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Abstract  

Introduction: [1-11C]acetate positron emission tomography (PET) is used for myocardial 

studies. In the myocardium, mitochondrial acetyl-CoA synthetase (ACSS1) mainly 

contributes to the radiopharmaceutical uptake. [1-11C]acetate PET is also used for tumor 

diagnosis; however, the uptake mechanism of radiolabeled acetate in tumors remains unclear. 

Our previous study reported that cytosolic acetyl-CoA synthetase (ACSS2) was expressed in 

tumor cells and up-regulated under hypoxia; whereas, expression of ACSS1 was negligible 

regardless of the oxygen conditions. We also indicated that ACSS2 is a bi-directional enzyme 

that controls acetyl-CoA / acetate metabolism in tumor cells. In this study, to elucidate the 

basic mechanism of tumor acetate uptake, we focused on ACSS2 and investigated the role of 

ACSS2 in the uptake of radiolabeled acetate in tumor cells. 

Methods: [1-14C]acetate uptake and ACSS2 expression were examined in four tumor cell 

lines under normoxia or hypoxia. An ACSS2 knockdown study was also performed. 

Results: [1-14C]acetate uptake was increased in the tumor cells under hypoxia. This pattern 

followed that of ACSS2 expression. The incorporated 14C was mostly distributed in the 

lipid-soluble fractions, and this tendency increased under hypoxia. ACSS2 knock down led to 

a corresponding reduction in [1-14C]acetate uptake in all tumor cell lines examined under 

normoxia and hypoxia. 

Conclusions: ACSS2 plays an important role in the uptake of radiolabeled acetate in tumor 

cells, which is different from that in the myocardium, which mainly involves ACSS1. The 

uptake of radiolabeled acetate in tumors increased under hypoxia along with up-regulation of 

ACSS2 expression. This suggests a possible mechanism for acetate PET for tumors.
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1. Introduction 

[1-11C]acetate positron emission tomography (PET) is used for the evaluation of 

myocardial blood flow and oxidative metabolism [1-4]. In the myocardium, the uptake 

mechanism of radiolabeled acetate is well-understood, i.e., the acetyl-CoA synthetase (ACSS, 

EC 6.2.1.1; ATP + acetate + CoA ↔ AMP + diphosphate + acetyl-CoA) distributed in 

mitochondria (termed ACSS1 in this study) is highly expressed compared with that 

distributed in the cytosol (termed ACSS2) and contributes to uptake of radiolabeled acetate 

[5-7]. It was also demonstrated that the radiolabeled acetate incorporated by the heart is 

mainly used for oxidation and metabolized into CO2 via the TCA cycle, but is also partly 

used for lipid synthesis [5, 8-11]. 

[1-11C]acetate PET has also become a useful tool for detecting various kinds of 

malignant tumors, e.g., prostate cancer [12, 13], renal carcinoma [14], hepatocellular 

carcinoma [15], brain astrocytoma [16], and glioma [17]. Alternatively, [18F]fluoroacetate is 

being developed as an analog of [1-11C]acetate [18, 19] and has been shown to be useful for 

detecting prostate cancer by PET studies [20, 21]. However, information on the exact uptake 

mechanism of radiolabeled acetate in tumor cells is limited. 

So far, several studies on the uptake of radiolabeled acetate in tumor cells have been 

conducted. Yoshimoto et al. examined [1-14C]acetate uptake and metabolic fate under 

normoxia in four tumor cell lines including colon adenocarcinoma, nasal septum 

quasi-diploid tumor, ovary carcinoma, and melanoma as well as in a non-tumor fibroblast cell 

line to elucidate the implication of [1-11C]acetate-PET imaging [22], and revealed that the 

tumor cells showed higher [1-14C]acetate uptake than fibroblast cells under normoxia and that 

the tumor cells incorporated [1-14C]acetate into lipids rather than CO2 via the TCA cycle and 

amino acids. In addition, Hara et al. reported that [1-14C]acetate uptake is accelerated under 

hypoxia in prostate cancer cells [23]. 
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Concerning the gene expression of tumor ACSS, our previous study revealed that 

tumor cell lines, including Lewis lung carcinoma, LLC (LL/2); melanoma, B16; colon 

carcinoma, Colon (Colon-26); and mammary carcinoma, C127I, expressed little ACSS1, but 

greater cytosolic ACSS2 and that the expression of ACSS2 was up-regulated under hypoxia. 

We also found that ACSS2 plays an important role in hypoxic survival in tumor cells [24]. 

Interestingly, our data also demonstrated that ACSS2 participates in the reversible reaction 

between acetyl-CoA and acetate in tumor cells; i.e., ACSS2 is a bi-directional enzyme 

mediating a buffering role in tumor acetyl-CoA / acetate metabolism. These facts prompted 

us to hypothesize that ACSS2 might mediate uptake of radiolabeled acetate in tumor cells and 

that the uptake rate of radiolabeled acetate in tumor cells would be increased under hypoxia 

along with up-regulation of ACSS2 expression. In this study, to understand the uptake 

mechanism of radiolabeled acetate in tumor cells as a basis of tumor acetate PET, we 

characterized the patterns of [1-14C]acetate uptake and ACSS2 expression in tumor cells and 

considered the role of tumor ACSS2 in the uptake of radiolabeled acetate. 

 

2. Materials and methods 

2.1. Cells and cultivation 

Four mouse tumor cell lines were used in this study, LLC (LL/2) (CRL-1642, 

American Type Culture Collection or ATCC, mouse Lewis lung carcinoma), B16 (RCB1283, 

Riken Cell Bank, mouse melanoma), Colon (Colon-26; TKG 0518, Cell Resource Centre for 

Biomedical Research, Tohoku University, mouse colon carcinoma), and C127I (CRL-1616, 

ATCC, mouse mammary carcinoma). As a reference, a mouse fibroblast cell line, BALB/3T3 

clone A31 (3T3; CCL-163, ATCC), was used. For the ACSS2 knock down study, tumor cells 

in which ACSS2 expression was inhibited by RNA interference (RNAi) were used. These 

RNAi tumor cells were previously constructed using lentiviral particles (Mission lentiviral 
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transduction particles; SHVRS-NM 019811; Sigma, Poole, UK) carrying expression cassettes 

encoding ACSS2-targeting single-hairpin RNA (shRNA). Non-targeting shRNA (SHC002V, 

Sigma) was also used as a negative control [24-26]. The cells were incubated in a humidified 

atmosphere of 5% CO2 in air (normoxia) at 37 °C. Dulbecco’s modified Eagle’s medium 

(Invitrogen, Carlsbad, CA, USA) supplemented with 10% fetal bovine serum and antibiotics 

was used for growth. Exponentially growing cells were used for the experiments. Hypoxia 

(1.2% O2, 93.8% N2 and 5% CO2) was achieved with a Personal Multi Gas Incubator (Astec, 

Fukuoka, Japan). The cells were trypsinized to detach them from the plates, and the number 

of viable cells was counted by the trypan blue dye-exclusion method. 

 

2.2. [1-14C]acetate uptake study 

In this experiment, we optimized the number of cells for seeding to roughly control 

the number of cells present during the uptake study (LLC, B16, and Colon: 5 × 104, C127I: 8 

× 104, 3T3: 1 × 105) in 1 ml growth medium per well in 24-well plates. The cells were 

incubated under normoxia for 24 h, and the cells for the hypoxic study were additionally 

pretreated with 2 h or 6 h hypoxia. After the preincubation, 500 μl growth medium containing 

37 kBq of [1-14C]acetate (2.07 GBq/mmol) (GE Healthcare, Pollards, UK) were added to 

each well, and the cells were incubated for 1 h under normoxia or hypoxia. We adopted a 

similar concentration of [1-14C]acetate to that in Yoshimoto et al. [22]. Then, the medium was 

removed, and the cells were washed twice with ice-cold PBS. The resultant cells were lysed 

with 500 μl of 0.2N NaOH for 2 h at room temperature or processed by the Bligh and Dyer 

extraction method to separate the lipid- and water-soluble fractions [27]. The radioactivity of 

mixture of the lysate or separated fractions and a liquid scintillator (ACSII, GE Healthcare) 

was measured using a liquid scintillation counter (LSC-5000, Aloka, Tokyo, Japan). The 

number of cells treated before cell lysis was counted. In addition, the pretreatment with 
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long-term hypoxia (24 h) was also tested in the same manner. 

 

2.3. Gene expression analysis.  

Total RNA isolation was performed with a Micro-to-Midi total RNA purification 

system (Invitrogen). cDNA was synthesized from 1 μg of total RNA using the ReverTra Ace 

qPCR RT Kit (Toyobo, Osaka, Japan) and was subjected to real-time PCR. The real-time 

PCR was performed with Realtime PCR Master Mix (Toyobo) and TaqMan gene expression 

assays (Applied Biosystems, Foster City, CA, USA) using an ABI PRISM 7000 sequence 

detection system (Applied Biosystems) in total reaction volumes of 20 μl containing 10 μl 

Realtime PCR Master Mix, 9 μl 1/10 cDNA template, and 1 μl 20× TaqMan gene-expression 

assay (ACSS2, Mm00480101; β-actin, Mm00607939). PCR was carried out for 1 min at 

95 °C, followed by 40 cycles at 95°C for 15 s and at 60°C for 1 min. ACSS2 mRNA was 

quantified by the comparative CT method using β-actin expression as the endogenous control 

[28]. 

 

2.4. Statistical analysis. 

Data are expressed as means and standard deviations. P values were calculated by 

the two-sided t-test for comparison between two groups. ANOVA was used for comparison 

between multiple treatment groups. P values < 0.05 were considered statistically significant. 

Values from four independent experiments are presented. 

 

3. Results  <Please locate Fig. 1 and Table 1 around here.> 

3.1 [1-14C]acetate uptake study 

Fig. 1A shows [1-14C]acetate uptake for 1 h in the cells examined. Under normoxic 
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conditions, all tumor cells showed higher [1-14C]acetate uptake than the 3T3 fibroblast cells: 

1.3-fold in LLC and B16, 1.6-fold in Colon, and 1.2-fold in C127I (P < 0.001 in Colon; P < 

0.01 in LLC and C127I; P < 0.02 in B16). We also tested the [1-14C]acetate uptake for 1 h 

under hypoxic conditions. In this study, the cells were treated with 2 h or 6 h hypoxia prior to 

the uptake study. In four all tumor cell lines, the [1-14C]acetate uptake was much increased 

under hypoxia compared with normoxia; however, the 3T3 fibroblast cells did not show any 

increase in [1-14C]acetate uptake under hypoxia. In the cells treated with 2 h hypoxia 

beforehand, the values were 1.3-fold, 1.2-fold, 1.6-fold, and 1.2-fold larger in LLC, B16, 

Colon, and C127I, respectively, compared with each cell type under normoxia (P < 0.01 in 

Colon and C127I; P < 0.02 in LLC and B16). Similarly, the cells treated with 6 h hypoxia 

beforehand showed increased [1-14C]acetate uptake, compared with normoxia: 1.4-fold, 

1.2-fold, 1.5-fold, and 1.4-fold larger than each cell type under normoxia in LLC, B16, Colon, 

and C127I, respectively (P < 0.01 in LLC, Colon, and C127I; P < 0.04 in B16). There was no 

significant difference between 2 h and 6 h hypoxic pre-treatments. 

 

3.2 ACSS2 expression analysis 

Fig. 1B shows the expression pattern of transcripts encoding cytosolic ACSS2 in the 

cells examined. The pattern of tumor ACSS2 expression resembled that of [1-14C]acetate 

uptake. Namely, tumor ACSS2 expression showed an increase compared with that of the 3T3 

fibroblast cells: 1.5-fold in LLC, 1.9-fold B16, 2.4-fold in Colon, and 2.2-fold in C127I, 

respectively (P < 0.001). Also, the expression of ACSS2 mRNA increased under hypoxia in 

tumor cells; whereas, it decreased in the 3T3 fibroblast cells. The values of ACSS2 

expression were 1.4-fold and 1.6-fold larger in LLC, 1.5-fold and 1.1-fold larger in B16, 

1.6-fold and 1.7-fold larger in Colon, and 1.1-fold and 1.6-fold larger in C127I, after 2h and 

6h hypoxic treatment, respectively, compared with each cell type under normoxia (P < 0.01 
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in LLC, B16 and Colon; P < 0.03 in C127I).  

 

3.3 Effect of long-term hypoxia to [1-14C]acetate uptake and ACSS2 expression <Please 

locate Table 1 around here.> 

Table 1 shows the ratios of the long-term hypoxic pretreatment (24 h) and short-term 

hypoxic pretreatment (2 h or 6 h) to normoxic treatment in the [1-14C]acetate uptake and 

ACSS2 gene expression. In all tumor cell lines, cells pretreated with 24 h hypoxia showed 

significant increase of [1-14C]acetate uptake and ACSS2 expression, compared with normoxia. 

This tendency was similar to that seen in the cells pretreated with 2 h or 6 h hypoxia. 

 

3.4 Distribution ratio of radioactivity in fractions separated from tumor cells <Please locate 

Fig. 2 around here.> 

The fate of the 14C incorporated into tumor cells under normoxia or hypoxia was 

further examined. The 14C incorporated into the tumor cells was mostly distributed in the 

lipid-soluble fraction: 81.6 % and 87.6 % in LLC, 70.2 % and 79.3 % in B16, 85.8 % and 

91.4 % in Colon, and 74.1 % and 86.0 % in C127I of the total 14C incorporated into the cells, 

under normoxia and hypoxia, respectively (Fig. 2). The proportion incorporated into the 

lipid-soluble fraction under hypoxia tended to be higher than that under normoxia, and the 

increase was significant in the LLC, Colon, and C127I cells (P < 0.05 in LLC; P < 0.001 in 

Colon and C127I); whereas, it was marginal and not significant in the B16 cells. 

 

3.5 Involvement of ACSS2 in tumor [1-14C]acetate uptake <Please locate Fig. 3 here.> 

To test the involvement of ACSS2 in acetate tracer uptake in tumor cells, we 

examined [1-14C]acetate uptake in RNAi cells derived from the four tumor cell lines. In the 

ACSS2-RNAi tumor cells, the expression of ACSS2 was decreased compared with 



Yoshii et al.  
Mechanism of tumor acetate uptake 

 

9 
 

control-RNAi tumor cells in all the tumor cell lines examined (Fig. 3A-D, upper). 

Furthermore, in the ACSS2-RNAi tumor cells, knock down of ACSS2 caused a 

corresponding reduction in [1-14C]acetate uptake in all examined tumor cell lines under 

normoxia (Fig. 3A-D, lower). Under hypoxic conditions, a similar tendency was also 

confirmed in all examined tumor cell lines (data not shown). 

 

4. Discussion 

We characterized [1-14C]acetate uptake in tumor cells, including LLC, B16, Colon, 

and C127I cells. All the tumor cells we examined incorporated larger amounts of 

[1-14C]acetate than the 3T3 fibroblast cells under normoxia. Our results showed concordance 

with a previous report by Yoshimoto et al that used other tumor cell lines. [22]. We also 

confirmed the acceleration of [1-14C]acetate uptake under hypoxia in all tumor cell lines 

examined. Hara et al. reported an increase in [1-14C]acetate uptake under hypoxia in prostate 

cancer cells [23]. Our results revealed a similar tendency. 

In the present study, we found that the pattern of [1-14C]acetate uptake resembled the 

pattern of cytosolic ACSS2 mRNA expression in the four tumor cell lines examined (Fig. 1 

and Table 1). In addition, from the RNAi studies, we revealed that knockdown of ACSS2 in 

the tumor cells led to a corresponding reduction in [1-14C]acetate uptake under normoxia and 

hypoxia, respectively. Taken together, it can be concluded that ACSS2 was involved in 

[1-14C]acetate uptake in the tumor cells and that up-regulation of ACSS2 expression under 

hypoxia led to an increase in [1-14C]acetate uptake.  

Hara et al. demonstrated that prostate cancer cells pretreated with 4 h or 5 h hypoxia 

showed acceleration of [1-14C]acetate uptake under hypoxia [23]. In this study, we used cells 

that were pretreated with 2 h or 6 h hypoxia for the uptake experiments to evaluate 

[1-14C]acetate uptake under hypoxia. We found that in both hypoxic treatment groups of each 
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tumor cell, [1-14C]acetate uptake and ACSS2 expression were increased under hypoxia, 

compared with normoxia. This indicates that the rate of [1-14C]acetate uptake under hypoxia 

became faster than that under normoxia, which mirrors the activation of ACSS2 expression. 

Therefore, hypoxia induced the tumor cells to up-regulate ACSS2 expression and 

[1-14C]acetate uptake within 2 h. Similarly, the long-term hypoxic treatment led to increase 

[1-14C]acetate uptake and ACSS2 expression. This means that, in tumor cells under more 

chronic hypoxic conditions, the acceleration of [1-14C]acetate uptake could be also caused by 

the up-regulation of ACSS2 expression. 

We have previously reported that the tumor cells used in this study expressed 

cytosolic ACSS2 and that the expression of ACSS2 was increased under hypoxia; whereas, 

mitochondrial ACSS1 was little expressed regardless of the oxygen conditions [24]. In this 

study, we showed that tumor [1-14C]acetate uptake reflected the expression of cytosolic 

ACSS2 and that the cytosolic ACSS2 was involved in [1-14C]acetate uptake in these tumor 

cell lines. This indicates that the uptake of radiolabeled acetate reflects cytosolic ACSS2 

activity rather than mitochondrial ACSS1 in these tumor cell lines. In contrast, it has been 

reported that in the myocardium mitochondrial ACSS1 is more highly expressed than ACSS2 

and is involved in uptake of radiolabeled acetate [5]. This means that the uptake mechanism 

of radiolabeled acetate in tumor cells might be different from that in the myocardium. 

Furthermore, the metabolic fate of the incorporated acetate seems different between tumor 

cells and the myocardium; namely, tumor cells mainly metabolize radiolabeled acetate into 

lipids [22]; whereas, the myocardium mainly metabolizes it into CO2 [5, 8-11]. 

ACSS2 is known to be highly expressed in the liver as a lipogenic enzyme that 

incorporates acetate into lipids [5, 29, 30]. On the other hand, our studies have demonstrated 

that ACSS2 can mediate the reversible reaction between acetyl-CoA and acetate in tumor 

cells ([24], this study). In this study, we administered 37 kBq of [1-14C]acetate (2.07 
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GBq/mmol) to tumor cells, which can be estimated as a 3 – 9-fold larger amount of acetate 

compared with the level of tumor acetate excretion reported previously [24]. This suggests 

that the reactions of tumor ACSS2 are affected by the concentrations of acetate and 

acetyl-CoA. 

Löffler and Schneider reported that, under hypoxia, the proportion of [U-14C]acetate 

incorporated into lipids is increased in Ehrlich ascites tumor cells [31]. Similarly, this study 

showed that [1-14C]acetate incorporation into the lipid-soluble fraction tended to be enhanced 

in tumor cells under hypoxia. On the other hand, Vāvere et al. showed that [1-11C]acetate 

uptake is correlated with expression of fatty acid synthetase (FAS) by in vitro and in vivo 

study [32] and a recent study by Furuta et al. demonstrated that hypoxia up-regulates FAS via 

phosphorylation of Akt followed by activation of hypoxia-inducible factor 1 (HIF-1) in 

various types of tumor cells [33]. According to Furuta et al. [33], the expression of FAS is 

activated by H2O2 generation under hypoxia, and the up-regulation of FAS leads to 

hypoxia-induced chemoresistance in tumor cells, which suggests that fatty acid synthesis is 

activated under hypoxia to adapt to environments involving hypoxic stress in tumor cells. 

Taking these studies and our results together, it is reasonable to assume that the incorporated 

acetate in tumor cells under hypoxia is used for activated fatty acid synthesis and is stored in 

the lipid-soluble fractions of tumor cells. In other words, radiolabeled acetate would be a 

useful marker that indicates activated FAS expression under hypoxia. 

Consequently, in this paper, we found that uptake of radiolabeled acetate reflects 

ACSS2 expression in tumor cells, which helps to elucidate the basis of tumor acetate PET. 

However, at this moment, our findings are limited to in vitro conditions. To further interpret 

tumor acetate PET, detailed information, such as on the metabolic fate of radiolabeled acetate 

in vivo and on the levels of acetate or acetyl-CoA in intact tumors, should be obtained. 
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Figure Legends 

 

Fig. 1. [1-14C]acetate uptake (A) and ACSS2 mRNA expression (B) in tumor cells (LLC, B16, 

Colon, and C127I) and fibroblast cells (3T3) under normoxia and in the same cells under 

hypoxia after pretreatment with 2 h hypoxia or 6 h hypoxia. (A) [1-14C]acetate uptake in the 

tumor cells was higher than in the 3T3 cells under normoxia (* P < 0.02, ** P < 0.01, *** P 

< 0.001). [1-14C]acetate uptake in the tumor cells increased under hypoxia (†P < 0.04, †† P < 

0.02, ††† P < 0.01), but not in 3T3. NS = not significant. (B) ACSS2 expression under 

normoxia was higher in the tumor cells compared with the 3T3 cells (P * < 0.001). The 

values were increased under hypoxia in the tumor cells, but decreased in the 3T3 cells († < 

0.03, †† < 0.01, ††† < 0.001). 

 

Fig. 2. Distribution of incorporated 14C into the lipid- and water-soluble fractions of tumor 

cells (LLC, B16, Colon, and C127I cells) after [1-14C]acetate uptake. The asterisks indicate 

the statistical significance between normoxia and hypoxia (* P < 0.05, ** P < 0.001). The 

data indicates the proportion of 14C radioactivity in the lipid-soluble fractions (gray areas) 

and water-soluble fractions (white areas).  

 

Fig. 3. ACSS2 knockdown decreased [1-14C]acetate uptake in tumor cells (LLC, B16, Colon, 

and C127I). The asterisks indicate statistical significance (* P < 0.01, ** P < 0.005, *** P < 

0.001). The data indicates the percentages of ACSS2 mRNA expression (upper) and 14C 

incorporation (lower) in ACSS2-RNAi tumor cells relative to control-RNAi tumor cells in 

LLC (A), B16 (B), Colon (C), and C127I cells (D) under normoxia.  
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Table 1  Effect of long-term (24 h) and short-term (2 h or 6 h) hypoxia in the [1-14C]acetate 
uptake and ACSS2 gene expression 

  Ratio to each normoxic treatment 

Cell line Treatment [1-14C] acetate uptake Acss2 gene expression 

LLC Normoxia 1.00 ± 0.06a 1.00 ± 0.15a 

 Hypoxia with 2 h 
pretreatment 1.29 ± 0.14b 1.42 ± 0.18b 

 Hypoxia with 6 h 
pretreatment 1.36 ± 0.07b 1.63 ±  0.25b 

 Hypoxia with 24 h 
pretreatment 1.73 ± 0.29b 1.81 ±  0.07b 

B16 Normoxia 1.00 ± 0.10a 1.00 ± 0.09a 

 Hypoxia with 2 h 
pretreatment 1.22 ± 0.07b 1.46 ± 0.03b 

 Hypoxia with 6 h 
pretreatment 1.17 ± 0.05b 1.14 ± 0.05c 

 Hypoxia with 24 h 
pretreatment 1.64 ± 0.08c 1.98 ±  0.20d 

Colon Normoxia 1.00 ± 0.09a 1.00 ± 0.32a 

 Hypoxia with 2 h 
pretreatment 1.56 ± 0.18b 1.59 ± 0.07b 

 Hypoxia with 6 h 
pretreatment 1.53 ± 0.07b 1.71 ± 0.14b 

 Hypoxia with 24 h 
pretreatment 1.81 ± 0.04c 3.28 ± 1.56b 

C127I Normoxia 1.00 ± 0.04a 1.00 ± 0.03a 

 Hypoxia with 2 h 
pretreatment 1.17 ± 0.06b 1.12 ± 0.04b 

 Hypoxia with 6 h 
pretreatment 1.43 ± 0.18b 1.62 ± 0.35b 

 Hypoxia with 6 h 
pretreatment 2.05 ± 0.11c 2.58 ± 0.86b 
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3T3 Normoxia 1.00 ± 0.04 1.00 ± 0.05 

 Hypoxia with 2 h 
pretreatment 0.96 ± 0.07 0.59 ± 0.12 

 Hypoxia with 6 h 
pretreatment 0.91 ± 0.04 0.33 ± 0.08 

 Hypoxia with 24 h 
pretreatment 0.71 ± 0.05 1.09 ± 0.54 

a-d The significant differences are shown by different letters on each group （P < 0.05）. 
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Fig.1 
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Fig.2 
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Fig.3 


