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Existence of primitive PL-complex decomposition
for lattice PL-figures
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Abstract. The existence of primitive PL-complex decomposition is proved for
any lattice PL-figures.

1. Introduction.

For a subset P of a coordinate plane R?, let OP be the boundary of P.
By definition, a PL-figure is a compact subset P of R? such that P can be
decomposed as a PL-complex in R? of dimension at most 1. Note that e PL-
complez in R? is a set K of §, points, line segments (i.e. closed line segments
of positive length), or triangles (i.e. closed triangular disks of positive area) in
R? satisfying the following two conditions:

(PLC. 1) If ¢ is an element of K, then do is a union of certain elements of
K. Or, equivalently:

If a line segment is an element of K, then its two ends are also elements of
K. If a triangle is an element of K, then its three edges are also elements of K.
And so is the ends of the edges;

(PLC. 2) If 0, and o2 are two elements of K, then o1 N oy is a union of
certain elements of K. Or, equivalently:

The intersection of a point in K and a line segment in K is empty or one of
the two ends of the line segment. The intersection of a line segment in K and a
triangle in K is empty, one of the three vertexes of the triangle (which is also an
end of the line segment), or one of the three edges of the triangle (which is also
the line segment itself); The intersection of two line segments in K is empty
or a common end of them. The intersection of two triangles in K is empty, a
common vertex of them, or a common edge of them.

By definition, a PL-complez in R? of dimension at most 1 is a PL-complex
in R? consisting of @), points or line segments in R?. A subset K' of a PL-
complex K in R? is said to be a subcomplez if K' is also a PL-complex in R2.
It can be proved that any PL-figure has a decomposition as a PL-complex in
R? consisting of points, line segments or triangles in R? (see Corollary in §4).
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More generally, PL-complex is defined. And Radé showed that any Riemann
surface admits a PL-complex decomposition. On the other hand, this paper is
concerned with a PL-figure of special type, called a lattice PL-figure.

A point in R? is said to be a lattice point if all of its coordinates are integers.
Let Z2 be the set of all lattice points in R2. By definition, a lattice line segment
is a line segment in R? such that its two ends are lattice points. A primitive
line segment is a lattice line segment which contains no lattice point except the
two ends. A lattice triangle is a triangle in R? such that its three vertexes are
lattice points. A primitive triangle is a lattice triangle which contains no lattice
point except the three vertexes. A primitive PL-complex is a PL-complex in R?
consisting of lattice points, primitive line segments, or primitive triangles.

Then a lattice PL-figure is defined to be a compact subset P in R? such that
OP can be decomposed as a primitive PL-complex of dimension at most 1. Note
that a lattice line segment or a lattice triangle is a lattice PL-figure. A lattice
PL-figure is not assumed to be connected, and that it may have isolated lattice
points (as 0-dimensional connected components) or local 1-dimensional parts.
Moreover, various Euler number can be occured.

THEOREM. Any lattice PL-figure P can be decomposed to a primitive PL-
complez such that the primitive PL-complex of OP is a subcomplex.

In the literature of Pick’s theorem [3, 6], this fact was more or less assumed
although it has not been proved completely (cf. [1, 4]). This paper fills the gap in
the literature of Pick’s theorem, in this general situation, by virtue of the notion
of the distance between two compact subsets, combined with the existence of a
lattice triangle in any lattice PL-figure. Note that the combined result is proved
in the step B as well as the claims (B1) and (B5) in §3, by generalizing Sunada
(5, pp.85-86, Proof of Theorem 1.9])’s proof of the existence of PL-complex
decomposition for polygonal regions in R? of Euler number 1.

To prove the theorem, the following proposition is needed: For r > 0, put
U.(v) := {p € R?|dist.(v,p) < r}, where dist.(v,p) is the Euclidean distance
between the two points v and p in R2. For a subset P of R?, let ext.P be the
set of all exterior points of P, and int.P the set of all interior points of P. For
z,y € R?, put zy := {tz + (1 — t)y| 0 <t < 1} as the closed line segment with
the two ends z,y. And put zy° := {tz + (1 — t)y| 0 < t < 1} as the open line
segment between z and y.

PROPOSITION. Let P be a lattice PL-figure. Then:

(i) (int.P) can be decomposed to a primitive PL-complex which is a sub-
complex of the primitive PL-complex of OP;

(ii) For any v € O(int.P) N Z2?, there exist w,w' € Z* such that w # W',
vw,vw’ C (int.P) and that vw and vw' are primitive line segments;

(iii) If int.P # (), then there exist finite numbers, say, k of primitive line
segments L; := x;y; (i = 1,---,k) such that 8(int.P) = Ur_; z;y; and that

=1
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Ty Nziy; = 0, {z:} or {y:}
fori#j;

(iv) For each z € LY := z;y3, there exists > 0 such that all conected
components of U.(z)\L; are the following two subsets:

U.(z) Next.P and U,(z)Nint.P.

2. Proof of Proposition.

(i) If int.P = @, then there is nothing to do. Assume that int.P # §. Note
that 9(int.P) C OP. Since 9P is decomposed as a primitive PL-complex of
dimension at most 1, there exist primitive line segments L; := z;y; (i = 1,- -+, k')
and lattice points p; (j = 1,---,m) such that

OP=LiU---ULp U{pi, ,pm}, 1
Wherepj ¢Lz (Z:]-aakl7 ]:17am)7p] #pj' (]#J/)7 and that

LinLy =0, {x;}, or {y;} if i #4'.

It is then claimed that L; C O(int.P) if LY N J(int.P) # 0. In this case,
the set of all points and line segments of the primitive PL-complex of 8P con-
tained in 9(int.P) gives a primitive PL-complex decomposition of 8(int.P) as a
subcomplex of the primitive PL-complex of OP.

Assume that L NO(int.P) # (. It is then claimed that L C 8(int.P) (Then
L; C O(int.P), by taking the closure, as required). Take z € LS N 8(int.P). It
is enough to prove that y € d(int.P) for any y € L{\{z}: Put B; := OP\LS.
Then B; = Uy Ly U{p1,---,pm}U{zi,yi}, because of L; = LY U{x;,y;}. And
zy N B; = 0, because of zy C L?. Put s, := min{dist.(p,b)| p € zy,b € B;},
which is positive since B; and zy are compact non-intersecting subsets in R2.
Hence, one has that

Us, (p) N B; = § for all p € zy. (2)

For each t > 0, U(z) Nint.P # , because of z € d(int.P). Since U;(x) Nint.P
is an open subset of R?, there exists z; € U;(z) N int.P such that z, — = and
y —  are linearly independent. Put w; := 2 + y — 2. Then w, € Uy(y). It is
then claimed that wy € int.P if 0 < t < s,: In this case, Uy(y) Nint.P # 0,
so that y € J(int.P), as required. Assume that the claim does not hold. Then
there exists t € R such that 0 <t < s, and w; ¢ int.P. Because of z; € int.P,
there exists g; € z;w; such that ¢; € d(int.P). Take 0 < r <1 such that
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g =rzz+(1-rws=2z+1-r)(y —z). 3)

Put p, :=rz+(1-r)y € zy. Then ¢, —p, = 2, —, so that ¢, € U;(p;) C Uy, (pe),
so that g: € B; by (2). Then q; € 8(int.P)\B; C 0P\B; = L? = z;4° D xy, 50
that there exists a real number s such as ¢; = (1 - s)z + sy. Combined with (3),
one has that z — 2; = (1 —r — s)(y — ), that contradicts with the choice of z.

(ii) For v € d(int.P) N Z2, it is claimed that there exists a primitive line
segment vw € O(int.P): If not, v is isolated in 8(int.P). Since d(int.P)\{v} is
compact, there exists r > 0 such that

U, (v) N (8(int.P)\{v}) = 0.

Because of v € 9(int.P), there exist # € U,(v)Nint.P and y € U, (v)Next.(int.P).
Since U,.(v)\{v} is connected, there is a continuous curve c: [0,1] = U,(v)\{v}
such that ¢(0) = z and ¢(1) = y. Then

0 # c(]0,1]) N A(int.P) (U-(v)\{v}) N o(int.P)

C
C U.(v) N (8@nt.P)\{v}).

Hence, U,(v) N (8(int.P)\{v}) # 0, that is a contradiction, as required.

It is then claimed that there is a primitive line segment vw' in 8(int.P) such
that w' # w: Put Ly := vw and C := UX_,L; U{py,---,pm} D OP\L; in the
equation (1). Assume that the claim does not hold. Then v € C, so that there
is 7 > 0 such that

U.(v)NnC = 0.

By v € O(int.P), there exist 2 € U,.(v)Nint.P and y € U, (v) Next.(int.P). Since
Ur(v)\vw is connected, there exists a continuous curve ¢ : [0,1] — U,(v)\vw
such that ¢(0) = z and ¢(1) = y. Then 0§ # ¢([0,1]) N 8(int.P) C (U, (v)\vw) N
O(int.P) = U,(v) N (8(int.P)\L;) C U,(v) N C, so that U.(v) NC # @, that is a
contradiction, as required.

(iii) It follows from the proof of (i) and the assertion (ii) that the set of all
line segments of the primitive PL-complex of P contained in 8(int.P) gives a
primitive PL-complex decomposition of d(int.P) as a subcomplex of the primi-
tive PL-complex of 8P.

(iv) Put r; := min{dist.(z,b)| b € P\xz;y;}, which is positive by z € z;y?.
Then 0P N (Ur,(2)\z:y7) = 0. Put r := min(ry, dist.(2, z;), dist.(z,5:)} > 0.
Then U, (2)\z;y; = U,(2)\z;y{ consists of two connected components, in which
there exist z € ext.P and y € int.P by z € z;4; C P. Then the connected
component of U,(z)\z;y; containing = (resp. y) is equal to U.(z) Next.P (resp.
U,(z) Nint.P), as well as the proof of (ii). O
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3. Proof of Theorem.

(Step O) For a compact subset P’ in R?, let A(P') be the area of P'.

(Step A) When A(P) = 0: int.P = 0, so that P = int.P U 8P = 0P,
which has a primitive PL-complex decomposition of dimension at most 1, by
the definition of P.

(Step B) When A(P) # 0, it is claimed that there ezists a lattice triangle
contained in P such that at least one verter is contained in OP. In fact:

(B0) Because of int.P # @ and int.P # R?, one has that d(int.P) # 0.

(B1) There exist v € O(int.P) N Z% and a line £ in R? such that v € ¢,
2N O(int.P) = {v}, and that (int.P)\{v} is contained in one of two connected
components of R%\£.

In fact, put d' := max.{dist.(v',v")| v',v" € 8(int.P) N Z2}. Then d' > 0
by (B0) and Proposition (ii), (iii). And there exist v,v’ € d(int.P) N Z? such
that dist.(v,v") = d'. By Proposition (ii), there exists a primitive line segment
L; in O(int.P) such that v is one of two ends of L;. Let £ be a line through v
perpendicular to v'v. Then v’ € £. Let O', O be the two connected components
of R?\¢ such that v’ € O'. Then (int.P) N Z2 C O' U {v}. If not, there exists
v" € 9(int.P) N Z2 N (O U (£\{v})). In this case, dist.(v",v') > dist,(v,v') = d',
that is a contradiction. By Proposition (iii), &(int.P) is contained in the convex
hull of d(int.P) N Z2. And O' U {v} is convex. Hence, 8(int.P) C O’ U {v}.

(B2) Let vwy, - - -, vwy, be distinct primitive line segments in P with v as one
of its two ends (¢ = 1,---,k), such that k is maximal with this property, where
vwy, - - -, VWi are anti-clockwisely ordered around the point v.

(B3) Then k > 2 by Definition-Proposition 3.1 (ii). Identifying R? with the
complex number field C, put r, := |v| and 6, := arg(v) for 0 # v € R2. By (B1)
and (B2), there exist 6, _, < --- < 4, -, such that 6, _, — 0y, , < 7. For
i€ {1, -, k—1}, put Lwsvwiys := {v+7reV"| 1 >0, Oy,_, <0< [
And put Zwrpvw; := {v + re‘/”—10| 720, Oy,—y <O <0y,—y+ 21}, Then

R? = Ur_, Zw;vwiyq,
where ¢ + 1 denotes 1 if i = k. Put
7 := min.{dist.(v, )| w' € 8(int.P)\ (UL, vw? U {v})}.
Then r > 0, because of v ¢ d(int.P)\(UX_,vw$ U {v}). In this case,

U, (v) N 8(int.P)\ UE_, vw; = 0. (4)
By v € 9(int.P), U, (v) Nint.P # . Hence, there exists ¢ € {1,---,k} such that

((Ur(v) N Lwivwiﬂ)\(vwi U vw,-+1)) Nint.P # @ (5)
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Because of the equation (4) and ((U,(v)NZw;vw;4+1)\ (vw; Uvw;;1))NA(int.P) C
U-(v) N 8(int.P)\ UL, vw;, one has that

((Ur(v) N Lwvwigr) \(vw; Uvw;yp)) N O(int. P) = . (6)
It is then claimed that

(Ur(v) N Lw;vwip)\(vw; U vw;y1) C int. P. (7N

In fact, by (5), take z € ((Ur(v) N Lwjvwit1)\(vw; Uvw;y1)) Nint.P. Note
that (U (v) N Zw;vwiy1)\(vw; Uvw,4q) is connected. If there is z' € ((U.(v) N
Lwivw;yq)\(vw; U vw;41)) N ext.(int.P), then there is a continuous curve

c:[0,1] = (Ur(v) N Lwivwiyr)\(vw; U vw;igy)

such that ¢(0) = z and ¢(1) = ', so that ¢([0, 1])Nd(int.P) # @, that contradicts
with the equation (6). Hence, ((Ur(v)NZw;vw;t1)\ (vw;Uvw;41))Next.(int.P) =
(0. Combined with the equation (6), one has the equation (7), as required.

(B4) In (7), it is claimed that i # k.

In fact, if ¢ = k, then the half line ¢’ for O (in (B1)) from v perpendicular
to £ contains an element of int.P. So does ¢'\{v}. Since ¢'\{v} is not bounded,
0 # (¢'\{v}) N (R®\P) C (¢\{v}) Next.(int.P). By (7), (¢'\{v}) Nint.P # 0.
Hence, 0 # (¢'\{v}) N 8(int.P) C O, which contradicts with (B1).

(B5) Let Aw;vw;4; be the convex hull of the set {w;,v,w;y1}. By (B4),
Awjvwiyy C Lw;vwiyy. Tt is claimed that int.(Aw;vw;q1) NP NZ2 = 0.

In fact, assume that the claim does not hold, and put

s := max {dist.(wswi41,2')| 2’ € int.(Aw;vw;41) N PNZ2} > 0.

Take z € int.(Aw;vw;+1) N P N Z? such that dist.(v, 2) = s. By (B2), vz € P,
so that 0 # v2° N (R?*\P) C vz° Next.(int.P). By (7), vz° Nint.P # §. Hence,
v2° N O(int.P) # (. Take w € vz° N &(int.P). Then dist.(w;w;y1,w) > s. By
Proposition (iii), there exists a primitive line segment z;y; C d(int.P) such that
w € z;y;. Then

max. (dist.(wiwit1, z;), dist.(w;wiy1,y;)) > dist.(wiw;iy1,w) > s.

Assume that dist.(w;wiy1,2;) > s. Then z; ¢ int.(Aw;vwit1) U wiwiy.
And z; € vw Uvw],; because vw; and vw;4 are primitive. By (B2), z; # v.
Then z; € Aw;vw;1, so that z;y; Nvwy # O, transversally, for i/ =i or 7 + 1.
Put {w'} := z;y; Nvwy C z;y5. By Proposition (iv), there exists a sufficiently
small 7' > 0 such that the two connected components O, 0’ of U, \z;y; satisfy
that O C int.P and O’ C ext.P. However, PN O’ D vwy N O'" # (), by the
transversality, which is a contradiction. In the case when dist.(w;wit1,y;) > s,
one also has a contradiction.
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(B6) int.(Aw;vw;41) N 8(int.P) = 0.

In fact, assume that the assertion does not hold. Then there exists w €
d(int.P) such that w € int.(Aw;vw;+1). By Proposition (iii), there exists a
primitive line segment z;y; C d(int.P) such that w € z;y;. By (B5), z;,y; &
int.(Aw;vw;41). Since vw; and vw;y; are primitive, z;,y; ¢ vw] U vwg,,.
By (B2), Tj,Y; o4 {’U} If T; € WiW;q1 and Yj € WiWiyt1, then w € w;w;y1,
which does not intersect with int.(Aw;vw;+1). Hence, z; € Aw;vw;41 or y; €
Aw;vw;+1. Then one has a contradiction as well as (B5).

(B7) Aw;vwi41 C P.

In fact, assume that there exists w € int.(Aw;vw;y1)\int.P. By (7), there ex-
ists u € int.(Aw;vw;y1) Nint.P. Then § # uwNd(int.P). Since int.(Aw;vw;y1)
is convex, one has that uv C int.(Aw;vw;41), so that

int.(Aw;vw; 1) N O(int.P) # 0,

which contradicts with (B6). Hence, int.(Aw;vw;4+1) C int.P. By taking the
closure of the both sides, one has the required result.

(Step C) Assume that A(P) # 0. Let S(P) be the finite set of all lattice PL-
figure P’ contained in P. By (Step B), S;(P) := {P' € S(P)| A(P") > 0} # 0.
Then

ap := min{A(P")| P' € S$1(P)}.

is a well-defined positive real number. It is claimed that any P’ € S(P) can be
decomposed to a primitive PL-complex K' such that the primitive PL-complex
of OP' is a subcomplezx of K'.

(C0) For any P' € S(P), let np: be a unique integer such that

(npr - 1)(1}3 S A(Pl) <npap.

Then the proof of the above claim is given by the induction on np: as follows:

(C1) When npr = 1: A(P') = 0 and int.P’ = ), so that P' = OP' is
decomposed as a primitive PL-complex at most 1, by the definition of a lattice
PL-figure P', as required.

(C2) Assume that the claim holds for any P’ € S(P) such that npr < k—1
for a fixed integer £ > 2. Consider any P’ € S(P) such that npr = k. Then
A(P') # 0. By (Step B), one concludes that there exist v € P’ and a lattice
triangle Avivvy € S1(P').

(C3) There exists a primitive triangle Aujusug € S1(Avivve) C S1(P'): In
fact, if Avjvvs is primitive, put u; := v; (i = 1,2). If Avjvvs is not primitive,
then there exists a lattice point u; € Avjvv, such that u; # v,v1,v2. Then
u; € vvy or uy € vve. If uy & vuy, put us := v; and us := ve. Then

A(Avyvvs) = A(Dugvug) + A(Augvusz) + A(Aujusus),
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so that A(Aujvus) + A(Aujusuz) = A(Avivvy) — A(Aujvuy) > 0. Hence,
A(Auyvuz) + A(Auyusus) > ap. Then

A(Auqvug) < A(Avivve) —ap < (k- 1)ap,

so that Aujvu, admits a primitive PL-complex decomposition such that the
primitive PL-complex of 8(Aujvuz) is a subcomplex, by the assumption of
induction. In particular, it contains a primitive triangle.

(C4) Put Q := P'\int.(Aujusus) and C := OP' N 8(Auyusus). Note that
O(Aujugug) = ugus Uusus Uusu,, so that

C = {u;}, {ui,uj}, {u1,u2, us}, {u;} Unjug, usu; Uuug, or 0(Aujugus),
where {i,j,k} = {1,2,3}. For any subset P" of R?, put cl.(P") := P" UdP".
Then

9Q = cl.(8P'\C) U cl.(8(Auquzuz)\C),
which admits a primitive PL-complex decomposition of dimension at most 1.
Hence, @ is a lattice PL-figure with the area
A(Q) = A(P") — A(Aujugus) < (k — 1)ap.
By the induction assumption, @) admits a primitive PL-complex decomposition
such that the primitive PL-complex of Q) is a subcomplex. Then
P' = Q (@] AU1U2U3

can be decomposed to a primitve PL-complex K’ by the union of the primitive
PL-complex decompositions of @ and Awujusuz such that the primitive PL-
complex of P’ is a subcomplex of K'. O

4. Concluding Remarks

REMARK. The statements and the proof of Proposition and Theorem hold
also when the definition of “lattice points” Z? is replaced by any subset Z in
R? such that DN Z is a finite set for any bounded subset D in R2.

In particular, one has the following result:

COROLLARY. Any PL-figure P can be decomposed to a PL-complex consist-
ing of points in the set Z of all “points” in the PL- complex of OP, line segments
such that their two ends are contained in Z, or triangles such that their three
vertezes are contained in Z.

Proof of Corollary from Theorem: Note that the set Z of all “points” in the
PL-complex of P satisfy the condition in the Remark, and that P is a “lattice”
PL-figure with respect to Z. Hence, the assertion follows from the Theorem. O

Note that Proposition, Theorem, Remark and Corollary are used in [2] as
Definition-Proposition 3.1, Theorem 3.2, Remark 3.4 and Proposition 5.2.
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