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Abstract

Algorithms are proposed for the numerical evaluation of Cauchy principal value
integrals Jc_ll w(t)f(t)/(t —x)dt, —1 < x < 1, with weight functions of Jacobi
type singularities w(t) = (1 —t)*(1+t)?, where a = +1/2 and 8 = £1/2, for a
given function f(¢) and Hadamard finite-part integrals 39_11 w(t)f(t)/(t —x)2dt.
The function f is interpolated by using a finite sum of Chebyshev polynomials.
The present algorithms require O(N log N) arithmetic operations, where N is
the order of the interpolation polynomial. It is shown that the present scheme
gives uniform approximations, namely the errors are bounded independently of
x, and is very efficient for smooth f. Further, we discuss approximations of
hyper-singular integrals fil w(t)f(t)/(t —x)™dt, n > 3, and show their uniform
convergences. Numerical examples are given to demonstrate the performance
of the present schemes.

Keywords: quadrature rule, Hilbert transform, principal value integral,
finite-part integral, endpoint singularities of Jacobi type, Chebyshev
interpolation, error analysis, uniform approximation, three-term recurrence
relations

1. Introduction

Let QM9 (f;x) (n = 0,1,..., 4 = 1,...,4) be generalized finite Hilbert
transforms of a given function f(¢) with weight functions of Jacobi type end-
point singularities (1 —¢)*(1 + )% [7], « = £1/2, 3 = +1/2, defined by

0 (fia) — ][ w0 1" ]/ w0
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are also weight functions for the orthogonalities of Chebyshev polynomials of
the first to fourth kind, respectively [13, p.73].

The evaluation of Q™% (f;x) (1) is required in solving many problems of
science and engineering. A solution of the following integral equation appearing

in physics and engineering,
1 Logt
— ]I 9t) dt = f(z),

0 11—

where

under the condition that f_ll g(t)dt = ¢, where c is a specified constant, is given
by g(t) = wa(t){c — I®(f;t)} /7, see Srivastav [17], where

19(f;2) = QU (f;2) = ][ wz‘(t)f(t>d

-1 t—x

t, —-l<z<l, (2)

is called Cauchy principal value integral [10, 11, 15].

Each I (f:z) (i = 2,3,4) can be obtained from IM(f;z). Indeed, since
wa(t) /w1 (t) = 1—a22— (#2 —22), w3(t) /w1 (t) = 1+ 2+ (t—2) and wa(t) /wi(t) =
1—x — (t — ) we see from (2) that

1

1®(f;z) = (1—w2)l<1)(f;:c)—/_1w1(t)(t+x)f(t)dt. (3)

O(f2) = (1+2)I0(f2)+ / S (OF @)t (4)

19(f;2) = (1 -a)IV(f;2) - / wy (1) f (t)dt. (5)
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On the other hand, Q"% (f;z) is called Hadamard finite-part integrals [16],
which we denote as J(f;x),

_ _ @) (f: 1 .
JO(f; ) 5@“’”(]”;@%%1%& “1<z<1. (6)

From (3), (4), (5) and (6) it follows that

1

JO(fi2) = (1 -2 W (f;2) — 22TV (f;2) — / wi () f(t)dt,  (7)

JO(fi2) = Q+2)JV(f2)+ 10 (f;2), 7 (8)
JW(fi2) = QA —a)JV(f;2) - 1D (f;2). (9)



The purpose of this paper is to present efficient quadrature methods for
uniformly approximating Q9 (f;z), particularly, Q) (f;z) = IY)(f; ) and
QU (fix) = JO(f;2) (i = 1,...,4) given by (2) and (6), respectively. We
extend schemes due to Hasegawa [9] and Hasegawa and Torii [10, 11] for ap-
proximating Jc_ll f(t)/(t — x)dt with no end-point singularities. The present
scheme is of interpolatory integration [4, p.74], namely f is interpolated by an
polynomial py and Q9 (f;x) are approximated by Q™% (py;x). In particu-
lar, f is approximated by a finite sum of the Chebyshev polynomials [2, 13], see
(12) below. The present methods are simple to implement as well as numerically
stable to compute [10] and very efficient for smooth functions f [19]. Further, we
discuss the uniform convergences of the approximations Q% (py;z) to hyper-
singular integrals Q™ (f;x) (n > 2,1 <4< 4) [3, 14].

This paper is organized as follows. In Section 2 we give approximation meth-
ods for the Cauchy principal value integrals I (f;z) and the Hadamard finite-
part integrals J®(f;z). It is shown that the approximations for many values
of x € (—1,1) are efficiently computed by using three-term recurrence relations,
see (19) and (23). In Section 3 we show that the errors of the approximations
to I (f;2) and j()(f;2) are uniformly bounded, namely independently of the
values of & and converge to 0 rapidly for smooth functions. Furthermore we dis-
cuss the errors of approximations to hyper-singular integrals Q™% (f;x) (n > 2)
and show their uniform convergences. In Section 4 we give numerical examples
to demonstrate the efficiency of the present schemes.

2. Approximation

The following relation, see (2.4) in Srivastav [17],

1 1
¢ 1 d» t
/ wli()dt———— wl()dt—oa n=01,..., (10)
1 (t—a)ntt nldz" |_ t—=

will be often used in constructing approximation methods for 19 (f;z) and
J@(f;x) and in their error analysis, as shown below. Further, we will use
the orthogonality relation of the Chebyshev polynomials of the first kind T} (),
where Ty (t) = coskf, t = cosb,

1
/ wi () T;(t) T (t) dt = agdjk, (11)
-1
where ap = w and o, = 7/2 (k # 0) and §;, = 1 if j = k, otherwise d;, = 0.

2.1. Interpolation

We approximate f(t) in (2) by a finite sum of Chebyshev polynomials T(¢)
given by

pu(t) =Y "a) Tu(t), (12)
k=0



where the double prime denotes the summation whose first and last terms are
halved. Let Wy 1(t) be defined by

Wri1(t) = Tn41(t) — Tn-1(). (13)

The coefficients alY in (12) are determined so that py(¢) interpolates f(t) at the
zeros of Wi 41(t), namely ¢; = cosmj/N, 0 < j < N, and are given by

ap =

N
%Z/lf(COS?Tj/N) cos(mjk/N), 0<k<N. (14)
j=0

The right-hand side of (14) can be efficiently evaluated by using the FFT(Fast
Fourier Transform) [8, 20]. The approximation py (12) is of fast convergence
for smooth function f.

2.2. Approzimation to Cauchy principal value integrals

By using px(t) (12) we obtain an approximation Ij(vl)(f;x) to the integral
IV (f;2) (2) as follows

IO(i0) = 10 (f52) = 10 i) = fwlen® g

-1 t—=x

The integral in the rightmost-hand of (15) can be easily evaluated in the follow-
ing way. From (10) we have

1O (fr2) = ][1 wit){pn(t) —pn(@)} ) (16)

—1 t—=x

Expanding the integrand in (16) in terms of the Chebyshev polynomials,

-1

e (®) PN NS ) — g (6), (17)

t—=x
k=0

and integrating term by term yield an integration formula by noting (11)
I (f;2) = mbo/2. (18)

The prime in (17) denotes the summation whose first term is halved. The
coefficients by, in (17) can be stably computed by using the recurrence relation

bry1 — 2xby +by_1 = 2ay, k=N,N-—1,...,1, (19)

in the backward direction with the starting values by = byy1 = 0, where we
take a® /2 instead of a¥ [10]. We have omitted the dependence of by on N and
x.



Similarly we obtain approximations for 5 = 0 or 1

/ wi (O F()dt ~ / wn(OPpx (Bt = T, j=0,1,  (20)

-1 -1

o] 2

by using the orthogonality relation (11) and noting that ¢ = T3(t). From (3),
(4), (5), (18), (20), we have integration formulas I](\;)(f;x) = IW(py;z) for
IO (f;x) (i = 2,3,4) as follows

Iﬁ)(f;z) = ﬁ(17x2)b0/2—7r(zaév+aiv)/2,
1P (fi2) = m(1+2)bo/2+ 7ad /2,
I](\;l)(f;z) = w1 —2)by/2 — wal /2.

2.8. Approzimation to Hadamard finite-part integrals

We approximate Hadamard finite-part integrals J® (f; z) (6) by .J ](\;) (f;2) =
J® (py;x). Now, particularly we evaluate JU) (py;x). From (10) we have

JD(pyiz) = /1 wl(t){pzv(t)—pzv(ﬂc)}dt:/_l1 wi(ay-1(@)

1 (t—x)? t—x
1 J—
_ / wi{gn-1(t) —an-1(2)} (21)
1 t—x
Expanding the integrand in (21) in terms of the Chebyshev polynomials,
N-2
anv—1(t) —qn—1(2) _
2 = kz_o Cka(t)a (22)

and integrating term by term yield an integration formula

I (f32) = meo /2.

The coefficients ¢; in (22) can be stably computed by using the recurrence
relation

Cht1 — 2xCcp + 1 =2bp, k=N-1,N-2,...,1, (23)
in the backward direction with the starting values cy—1 = ¢y = 0. We have
omitted the dependence of ¢; on N and z. From (7), (8), (9), (18) and (20) we
have integration formulas JJ(\;)(f;x) = JO(py;z) to JO(fr2) (i = 2,3,4) as
follows

JJ(VQ)(f;x) = 71 —2%)co/2 — mxby — wal' /2,
IV (fiz) = w(l+a)eo/2+mho/2,
JJ(\;l)(f;:c) = 7(1—2)co/2 —7hy/2.



2.4. Computational complexity

Here we consider the computational complexities (the number of floating-
point arithmetic operations (FL)) required to evaluate the approximations to
IO (f;x) and J@(f;2) for each value of z and 1 < i < 4. For a fixed value
of N the evaluation of al}, 0 < k < N, (14) requires O(N log N) FLs by using
the FFT. The computation of by, by the recurrence relations (19) requires O(N)
FLs for each value of z. Similarly O(NN) FLs are required for the computation
of ¢ by (23).

3. Error analysis

8.1. Interpolation error

Let £, denote an ellipse in the complex plane
Epiz=(u+u")/2, wi=pe, 0<E<2m, (24)

whose foci are at z = £1 and the sum of semi-axes is p > 1. Assume that f(z) is
single-valued and analytic inside and on £,. Then, the error of the interpolating
polynomial py(t) (12) can be expressed in terms of a contour integral [5, 6],
which is also expanded in a Chebyshev series [12]:

1 Wi1(t) f(2) dz

f(t) _pN(t) = % e WNJrl(Z) (Z*t)

= Wn41(t) Z/ VIV () Tu(t),  (25)
k=0
where the coefficients VYV (f) are given by

V() = %7{5 Urle) (2) d= 2 k>0 (26)

2 Wn1(2)

The Chebyshev function of the second kind, l?k(z), is defined by

~ _ ! Ty (x) dx _ 27
Uk(z) —[1 z—2) A— 22 (u—u*l)uk'

8.2. Errors of the approximations to Cauchy principal value integrals

Using (25) in (2) with f being replaced by f — py yields the error of the
approximation IV (py; x) (18):

IV(f;a) = IV (pys2) = ID(f —pwiz) = i'ﬂiv(w) Vi), @0
k=0

where Q¥ () is given by

QN (z) = ]{ 1 wy (t)WN;_l(;) Ty (t) dt

, —l<z<l. (28)

Now, we show that |2 ()| is bounded independently of z.



Lemma 3.1. Let QY (z) be defined by (28). Then QY (x) is bounded indepen-
dently of the value of x as well as N and k as follows:

Q% (2)] < 2. (29)
PRrROOF. From (13) and
2T ()T (t) = Togm(t) + Tin—m (1), (30)
we have
2WN1(0) Tk (t) = Wigrt1(t) © Win—gj+1(2), (31)
where
a(N,k)+b(N, k), N >k,
a(N, k) Db(N,k) :=< a(N,k)—b(N,k), N<Ek,
a(N, k), N =k.

From (10) and (31) we see that

20 () = 2/1 wi(O{WN+1(8) Ti(t) = Wi+1(2) Ti(2)}

—1 t—=x

_ /1 wiOUWNtir1(t) = Wk (@)}
t—x

/1 wi (W in—g+1(t) = Win—p+1(2)}
_1 t—x

&5 dt. (32)

Elliott [5] gives an identity involving the Chebyshev polynomial of the second
kind U (t) = sin(k + 1)0/ sin 6, where t = cos 6, as follows

k
Tir1 (6) = T (@) = 2t — 2) Y U (@) T3 1), (33)
=0

Using (33) and the relation Uy (t) — Uk—2(t) = 2T%(t) (k > 1), where we define
U_1(t) = 0, we have

Wip1(t) = Wi (o
t—x

k
) 03T T, (34)
j=0

By noting that |T;(z)| <1 we can verify (29) since using (34) in (32) yields
0 (@) = 7{Twsule) © Ty (@)}, O (35)

Theorem 3.2. Suppose that f(z) is single-valued and analytic inside and on &,
defined by (24) and let K = max.ce, |f(2)|. Then the approzimation IV (py; x)
given by (15) uniformly converges to IV (f;x) given by (2) as N — oo,

47 Kp
(p=1)2(pN —p)

I (f;2) — IV (py; )| < =0(p™), p>1. (36)



PROOF. Since Ty (z) = (uf + u=*)/2 we have
Wis1(2) = Tn41(2) = Tn-1(2) = (@ —u™ V) (u —u™")/2.

Since by noting that dz/du = (1 — u=2)/2 we have V;¥ (f) (26) written by

N 73 f(z)du
D=5 f, Gl
it follows that
9 |f(2)|]d=|
VN < _
Vi (NI < W]{ul_p (el — [ D) ([ul¥ — [u["M)[u[-+1
- 4K (37)

(p—p~ (PN —p=N)p*’
Using (29) and (37) in (27) we can easily verify (36). O

Lemma 3.3. Under the assumption in Theorem 3.2 we have
1
7r _
[ 0 0U© - x| < TR+ VR 0D =067, 68

[ w00 - pwna] < TR0+ VRLO) =06, (39)

PRrROOF. From (25) we have

00 1

| wto —ov®yat =3 VED) [ wWya® T @)

k=0 -1

Since using (13) and (31) in (40) and noting (11) we have

1
0 Waa (0 Tu(0)dt = 5 Grvs = Gy,

-1
we have (38) by using (37). Similarly we can verify (39) by noting (30) and
t="Ti(t). O

From Theorem 3.2, Lemma 3.3 and (4) it follows that [T (f; 2)—I®) (py;2)| =
O(p="). Similarly [10)(f;z) — I0(p; 2)| = O(p~) (i = 3,4).

3.3. Errors of the approximations to Hadamard finite-part integrals

Theorem 3.4. Under the assumption in the Theorem 3.2 the approximation
TV (py;x) (21) uniformly converges to JV(f;x) (6) as N — oo

W (. 2) - T (s o Arkp 2, 20
| (fix) = T (pvs )| < (p—l)Q(pN—p_N){NJr(p—l)Q}
= O(N?*p™M), p>1. (41)



PRrROOF. From (6) and (27) we have
JO(fr2) = TV (pn;a) = JO(f —ps Z di V(). (42

Since from (35) we have

IN

‘dﬂ—k = T{(N + B)|Un-+k-1(2)| + N = Kl |Ujn g1 ()]}

dx

A

7{(N + k)? + (N — k)?} = 2n(N? + k?),

we can establish (41) from (37) and (42). O

From Theorem 3.2, Lemma 3.3, Theorem 3.4, (7), (8) and (9) it follows that
[T (f52) — O (pyvs )| = O(N2p~) (i = 2,3,4).

8.4. Errors of approximations to hyper-singular integrals

Here we discuss the errors of approximations Q% (pn;x) to Q(”’i)(f;z)
(n > 2) defined by (1), particularly for the case where ¢ = 1. From (1), (27)
and (35) we have the error of Q" (py;x)

QU (fiz) - QW%N- 7) = QUI(f ~ pxia)

o0 n

Z Vi¥(f)
N D Tvii(@) © T @) VY (). (43)

Lemma 3.5. For the Chebyshev polynomial Ty(x) we have the bound of the
n-th deriwative of T (z) as follows

dn
—Tila )’<7 1<z<1, k>n, (44)

where (2n — 1)!l=(2n—-1)(2n —3)---3- 1.

PROOF. The Chebyshev polynomial Ty (z) can be defined in terms of the Jacobi
polynomial P,Ea’ﬁ )(t) of degree k [1, p.778] as follows

Ti(z) = ( kfk1/2 ) P,g_l/2’_1/2)(t) _ %Pé—l/&—l/@(t)_ (45)

From (45) and

d (oo} k+20&+1 a+l,a+1
TP (@) = 5= P (@),



see Szego [18, p.63], we have

dr _ (B+n—DKITA/2) J(n-1/2,n-1/2)
o @) = o T 1/2) R (). (47)

Since

@)y ( Kto ) _Lktatl o
_max, 15 ($)|_< k >_k!F(a+1)’ az-1/2

see Szegd [18, p.168], it follows from (47) that
d" (k+n-—1) KIT(1/2)

g K@) S 2 (k—1)  (k—n)!T(n+1/2)
an

1 n—1 ) 5
- (2n71)!!g(kj O <gon U

From (43) and (44) we have the following theorem.

Theorem 3.6. Let QY (py;x) be an approzimation to QY (f;x) (1). Then
under the assumption in Theorem 3.2 we have an asymptotic error estimate for
QY (pn;x) as follows

QU (f;2) = QU V(pnsa)| = O(N*"p™™) =0 (N —o0), p>1.

4. Numerical Examples

Table 1: Errors of the principal value integrals I(l)(fl; x)

a T Integral N Error

0.45 5.11422 05988 67105 65 1.3 x 1079
0.7 | 0.65 7.5831546810 78811 65 —1.2x107°
0.85 14. 66076 57167 5237 65 —3.5x 107
0.99 42. 29067 03367 8566 65 —7.3x 107?
0.45 5. 57776 24136 84228 129 —3.2x 1077
0.85 | 0.65 8. 64891 90463 20080 129 —1.6x 1078
0.85 19. 24579 28328 0233 129 2.4 x 1079
0.99 135.20778 50912 062 129 1.6 x 1077

The examples in this section are computed in double precision: the machine
precision is 2752 = 2.22... x 1071%. Two test functions fi(¢) and fa(t) below

are used,
1—a? 1

"= Tggra PO=ar

10



Table 2: Errors of the principal value integrals 1(2)(f1; x)

a T Integral N Error

0.45  0.46575 93759 68254 65 1.1 x 1079

0.7 | 0.65 0. 13812 17459 76793 65 —6.8 x 10710
0.85 —0. 80110 61266 65397 65 —9.7 x 10710
0.99 —4.46770 72448 64715 65 —1.5x 10710
0.45 0. 36419 50752 46441 129 —2.6x107°
0.85 | 0.65 0. 28236 17688 65156 129 —9.2x107°
0.85 0. 00000 00000 00000 129 6.7 x 1010
0.99 —3. 08989 55592 90213 129 3.1x107?

Table 3: Errors of the principal value integrals I(3) (f1;2)

a T Integral N Error

0.45 10. 55721 25219 4710 65 1.9 x 1079
0.7 | 0.65 15.65379 787736983 65 —1.9x107°
0.85 30. 26400 92295 8167 65 —6.5x 1079
0.99 87.30002 662379326 65 —1.5x 1078
0.45 11.22934 815343192 129 —4.7x 1077
0.85 | 0.65 17.4123090800 1793 129 —2.6x 1078
0.85 38. 74630 93942 7411 129 4.5 % 107?
0.99 272. 20508 49850 902 129 3.1 x 1077

4.1. Numerical example 1
For fi(t) = (1 —a?)/(1 — 2at + a?), where a = 0.7 and 0.85, we compute
IO (f1;2) and JW(f1; x), namely

1 2
, 1-a w; (t) )
19(f1;2) = ][ S———=dt, 1<i<4 48
(f152) 4 1—-2at+a? t—x =r=5 (48)
1 2
l1—a w1 (t)
JV(friz) = 7[ : dt. 49
(flax) 711*2(1154’(12 (t*ZE)Q ( )

Each integral above is calculated as

27a 7(a—x)(1 —a?)
TO(fig) = — 27 T (fog) = 2 W )
(hi;2) 1—2azx+ a®’ (hi;2) 1—2azr+a® ’
1+ a)? —7(1 —a)?
IO () = IOy 0) =
(hisz) 1—2ax + a?’ (hisz) 1 —2az + a?’
2
IO (fr;a) = tma

(1 —2azx +a?)?’

In Tables 1~5, The values of the third column are exact values of the inte-
grals. The fourth and fifth columns give the numbers of function evaluations
and the errors of computed results, respectively.

11



Table 4: Errors of the principal value integrals I(%) (f1;2)

a T Integral N Error
0.45 —0. 32877 13242 12885 65 7.4 x 10710
0.7 | 0.65 —0.48748 85152 12209 65 —4.1 x 10710
0.85 —0.94247 77960 76938 65 —5.3x 10710
0.99 —2.71868 59502 21936 65 —7.3x 10~
0.45 —0.07382332606346774 129 —1.8x 107"
0.85 | 0.65 —0.1144709873777658 129 —5.5x 1077
0.85 —0.2547237286694428 129 3.6 x 10710
0.99 —1.789514802677730 129 1.6 x 1079
Table 5: Errors of the finite-part integrals J(l)(fl; x)
a T Integral N Error
0.45 8. 32547 53935 04590 65 2.0x 1078
0.7 | 0.65 18.30416 647156954 65 —1.3x 10"
0.85 68. 41690 66781 7770 65 —1.9x 1077
0.99 569. 29748 53028 836 65 4.3 x 107
0.45 9.90307 68702 48761 129 1.4 x107°
0.85 | 0.65 23.81078 92773 1844 129 5.7 x 1077
0.85 117.90215 42910413 129 8.8 x 1076
0.99 5819.06923 1773428 129 1.7x10~*

4.2. Numerical example 2

Table 6: Errors of the principal value integrals I(}) ( fa; )

a T Integral N Error
0.45 —b5. 58880 28799 44003 49 1.0 x 1079
0.5 | 0.65 —5.43182 70039 27402 49 4.0 x 10710
0.99 —4.52292 76213 18798 49 —1.7x107°
0.45 —20.70198 714152927 97 1.4 x 10710
0.25 | 0.65 —16.33868 17188 0145 97 8.7 x 10710
0.99 —11.57611 59634 6784 97 —4.5x107°

For fa(t) = 1/(t> + a?), where a = 0.5 and 0.25, we compute I (fo;z) and
JD(f2; x), namely

1
JO (fiz) = 7[

() = L

12



Table 7: Errors of the principal value integrals 1(2)(f2; x)

a T Integral N Error

0.45 —6. 98600 35999 30005 49 8.2 x 10710
0.5 | 0.65 —6. 78978 37549 09252 49 2.3 x 10710
0.99 —5. 65365 95266 48499 49 —3.2 x 10~
0.45 —21.99586 13378 7485 97 1.1x 10710
0.25 | 0.65 —17. 35984 93262 2654 97 5.0 x 10719
0.99 —12.29962 32111 8457 97 —8.9x 10~

Table 8: Errors of the principal value integrals () (fa;x)

a T Integral N Error

0.45 —2.48391 23910 86224 49 1.5 x 1079
0.5 | 0.65 —3.34266 27716 47632 49 6.7 x 10710
0.99 —3.38077 4181591829 49 —3.3x107°
0.45 —17.82671 11496 5020 97 2.0 x 1010
0.25 | 0.65 —14. 76765 46304 5516 97 1.4 x 1079
0.99 —10. 84530 05617 3375 97 —9.0x 107?

Each integral above is calculated as

IO(fa0) = — L), 1 (i) = TS valeQ(x),
a a
7(a? — ) —7(a? + x)
IO (fo;2) = mf2($), IO (fo;2) = it fa(z),
J(l)(f :L') _ 7T(:L'2 _ (12) {f (x)}Q
- avitaz 2

Tables 6~10 show the computed results of I (fao;2) (i = 1,...,4) and JO) (fo; z),

Table 9: Errors of the principal value integrals I(™)(fa; )

a T Integral N Error

0.45 —8.69369 33688 01783 49 5.7 x 10710
0.5 | 0.65 —7.52099 12362 07172 49 1.4 x 10710
0.99 —5.66508 10610 45768 49 —1.6 x 10~
0.45 —23. 57726 31334 0834 97 7.8 x 10711
0.25 | 0.65 —17.90970 88071 4774 97 3.0 x 10710
0.99 —12.30693 136520192 97 —4.5x 10~

respectively.
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Table 10: Errors of the principal value integrals J(l)(fg; x)

T Integral N Error

0.45 —1.30371 09234 98294 49 8.4 x 1078

0.5 | 0.65 2.14352 91007 77756 49 —58x 1078

0.99 2. 71160 46706 59817 49 2.3 x 10~°

0.45  24. 30421 97049 4003 97 —1.3x 1077

0.25 | 0.65 18.65797 11935 5598 97 1.2 x 1077

0.99  10.29113 69672 9242 97 3.2 x 1076
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