by F ∈ F1.
Hence, by Lemma 2.3.2 (i), there exist a, b ∈ C such that 0a, 1b ∈ P2

F,i.
(Proof of (ii) (a)): Assume |P2

F,i| = 2. We prove by contradiction assum-
ing that |fi(s)| ≤ 1 for some s ∈ S. We consider the following two cases
separately: the case |fi(s)| = 0 and the case |fi(s)| = 1.

• The case |fi(s)| = 0: We have

|P̄0
F,i|+ 2|SF,i(λ)|

(A)

≤ |P̄2
F,i|+ 2|SF,i(λ)| (4.141)

(B)

≤ |P̄2
F,i|+

∑

s′∈SF,i(λ)

|P2
F,τi(s′)| (4.142)

(C)
= |P2

F,i| (4.143)
(D)
= 2, (4.144)

where (A) follows from Corollary 2.3.1 (ii) (b), (B) follows since |P2
F,τi(s′)

|
≥ 2 for any s′ ∈ SF,i(λ) by (i) of this lemma, (C) follows from Lemma
2.2.3, and (D) follows directly from the assumption.
Also, by |fi(s)| = 0, we have

|SF,i(λ)| ≥ |{s}| = 1. (4.145)
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By (4.141) and (4.145), we have

|P̄0
F,i| = 0 (4.146)

and
|SF,i(λ)| = 1. (4.147)

By (4.147) and Lemma 2.2.2 (iii), we obtain P̄0
F,i ,= ∅, which conflicts

with (4.146).

• The case |fi(s)| = 1: Put fi(s) = c ∈ C. We have

P2
F,i

(A)

⊇ P̄2
F,i

(B)

⊇ cP1
F,i

(C)
= c{0, 1} = {c0, c1}, (4.148)

where (A) follows from Lemma 2.2.1 (i), (B) follows from Lemma 2.2.1
(ii), and (C) follows from F ∈ F1. Also, by (i) of this lemma, we have

P2
F,i ⊇ {ca, c̄b} (4.149)

for some a, b ∈ C. By (4.148) and (4.149), we have |P2
F,i| ≥ |{c0, c1, c̄b}|

= 3, which conflicts with |P2
F,i| = 2.

(Proof of (ii) (b)): Assume |P2
F,i| = 2. We have

P̄2
F,i

(A)
= P̄2

F,i ∪
( ⋃

s∈SF,i(λ)

Pk
F,τi(s)

)
(B)
= P2

F,i

(C)
= {0a, 1b} (4.150)

for some a, b ∈ C as desired, where (A) follows because SF,i(λ) = ∅ by (ii) (a)
of this lemma, (B) follows from Lemma 2.2.1 (i), and (C) follows from (i) of
this lemma and |P2

F,i| = 2.
(Proof of (iii)): Assume s ,= s′ and fi(s) = fi(s′). We have

|P̄2
F,i(fi(s))|+ |P2

F,τi(s)|+ |P2
F,τi(s′)|

(A)

≤ |P̄2
F,i(fi(s))|+

∑

s′′∈SF,i(fi(s))

|P2
F,τi(s′′)| (4.151)

(B)
= |P2

F,i(fi(s))| (4.152)
≤ 4, (4.153)

where (A) follows from s ,= s′ and fi(s) = fi(s′), and (B) follows from Lemma
2.2.3.

143



Also, by (i) of this lemma, we have

|P2
F,τi(s)| ≥ 2, |P2

F,τi(s′)| ≥ 2. (4.154)

By (4.151) and (4.154), it must hold that |P̄2
F,i(fi(s))| = 0 and |P2

F,τi(s)
| =

|P2
F,τi(s′)

| = 2 as desired.
(Proof of (iv)): We have

|SF,i(fi(s))| =
2|SF,i(fi(s))|

2
(4.155)

(A)

≤
∑

s′∈SF,i(fi(s))
|P2

F,τi(s′)
|

2
(4.156)

(B)
=

|P2
F,i(fi(s))|− |P̄2

F,i(fi(s))|
2

(4.157)

≤
4− |P̄2

F,i(fi(s))|
2

(4.158)

(C)

≤
4− |P̄0

F,i(fi(s))|
2

(4.159)

≤
{

3
2 if P̄0

F,i(fi(s)) ,= ∅,
2 if P̄0

F,i(fi(s)) = ∅,
(4.160)

as desired, where (A) follows since |P2
F,τi(s′)

| ≥ 2 for any s′ ∈ SF,i(fi(s)) by (i)
of this lemma, (B) follows from Lemma 2.2.3, and (C) follows from Corollary
2.3.1 (ii) (b).

(Proof of (v)): We prove by contradiction assuming that there exist s, s′ ∈
S and c ∈ C such that

fi(s
′) = fi(s)c. (4.161)

By (i) of this lemma, we have

P2
F,τi(s) 9 cc′ (4.162)

for some c′ ∈ C. Also, we have

P̄2
F,i(fi(s))

(A)

⊇ cP1
F,i(fi(s)c)

(B)
= cP1

F,i(fi(s
′))

(C)

⊇ cP1
F,τi(s′)

(D)
= c{0, 1} 9 cc′,

(4.163)

where (A) follows from Lemma 2.2.1 (ii), (B) follows from (4.161), (C) follows
from Lemma 2.2.1 (i), and (D) follows from F ∈ F1. By (4.162) and (4.163),
we obtain P2

F,τi(s)
∩ P̄2

F,i(fi(s)) ,= ∅, which conflicts with F ∈ F2-dec.
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(Proof of (vi)): We prove by contradiction assuming that there exist s ∈ S
and c ∈ C such that

P̄1
F,i(fi(s)c) = {0, 1}. (4.164)

By (i) of this lemma, we have

P2
F,τi(s) 9 cc′ (4.165)

for some c′ ∈ C. Also, we have

P̄2
F,i(fi(s))

(A)

⊇ cP1
F,i(fi(s)c)

(B)

⊇ cP̄1
F,i(fi(s)c)

(C)
= c{0, 1} 9 cc′, (4.166)

where (A) follows from Lemma 2.2.1 (ii), (B) follows from Lemma 2.2.1 (i),
and (C) follows from (4.164). By (4.165) and (4.166), we obtain P2

F,τi(s)
∩

P̄2
F,i(fi(s)) ,= ∅, which conflicts with F ∈ F2-dec. !

4.3.3 Proof of Lemma 4.2.5
To prove Lemma 4.2.5, we use the following Lemma 4.3.2 obtained by The-
orem 3.1.2 with k = 2.

Lemma 4.3.2. For any F ∈ F2-opt, i ∈ RF , and bbb = b1b2 . . . bl ∈ C≥2, if
b1b2 ∈ P2

F,i, then bbb ∈ P∗
F,i.

Proof of Lemma 4.2.5. Assume P̄0
F,i(fi(s)) = ∅ and |SF,i(fi(s))| = 1. We

prove by contradiction assuming |P2
F,τi(s)

| < 4, that is, there exists

bbb = b1b2 ∈ C2 \ P2
F,τi(s). (4.167)

First, we put
ddd = d1d2 . . . dl := fi(s)bbb (4.168)

and show
d1d2 ∈ P2

F,i (4.169)
considering the following three cases separately: the case |fi(s)| = 0, the case
|fi(s)| = 1, and the case |fi(s)| ≥ 2.

• The case |fi(s)| = 0: We have

P̄0
F,i(fi(s))

(A)
= P̄0

F,i

(B)

,= ∅, (4.170)

where (A) follows from |fi(s)| = 0, and (B) follows from |SF,i(fi(s))| = 1
and Lemma 2.2.2 (iii). This conflicts with the assumption. Therefore,
the case |fi(s)| = 0 is impossible.
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• The case |fi(s)| = 1: Then we have fi(s) = d1 by (4.168). Also, we
have d2 ∈ {0, 1} = P1

F,τi(s)
by F ∈ F1. Thus, there exists xxx ∈ S+ such

that f ∗
τi(s)

(xxx) # d2. Then we have f ∗
i (sxxx) = fi(s)f ∗

τi(s)
(xxx) # d1d2, which

leads to (4.169).

• The case |fi(s)| ≥ 2: Directly from fi(s) # d1d2 by (4.168).

Consequently, (4.169) holds.
By i ∈ RF and (4.169), we obtain ddd ∈ P∗

F,i applying Lemma 4.3.2. Hence,
there exists yyy ∈ S+ such that

f ∗
i (yyy) # ddd. (4.171)

By (4.168) and (4.171), exactly one of fi(y1) 1 fi(s) and fi(y1) ) fi(s) holds.
Now, the latter fi(y1) ) fi(s) must hold because the former fi(y1) 1 fi(s)
conflicts with P̄0

F,i(fi(s)) = ∅ by Lemma 2.2.2 (i). Therefore, there exists
ccc ∈ C∗ such that fi(y1)ccc = fi(s). We divide into the following three cases by
|ccc|.

• The case |ccc| = 0: We have fi(y1) = fi(s), which leads to y1 = s by
|SF,i(fi(s))| = 1. Hence, we have

fi(s)f
∗
τi(s)(suff(yyy)) = fi(y1)f

∗
τi(y1)(suff(yyy)) = f ∗

i (yyy)
(A)

# ddd
(B)
= fi(s)bbb,

(4.172)
where (A) follows from (4.171), and (B) follows from (4.168). Compar-
ing both sides, we obtain f ∗

τi(s)
(suff(yyy)) # bbb. This leads to bbb ∈ P2

F,τi(s)
,

which conflicts with (4.167).

• The case |ccc| = 1: We have fi(y1) = fi(s)c1, which conflicts with Lemma
4.2.4 (v).

• The case |ccc| ≥ 2: We have

fi(y1)c1c2 ) fi(s), (4.173)

which leads to
c1c2 ∈ P̄2

F,i(fi(y1)). (4.174)
Also, we have

fi(y1)f
∗
τi(y1)(suff(yyy)) = f ∗

i (yyy)
(A)

# ddd
(B)
= fi(s)bbb # fi(s)

(C)

# fi(y1)c1c2,
(4.175)
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where (A) follows from (4.171), (B) follows from (4.168), and (C) fol-
lows from (4.173). Comparing both sides, we obtain f ∗

τi(y1)
(suff(yyy)) #

c1c2, which leads to
c1c2 ∈ P2

F,τi(y1). (4.176)

By (4.174) and (4.176), we obtain P̄2
F,i(fi(y1)) ∩ P2

F,τi(y1)
,= ∅, which

conflicts with F ∈ F2-dec.

!

4.3.4 Proof of Lemma 4.2.7 (iii)
To prove Lemma 4.2.7 (iii), we prove the following Lemmas 4.3.3 and 4.3.4.

Lemma 4.3.3. Let F ∈ F1, i ∈ [F ], and s, s′ ∈ S, and let γ(s1)γ(s2) . . . γ(sρ)
(resp. γ(s′1)γ(s′2) . . . γ(s′ρ′)) be the γ-decomposition of fi(s) (resp. fi(s′)). For
any r = 1, 2, . . . ,m := min{ρ, ρ′}, if one of the following conditions (a) and
(b) holds, then γ(sr) = γ(s′r) ⇐⇒ γ̇(sr) = γ̇(s′r).

(a) r = 1.

(b) r ≥ 2 and sr−1 = s′r−1.

Proof of Lemma 4.3.3. Assume that the condition (a) or (b) holds.
( =⇒ ) Directly from (4.24).
( ⇐= ) We prove the contraposition. Namely, we prove γ̇(sr) ,= γ̇(s′r)

assuming γ(sr) ,= γ(s′r). Put γ(sr) = g1g2 . . . gl and γ(s′r) = g′1g
′
2 . . . g

′
l′ . We

consider the following two cases separately: the case |γ(sr)| ,= |γ(s′r)| and
the case |γ(sr)| = |γ(s′r)|.

• The case |γ(sr)| ,= |γ(s′r)|: We have

|γ̇(sr)|
(A)
= |γ(sr)|

(B)

,= |γ(s′r)|
(C)
= |γ̇(s′r)|, (4.177)

where (A) follows from Lemma 4.2.7 (i), (B) follows from the assump-
tion, and (C) follows from Lemma 4.2.7 (i). This implies γ̇(sr) ,= γ̇(s′r)
as desired.
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• The case |γ(sr)| = |γ(s′r)|: If |γ(sr)| = |γ(s′r)| ≥ 3 and g3g4 . . . gl ,=
g′3g

′
4 . . . g

′
l′ , then we obtain γ̇(sr) ,= γ̇(s′r) directly from (4.24). Thus, we

assume
gj ,= g′j for some 1 ≤ j ≤ min{2, |γ(sr)|}. (4.178)

We divide into the following two cases by which of the conditions (a)
and (b) holds: the case r = 1 and the case r ≥ 2, sr−1 = s′r−1.

– The case r = 1: We consider the following two cases separately:
the case |P2

F,i| = 2 and the case |P2
F,i| ≥ 3.

∗ The case |P2
F,i| = 2: By Lemma 4.2.4 (ii), we have P2

F,i =
{0a, 1b} for some a, b ∈ C and we have |γ(s1)| = |γ(s′1)| ≥ 2.
This shows g1g2, g′1g

′
2 ∈ {0a, 1b}. Hence, since g1g2 ,= g′1g

′
2 by

(4.178), we may assume

g1 ,= g′1. (4.179)

Thus, we obtain

γ̇(sr)
(A)
= aF,ig1g3g4 . . . gl

(B)

,= aF,ig
′
1g

′
3g

′
4 . . . g

′
l′

(C)
= γ̇(s′r) (4.180)

as desired, where (A) follows from the first case of (4.24) since
r = 1 and |P2

F,i| = 2, (B) follows from (4.179), and (C) follows
from the first case of (4.24) since r = 1 and |P2

F,i| = 2.
∗ The case |P2

F,i| ≥ 3: We obtain

γ̇(sr)
(A)
= γ(sr)

(B)

,= γ(s′r)
(C)
= γ̇(s′r) (4.181)

as desired, where (A) follows from the second case of (4.24)
since r = 1 and |P2

F,i| ≥ 3, (B) follows from (4.178), and
(C) follows from the second case of (4.24) since r = 1 and
|P2

F,i| ≥ 3.
– The case r ≥ 2, sr−1 = s′r−1: By Lemma 4.2.6 (iii), we have g1g2 ∈

P̄2
F,i(fi(sr−1)) and g′1g

′
2 ∈ P̄2

F,i(fi(s
′
r−1)). Since sr−1 = s′r−1, we

have
{g1g2, g′1g′2} ⊆ P̄2

F,i(fi(sr−1)). (4.182)

Now, we show
g1 ,= g′1 (4.183)
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by contradiction assuming the contrary g1 = g′1. Then by (4.178),
it must hold that |γ(sr)| = |γ(s′r)| ≥ 2 and g2 ,= g′2. Hence, we
have

g1P1
F,i(fi(sr−1)g1) ∪ ḡ1P1

F,i(fi(sr−1)ḡ1)
(A)
= P̄2

F,i(fi(sr−1)) (4.184)
(B)

⊇ {g1g2, g′1g′2} (4.185)
(C)
= g1{g2, g′2} (4.186)
(D)
= g1{0, 1}, (4.187)

where (A) follows from Lemma 2.2.1 (ii), (B) follows from (4.182),
(C) follows from g1 = g′1 and (4.183), and (D) follows from g2 ,= g′2.
Comparing both sides of (4.184), we obtain P1

F,i(fi(sr−1)g1) =
{0, 1}, which conflicts with Lemma 4.2.4 (vi). Hence, we conclude
that (4.183) holds.
We have

|P̄1
F,i(fi(sr−1))|

(A)
= |{g1, g′1}|

(B)
= |{0, 1}| = 2, (4.188)

where (A) follows from (4.182) and Lemma 2.3.2 (ii), and (B)
follows from (4.183). Therefore, we obtain

γ̇(sr)
(A)
= āF,τi(sr−1)g1g3g4 . . . gl

(B)

,= āF,τi(s′r−1)
g′1g

′
3g

′
4 . . . g

′
l′

(C)
= γ̇(s′r)

(4.189)
as desired, where (A) follows from the third case of (4.24) since
r ≥ 2 and (4.188) hold, (B) follows from (4.183), and (C) follows
from the third case of (4.24) since r ≥ 2 and (4.188) hold.

!
Lemma 4.3.4. Let F ∈ F1, i ∈ [F ], and s, s′ ∈ S, and let γ(s1)γ(s2) . . . γ(sρ)
(resp. γ(s′1)γ(s′2) . . . γ(s′ρ′)) be the γ-decomposition of fi(s) (resp. fi(s′)). If
ḟi(s) ) ḟi(s′), then for any r = 1, 2, . . . ,m := min{ρ, ρ′}, we have γ(sr) =
γ(s′r).

Proof of Lemma 4.3.4. Assume

ḟi(s) ) ḟi(s
′). (4.190)
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It suffices to prove that the following conditions (a) and (b) hold for any
r = 1, 2, . . . ,m by induction for r.

(a) γ(sr) = γ(s′r).

(b) If r ,= m, then sr = s′r.

We fix q ≥ 1 and show that (a) and (b) hold for r = q under the assumption
that (a) and (b) hold for any r = 1, 2, . . . , q − 1.

We first show that the condition (a) holds for r = q. We have

ḟi(sq−1)γ̇(sq)γ̇(sq+1) . . . γ̇(sρ)

= ḟi(s) (4.191)
(A)

) ḟi(s
′) (4.192)

= ḟi(s
′
q−1)γ̇(s

′
q)γ̇(s

′
q+1) . . . γ̇(s

′
ρ′) (4.193)

(B)
= ḟi(sq−1)γ̇(s

′
q)γ̇(s

′
q+1) . . . γ̇(s

′
ρ′), (4.194)

where we suppose ḟi(sq−1) := λ for the case q = 1, and (A) follows from
(4.190), and (B) follows from the induction hypothesis. Comparing both
sides, we have

γ̇(sq)γ̇(sq+1) . . . γ̇(sρ) ) γ̇(s′q)γ̇(s
′
q+1) . . . γ̇(s

′
ρ′). (4.195)

Hence, at least one of γ̇(sq) ) γ̇(s′q) and γ̇(sq) # γ̇(s′q) holds. We show that
both relations hold, that is,

γ̇(sq) = γ̇(s′q) (4.196)

by contradiction. Assume that one does not hold, that is, γ(sq) ≺ γ(s′q) by
symmetry. Then we have

fi(sq) = γ(s1)γ(s2) . . . γ(sq−1)γ(sq) (4.197)
(A)
= γ(s′1)γ(s

′
2) . . . γ(s

′
q−1)γ(sq) (4.198)

≺ γ(s′1)γ(s
′
2) . . . γ(s

′
q−1)γ(s

′
q) (4.199)

= fi(s
′
q), (4.200)

where (A) follows from the induction hypothesis. Hence, we obtain

sq
(A)
∈ S≺

F,i(fi(s
′
q)) = {s′1, s′2, . . . s′q−1}

(B)
= {s1, s2, . . . sq−1}, (4.201)
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where (A) follows from (4.200), and (B) follows from the induction hypoth-
esis. This conflicts with the definition of γ-decomposition of fi(s′ρ′). Conse-
quently, (4.196) holds.

Since q = 1 or sq−1 = s′q−1 hold by the induction hypothesis and (4.196)
holds, we obtain γ(sq) = γ(s′q) by applying Lemma 4.3.3. Namely, the con-
dition (a) holds for r = q.

Next, we show that the condition (b) holds for r = q. We have

fi(sq) = γ(s1)γ(s2) . . . γ(sq)
(A)
= γ(s′1)γ(s

′
2) . . . γ(s

′
q) = fi(s

′
q), (4.202)

where (A) follows from the induction hypothesis and γ(sq) = γ(s′q) proven
above. Also, if q ,= m, then we have P̄0

F,i(fi(sq)) ,= ∅ applying Lemma 2.2.2
(i) since fi(sq) ≺ fi(sm). Hence, by Lemma 4.2.4 (iv), we have

|SF,i(fi(sq))| = 1. (4.203)

By (4.202) and (4.203), it must hold that sq = s′q. Namely, the condition (b)
holds for r = q. !
Proof of Lemma 4.2.7 (iii). Let γ(s1)γ(s2) . . . γ(sρ) (resp. γ(s′1)γ(s′2) . . . γ(s′ρ′))
be the γ-decomposition of fi(s) (resp. fi(s′)).

( =⇒ ) Assume fi(s) ) fi(s′). Then we have

fi(s
′) = γ(s1)γ(s2) . . . γ(sρ)γ(s

′
ρ+1)γ(s

′
ρ+2) . . . γ(s

′
ρ′). (4.204)

Hence, we obtain

ḟi(s) = γ̇(s1)γ̇(s2) . . . γ̇(sρ) (4.205)
) γ̇(s1)γ̇(s2) . . . γ̇(sρ)γ̇(s

′
ρ+1)γ̇(s

′
ρ+2) . . . γ̇(s

′
ρ′) (4.206)

= ḟi(s
′) (4.207)

as desired.
( ⇐= ) Assume

ḟi(s) ) ḟi(s
′). (4.208)

Then we have

fi(sm) = γ(s1)γ(s2) . . . γ(sm)
(A)
= γ(s′1)γ(s

′
2) . . . γ(s

′
m) = fi(s

′
m), (4.209)

where m := {ρ, ρ′} and (A) follows from Lemma 4.3.4. This implies

ḟi(sm) = ḟi(s
′
m) (4.210)

by ( =⇒ ) of this lemma. We consider the following two cases separately:
the case m = ρ ≤ ρ′ and the case m = ρ′ < ρ.
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• The case m = ρ ≤ ρ′: We have

fi(s) = fi(sm)
(A)
= fi(s

′
m)

(B)

) fi(s
′
m)γ(s

′
m+1)γ(s

′
m+2) . . . γ(s

′
ρ′) = fi(s

′)
(4.211)

as desired, where (A) follows from (4.209), and (B) follows from m =
ρ ≤ ρ′.

• The case m = ρ′ < ρ: We show that this case is impossible. We have

ḟi(sm)γ̇(sm+1)γ̇(sm+2) . . . γ̇(sρ) = ḟi(s)
(A)

) ḟi(s
′)

(B)
= ḟi(s

′
m)

(C)
= ḟi(sm),

(4.212)
where (A) follows from (4.208), (B) follows from m = ρ′, and (C) follows
from (4.210). Comparing both sides, we obtain γ̇(sm+1)γ̇(sm+2) . . . γ̇(sρ)
= λ, which leads to γ(sm+1)γ(sm+2) . . . γ(sρ) = λ by Lemma 4.2.7 (i).
In particular, we have γ(sm+1) = λ by m < ρ. This conflicts with
Lemma 4.2.6 (ii).

!

4.3.5 Proof of Lemma 4.2.8
Proof of Lemma 4.2.8. (Proof of (i) (a)): For any xxx ∈ S∗, we have

|γ̇(s1)|
(A)
= |γ(s1)|

(B)

≥ 2, (4.213)

where γ(s1)γ(s2) . . . γ(sρ) is the γ-decomposition of fi(x1), and (A) follows
from Lemma 4.2.7 (i), and (B) follows from |P2

F,i| = 2 and Lemma 4.2.6 (ii).
For any c ∈ C, we have

c ∈ P1
F,i ⇐⇒ ∃xxx ∈ S+; f ∗

i (xxx) # c (4.214)
(A)⇐⇒ ∃xxx ∈ S+; ∃c′ ∈ C; γ(s1) # cc′ (4.215)
(B)⇐⇒ ∃xxx ∈ S+; γ̇(s1) # aF,ic (4.216)
(C)⇐⇒ ∃xxx ∈ S+; ḟ ∗

i (xxx) # aF,ic (4.217)
⇐⇒ aF,ic ∈ P2

Ḟ ,i
, (4.218)

where γ(s1)γ(s2) . . . γ(sρ) is the γ-decomposition of fi(x1), and (A) follows
from (4.213), (B) follows from |P2

F,i| = 2 and the first case of (4.24), and
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(C) follows from (4.213). Since P1
F,i = {0, 1} by F ∈ F1, we obtain P2

Ḟ ,i
=

{aF,i0, aF,i1} by (4.218) as desired.
(Proof of (i) (b)): Assume |P2

F,j| ≥ 3. We consider the three cases of the
right hand side of (4.29) separately.

• The case |P̄1
F,i(fi(s))| = 0: Clearly, we have P2

Ḟ ,j
⊆ {00, 01, 10, 11} as

desired.

• The case |P̄1
F,i(fi(s))| = 1, |P̄1

F,j| = 1: We have

1
(A)

≥ |SF,j(λ)| (4.219)

=
2|SF,j(λ)|

2
(4.220)

(B)
=

∑
s∈SF,j(λ)

|P1
F,τj(s)

|
2

(4.221)

(C)

≥
|P1

F,j|− |P̄1
F,j|

2
(4.222)

(D)
=

2− 1

2
(4.223)

> 0, (4.224)

where (A) follows from Lemma 4.2.4 (iv) because P̄0
F,j ,= ∅ holds by

|P̄1
F,j| = 1 and Corollary 2.3.1 (ii) (a), (B) follows since |P1

F,τj(s)
| = 2

from F ∈ F1, (C) follows from Lemma 2.2.1 (i), and (D) follows from
F ∈ F1 and |P̄1

F,j| = 1. Thus, we have |SF,j(λ)| = 1, that is, there
exists s′ ∈ S such that

SF,j(λ) = {s′}. (4.225)

Now, we have
|P2

F,τj(s′)| = 2 (4.226)
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because

2
(A)

≤ |P2
F,τj(s′)| (4.227)

(B)
= |P2

F,j|− |P̄2
F,j| (4.228)

(C)

≤ |P2
F,j|− |P̄1

F,j| (4.229)
(D)
= |P2

F,j|− 1 (4.230)
(E)

≤ 3− 1 (4.231)
= 2, (4.232)

where (A) follows from Lemma 4.2.4 (i), (B) follows from Lemma 2.2.3,
(C) follows from Corollary 2.3.1 (ii) (b), (D) follows from |P̄1

F,j| = 1,
and (E) follows from Lemma 4.2.2 and |P̄1

F,i(fi(s))| = 1.
Hence, applying the first case of (i) of this lemma, we obtain

P2
Ḟ ,τ̇j(s′)

= {aF,τj(s′)0, aF,τj(s′)1}. (4.233)

Also, by (4.226) and Lemma 4.2.4 (ii) (b), we have P̄2
F,τj(s′)

= {0a, 1b}
for some a, b ∈ C. Hence, by Lemma 2.3.2 (ii), we obtain

|P̄1
F,τj(s′)| = |{0, 1}| = 2. (4.234)

Thus, for any xxx ∈ S+, we have

ḟj(x1) = γ̇(s1)γ̇(s2) . . . γ̇(sρ−1)γ̇(sρ) (4.235)
# γ̇(s1)γ̇(s2) (4.236)
(A)
= γ̇(s′)γ̇(s2) (4.237)
(B)

# γ̇(s′)āF,τj(s′)1 (4.238)
(C)
= āF,τj(s′)1, (4.239)

where γ(s1)γ(s2) . . . γ(sρ−1)γ(sρ) is the γ-decomposition of fj(x1), and
(A) follows from (4.225) and Lemma 4.2.6 (i), (B) is obtained by ap-
plying the fifth case of (4.24) by |P̄1

F,j(fj(s
′))| = |P̄1

F,j| = 1, (4.226) and
(4.234), and (C) follows from (4.225) and Lemma 4.2.7 (i). This shows

P̄2
Ḟ ,j

⊆ {āF,τj(s′)1}. (4.240)
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Finally, we obtain

P2
Ḟ ,j

(A)
= P̄2

Ḟ ,j
∪
( ⋃

s′′∈SF,j(λ)

P2
Ḟ ,τ̇j(s′′)

)
(4.241)

(B)
= P̄2

Ḟ ,j
∪ P2

Ḟ ,τ̇j(s′)
(4.242)

(C)

⊆ {aF,τj(s′)0, aF,τj(s′)1, āF,τj(s′)1} (4.243)
(D)
= {aF,j0, aF,j1, āF,j1} (4.244)

as desired, where (A) follows from Lemma 2.2.1 (i), (B) follows from
(4.225), (C) follows from (4.233) and (4.240), and (D) follows since
aF,τj(s′) = aF,j by (4.225) and the first case of (4.25).

• The case |P̄1
F,i(fi(s))| = 1, |P̄1

F,j| = 2: We show ccc ∈ P2
F,j for an arbitrar-

ily fixed ccc = c1c2 ∈ P2
Ḟ ,j

.

We have

|SF,j(λ)| =
2|SF,j(λ)|

2
(4.245)

(A)

≤
∑

s′∈SF,j(λ)
|P2

F,τj(s′)
|

2
(4.246)

(B)
=

|P2
F,j|− |P̄2

F,j|
2

(4.247)

(C)

≤
|P2

F,j|− |P̄1
F,j|

2
(4.248)

(D)

≤
3− |P̄1

F,j|
2

(4.249)

(E)
=

3− 2

2
(4.250)

< 1, (4.251)

where (A) follows since |P2
F,τj(s′)

| ≥ 2 for any s′ ∈ SF,j(λ) by Lemma
4.2.4 (i), (B) follows from Lemma 2.2.3, (C) follows from Corollary
2.3.1 (ii) (b), (D) follows from Lemma 4.2.2 and |P̄1

F,i(fi(s))| = 1, and
(E) follows from |P̄1

F,j| = 2. This shows

SF,j(λ) = ∅. (4.252)
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By ccc ∈ P2
Ḟ ,j

, there exists xxx ∈ S+ such that

ḟ ∗
j (xxx) # ccc. (4.253)

Then we have

ḟj(x1) = γ̇(s1)γ̇(s2) . . . γ̇(sρ−1)γ̇(sρ) # γ̇(s1)
(A)
= γ(s1), (4.254)

where γ(s1)γ(s2) . . . γ(sρ−1)γ(sρ) is the γ-decomposition fj(x1) and (A)
follows from |P2

F,j| ≥ 3 and the second case of (4.24).
By (4.252) and Lemma 4.2.6 (i), it holds that |γ(s1)| ≥ 1. We consider
the following two cases separately: the case |γ(s1)| = 1 and the case
|γ(s1)| ≥ 2.

– The case |γ(s1)| = 1: By (4.253) and (4.254), we have

fj(s1) = γ(s1) = c1. (4.255)

We obtain

P2
F,j

(A)

⊇ P̄2
F,j (4.256)

(B)

⊇ c1P1
F,j(c1) (4.257)

(C)
= c1P1

F,j(fj(s1)) (4.258)
(D)

⊇ c1P1
F,τj(s1) (4.259)

(E)
= c1{0, 1} (4.260)
9 c1c2 (4.261)
= ccc (4.262)

as desired, where (A) follows from Lemma 2.2.1 (i), (B) follows
from Lemma 2.2.1 (ii), (C) follows from (4.255), (D) follows from
Lemma 2.2.1 (i), and (E) follows from F ∈ F1.

– The case |γ(s1)| ≥ 2: By (4.253) and (4.254), we have f ∗
j (xxx) #

γ(s1) # ccc, which leads to ccc ∈ P2
F,j.

(Proof of (ii)): We consider the following two cases separately: the case
|P̄1

F,i(fi(s))| = 0 and the |P̄1
F,i(fi(s))| ≥ 1.
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• The case |P̄1
F,i(fi(s))| = 0: We have

|P̄1
F,i(fi(s))| = 0

(A)⇐⇒ P̄0
F,i(fi(s)) = ∅ (4.263)

(B)⇐⇒ ∀s′ ∈ S; fi(s) ,≺ fi(s
′) (4.264)

(C)⇐⇒ ∀s′ ∈ S; ḟi(s) ,≺ ḟi(s
′) (4.265)

(D)⇐⇒ P̄0
Ḟ ,i

(ḟi(s)) = ∅ (4.266)
(E)⇐⇒ P̄2

Ḟ ,i
(ḟi(s)) = ∅ (4.267)

as desired, where (A) follows from Corollary 2.3.1 (ii) (a), (B) follows
from Lemma 2.2.2 (i), (C) follows from Lemma 4.2.7 (iii), (D) follows
from Lemma 2.2.2 (i), and (E) follows from Corollary 2.3.1 (ii) (a).

• The case |P̄1
F,i(fi(s))| ≥ 1: Choose xxx ∈ S+ such that ḟ ∗

i (xxx) # ḟi(s),
and ḟi(x1) 1 ḟi(s) arbitrary and let γ(s1)γ(s2) . . . γ(sρ′) be the γ-
decomposition of fi(x1). Then by ḟi(x1) 1 ḟi(s), there exists an integer
ρ such that ρ < ρ′ and fi(s) = γ(s1)γ(s2) . . . γ(sρ). We have

ḟ ∗
i (xxx) # ḟi(x1) (4.268)

= γ̇(s1)γ̇(s2) . . . γ̇(sρ′) (4.269)
= ḟi(s)γ̇(sρ+1) . . . γ̇(sρ′) (4.270)
# ḟi(s)γ̇(sρ+1) (4.271)
(A)

# ḟi(s)ġ1ġ2, (4.272)

where γ̇(sρ+1) = ġ1ġ2 . . . ġl, and (A) follows since |γ̇(sρ+1)| = |γ(sρ+1)| ≥
2 by Lemma 4.2.6 (ii) and Lemma 4.2.7 (i). Therefore, the set P̄2

Ḟ ,i
(ḟi(s))

is included in the set of all possible sequences as ġ1ġ2 ∈ C2. We con-
sider what sequences are possible as ġ1ġ2 ∈ C2 for the following three
cases: the case |P2

F,j| = 2, the case |P2
F,j| ≥ 3, |P̄1

F,j| = 1, and the case
|P2

F,j| ≥ 3, |P̄1
F,j| = 2.

– The case |P2
F,j| = 2:

∗ The case |P̄1
F,i(fi(s))| = 2: We have ġ1ġ2 ⊆ {āF,j0, āF,j1}

applying the third case of (4.24).
∗ The case |P̄1

F,i(fi(s))| = 1: By |P2
F,j| = 2 and Lemma 4.2.4

(ii) (b), we have |P2
F,j| = {0a, 1b} for some a, b ∈ C. Thus, we
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have |P̄1
F,j| = |{0, 1}| = 2 applying Lemma 2.3.2 (ii). Hence,

we obtain ġ1ġ2 = āF,j1 applying the fifth case of (4.24).
These show P̄2

Ḟ ,i
(ḟi(s)) ⊆ {āF,j0, āF,j1} as desired.

– The case |P2
F,j| ≥ 3: Then we have |P̄1

F,i(fi(s))| ≤ 1 by Lemma
4.2.2. Combining this with |P̄1

F,i(fi(s))| ≥ 1, we obtain

|P̄1
F,i(fi(s))| = 1. (4.273)

∗ The case |P̄1
F,j| = 1: We obtain ġ1ġ2 = āF,j0 applying the

fourth case of (4.24) by (4.273) and |P̄1
F,j| = 1. This shows

P̄2
Ḟ ,i

(ḟi(s)) ⊆ {āF,j0} as desired.
∗ The case |P̄1

F,j| = 2: We obtain ġ1ġ2 = g1g2 by the sixth case
of (4.24) by (4.273), |P̄1

F,j| = 2, and |P2
F,j| ≥ 3. This shows

P̄2
Ḟ ,i

(ḟi(s)) ⊆ P̄2
F,i(fi(s)) as desired because g1g2 ∈ P̄2

F,i(fi(s))

by Lemma 4.2.6 (iii).

!

4.3.6 Proof of Lemma 4.2.9
Proof of Lemma 4.2.9. (Proof of (i)): Assume |P2

F,i| = 2. Then we have
P2

Ḟ ,i
= {aF,i0, aF,i1} by Lemma 4.2.8 (i) (a). Hence, we have P1

Ḟ ,i
= {aF,i}

by Lemma 2.3.2 (i). Therefore, by (3.123), we obtain dḞ ,i = aF,i as desired.
(Proof of (ii)): Assume s ,= s′ and ḟi(s) = ḟi(s′). Then since fi(s) = fi(s′)

by Lemma 4.2.7 (iii), we have

|P2
F,τi(s)| = |P2

F,τi(s′)| = 2 (4.274)

applying Lemma 4.2.4 (iii). Hence, by (i) of this lemma, we obtain

dḞ ,τi(s)
= aF,τi(s), dḞ ,τi(s′)

= aF,τi(s′). (4.275)

Also, by (4.274) and Lemma 4.2.4 (ii) (a), we have SF,τi(s)(λ) = SF,τi(s′)(λ) =
∅, in particular,

|SF,τi(s)(λ)| ,= 1, |SF,τi(s′)(λ)| ,= 1. (4.276)

Now we show P2
F,τi(s)

9 0aF,τi(s) considering the following two cases: the
case P2

F,τi(s)
9 00 and the case P2

F,τi(s)
,9 00.
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• The case P2
F,τi(s)

9 00: By (4.276) and the second case of (4.25), we
have aF,τi(s) = 0 and thus P2

F,τi(s)
9 00 = 0aF,τi(s).

• The case P2
F,τi(s)

,9 00: By Lemma 4.2.4 (ii) (b), there exists b ∈ C such
that

P2
F,τi(s) 9 0b

(A)
= 01

(B)
= 0aF,τi(s), (4.277)

where (A) follows from P2
F,τi(s)

,9 00, and (B) follows from (4.276),
P2

F,τi(s)
,9 00, and the third case of (4.25).

Therefore, we conclude that P2
F,τi(s)

9 0aF,τi(s). By the same argument, we
also have P2

F,τi(s′)
9 0aF,τi(s′). Consequently, we have

{0aF,τi(s)} ∩ {0aF,τi(s′)} ⊆ P2
F,τi(s) ∩ P2

F,τi(s′)

(A)
= ∅, (4.278)

where (A) follows from F ∈ F2-dec. This shows

aF,τi(s) ,= aF,τi(s′). (4.279)

Combining (4.275) and (4.279), we obtain the desired result. !

4.3.7 Proof of Lemma 4.2.11
To prove Lemma 4.2.11, we prove Lemmas 4.3.5 and 4.3.6 as follows.

Lemma 4.3.5. For any F ∈ F1 and i ∈ [F ], the mapping ̂̇fi is injective.

Proof of Lemma 4.3.5. Choose s, s′ ∈ S such that ̂̇fi(s) = ̂̇fi(s′) arbitrarily.
We show s = s′.

We have

ḟi(s)dḞ ,τ̇i(s)

(A)
= dḞ ,i

̂̇fi(s)
(B)
= dḞ ,i

̂̇fi(s′)
(C)
= ḟi(s

′)dḞ ,τ̇i(s′)
, (4.280)

where (A) follows from Lemma 3.4.1 (i), (B) follows directly from ̂̇fi(s) =
̂̇fi(s′), and (C) follows from Lemma 3.4.1 (i).

Also, we have
|dḞ ,τ̇i(s)

| = |dḞ ,τ̇i(s′)
| (4.281)
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because if we assume the contrary, that is, |dḞ ,τ̇i(s)
| = 1 and |dḞ ,τ̇i(s′)

| = 0

by symmetry, then by (4.280), we have ḟi(s)dḞ ,τ̇i(s)
= ḟi(s′), which conflicts

with Lemma 4.2.4 (v).
By (4.280) and (4.281), we obtain ḟi(s) = ḟi(s′) and dḞ ,τ̇i(s)

= dḞ ,τ̇i(s′)
.

Hence, we obtain s = s′ as desired applying the contraposition of Lemma
4.2.9 (ii). !

Lemma 4.3.6. For any F ∈ F1, i ∈ [F ], and s ∈ S, if P̄0
F,i(fi(s)) = ∅ or

τi(s) ∈ MF , then P̄0
̂̇F ,i
( ̂̇fi(s)) = ∅.

Proof of Lemma 4.3.6. We assume that P̄0
F,i(fi(s)) = ∅ or τi(s) ∈ MF holds

and prove by contradiction assuming P̄0
̂̇F ,i
( ̂̇fi(s)) ,= ∅. Then by Lemma 2.2.2

(i), there exist s′ ∈ S \ {s} and c ∈ C such that

̂̇fi(s)c ) ̂̇fi(s′). (4.282)

Thus, we have

ḟi(s)dḞ ,τ̇i(s)
c

(A)
= dḞ ,i

̂̇fi(s)c
(B)

) dḞ ,i
̂̇fi(s′)

(C)
= ḟi(s

′)dḞ ,τ̇i(s′)
, (4.283)

where (A) follows from Lemma 3.4.1 (i), (B) follows from (4.282), and (C)
follows from Lemma 3.4.1 (i).

We consider the following two cases separately: the case P̄0
F,i(fi(s)) = ∅

and the case τi(s) ∈ MF .

• The case P̄0
F,i(fi(s)) = ∅: We have

|P̄0
Ḟ ,i

(ḟi(s))|
(A)

≤ |P̄2
Ḟ ,i

(ḟi(s))|
(B)
= 0, (4.284)

where (A) follows from Corollary 2.3.1 (ii) (b), and (B) follows from
the first case of (4.30) because P̄1

F,i(fi(s)) = ∅ holds by P̄0
F,i(fi(s)) = ∅

and Corollary 2.3.1 (ii) (a).
Also, we have

|ḟi(s)|
(A)

≤ |ḟi(s′)|+ |dḞ ,τ̇i(s′)
|− |dḞ ,τ̇i(s)

|− |c|
(B)

≤ |ḟi(s′)|, (4.285)
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where (A) follows from (4.283), and (B) follows from |dḞ ,τ̇i(s′)
| ≤ 1,

|dḞ ,τ̇i(s)
| ≥ 0, and |c| = 1.

In fact, the equalities hold in (4.285), that is, we have

|ḟi(s)| = |ḟi(s′)| (4.286)

because if we assume |ḟi(s)| < |ḟi(s′)|, then we have ḟi(s) ≺ ḟi(s′) by
(4.283), which conflicts with (4.284) and Lemma 2.2.2 (i).
By (4.283) and (4.286), we obtain

ḟi(s) = ḟi(s
′). (4.287)

Hence, applying Lemma 4.2.9 (ii), we have dḞ ,τ̇i(s)
= aF,τi(s) and dḞ ,τ̇i(s′)

= aF,τi(s′). In particular,

|dḞ ,τ̇i(s)
| = |dḞ ,τ̇i(s′)

| = 1. (4.288)

Thus, we obtain

|ḟi(s)|+2
(A)
= |ḟi(s)dḞ ,τ̇i(s)

c|
(B)

≤ |ḟi(s′)dḞ ,τ̇i(s′)
| (C)
= |ḟi(s′)|+1

(D)
= |ḟi(s)|+1,

(4.289)
where (A) follows from (4.288), (B) follows from (4.283), (C) follows
from (4.288), and (D) follows from (4.287). This is a contradiction.

• The case τi(s) ∈ MF : By Lemma 4.2.9 (i), we have

dḞ ,τ̇i(s)
= aF,τi(s). (4.290)

Substituting (4.290) for (4.283), we obtain

ḟi(s)aF,τi(s)c ) ḟi(s
′)dḞ ,τ̇i(s′)

. (4.291)

Also, we have

|ḟi(s)|+ 1 = |ḟi(s)|+ |aF,τi(s)|
(A)

≤ |ḟi(s′)|+ |dḞ ,τ̇i(s′)
|− |c|

(B)

≤ |ḟi(s′)|,
(4.292)

where (A) follows from (4.291), and (B) follows from |dḞ ,τ̇i(s′)
| ≤ 1 and

|c| = 1.
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By (4.291) and (4.292), we have ḟi(s)aF,τi(s) ) ḟi(s′), which leads to
P̄1

Ḟ ,i
(ḟi(s)) 9 aF,τi(s). Hence, applying Lemma 2.3.2 (ii), we have

P̄2
Ḟ ,i

(ḟi(s)) 9 aF,τi(s)c
′ (4.293)

for some c′ ∈ C. On the other hand, by τi(s) ∈ MF and Lemma 4.2.8
(i) (a), we have

P2
Ḟ ,τ̇i(s)

= {aF,τi(s)0, aF,τi(s)1}. (4.294)

By (4.293) and (4.294), we obtain P2
Ḟ ,τ̇i(s)

∩ P̄2
Ḟ ,i

(ḟi(s)) ,= ∅. Hence, we
have Ḟ ,∈ F2-dec, which conflicts with the proof of Lemma 4.2.10.

!
Proof of Lemma 4.2.11. Applying Lemma 4.2.10 in a repetitive manner, we
have

F (0), F (1), . . . , F (t), F (t+1), . . . , F (t′) ∈ F1 (4.295)
and

L(F ) = L(F (0)) = L(F (1)) = · · · = L(F (t)) = L(F (t+1)) = · · · = L(F (t′)).
(4.296)

We prove Lemma 4.2.11 by contradiction assuming that there exists p ∈
MF (t) ∩ MF (t′) . By RF = |F |, there exist i ∈ [F ] and s ∈ S such that
τi(s) = p. By (3.122) and (4.23), we have τ (t)i (s) = τ (t

′)
i (s) = p and

τ (t)i (s) = p ∈ MF (t)

(A)
=⇒ P̄0

F (t+1),i(f
(t+1)
i (s)) = ∅ (4.297)

(A)
=⇒ P̄0

F (t+2),i(f
(t+1)
i (s)) = ∅ (4.298)

(A)
=⇒ · · · (4.299)
(A)
=⇒ P̄0

F (t′),i
(f (t′)

i (s)) = ∅, (4.300)

where (A)s follow from (4.295) and Lemma 4.3.6. Applying Lemma 4.3.5 to
F (t′−1), we see that f (t′)

i (s) is injective, in particular,

|SF (t′),i(f
(t′)
i (s))| = 1. (4.301)

By (4.300) and (4.301), we obtain |P2
F (t′),p

| = |P2

F (t′),τ
(t′)
i (s)

| = 4 applying
Lemma 4.2.5, which conflicts with p ∈ MF (t′) . !
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4.3.8 Proof of Lemma 4.2.15 (iii)
We can prove Lemma 4.2.15 (iii) in a similar way to prove Lemma 4.2.7 (iii)
by using the following Lemma 4.3.7 instead of Lemma 4.3.3.

Lemma 4.3.7. Let F ∈ F2, i ∈ [F ], and s, s′ ∈ S, and let γ(s1)γ(s2) . . . γ(sρ)
(resp. γ(s′1)γ(s′2) . . . γ(s′ρ′)) be the γ-decomposition of fi(s) (resp. fi(s′)). For
any r = 1, 2, . . . ,m := min{ρ, ρ′}, if one of the following conditions (a) and
(b) holds, then γ(sr) = γ(s′r) ⇐⇒ γ̈(sr) = γ̈(s′r):

(a) r = 1.

(b) r ≥ 2 and sr−1 = s′r−1.

Proof of Lemma 4.3.3. Assume that (a) or (b) holds.
( =⇒ ) Directly from (4.55).
( ⇐= ) We prove the contraposition. Namely, we prove γ̈(sr) ,= γ̈(s′r)

assuming γ(sr) ,= γ(s′r). Put γ(sr) = g1g2 . . . gl and γ(s′r) = g′1g
′
2 . . . g

′
l′ . We

consider the following two cases separately: the case |γ(sr)| ,= |γ(s′r)| and
the case |γ(sr)| = |γ(s′r)|.

• The case |γ(sr)| ,= |γ(s′r)|: We have

|γ̈(sr)|
(A)
= |γ(sr)|

(B)

,= |γ(s′r)|
(C)
= |γ̈(s′r)|, (4.302)

where (A) follows from Lemma 4.2.15 (i), (B) follows from the assump-
tion, and (C) follows from Lemma 4.2.15 (i). This shows γ̈(sr) ,= γ̈(s′r).

• The case |γ(sr)| = |γ(s′r)|: If |γ(sr)| = |γ(s′r)| ≥ 3 and g3g4 . . . gl ,=
g′3g

′
4 . . . g

′
l′ , then we obtain γ̈(sr) ,= γ̈(s′r) directly from (4.55). Thus, we

assume
gj ,= g′j for some 1 ≤ j ≤ min{2, |γ(sr)|}. (4.303)

Now we show that the condition (a) necessarily holds by contradiction
assuming that the condition (a) does not hold and the condition (b)
holds. Then we have |γ(sr)| = |γ(s′r)| ≥ 2 by Lemma 4.2.6 (ii) and we
have g1g2 ∈ P̄2

F,i(fi(sr−1)) and g′1g
′
2 ∈ P̄2

F,i(fi(s
′
r−1)) by Lemma 4.2.6

(iii). Since sr−1 = s′r−1 by the condition (b), we have

{g1g2, g′1g′2} ⊆ P̄2
F,i(fi(sr−1)). (4.304)
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Therefore, we have

|{g1g2, g′1g′2}|
(A)

≤ |P̄2
F,i(fi(sr−1))| (4.305)

(B)

≤ |P2
F,i(fi(sr−1))|− |P2

F,τi(sr−1)| (4.306)
(C)

≤ 4− 3 (4.307)
= 1, (4.308)

where (A) follows from (4.304), (B) follows from Lemma 2.2.3, and (C)
follows from F ∈ F2. This leads to g1g2 = g′1g

′
2, which conflicts with

(4.303). Therefore, the condition (a), that is, r = 1 holds.
We consider the following two cases separately: the case |P2

F,i| = 4 and
the case |P2

F,i| = 3.

– The case |P2
F,i| = 4: We obtain

γ̈(s1)
(A)
= γ(s1)

(B)

,= γ(s′1)
(C)
= γ̈(s′1) (4.309)

as desired, where (A) follows from |P2
F,i| = 4 and the first case of

(4.55), (B) follows from (4.303), and (C) follows from |P2
F,i| = 4

and the first case of (4.55).
– The case |P2

F,i| = 3: We first prove

|γ(s1)| = |γ(s′1)| ≥ 2 (4.310)

by assuming the contrary |γ(s1)| = |γ(s′1)| = 1. Then by (4.303),
we may assume γ(s1) = 0 and γ(s′1) = 1 without loss of generality.
Hence, we have

P2
F,i

(A)

⊇ P̄2
F,i (4.311)

(B)
= 0P1

F,i(0) ∪ 1P1
F,i(1) (4.312)

(C)

⊇ 0P1
F,τi(s1) ∪ 1P1

F,τi(s′1)
(4.313)

(D)
= 0{0, 1} ∪ 1{0, 1} (4.314)
= {00, 01, 10, 11}, (4.315)

164



where (A) follows from Lemma 2.2.1 (i), (B) follows from Lemma
2.2.1 (ii), (C) follows from Lemma 2.2.1 (i), and (D) follows from
F ∈ F2 ⊆ F1. This conflicts with |P2

F,i| = 3. Therefore, (4.310)
holds.
By |P2

F,i| = 3, we have P2
F,i = {h1h2, h̄10, h̄11} for some h1h2 ∈ C2.

By (4.310), we have g1g2 ∈ P2
F,i = {h1h2, h̄10, h̄11}.

∗ If g1g2 = h1h2, then γ̈(s1) = 01 by the third case of (4.55).
∗ If g1g2 = h̄10, then γ̈(s1) = 10 by the fourth case of (4.55).
∗ If g1g2 = h̄11, then γ̈(s1) = 11 by the fourth case of (4.55).

By the same argument, we have γ̈(s′1) = 01 (resp. 10, 11) if g′1g′2 =
h1h2 (resp. h̄10, h̄11). In particular, γ̈(s1) = γ̈(s′1) holds if and
only if g1g2 = g′1g

′
2. Therefore, γ̈(s1) ,= γ̈(s′1) is implied by (4.303)

as desired.

!

4.3.9 Proof of Lemma 4.2.16
Proof of Lemma 4.2.16. (Proof of (i)): We consider the following two cases
separately: (I) the case |P2

F,i| = 3; (II) the case |P2
F,i| = 4.

(I) The case |P2
F,i| = 3: Choose xxx ∈ S∗ arbitrarily, and let γ(s1)γ(s2) . . . γ(sρ)

be the γ-decomposition of fi(x1). By |P2
F,i| = 3, applying the second,

third, and fourth cases of (4.55), we have either γ̈(s1) # 1 or γ̈(s1) # 01,
in particular, f̈i

∗
(xxx) ,# 00. This implies

P2
F̈ ,i

⊆ {01, 10, 11}. (4.316)

By |P2
F,i| = 3, there exists ccc = c1c2 ∈ C2 such that

P2
F,i = {c1c2, c̄10, c̄11}. (4.317)

Then there exists xxx′ ∈ S+ such that

f ∗
i (xxx

′) # ccc. (4.318)

Let γ(s′1)γ(s′2) . . . γ(s′ρ′) be the γ-decomposition of fi(x′
1). Now we show

|γ(s′1)| ≥ 2 by deriving a contradiction for the following two cases
separately: the case |γ(s′1)| = 0 and the case |γ(s′1)| = 1.
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– If we assume |γ(s′1)| = 0: We have

|P2
F,i|

(A)

≥ |P̄2
F,i|+ |P2

F,τi(s′1)
| (4.319)

(B)

≥ |P̄0
F,i|+ |P2

F,τi(s′1)
| (4.320)

(C)

≥ 1 + |P2
F,τi(s′1)

| (4.321)
(D)

≥ 1 + 3 (4.322)
= 4, (4.323)

where (A) follows from Lemma 2.2.3 and |γ(s′1)| = 0, (B) follows
from Corollary 2.3.1 (ii) (b), (C) follows from Lemma 2.2.2 (iii)
because fi is injective by Lemma 4.2.13, and (D) follows from
F ∈ F2. This conflicts with |P2

F,i| = 3.
– If we assume |γ(s′1)| = 1: We have

P2
F,i

(A)

⊇ P̄2
F,i (4.324)

(B)

⊇ c1P1
F,i(c1) (4.325)

(C)
= c1P1

F,i(fi(s
′
1)) (4.326)

(D)

⊇ c1P1
F,τi(s′1)

(4.327)
(E)
= c1{0, 1} (4.328)
9 c1c̄2, (4.329)

where (A) follows from Lemma 2.2.1 (i), (B) follows from Lemma
2.2.1 (ii), (C) follows since c1 = fi(s′1) by (4.318) and |γ(s′1)| = 1,
(D) follows from Lemma 2.2.1 (i), and (E) follows from F ∈ F2 ⊆
F1. This conflicts with (4.317).

Hence, we have |γ(s′1)| ≥ 2 and thus γ(s′1) # c1c2 by (4.318). Therefore,
by the third case of (4.55), we obtain f̈ ∗

i (xxx
′) # f̈ ∗

i (x
′
1) # γ̈(s′1) # 01,

which leads to
01 ∈ P2

F̈ ,i
. (4.330)

Next, we show that
10, 11 ∈ P2

F̈ ,i
. (4.331)
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To prove it, we choose a ∈ C arbitrarily and show that 1a ∈ P2
F̈ ,i

. Since
c̄1a ∈ P2

F,i by (4.317), there exists xxx′′ ∈ S+ such that

f ∗
i (xxx

′′) # c̄1a. (4.332)

Let γ(s′′1)γ(s′′2) . . . γ(s′′ρ′′) be the γ-decomposition of fi(x′′
1). We consider

the following two cases separately: the case |γ(s′′1)| ≥ 2 and the case
|γ(s′′1)| = 1.

– The case |γ(s′′1)| ≥ 2: Then we have γ(s′′1) # c̄1a by (4.332).
Hence, by |P2

F,i| = 3, |γ(s′′1)| ≥ 2, and (4.317), we have γ̈(s′′1) # 1a

applying the fourth case of (4.55). Thus, we obtain f̈ ∗
i (xxx

′′) #
γ̈(s′′1) # 1a, which leads to 1a ∈ P2

F̈ ,i
as desired.

– The case |γ(s′′1)| = 1: We have

P2
F̈ ,i

(A)

⊇ P̄2
F̈ ,i

(4.333)
(B)

⊇ 1P1
F̈ ,i

(1) (4.334)
(C)
= 1P1

F̈ ,i
(γ̈(s′′1)) (4.335)

(D)

⊇ 1P1
F̈ ,τ̈i(s′′1 )

(4.336)
(E)
= 1{0, 1} (4.337)
9 1a, (4.338)

where (A) follows from Lemma 2.2.1 (i), (B) follows from Lemma
2.2.1 (ii), (C) is obtained by applying the second case of (4.55) by
|P2

F,i| = 3 and |γ(s′′1)| = 1, (D) follows from Lemma 2.2.1 (i), and
(E) follows from F ∈ F2 ⊆ F1.

Therefore, we conclude that (4.331) holds. By (4.316), (4.330), and
(4.331), we obtain P2

F̈ ,i
= {01, 10, 11} as desired.

(II) The case |P2
F,i| = 4: We consider the following two cases separately:

(II-A) the case SF,i(λ) ,= ∅; (II-B) the case SF,i(λ) = ∅.

(II-A) The case SF,i(λ) ,= ∅: Since fi is injective by Lemma 4.2.13, we
can choose s ∈ S such that SF,i(λ) = {s}. Also, we have P̄0

F,i ,= ∅
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applying Lemma 2.2.2 (iii). Hence, by Lemma 4.2.2, we have
|P2

F,τi(s)
| ≤ 3. In particular, it holds that |P2

F,τi(s)
| = 3 by F ∈ F2.

Therefore, by the result of the case (I), we obtain

P2
F̈ ,τi(s)

= {01, 10, 11}. (4.339)

Since fi is injective, we can choose s′ ∈ S such that s′ ,= λ. Let
γ(s′1)γ(s

′
2) . . . γ(s

′
ρ′) be the γ-decomposition of fi(s′). By Lemma

4.2.6 (i) and SF,i(λ) ,= ∅, we have

γ(s′1) = λ. (4.340)

Note that ρ′ ≥ 2 holds by (4.340) and s′ρ′ = s′ ,= λ. We have

f̈i(s
′) = γ̈(s′1)γ̈(s

′
2) . . . γ̈(s

′
ρ′) (4.341)

# γ̈(s′1)γ̈(s
′
2) (4.342)

(A)
= γ̈(s′2) (4.343)
(B)

# 00, (4.344)

where (A) follows from (4.340) and Lemma 4.2.15 (i), and (B)
follows from the fifth case of (4.55).
Hence, we have

00 ∈ P̄2
F̈ ,i

. (4.345)
We obtain

P2
F̈ ,i

(A)

⊇ P2
F̈ ,τi(s)

∪ P̄2
F̈ ,i

(B)

⊇ {01, 10, 11} ∪ {00} = {00, 01, 10, 11}
(4.346)

as desired, where (A) follows from Lemma 2.2.1 (i), and (B) follows
from (4.339) and (4.345).

(II-B) The case SF,i(λ) = ∅: It suffices to show that P2
F̈ ,i

⊇ P2
F,i since

|P2
F,i| = 4. Choose ccc = c1c2 ∈ P2

F,i = {00, 01, 10, 11} arbitrarily.
Then there exists xxx ∈ S+ such that

f ∗
i (xxx) # ccc. (4.347)

Let γ(s1)γ(s2) . . . γ(sρ) be the γ-decomposition of fi(x1). We con-
sider the following two cases separately: the case |γ(s1)| ≥ 2 and
the case |γ(s1)| = 1. Note that we can exclude the case |γ(s1)| = 0
since SF,i(λ) = ∅.
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∗ The case |γ(s1)| ≥ 2: We have

f̈i(x1) # γ̈(s1)
(A)
= γ(s1)

(B)

# ccc, (4.348)

where (A) follows from |P2
F,i| = 4 and the first case of (4.55),

and (B) follows from (4.347) and |γ(s1)| ≥ 2. This implies
ccc ∈ P2

F̈ ,i
as desired.

∗ The case |γ(s1)| = 1: We have

f̈i(s1) = γ̈(s1)
(A)
= γ(s1)

(B)
= c1, (4.349)

where (A) follows from |P2
F,i| = 4 and the first case of (4.55),

and (B) follows from (4.347) and |γ(s1)| = 1.
Put j := τi(s1). By Lemma 2.3.3, we can choose the longest
sequence xxx′ ∈ S+ such that f ∗

j (xxx
′) = λ. Then we have

SF,τ∗j (xxx
′)(λ) = ∅. Also, we have |P2

F,τ∗j (xxx
′)| ≥ 3 by F ∈ F2.

In particular, we have one of the following conditions (a) and
(b).
(a) |P2

F,τ∗j (xxx
′)| = 3.

(b) |P2
F,τ∗j (xxx

′)| = 4 and SF,τ∗j (xxx
′)(λ) = ∅.

Therefore, from the cases (I) and (II-A) proven above, we
have P2

F̈ ,τ̈∗j (xxx
′)
⊇ {01, 10, 11}, which leads to

P1
F̈ ,τ̈∗j (xxx

′)
= {0, 1} (4.350)

by Lemma 2.3.2 (i). Thus, we have

P2
F̈ ,i

(A)

⊇ P̄2
F̈ ,i

(B)

⊇ c1P1
F̈ ,i

(c1)
(C)
= c1P1

F̈ ,i
(f̈i(s1))

(D)

⊇ c1P1
F̈ ,j

(D)

⊇ c1P1
F̈ ,τ̈∗j (x

′
1)

(D)

⊇ c1P1
F̈ ,τ̈∗j (x

′
1x

′
2)

(D)

⊇ · · ·
(D)

⊇ c1P1
F̈ ,τ̈∗j (xxx

′)

(E)
= c1{0, 1} 9 c1c2 = ccc, (4.351)

where (A) follows from Lemma 2.2.1 (i), (B) follows from
Lemma 2.2.1 (ii), (C) follows from (4.349), (D)s follow from
Lemma 2.2.1 (i), and (E) follows from (4.350). Therefore, we
conclude that P2

F̈ ,i
⊇ P2

F,i = {00, 01, 10, 11} as desired.
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(Proof of (ii)): We have

P̄0
F,i(fi(s)) ,= ∅

(A)⇐⇒ P̄2
F,i(fi(s)) ,= ∅ (4.352)

⇐⇒ ∃xxx ∈ S+; ∃ccc ∈ C2; (f ∗
i (xxx) # fi(s)ccc, fi(x1) 1 fi(s)) (4.353)

(B)⇐⇒ ∃xxx ∈ S+; ∃ccc ∈ C2; (f̈ ∗
i (xxx) # f̈i(s)ccc, f̈i(x1) 1 f̈i(s)) (4.354)

⇐⇒ P̄2
F̈ ,i

(f̈i(s)) ,= ∅, (4.355)

where (A) follows from Corollary 2.3.1 (ii) (a), and (B) follows from Lemma
4.2.15 (iii).

We consider the following two cases separately: the case P̄0
F,i(fi(s)) = ∅

and the case P̄0
F,i(fi(s)) ,= ∅.

• The case P̄0
F,i(fi(s)) = ∅: By (4.355), the condition P̄0

F,i(fi(s)) = ∅ is
equivalent to P̄2

F̈ ,i
(f̈i(s)) = ∅ as desired.

• The case P̄0
F,i(fi(s)) ,= ∅: Then since P̄2

F̈ ,i
(f̈i(s)) ,= ∅ holds by (4.355),

it suffices to show that P̄2
F̈ ,i

(f̈i(s)) ⊆ {00}. Moreover, to prove this, it
suffices to show that for any xxx ∈ S+ such that f̈i(x1) 1 f̈i(s), we have
f̈ ∗
i (xxx) # f̈i(s)00.

Choose xxx ∈ S+ such that

f̈i(x1) 1 f̈i(s). (4.356)

Let γ(s1)γ(s2) . . . γ(sρ) be the γ-decomposition of fi(x1). Because fi(x1)
1 fi(s) holds by (4.356) and Lemma 4.2.15 (iii), we have s = sr and
f̈i(s) = γ̈(s1)γ̈(s2) . . . γ̈(sr) for some r = 1, 2, . . . , ρ− 1. For such r, we
have

f̈ ∗
i (xxx) # f̈i(x1) (4.357)

= γ̈(s1)γ̈(s2) . . . γ̈(sr)γ̈(sr+1) . . . γ̈(sρ) (4.358)
# f̈i(s)γ̈(sr+1) (4.359)
(A)

# f̈i(s)00 (4.360)

as desired, where (A) follows from the fifth case of (4.55).

!
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Chapter 5

Conclusion

We considered a general class of source codes which allow a finite number of
code tables and at most k-bit decoding delay for k ≥ 0.

In Chapter 2, we first formalized source codes with a finite number of
code tables as code-tuples in Section 2.1, and we stated two equivalent defi-
nitions of the class Fk-dec of k-bit delay decodable code-tuples in Section 2.2.
To exclude some abnormal code-tuples from consideration, in Section 2.3 we
introduced the class Fext of extendable code-tuples, which are code-tuples
F with P1

F,i ,= ∅ for any i ∈ [F ]. In Section 2.4, we defined the average
codeword length L(F ) of a code-tuple F based on a stationary distribution
of the Markov process induced by F , and we limited the scope of considera-
tion to the class Freg of regular code-tuples, which have a unique stationary
distribution. Then in Section 2.5, we defined the class Firr of irreducible
code-tuples and introduced irreducible parts of a code-tuple F , which are
obtained by removing the transient code tables from F .

In Chapter 3, for a fixed source distribution µ, we investigated the general
properties of k-bit delay optimal code-tuples, which are code-tuples with the
optimal average codeword length in Freg ∩ Fext ∩ Fk-dec. Then we proved
three theorems as part of the main results.

• The first Theorem 3.1.1 claims the existence of an irreducible k-bit de-
lay optimal code-tuple F such that Pk

F,0,Pk
F,1, . . . ,Pk

F,|F |−1 are distinct.
This result gives an upper bound of the required number of code tables
for k-bit delay optimal code-tuples. Using this theorem, we proved the
existence of a k-bit delay optimal code-tuple, that is, it is not the case
that one can achieve an arbitrarily small average codeword length by
using arbitrarily many code tables.
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• The second Theorem 3.1.2 states that for a k-bit delay optimal code-
tuple F (f, τ), if the first k bits of a given bbb ∈ C∗ is a prefix of f ∗

i (xxx)
of some xxx ∈ S∗, then bbb itself is also a prefix of f ∗

i (xxx
′) of some xxx′ ∈ S∗.

This result is a generalization of the property of Huffman codes that
each internal node in the code tree has two child nodes.

• The third Theorem 3.1.3 guarantees the existence of a k-bit delay
optimal code-tuple in the class Ffork of the code-tuples F such that
P1

F,i = {0, 1} for any i ∈ [F ]. Therefore, it is sufficient to consider only
the code-tuples F such that both 0, 1 ∈ C are possible as the first bit
of codeword no matter which code table of F we start the encoding
process from.

These theorems enable us to limit the scope of codes to be considered when
discussing k-bit delay optimal code-tuples.

In Section 4, as applications of the three theorems, for k = 1, 2, we gave a
class of code-tuples which can achieve the optimal average codeword length
in Freg ∩ Fext ∩ Fk-dec for a given source distribution µ.

• In Section 4.1, we proved Theorem 4.1.1 that the Huffman code achieves
the optimal average codeword length in Freg ∩ Fext ∩ F1-dec. Namely,
the class of instantaneous codes with a single code table can achieve
the optimal average codeword length in Freg ∩ Fext ∩ F1-dec.

• In Section 4.2, we proved Theorem 4.2.1 that F2-opt ∩FAIFV ,= ∅, that
is, there exists an AIFV code which is 2-bit delay optimal, and thus the
class of AIFV code can achieve the optimal average codeword length
in Freg ∩ Fext ∩ F2-dec.

Finally, we describe future works below.

• Finding a good optimal subclass of Freg ∩Fext ∩Fk-dec: In Chapter 4,
we presented subclasses of Freg ∩ Fext ∩ Fk-dec which can achieve the
optimal average codeword length in Freg ∩ Fext ∩ Fk-dec for k = 1, 2.
What subclasses could be considered for the case k ≥ 3?

• Extending to alphabetic codes: An alphabetic code is a source code
f ∗ : S∗ → C∗ which preserves the lexicographical order of total orders
over S and C in the encoding process, that is, satisfies

∀xxx,yyy ∈ S∗; (xxx ≤∗
S yyy =⇒ f ∗(xxx) ≤∗

C f ∗(yyy)), (5.1)
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where (S,≤S) and (C,≤C) are totally ordered sets, and ≤∗
S and ≤∗

C
denote the lexicographical orders over S∗ and C∗ corresponding to ≤S
and ≤C, respectively. What results will be obtained if such constraint
is imposed on our discussion?

• Generalizing to d-ary coding: How can we generalize our results to d-
ary coding, in which a source sequence xxx ∈ S∗ is encoded to a codeword
sequence over the d-ary coding alphabet C := {0, 1, 2, . . . , d−1} instead
of {0, 1} for a general integer d ≥ 2?
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Appendix A

List of Notations

A× B the Cartesian product of sets A and B, that is, {(a, b) : a ∈ A, b ∈
B}, defined at the beginning of Section 2.

|A| the cardinality of a set A, defined at the beginning of Section 2.
Ak the set of all sequences of length k over a set A, defined at the

beginning of Section 2.
A≥k the set of all sequences of length greater than or equal to k over

a set A, defined at the beginning of Section 2.
A≤k the set of all sequences of length less than or equal to k over a

set A, defined at the beginning of Section 2.
A∗ the set of all sequences of finite length over a set A, defined at

the beginning of Section 2.
A+ the set of all sequences of finite positive length over a set A,

defined at the beginning of Section 2.
aF,i defined in Definition 4.2.4.
C the coding alphabet C = {0, 1}, at the beginning of Section 2.
c̄ the negation of c ∈ C, that is, 0̄ = 1, 1̄ = 0 defined at the begin-

ning of the proof of Theorem 3.1.2.
cccA {cccbbb : bbb ∈ A} for ccc ∈ C∗ and A ⊆ C∗, defined at the beginning of

Section 2.
[ccc]k the prefix of length k of ccc ∈ C≥k, defined at the beginning of

Section 2.
dF,i defined in (3.123).
f ∗
i defined in Definition 2.1.3.
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F simplified notation of a code-tuple F (f0, f1, . . . , fm−1, τ0,
τ1, . . . , τm−1), also written as F (f, τ), defined below Definition
2.1.1.

F̄ an irreducible part of F , defined in Definition 2.5.4.
|F | the number of code tables of F , defined below Definition 2.1.1.
[F ] simplified notation of [|F |] = {0, 1, 2, . . . , |F |− 1}, defined below

Definition 2.1.1.
F̂ defined in Definition 3.4.1.
Ḟ defined in Definition 4.2.4.
F̈ defined in Definition 4.2.5.
FAIFV the set of all AIFV codes, defined in Definition 4.2.1.
F (m) the set of all m-code-tuples, defined after Definition 2.1.1.
F the set of all code-tuples, defined after Definition 2.1.1.
Fext the set of all extendable code-tuples, defined in Definition 2.3.1.
Ffork defined in Definition 3.1.3.
Fk-opt the set of all k-bit delay optimal code-tuples, defined in Definition

3.1.1.
Freg the set of all regular code-tuples, defined in Definition 2.4.3.
F0 {F ∈ Freg ∩ F2-dec : ∀i ∈ [F ];P1

F,i ,= ∅} = Freg ∩ Fext ∩ F2-dec,
defined in Definition 4.2.2.

F1 {F ∈ Freg ∩F2-dec : ∀i ∈ [F ];P1
F,i = {0, 1}}, defined in Definition

4.2.2.
F2 {F ∈ Freg ∩ F2-dec : ∀i ∈ [F ]; |P2

F,i| ≥ 3}, defined in Definition
4.2.2.

F3 {F ∈ Freg ∩ F2-dec : ∀i ∈ [F ];P2
F,i ⊇ {01, 10, 11}}, defined in

Definition 4.2.2.
F4 {F ∈ Freg ∩ F2-dec ∩ F (2) : P2

F,0 = {00, 01, 10, 11},P2
F,1 =

{01, 10, 11}}, defined in Definition 4.2.2.
h(F ) defined after Lemma 3.2.3.
lF,i defined in (3.153).
L(F ) the average codeword length of a code-tuple F , defined in Defi-

nition 2.4.4.
Li(F ) the average codeword length of the i-th code table of F , defined

in Definition 2.4.4.
[m] {0, 1, 2, . . . ,m− 1}, defined at the beginning of Section 2.
MF {i ∈ [F ] : |P2

F,i| = 2}, defined in Lemma 4.2.11.
Pk

F,i defined in Definition 2.2.1.
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P̄k
F,i defined in Definition 2.2.1.

P∗
F,i defined in Definition 2.2.2.

P̄∗
F,i defined in Definition 2.2.2.

Pk
F defined in Definition 3.1.2.

pref(xxx) the sequence obtained by deleting the last letter of xxx, defined at
the beginning of Section 2.

Q(F ) the transition probability matrix, defined in Definition 2.4.1.
Qi,j(F ) the transition probability, defined in Definition 2.4.1.
R the set of all real numbers.
Rm the set of all m-dimensional real row vectors for an integer m ≥ 1.
S the source alphabet, defined at the beginning of Section 2.
suff(xxx) the sequence obtained by deleting the first letter of xxx, defined at

the beginning of Section 2.
xi the i-th letter of a sequence xxx, defined at the beginning of Section

2.
xxx ∧ yyy the longest common prefix of xxx and yyy, defined after Theorem

3.1.3.
xxx ) yyy xxx is a prefix of yyy, defined at the beginning of Section 2.
xxx ≺ yyy xxx ) yyy and xxx ,= yyy, defined at the beginning of Section 2.
xxx ,#≺ yyy xxx is not a prefix of yyy, and yyy is not a prefix of xxx, defined after

Theorem 3.1.3.
|xxx| the length of a sequence xxx, defined at the beginning of Section 2.
xxx−1yyy the sequence zzz such that xxxzzz = yyy, defined at the beginning of

Section 2.
γ(sr) defined in Definition 4.2.3.
λ the empty sequence, defined at the beginning of Section 2.
µ(s) the probability of occurrence of symbol s, defined at the beginning

of Subsection 2.4.
πππ(F ) defined in Definition 2.4.3.
τ ∗i defined in Definition 2.1.3.
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