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In this paper. a neW identification method is proposed which can obtain a good 

accuracy of identification of nonlinear time lag system on the basis of combination of 

genetic algorithm and sequence method. The nonlinear system may be described as 

a discrete model of a polynomial type with unknown parameters using 

Kolmogorov-Gabor's method. The task of system identification is to determine these 

parameters. Though the system parameters can be obtained through the search of GA. 

there is a potential risk. in using a simple GA, that a solution is usually stuck at a 

local minimum. In order to solve this problem. a new GA search method is proposed 

by adding a sequence search. which is carried out nearby the value of each estimated 

parameter coming from a simple GA. By this method. the individual whose fitness is 

larger can be found. As a result. the solution escapes from a local minimum and 

converges to the optimum one. The effectiveness of the proposed method is 

demonstrated through simulation of the identification of nonlinear time lag systems. As 

an application. the proposed identification method is applied to explosion-proof 

pneumatic robots, which are modeled as nonlinear time lag systems because the 

controller links with an actuator by a long pneumatic tube to prevent explosion. 

Key Words: Identification. Genetic Algorithm, Sequence Search, Local Minimum. 

Nonlinear. Time Lag 

1. INTRODUCTION 

89 

In many model-based approaches, it is essential to build a good model. After the model structure is 

determined, the main task of the identification is to estimate model parameters. However, in a real nonlinear 

time lag system, the identification is very difficult 1),2). For instance, an explosion-proof pneumatic robot as 

shown in Figure 1, often generates hunting due to a time lag of pneumatic pressure signal 3),4). In order to 

prevent it and design the controller, it is necessary to derive the dynamical equation of the robot. 

*Department of Mechanical Engineering 
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FIGURE 1: Structure of Explosion-Proof Robot 

In recent researches, it is known that genetic algorithm (GA) is a very powerful method and has many 

advantages through its multi-point s'earch with population 5).6). As this method can perform robust search, it 

has been applied in many fields 7). Using the search of GA, an identification method has been proposed for 

nonlinear time lag systems 8). However, there is a potential risk in using simple GA search because the 

solution of loss function is usually blocked at a local minimum for a multimodal nonlinear time lag system, 

and thus results in a poorly identified model. In this paper, a hybrid method is proposed to prevent the local 

minimum problem 9). 10). 11). This approach can be summarized as follows. First, GA carries out the search 

through all the space until a good initial value is obtained. Next, as the local search is conducted by a 

sequence method, a better value is renewed progressively and then the identification accuracy is increased. 

To examine the usefulness of the proposed method, several examples are given for nonlinear vibration 

systems with time lag as simulation studies and also it is applied to an explosion-proof pneumatic robot. 

Through these studies, the possibility of the identification of nonlinear time lag systems is confirmed and the 

effectiveness of the proposed method is verified. 

2. PROBLEM STATEMENT 

A general model of nonlinear time lag system can be described as follows 12), 

dy(t) 
- = f(y(t),y(t -h1),-··,y(t -hy),u(t),u(t -kl),-··,u(t -klJ),tfJ(t),t) 

dt 
(1) 

where y(t) is the solution, u(t) the input, hi (i =1,2,- .. y) time lag in system, kj U=1,2, .. ·,y) time lag of input, 

cK.t) the noise andfnonlinear function. The nonlinear function can be expressed using Kolmogorov-Gabor 's 

method as a discrete model of polynomials with unknown coefficients. 

y(k) ... f(l'J.,v2'-··'~) = tali + t t bi/iVj + ... + t t ... t cij ... nV;Vj "'Vn + c(k) (2) 
f:t f:t f:f f:t f:f f:f 

'----v------' 
m 

where, V; = y(k -1)," ',v,,+l = y(k -1- dhy ), v" +2 = u(k -1),' . ',~ = u(k -1- dklJ)and s = y + v + 2, 

Also, f (k) is the surplus part in finite terms. The estimated value of y(k) is expressed in Eq.(3), where 
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p=1,2,.· ',y and q=1,2,. ··,lJ. Then, the system identification is to determine the unknown parameters 

Qjlbjj,c:jj ..... ,dhp and dq of Eq.(3). 

y(k) = ~ arOj(dhP,dlcq) + "" bjjV"j(dhP,dlcq)VOj(dhP,dlcq)"" 
f:f f:ff-t 

+ " " ... " cjj-oonv"j(d"p,dkq)v" j(d"p,dlcq)" .V"n(d"p,dlcq) 
f:ff-t f-1 
'------y-J 

m 

(3) 

Example: In order to verify the accuracy of the approximately estimated value, an example is given as 

described by 

dy(t) LI 
--=e 

dt 
(4) 

After being sampled with a period of T, the Eq. (4) can be expressed as a discrete-time system of 

polynomials 

(LkT) 2 (LkT)" 
y(kT + 1) = y(kT) + T(l + LkT + --+ ... + --+ e(kT» 

2! n! 

where E(kT) is an approximate model error, written as 

e(kT) = (LkT)"+l e8l1cT 

(n + I)! 
0<8<1, 

n is the number of polynomial. 

The estimated y(kT + 1) is deduced to be 

(ikT)2 (ikTf 
y(kT + 1) = y(kT) + T(1 + ikT + --+ ... + --) 

2! n! 

(5) 

(6) 

(7) 

The results of numerical calculation are showed in Figures 2 and 3. Figure 2 shows the solutions of Eq.(4) 

and Eq.(7). The broken lines indicate the estimated volume, and the solid line is exact solution. In this case, 

the time lag L = i = 0.8. Figure 3 is the errors between the exact solution and estimated values. It can be 
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seen that, when n is big, the errors become small. Then, by selecting the terms finely, the model with high 

accuracy can be obtained. 

3o IDENTIFICATION BY IMPROVED GA 

The identification method based on the search of both GA and sequence method can be described as two 

stage processes, in which a good initial value is searched out using GA, and then the identification is 

performed by the search of sequence method. 

Genetic Algorithms, which are modeled on genetic processes occurring in nature, are adaptive methods 

that may be used to solve search and optimization problems. They work with a population of individuals 

(also known as chromosomes), which represent possible solutions to a given problem. Each individuals are 

assigned a fit score according to how good a solution to the problem it is. The highly fit individuals are given 

opportunities to be reproduced by cross breeding with individuals in the population. Over several 

generations, individuals tend to iden'tity and the solution is converged. 

In this research, the estimated parameters in Eq. (3) can be encoded as a chromosome, which is a string of 

binary bits written as Eq.(8). When the search is finished, the genetic information in binary numbers is 

returned to the parameters in decimal numbers by the transformation equation expressing in Eq. (9) and the 

estimated values of the parameters can be obtained. 

aOI aOs bOIl [yo" COn ... 1 cO" ... s d'-hI d\r dOkI dOtv 
r-"---. ~~ r-"---. ~ r-"---.~ ~~ r---A---. 

G p - OJ· ··}···O}· .. 000 ... 1 ... }1 ... 1 ... 11 ... 0~ .. 10.··101 ... 0 .. ·}1. ··000···1···10···q (8) 

(S+s2 +" +sm +y +v )* P bits 

(9) 

where Ek is a constant showing the upper limit of every estimated parameters. The procedure of GA 

operation is given in Figure 4, where the individuals of the population in first generation may be given as 

random values. Then, the selection is performed depending on the fitness of each individual. In this study, 

The Nth generation The (Nt l)th generation 

population selection crossover population 
individual fitness and reproduction mutation individual 

1011111000 0.1 -+ 1011111000 > 1011111000 

0110000011 0.1 1001011001 > 1001011001 

1111100000 OJ 0010110101 0010011001 

1000111111 0.9 > 1010111001 

1001011001 0.1 101ll@ol 

0010110101 0.2 1001010001 

FIGURE 4: GA Operation 
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Search space 

FIGURE 5: Sequence Method 

the fitness function is expressed as'a loss function of rms error in Eq.(10) and the smaller the rms error the 

better. 

1 z 

J - -; ~ (y(k) - jl(k»2 (10) 

where z is a number of data. 

Although a good initial value can be obtained by repeating such a kind of evolution showing in Figure 4, it 

should be noticed that, when a simple GA is used to multi modal nonlinear systems, it is easy to be blocked at 

a local minimum and the solution at this point will be much different from the finally close one. 

In order to solve this problem, a sequence method is introduced to local search to make the solution 

escape from the local minimum by renewing the initial value. The approach is shown in Figure 5: in the first, 

the rms error of individuals generated at random is on position 1, and through the process of GA search, the 

rms error is converged to position 2 which stands for a local minimum solution. To escape from this position, 

the sequence search is carried out subsequently. By adjusting the parameter values finely, the individual 

whose fitness is larger is generated. As a result, the solution escapes from the local minimum and converges 

to the optimum one whose rms error is on position 3. After escaping from the local minimum, the search is 

returned to GA. Then, such searches are done again and again. 

1-+2 3 -+4 5--+6 

GA => Sequence search => GA => Sequence search => ... 

The renewal of the parameters with sequence method is expressed as follows, 

(11) 

(12) 

where aj(bjj,. .. ,Cjj ... n,dhP,dkq)timeST is the estimated parameters of the Tth generation, A. the coefficient of 

sequence search which is determined by Eq.(12) and {j a small positive value. It is supposed that the 
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parameters obtained by GA at the Tth generation time are 

Depending on Eq. (11), those of the (T + 1) th generation time can be obtained as follows, 

an,··,(aTi + fh),.··,aTS,bTll,···,bTij,··bTSS, ""Cn1"'1""(CTij"'n - f3ij-"n)""CTss"'s, 

dTh1 ,·· ,dThP "" ,dThy ,'" ,dTlel"" ,dTlcq'" ,dTlev 

an,··,aTi,··,aTs,bTll,··,(bTij - f3ij), .. bTss , ... ,CTll ... 1",(cTij-.. n + f3ij ... n)'··cTss ... .P 

dTh1,··,(dThP + f3hP),··,dThy , ... ,dTkl,··,dTlcq, .. ,dTlev 

... 
an,···,(aTi - f3i),··,ars,bm,···,(bTij - f3ij),··bTss , "',CTll"'l,"(CTij-"n - f3ij-"n)"'CTss"'s, 

dThl ,·· ,dThP "" ,dThy ,'" ,dTle1 ,"··, (dTlcq + f31cq)'" ,dTlev 

By introducing a new GA operator named as development, we have proposed an improved GA, which is 

an effective combination of both genetic algorithm and sequence method. A hybrid identification algorithm 

based on this consideration is shown in Figure 6. Also, the principle of this improved GA is easy, but there 

are some important points in realizing it. First, if the fitness has no change in several generation times, the 

solution can be thought of having been stuck at local minimum. Then, the search is turned to the sequence 

Input-output 
data 

Random 
Initial values 

Next 
Generation 

1---"--- Selection 
: {- Simple GA 

Crossover 

: [-Develop~utaltio_n-­
I l ment -- -::~l -- ~equence 
I method 
I 

the p~~po-S~d -riA - f- solutfo~ - - -
/J converged ? 

;i~}~=-~-o----------

( End ) 
'----~-------> 

FIGURE 6: Image of Improved GA 
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method and the local search starts. The part in broken line of Figure 6 will be repeated and repeated and the 

system identification with high precision can be expected. Second, the end condition is designed to be­

generation times. Third, in order to protect the device, a safe limit of the rms error is set up in a real system 

and, if the fitness is over this limit, the parameters will be invalid. 

4. SIMULATION STUDIES 

In order to demonstrate the effectiveness of the proposed identification method, numerical simulations 

have been performed for the systems of Duffing type nonlinear equations. It's supposed each of the systems 

includes time lag and the results are compared with those using simple GA. Parameters used in GA are set 

as, 

Total of individuals =50 

Selection rate =50% 

Mutation rate =20%, 80% 

Generation times =400 

Data numbers :=300 

The mutation rate in GA operation is 20% in the first 50 generations and 80% subsequently. The renewed 

coefficient of Eq.(ll) in sequence method is assumed to be 

(3 k=0.01 

for the sake of convenience. 

Example 1: A nonlinear time lag system of Duffing type with the following dynamics is considered, 

mX(t) + ci(t - L) + P(t) = q(t) + <P (t) (13) 

where m =1 is the mass of the object, <P (t) E N(O, 0.01) a white gaussion noise, c damping coefficient. Here, 

it is thought that there is a time lag L in the damper. The characteristics of spring P(t) and the force q(t) are 

pet) - bx(t) + a (X(t»3 (14) 

q( t ) - Q cos ( (0 t ) 

In order to obtain the data concerning the solution behavior of Eq. (13), the Eqs. (13) ....... (15) are 

expressed as a discrete model by, 

x(k + 2) - 2x(k + 1) - Al(X(k + 1- d) -x(k - d»- A2X(k) - A3(X(k»3 + A4COS(Wk) + <P(k) (16) 

where A1-ch/m, A2=I+h2b/m, A3=h 2a/m,A4=h 2Qlm and d =L/h 

The parameters of Eq.(13) are set as 

c=O.2, L=0.5, b=5.0 and a=l.O. 

The input parameters are given as Q=10.0, W =5.0, and sampling period of time h=0.02 sec. 

The results are shown in Figures 7-10 and Table 1. Figures 7 and 8 give the converging processes of 

parameters. Also, Figures 9 and 10 show the output response and rms error, respectively. It can be seen from 

Figure 9 that the solution sank into local minimum at about 54th generation point when using simple GA and 

the parameters stopped converging to the desired ones. Thus, it's hard to increase identification accuracy any 
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longer. The output responses are shown in Figure 10, in which the dotted line indicates the exact solution, 

the broken line is the identification result by simple GA and the solid line is that by proposed GA. It can be­

seen that there is a big residual error between the exact solution and the identified value, which was obtained 

by simple GA. On the other hand, in the searching by proposed GA, if rms error has not been improved at 

every 30 generations, the solution will be thought to have sunk into local minimum and the sequence method 

starts working. As a result, the estimated parameters get closer and closer to true ones and the identification 
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TABLE 1: Results of Estimated Parameters 

Reference Estimated values of parameters 
Value SimpleGA Error Proposed GA Error 

CD ® I CD-@ I @ I CD-@ I 
c=0.2 0.143109 0.0569 0.195112 0.0049 
L=0.5 0.393939 0.1061 0.497556 0.0024 
b=5.0 5.171065 0.1711 5.004888 0.0049 
a=l.O 1.018573 0.0186 1.012708 0.0127 

6 
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with high accuracy has been performed. Table 1 shows the identified results of the estimated values of 

parameters. Datum file CD is the true values of the parameters, file @ the identified results u~ing simpl@ 

GA and @. those of improved GA. It can be seen that the identification accuracy of each parametcr is highcr 

in the case of proposed GA. 

Example 2: The real system with the existence of coulomb friction is not always smoothly nonlinear. As 

an example of such kind of models, the selected system model is shown in Eq. (I 3) and the nonlinear term is 

pet) = bx(t) + J1. sgn(x) 

. {I (x> 0) 
sgn(x)= -1 (X<O) 

(17) 

where 11 is the coefficient of coulomb friction. The parameters are given as 

c=0.2, L=O:5, b=5.0 and j1 =0.5 

0.4 

.... 
e 
(j) 
en 

E 
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Reference 
Value 

CD 
c=0.2 
L=O.5 
b=5.0 
J1 =0.5 

TABLE 2: Results of Estimated Parameters 

<::> 
>< 

3.0 

2.0 

1.0 

Simple GA 
@ 

0.233822 
0.532747 
4.877810 
0.466276 

• 
e_ 

o. 0 

Estimated values of parameters 

Error Proposed GA 
I CD-@ I ® 
0.0382 0.215445 
0.0327 0.517107 
0.1222 4.956012 
0.0337 0.520039 

• . / ' 

- .' • 
• 

- .- _. SirrPe GA 
o 

-- F\uposed GA o 

a 

FIGURE 15: Relation between Noise and RMS Error 

Error 
I CD-@ I 

0.0154 
0.0171 
0.0440 
0.0200 

The identified results are illustrated in Figures 11-14 and Table 2. It is the same as the results of Example 

1, the identification parameters have converged to the desired on~s by the proposed GA. As shown in Figure 

13, because the rms error can not become smaller in the case of simple GA, the identified model is not better 

than that by the proposed GA shown in Figure 14 and Table 2. From these results, it can be clarified that the 

proposed identification method can identify even piece wise type nonlinear system with a good accuracy. 

Example 3: The effectiveness of the proposed method has been examined by real systems, which are 

subjected to big random disturbances. The object system is shown in Eq.(13) and cP (t) is obtained as the 

following 13>, 

<P(t) = X + a2~ (19) 

N N 
~ == (k lJ!(i) -2)1 ~N 112 N~3 (20) 

The mean value X. of Eq.(19) is considered as 0.0, and 1\J(i) of Eq.(20) is determined at random to the range 

of -1.0'"'-'1.0. 

In order to examine the effect of noise on the identification accuracy, simulations of the relation between 

the standard deviation of noise a and rms error are performed. Figure 15 gives the result, where the round 



99 

marks indicate experimental values. From this result, it can be seen that the identification accuracy can be 

improved even in the existence of great noise. Also, the rms error will become large as the standard­

deviation of noise turns to above 0.5, the identification will become worse even if the proposed improved 

GA is used. 

s. APPLICATION TO EXPLOSION-PROOF PNEUMATIC ROBOT 

5.1 Experimental Equipment 

As shown in Figure 16, the principle of the explosion-proof pneumatic robot is summarized as follows. 

The displacement of the manipulator is detected using linear potentiometer, and given to computer by AID 

converter. According to the calculation of the software in the computer, the voltage input to E-P regulator is 

determined and the air pressure froIJl the E-P regulator is controlled. After transmitting the pressure through 

the long pneumatic tube to the air actuator, the manipulator turns to move. 

1. Compressor 2. Air Filter 
3. Stop Valve 4. Air Regulator 

5. E-P Transducer (1) 6. E-P Transducer (2) 
7. Pressure Gauge(l) 8. Pressure Gauge(2) 

9. Air Tube(l) 10. Air Tube(2) 
11. Linear Potentiometer 12. Coupling 

13. Air Motor 14. Manipulator 
15. PC9801 Computer 

FIGURE 16: Experiment Equipment 

2.5 3 0.1 

input bysimpleGA 
2 output 

~ by proposed GA 
N N e 
E E (j) 

~ 2~ (f) 
0) E ~ 1.5 e-
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FIGURE 17 Input and Output FIGURE 18: RMS Error 
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TABLE 3: Estimated Air Tube Parameters 

Simple GA Proposed GA 
Parameter Pattern 1 Pattern 2 Pattern 1 Pattern 2 

KL 0.9892 0.9902 0.9902 1.0000 
(Kg/cm2

) 

TL (s) 0.2854 0.4985 0.3402 0.3617 
L (s) 0.2385 0.0753 0.1193 0.1349 

The internal diameter of the air tube is 8mm, the supply of air pressure to the E-P regulator is 0.6 Mpa, 

and the output 0-0.51 Mpa and the air motor is vane type with a round angle of 270°. The range of air 

pressure used is 0.1-0.99 Mpa. 

5.2 Identification of Air Thbe 

When the diameter of the long ~ir tube is small, the time lag can not be negligible. By Brown's low­

dimensional model, the transfer function of the air tube can be described as follows 14), 15), 

(21) 

where KL is the gain, T L the time constant and L the time lag. 

In this experiment, the length of the air tube is 40 m, the data of both input and output shown in Figure 17 

are obtained by the pressure gauges (1) and (2) in Figure 16. The results are summarized by Figure 18 and 

Table 3. It can be noted that the rms error shown in Figure 18 is small when using the proposed method. In 

Table 3, pattern 1 and pattern 2 are the identified results by input and output data of two sets obtained 

separately. When using simple GA, the identified parameters from two patterns are dispersive, while in the 

case of proposed GA, every parameters converge to close values. For a example, the estimated parameters of 

L by simple GA are the values of 0.2385 and 0.0753 which are very dispersive, in the case of proposed GA, 

they are 0.1193 and 0.1349, closely. Thus they can be considered as the real parameters of the equipment. 

5.3 Identification of Robot Actuator 

The structure of the actuator is shown in Figure 19. Considering that the input is the pressure difference 

supplied to the air motor and the output is the displacement of arm angle, the identification method can be 

established for the robot manipulator. The state equation of the air in the chamber is given as follows, 

1 dP dV 
W=--(V-+KP-) 

1( RT dt dt 
(22) 

where W is flow mass, 1( specific heat, R gas constant, T absolute temperature of the air, V the volume and P 

the pressure of the air inside the chamber. The standard position is that when the vane is in the center of the 

actuator shown in the Figure 19. Letting the Eq.(22) be linearized under this state, we can obtain 16), 

(23) 
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FIGURE 19: Structure of the Robot Actuator 

TABLE 4: Estimated Robot Parameters 

Parameter Simple GA Proposed GA 
J (Kgem2

) 3.6xlO·4 3.6xlO·4 

Fe (Nem) 1.0068x10-2 1.2317xlO-2 

Fmax (Nem) 3.5288x10·2 3.3333x10-2 

K." (Nem/Pa) 83.0890 83.0890 
~ (Nem/Pa) 121.7009 121.6784 
Kc(Nem/Pa) 416.9110 456.9892 
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The solid friction in the motor is described in two states as follows, 

101 

Stick state: when the manipulator is static, the drive torque and the stick friction torque are in balance. 

Then, the following relation holds, 

(24) 
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where Am is the volume of a radian changed. 

Slip state: the dynamical equation is represented by 

(25) 

Using the Eqs.(23) to (25), the identification is performed by a simple GA and the proposed GA. The 

results are shown in Table 4 and rms errors are shown in Figure 20. It can be seen that the rms error becomes 

smaller gradually by the applying of the proposed GA. Moreover, to evaluate the identification accuracy, the 

step response experiment by P control is performed and the results are shown in Figure 21. The broken line 

indicates the result of simulation using the parameters obtained by simple GA. The solid line is that by 

proposed GA and the dotted line stands for that coming from experiment. It can be verified from Figure 21 

that the simulation results are identical with those of the experiment by using the proposed GA method and 

the identification accuracy can be improved. 

6. CONCLUSIONS 

An identification method using the search of GA to nonlinear time lag systems has been proposed. While 

only the traditional GA is used, the solution is usually sunk into local minimum. In order to solve this 

problem, a new identification method is constructed which has been combined the traditional GA with 

sequence method. For examining the usefulness of this method, several representative nonlinear time lag 

systems have been treated. Using the numerical data of Duffing type systems, which have been regarded as 

experimental ones, the identification experiments are performed. Furthermore, it has been applied to the 

identification of real systems of explosion-proof pneumatic robots. As a result, it has been verified that 

nonlinear time lag systems can be identified accurately by the proposed method and these results can be 

applied to the identification and control of nonlinear time lag systems and robots, especially to further 

development of explosion-proof pneumatic robots. 
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