

海馬シータ波と視覚誘発電位との関連(注

メタデータ	言語: Japanese
	出版者:
	公開日: 2012-05-08
	キーワード (Ja):
	キーワード (En):
	作成者: 吉田, 和典
	メールアドレス:
	所属:
URL	http://hdl.handle.net/10098/5307

海馬シータ波と視覚誘発電位との関連(注)

吉 田 和 典

心理学教室

(昭和56年11月9日 受理)

序および目的

海馬の機能について、昔から特に海馬シータ波の側面から様々の手法を用いて多面的に論じ られてきた。主に、動機づけ⁽³⁾条件反射⁽⁴⁾ 定位反応または注意行動⁽¹⁾⁴²⁽⁴⁾, 随意運動⁴⁶⁽⁴⁾ など特 に運動系との関連が言われてきており、一般的に海馬は反応を抑制する機能を有していること が示唆されてきた⁽⁵⁾⁽⁸⁾⁽¹⁹⁾。一方では、誘発電位の手法を用いて、その潜時、振幅、波形等の変化 から、海馬特に海馬シータ波と感覚入力調節機構との関連について注目されてきており、海馬 は運動系のみならず、感覚系に対しても何らかの働きを持っており、感覚一運動系の統合に関 与しているのではないかと言われてきた⁰⁶⁰⁷⁰⁹⁰⁹⁰⁶⁰⁰⁰⁸⁰⁹⁰⁰⁰⁰。Schwartzbaum と彼の共同研究者 達は覚醒時の視覚誘発電位(Visual Evoked Potential:以下VEPと略す) と海馬シータ波 および行動反応性(フラッシュに対するシャトルボックス内での移動数)との間の相互関係を 検討し、その結果、行動反応性の増加に伴ない海馬シータ波の周波数が高くなるとVEP振幅 が有意に減少することを報告した^{0909060/0809}。これらのことから海馬は脳幹部位の覚醒メカニズ ムに対して重要な働きを持っており、その交互作用から感覚(この場合は視覚)入力の増減調 節に対して機能したのだろうと推論した⁶⁶。 しかしながら今のところ海馬と脳幹部位との間に 明確な対応関係は見い出されていない^師。また,海馬シータ波の優勢に出現する逆説睡眠(Paradoxical Sleep; 以下PSと略す)を中心に、海馬シータ波の周波数および急速眼球運動(Rapid Eye Movement;以下REMと略す)とVEP振幅との間の相互関係を見た研究がある^{(49/950}。 その結果、REM出現率に応じた海馬シータ波の周波数増大⁶³⁶⁴⁴⁵⁶⁹はVEP振幅を有意に減少 させるという一致した経果⁰⁹⁶⁹⁶⁹⁰⁹⁰⁹⁰⁹が得られた。しかしREMが出現しない時期では海馬シー 夕波の周波数とVEP振幅との間に上記のような対応関係は見られず、むしろREMの効果が 大きいことが見い出された。すなわち覚醒時でもPS期でも海馬シータ波の増大は、運動ある いは末梢活動に伴なった付随的現象で、そのフィードバックによるかあるいはそれらの運動を 制御する中枢機構によって感覚入力の増減をもたらしたのだろうと考えられた⁶⁰。一方、海馬 シータ波を消失させる中隔核破壊後、VEP振幅が有意に増大することが知られている^{6337/950}

⁽注)本実験は著者が筑波大学心理学研究科博士課程に在籍中に、故岩原信九郎教授、岩崎庸男助教授の御指 導のもとに行なわれたもので、この一部はすでに第7回日本脳波・筋電図学会(1977年、仙台)の誘発電 位部門で発表された。

吉田和典

この場合,破壊後一般活動性およびREM出現様相には何ら影響しなくても,同様にVEP振幅が増えるという結果が得られている⁵⁰⁰。従って,海馬シータ波が独自に感覚系に対して何らかの働きかけをしていたことは確かであろうと思われる。すなわち海馬シータ波の周波数以外の他の要因がVEP振幅の増減ないしは視覚入力⁶⁰¹の調節に対して重要な働きを持っていたのではないかと考えられる。以前から脳波特にヒトのアルファー波の位相と誘発電位との間に有意な関連のあることが論じられている⁽⁶⁾⁽⁹⁾³²。また,海馬シータ波の位相とバー押し反応との間にも一致した対応関係が報告された⁶⁰

そこで本実験では、特にPS期を中心に、REMの出現率を考慮しながら海馬シータ波の位相とVEP振幅との関連について検討することを目的とした。REM出現率と海馬シータ波との関係についてはすでに報告されており⁶³⁶⁰⁴⁽⁴⁹⁶⁰⁾,本実験でも確認された。すなわちPS期はREM出現の有無により明確に区分することができ、またPS期を中心に海馬シータ波とVEPとの関連を見る利点として、覚醒時とは異なり他の外的刺激あるいは体動によるVEPに対する影響が少ないことなどが上げられる⁵⁰。

方 法

(1) 被 験 体

7匹のWistar-今道系アルビノ雄ラットを用い、手術時の体重は280~430gであった。
 (2) 手 術

ネンブタール(Pentobarbital Sodium, 35mg/kg, 腹腔内投与)麻酔下で脳定位固定装置に 固定し,電極植え込み手術を行なった。海馬脳波記録用には,カシュ塗料で絶縁された直径0.3 mmステンレス線で,先端約0.5mmカシュを剝がしたものを電極として用いた。子め脳地図⁰⁰で決 められた背側海馬にこの電極を刺入し,デンタルセメントで頭蓋に固定した。皮質脳波記録用 電極には直径1mmのステンレスネジを用い,右前頭および後頭部皮質上の硬膜に先端が接する ように頭蓋に固定した。眼球運動を記録するために,直径0.19mmのステンレス線2本をそれぞ れ左眼窩の前後に刺入し,頭蓋に接しないように固定した。さらに筋電図用にも同じステンレ ス線2本を頸筋に入れ,これらすべての電極リード線をミニチュアソケットに半田付し,ソケ ットが頭部中央に位置するようにデンタルセメントで固定した。

(3) 手 続

約1週間の手術回復期の後、ラットを電気的に遮蔽された防音室内の観察記録箱(40×40× 40cm)に入れ、所定の手続に従って脳波記録を行った。この観察箱の内側はフラッシュの刺激 強度を一定に保つためにアルミニウム板で囲まれている。10チャンネルポリグラフ(三栄測器 製 Type 1 A52A)を用いて、まず実験状況に慣れさせるため約30分間の予備記録を行った(明 条件)。次に防音室内の照明を消し暗条件下で、数分間以上持続するPS期が少なくとも4回以 上出現するまで記録を続けた。これにはほぼ数時間を要した。その後引き続き同条件下で、ラ ットから約50cmの位置にフラッシュランプを置き,約2秒から2.5秒間隔でフラッシュ刺激(50 cmの距離,100c/sで約20Lux)を与え,暗条件と同じPS基準に達するまで記録を継続した。

実験終了後,すべての被験体に致死量(手術時の約3倍)のネンブタールを投与し,左心室 より生理的食塩水-10%ホルマリン溶液を順に流し頭部を灌流固定した。脳を取り出し凍結用 ミクロトームで20μmの切片を作成しクレジールバイオレットで染色した。これらの組織標本か ら脳地図⁶⁰に従って海馬の電極先端部位を確認した。

(4) 結果の整理方法

前回の報告⁶⁰と同様, REMの分類基準は図1のごとくで, 各PS期のフラッシュ刺激前後

約1秒から2秒間でREMの出現が全く見られない時期をREM(-),単発状のREMが出現 する時期をREM(+),群発状にREMが出現する時期をREM(++),さらに,tonic に眼 筋の緊張は見られるがREMの出現が認められない時期または分類が困難なものをREM(±) とした。本論の結果ではこのREM(±)のデータは省略した。

VEP振幅は図2の下のように、後頭部皮質脳波記録上から潜時約30-80msecの初期Peak-

図2 海馬シータ波の位相とVEP振幅の測定方法。flash 刺激時点での海馬シータ波 (Hippocampal theta wave)の平均振幅を基線とし4つの位相(A,B,C,D)を 同定した。VEP振幅は個々の後頭部脳波(Occipital EEG & VEP)上から潜 時約30-80msecの陰性-陽性成分を測定。YP-4は被験体番号。 Peak 成分を直接測定した。海馬シータ波の位相(phase)分類も図2で示されたように、フラ ッシュ刺激時点での海馬シータ波の前後3つの振幅を測定し、その平均値を基線とした。それ で上向きの陰性成分と下向きの陽生成分に分け、それぞれの頂点から基線へ垂線を引き、最終 的に4つのシータ波位相(A,B,C,D)に分類した。この図の場合のシータ波位相は陽性のC 位相に分類された。

結 果

(1) 剖 検

図3に示したものは、組織学的検索によりすべての被験体(番号1~7)の深部電極先端部

位を模式的に表わしたもので、先端部位はす べて海馬内にあり、特に海馬CA4の錐体細 胞層(Stratum pyramidale)と歯状回の顆粒 細胞層(Stratum granulosum)に位置してい た。これらすべての部位からは優勢に海馬シ ータ波が出現し位相の分類基準をすべて満し た。なお、後頭部皮質電極はその中心がすべ てラムダ縫合から右側2.5-3mmのところに位 置しており、一般的な皮質区分による視覚領 の17野に一致していた²⁰²²。

(2) 各PS毎のVEP振幅の変化

本実験の記録時間(2-3時間)内に出現

図3 海馬電極部位の分布図。黒丸が電極先端部位で 数字は被験体番号。図の上の数字(A3.75)は König & Klippel(1963)の脳地図によるラムダ 一縫合から前方への距離で単位はmm。AはAnteriorの略。破線の部分が海馬錐体細胞層と歯状 回顆粒細胞層である。

したPS期の回数はすべての被験体で4回以上で最高7回に達していた。これはフラッシュ条件下で求めたもので、暗条件下でもほぼ同じであった。まず、各PS期毎に見てみると、表1の平均VEP振幅から第1回目のPS(PSI)は340±25 μ V,以下同様に、PSII=364±32 μ V,PSII=369±23 μ V,PSIV=387±18 μ V,PSV=370±13 μ V,PSVI=321±10 μ V,P

		n	А	В	С	D	A+B	C+D		
PS	I	7	310(45)	354(44)	373 (56)	323(65)	328(46)	346(62)		
PS	II	7	345(66)	395(83)	395 (83)	321(78)	394 (55)	366(73)		
Ρs	III	7	343(44)	373 (36)	405(58)	356(54)	357 (37)	381(57)		
PS	IV	7	363(48)	394(58)	411(66)	379(62)	379(50)	395(63)		
PS	v	5	355(41)	387(51)	378(76)	358(41)	370(42)	367(49)		
PS	VI	2	319(43)	324 (42)	334(53)	306(40)	321(44)	324(50)		
PS	VII	1	324(43)	332(52)	324(50)	313(45)	328(48)	318(48)		
Total	PS		350(45)	384(51)	398(66)	352(52)	368(47)	376(58)		
rotal	L PS		350(45)	384(51)	399(66)	352(52)	308(47)	3/0(50		

表1 各PS期毎の各位相での平均VEP振幅

カッコ内は標準偏差で単位はµV。nは被験体数。

S WI=323±7μVで,位相要因を含めた二要因分散分析⁽¹⁾の結果,これら各PS間のVEP振幅

は有意に変化しないことが認められた(F=2.56, df=3/18, P>.10)。各位相毎のVEP振幅をPS全体の平均値(Total PS)から見ると、AからDの各位相でそれぞれ、350±45 μ V、384±51 μ V、398±66 μ V、352±52 μ Vで、CとB位相時のVEP振幅がAとD位相時のものより高い傾向にあり、各位相間で有意差が認められた(F=14.98, df=3/18, P<.01)。各PSと位相との間の交互作用は有意ではなかった(F=1.62, df=9/54, P>.10)。同様に、PSIからPSIVまでで被験体数を揃えて見てみても(図4)、図から明らかなように各PS間ではVEP振幅に有意な変化は示さず、各位相間で有意差が見られた(F=12.65, df=3/18, P<

図4 各PS期毎のVEP振幅(MEAN)と標準誤差(SE)。1回目(PSI)から4回 目のPS(PSIV)までを図示した。Total PSは全PS(1回目から7回目までの PS)での平均値、表1参照。各位相(phase)の分類は図2参照。Nは被験体数。

.01)。従って、各位相間のVEP振幅の差はすべてのPS間で同じ傾向を示していることが言えた。また、各PS間でVEP振幅に有意な差が認められなかったということは、各PSでの姿勢の変化にもかかわらずVEP振幅はあまり変化しないことが言える。すなわち被験体に対してフラッシュ刺激が各PSで均等に与えられていたことが示された。さらに、表1の陰性成分(A+B)と陽性成分(C+D)で比較すると、それぞれ368±47 μ Vと376±58 μ Vでほぼ同じ値を示し、むしろ陰性から陽性(B→C)位相時点のほうが陽性から陰性(D→A)位相時より平均VEP振幅が高くなっていることがわかる。

(3) 各位相および各REMカテゴリ―毎のVEP振幅の変化

図5は被験体毎に各位相間の平均VEP振幅の変化を示したものであるが,ほぼ全被験体に おいて同じ傾向を示した。すなわち破線の全平均値でも示されるように,CとB位相で他の2 つの位相と比べて平均VEP振幅が高くなっており,その中でも特にC位相がやや高い傾向に あった。最も典型的なものはYP-3,YP-5,YP-6,YP-7の被験体であった。し かしB位相のほうがC位相よりやや高いものも2,3例あった(YP-1,YP-2,YP-4)。また,フラッシュ時点での各位相のサンプル数は表2のごとくほぼ均等に分布していたこ とが示された(44±10~50±12)。

次にREMカテゴリーを含めた各位相間のVEP振幅変化について見てみると、図6のよう に横軸に平行に示した実線(REM(--))、破線(REM(+))、一点破線(REM(++))の平均値

図5 各被験体毎の各位相でのVEP振幅。実線が各被験体の平均VEP振幅で横軸に平 行な破線は全平均値。各被験体(YP-1~7)のカッコ内の数字は全位相の出現 回数。表2参照。

	<u>4</u> K Z	HT IN THAT			
	А	В	С	D	n
YP-1	57	69	66	64	7
YP-2	56	38	57	47	5
YP-3	42	43	53	54	5
YP-4	49	47	37	36	4
YP-5	32	34	24	35	5
YP-6	49	56	44	37	4
YP-7	47	63	57	37	6
(SD)	47(8)	50(12)	48(13)	44(10)	

表2 各位相の出現分布

x (SD)は平均値と標準偏差。YP-1~7は被験体番号。nはPSの出現回数。

から明らかなように、各REM出現率に応じてVEP振幅の有意な減少が見られた(F=4.71, df=2/12, P<.05)。これはすでに報告された結果⁽⁴⁹⁽⁴⁹⁵⁰⁾と一致していた。また各位相間でVE P振幅の有意な変化が認められた(F=7.13, df=3/18, P<.01)。しかし位相とREMとの 間の交互作用が有意でなかった(F=0.96, df=6/36, P>.10)ことから、各REMカテゴリ 一間で位相によるVEP振幅変化はほぼ同じ傾向を示していたことが言える。そこで次にどの 位相間で有意差があるかを検討するために、対応のあるtテスト⁽³⁷⁾を用いて検定したところ、 REM(-)では位相AとC間(t=2.80, P<.05)と位相CとD間(t=5.87, P<.01), RE M(+)では位相AとC間(t=9.65, P<.001)と位相AとC間(t=3.11, P<.05)、さらにR EM(++)では位相AとC間(t=2.57, P<.05)と位相CとD間(t=2.92, P<.05)でそ れぞれ有意差が認められた。また統計的に有意ではないが、各REMカテゴリーすべてにおい

海馬シータ波と視覚誘発電位との関連

図6 各REMカテゴリー毎の各位相でのVEP振幅(MEAN)と標準偏差(SD)。横 軸に平行する実線,砂線,一点破線はそれぞれREM(--),(+),(++)のVEP振幅 の全体の平均値。C位相でのVEP振幅が全体の平均値よりすべて高くなっている ことに注意。Nは被験体数。

て位相BとD間で位相BのほうがDよりVEP振幅が高い傾向にあった(REM(-),(+),(++) それぞれで, t=2.41, 2.25, 2.07, P>.05)。またREM(-)と(++)カテゴリーでも位相Aと B間は, REM(+)カテゴリーと同様, 位相BのほうがAよりVEP振幅が高くなる傾向を示し

 図7 海馬シータ波の振幅値とVEP振幅値との関係。3匹の被験体(YP-1,2,3)の 各REMカテゴリー毎,各位相毎のフラッシュ刺激時点での海馬シータ波の振幅値 (Amplitude of hippocampal theta wave)と後頭部VEP振幅値(Amplitude of occipital VEP)の分布。図2参照。全体的にみてほぼ無相関(本文参照)。

吉田和典

た (REM(-)と(++)でそれぞれ, t=1.41, 2.08, P>.05)。同様のことがREM(+)での位相 CとD間でも見られた (t=1.98, P>.05)。全体的にまとめてみると, 位相BとC時点でのV EP振幅は位相DとAの時点のものより高いことが言えた。しかし, 位相BとC間, 位相Dと A間には差がないことが示された。さらにこれらの関係はREMの出現率には影響しないこと がわかった。

最後に、海馬シータ波の振幅とVEP振幅との間の関係について見てみたところ(図7)、この2つの変数間には何ら一定の関係は見られず、それは各REMカテゴリー毎、各位相毎に見ても有意な相関は認められなかった(REM(-), (+), (++)でそれぞれ, r=0.04, -0.14, -0.06, 位相A,B,C,Dでそれぞれ, r=-0.04, -0.01, -0.21, -0.09)。

なお前回の報告^師と同様に、フラッシュによるVEPの慣れの現象や脳波上に有意な変化は 見られず、またPS出現様相などにも何ら影響は認められなかった。

考 察

逆説睡眠(PS)期を中心にラットの海馬シータ波の位相と後頭部視覚誘発電位(VEP)と の関連を検討した本実験結果をまとめると、VEPの初期成分(潜時30-80msecの陰性-陽性 成分)の振幅はフラッシュ刺激時点での海馬シータ波の位相により有意に変動することが認め られた。さらに前回の報告(494960)と同様、PS期に出現する急速眼球運動(REM)の出現率に 応じてもVEP振幅が有意に減少した。しかしながら今回の実験では、REMの出現しない時 期(REM(--))においても海馬シータ波の位相によりVEP振幅は有意に変動し、この関係は REM出現率によって変化しなかった。従って海馬シータ波の位相がREMとはある程度独立 にVEP振幅に対して積極的に働きかけていたのではないかと考えられた。これらの海馬シー 夕波の位相とVEPとの間の有意な結果の報告は本実験が最初であったが、すでに海馬シータ 波の位相とバー押し反応との間には一致した対応関係が見い出されており、海馬は感覚-運動 系に対して連続的ではなく海馬シータ波の位相に一致して律動的に情報処理が行なわれている ことが示唆された^綱また以前からヒトの脳波(特にアルファ波)の位相とVEP振幅との関連 をみたいくつかの研究がある⁽⁶⁾⁽⁹⁾⁰²。Rémond と Lesévre(1967)はアルファ波の各ピーク時 (source と sink) でフラッシュが与えられると, source 時でVEP振幅が抑制され, sink時 で促進されることを示した。また Callaway と Layne (1964) はアルファ波の位相を 8 つに分 類し,位相90°から225°付近でVEP振幅が高くなることを認めた。さらに反応時間(reaction time)との関連でみると⁽⁹⁾,表面陽性位相でフラッシュに対する反応時間が最も速く,陽性から 陰性位相で最も遅くなることが知られている。これらのことから皮質および皮質下の非特殊系 同期化メカニズムによる脳の興奮性の律動的変化によって、視覚入力および知覚過程に影響を 及ぼしたのだろうと考えた⁽⁶⁾³²。同様のことが本実験結果からも言えるだろう。すなわち海馬シ ータ波は中隔核²⁰⁰⁵⁰⁸や海馬ニューロン活動⁽⁷⁾⁰⁰⁰⁰⁰⁵⁰⁹に同期して出現し、このシータ波位相に同

期した海馬ニューロン活動が何らかの形で律動的に視覚入力の調節に関与していたことが言え るであろう。しかしこれらの活動が海馬本来の機能を反映しているかどうかについては明確で ない。

そこで、海馬への求心性および海馬からの遠心性線維結合について考えてみると、海馬への 求心性線維については特に縫線核から発するセロトニン(5-HT)線維と青斑核から発するカ テコラミン線維があり、両方共、海馬錐体細胞に対して抑制的効果を及ぼしている⁽⁰⁾⁽⁴⁾。よって 本実験結果は縫線核や青斑核からの作用の二次的結果とも考えられそうである。しかしながら、 海馬シータ波に同期したニューロン活動は特に中隔-海馬レベルで見られ、本実験結果のVE P振幅はシータ波位相に特に関与していたことから、これら下位脳幹部からの二次的効果と考 えるよりもむしろ中隔-海馬系が積極的に視覚入力の増減に働きかけたと考えるべきであろう。 一方海馬からの遠心性線維に関しては、Raismanら(1966)によって広範囲に調べられており、 主に、海馬-中隔、海馬-視索前野、海馬-視床下部、海馬-視床前核、海馬-乳頭体、海馬 ー中脳系などが知られている。従って今のところ海馬から視覚系あるいは視覚皮質への直接の 線維結合は確認されていないが、中隔-海馬采刺激⁽¹⁰⁰³⁾および損傷^{(30)の10)50}によりVEPが有意に 変化することなどから考えて、特に海馬-中隔を経由する経路が視覚系に対して重要な働きを 持っているのではないかと思われる。

序でも述べたように、海馬は運動面で抑制的働きを持っていることが知られている⁽⁵⁾⁽⁸⁾⁽⁹⁾が、 海馬はすでに刺激入力の時点である程度選択的に刺激を制御しており、その結果行動面で反応 抑制という形で現われたとも解釈される。すなわち海馬は上で述べた神経線維結合から間接的 あるいは能動的に、海馬シータ波位相に同期した形で感覚ー運動系の情報処理に一役かってい るのだろうと思われる。しかし同じ海馬内でも構造的、機能的に多少異っていることが知られ ており、今後はさらにこれら海馬内のより詳細な機能区分⁽²⁾⁽³⁾⁽⁴⁾⁽⁹⁾を考慮しながら、海馬と視覚 系との解剖学的線維結合関係を吟味すると同時に、海馬ニューロン活動との対応関係をより詳 細に検討する必要があろう。

まとめ

本実験はPS期を中心にVEP振幅とフラッシュ時点の海馬シータ波の位相との関連につい て検討した。その結果、VEP振幅はシータ波の特定の位相により有意に増減することが観察 され、この関係はREMその他の要因によって影響せず、一定の傾向を示した。従って、海馬 は特にシータ波位相に同期した形で視覚情報を制御していることが示唆された。

References

- Anchel, H., and Lindsley, D. B., Electroenceph. clin. Neurophysiol., 1972, 32, 209-226.
- Andersen, P., Eccles, J. C., and Løyning, Y., J, Neurophysiol., 1964, 27,592 -607.
- Andersen, P., Eccles, J. C., and Løyning, Y., J. Neurophysiol., 1964, 27, 608 -619.
- 4) Andersen, P., and Lømo, T., Whalen, R.
 E. et al.(eds), The Neural Control of Behavior, New York, Academic Press, 1970, 3-21.
- 5) Bennett, T. L., and Gottfried, J., Electroenceph. clin. Neurophysiol., 1970, 29, 196-200.
- Callaway, E., and Layne, R. S., Ann.
 N. Y. Acad. Science, 1964, 112, 421-431.
- 7) Coyle, P., Exp. Neurol., 1976, 53, 744-755.
- Bouglas, R. J., Psychol. Bulletin, 1967, 67, 416-442.
- 9) Dustman, R. E., and Beck, E. C., Electroenceph. clin. Neurophsiol., 1965, 18, 433-440.
- Feder, R., and Rank, J.B., Exp. Neurol., 1973, 41, 532-555.
- Fox, S. E., and Rank, J. B., Exp. Neurol., 1975, 49, 299-313.
- Golden, G. H., and Lubar, J. F., Exp. Neurol., 1971, 30 389-402.
- Grastyán, E., Karmos, G., Vereczkey,
 L., and Kellényi, L., Electroenceph.

clin. Neurophysiol., 1966, 21, 34-53.

- Grastyán, E., Lissák, K., Madarász, I., and Donhoffer, H., Electroenceph. clin. Neurophysiol., 1959, 11, 409-430.
- 15) Green, J. P., Maxwell, D. S., and Petsche, H., Electroenceph. clin. Neurophysiol., 1961, 13, 854-867.
- Green, J. D., and Petsche, H., Electroenceph. clin. Neurophysiol., 1961, 13, 8 47-853.
- 17) 岩原信九郎, 教育と心理のための推計学,日本文化科学社, 1976.
- 18) 岩原信九郎,丸栄一,中原大一郎,鈴木慎
 也,東京教育大学教育学部 紀要第24巻, 1978,67-75.
- 19) 岩崎庸男,東京教育大学教育学部紀要, 1976,77-84.
- 20) Kónig, J. F. R., and Klippel, R.A., The Rat Brain, The Williams and Wilkins, Boltimore, 1963.
- Krieg, W. J. S., J. Comp. Neurol., 1946, 84, 221-275.
- Krieg, W. J. S., J. Comp. Neurol., 1946, 84, 276-394.
- Lorens, S., and Brewn, T. S., Exp. Neurol., 1967, 17, 86-90.
- Macadar, O., Roig, J. A., Monti, J. M., and Budelli, R., Physiol. Behav., 1970, 5, 1443-1449.
- Morales, F. R., Roig, J. A., Monti, J.
 M., Macadar, O., and Budelli, R., Physiol. Behav., 1971, 6, 563-567.
- 26) Parmeggiani, P. L., Helv. Physiol.

Acta, 1962, 20, C71-C73.

- Parmeggiani, P. L., and Rapisarda, C., Brain Res., 1969, 14, 387-400.
- Petsche, H., Stumpf, CH., and Gogolak,
 G., Electroenceph. clin. Neurophysiol.,
 1964, 14, 202-211.
- 29) Pond, F. J., and Schwartzbaum, J. S., Brain Res., 1972, 43, 119-137.
- 30) Raisman, G., Cowan, W. M., and Powell,T. P. S., Brain Res. 1966,89, 83-108.
- 31) Regan, D., Evoked Potentials in Psychology, Sensory Physiology and Clinical Medicine, Chapman and Hall, London, 1972.
- Rémond, A., and Lesévre, N., Electroenceph. clin. Neurophysiol. Suppl., 1967, 26, 42-52.
- 33) Sakai, K., Sano, K., and Iwahara, S.,
 Electroenceph. clin. Neurophysiol., 1973,
 34, 547-549.
- 34) Sano, K., Iwahara, S., Senba, K., Sano,
 A., and Yamazaki, S., Electroenceph.
 clin. Neurophysiol., 1973, 35, 621-625.
- 35) Schwartzbaum, J. S., Dilorenzo, P. M., Melleo, W. F., and Kreinick, C. J., J. Comp. Physiol. Psychol., 1972, 80, 143-149.
- Schwartzbaum, J. S., and Kreinick, C. J., J. Comp. Physiol. Psychol., 1973, 8
 85, 479-490.
- Schwartzbaum, J. S., and Kreinick, C.
 J., J. Comp. Physiol. Psychol., 1975, 88, 128-146.
- 38) Schwartzbaum, J. S., Kreinick, C. J., and

Gustafson, J. W., Brain Res., 1971, 27, 295-307.

- Schwartzbaum, J. S., Kreinick, C. J., and Levine, M. S., J. Comp. Physiol. Psychol., 1972, 80, 123-142.
- 40) Segal, M., Brain Res., 1975, 94, 115-131.
- Segal, M., and Bloom, F. E. Brain Res., 1974, 72, 79-97.
- 42) Senba, K., and Iwahara, S., Brain Res.,1974, 66, 309-320.
- 43) Senba, K., and Komisaruk, B. R., Electroenceph. clin. Neurophysiol., 1978, 44, 61-71
- 44) Tokizane, T., Kawakami, M., and Gellhorn, E., Electroenceph. clin. Neurophysiol., 1959, 11, 431-437.
- Usui, S., and Iwahara, S., Electroenceph. clin. Neurophysiol., 1977, 42, 510-517.
- Vanderwolf, C. H., Electroenceph. clin. Neurophysiol., 1969, 26, 407-418.
- 47) Vanderwolf, C. H., Psychol. Rev., 1971, 78, 83-113.
- 48)吉田和典,東京教育大学教育学研究科修士 論文,1976.
- 49)吉田和典,岩原信九郎,第6回日本脳波・筋電図学会大会予稿集,1976,29.
- 50) Yoshida, K., and Iwahara, S., Jap. Psychol. Res., 1979, 21, 122-131.

吉田和典

Interrelationships between the Phase of Hippocampal Theta Wave and Visual Evoked Potential in Rats

Abstract

The relationships beween the phase of hippocampal theta wave at a moment of flash and the amplitude of visual evoked potential (VEP) were examined during paradoxical sleep (PS) in rats. The peak-to-peak VEP amplitude with about 30 to 80 msec latency significantly increased at the transition of the negative-positive phase and decreased at the positive-negative phase of hippocampal theta wave in CA-4 or dentate gyrus. Although the same results on the effect of rapid eye movement (REM) as the previous reports were obtained, the effect of hippocampal theta phase was to some degree independent on the REM effect because same phase effect was observed even if no REM occurred. There was no significant change of VEP amplitude among the different PS periods. These findings would be suggested that the hippocampus exerted an important role on the modification of sensory inputs in terms of the phase of hippocampal theta wave, alternatively.