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In this article, contrary to the popular studies on
human motion learning, we focus on addressing the
problem of humanoid robot motions directly. Per-
formances of different kernel functions with princi-
pal components analysis (PCA) in Gaussian process
dynamical models (GPDM) are investigated to build
efficient humanoid robot motion models. A novel
kernel-PCA-GPDM method is proposed for build-
ing different types of humanoid robot motion mod-
els. Compared with standard-PCA-GPDM method
auto-encoder-GPDM method, our proposed method
is more efficient in humanoid robot motion model-
ing. In this work, three types of NAO robot mo-
tion models are studied: walk-model, lateral-walk
model, and wave-hand model where motion data are
collected from an Aldebaran NAO robot using Mag-
netic Rotary Encoders sensors. Using kernel-PCA-
GPDM method, the motion data are firstly projected
from the 23 high dimension observation space to a
3 dimension low latent space. Then, three types hu-
manoid robot motion models are learned in the 3D la-
tent space. Compared with other kernel-PCA-GPDM
or auto-encoder-GPDM, our proposed novel kernel-
PCA-GPDM method performs efficiently in the mo-
tion learning. Finally, we realize humanoid robot mo-
tion representation to verify the motion models that
we build. The experimental results show that our pro-
posed kernel-PCA-GPDM method builds efficient and
smooth motion models.

Keywords: Humanoid robot; dimensionality reduction;
kernel PCA; humanoid motion models; Gaussian Process
Dynamical Models.

1. Introduction

Motion learning has become popular in the field of ma-
chine learning. Studies of human motion learning and im-
itation systems[1][2][3] progress in the development of
humanoid robots motion learning in recent years. Vari-
ous machine learning methods are proposed to make a hu-
manoid robot behave and decide like human beings[4][5].

Among those motion learning studies, most researchers
focused on human motion learning [6][7][8] or imitation
systems of human motion using humanoid robots[9][10].
Most conventional studies on learning human motions ap-
ply optimized human motion data into a humanoid robot
through the studying of human motion models, such as
imitation system[11]. In our research, we focus on study-
ing inherent motion characteristics of a humanoid robot
and constructing humanoid robot motion models directly.

The humanoid robot motion models are necessary for
real-time imitation of the humanoid robot to reduce the
huge exploration space. A humanoid robot has about 20
joints as a whole body and the 20 DoF space becomes
the exploration space and too huge to find a set of good
parameter values for imitation in real-time. The previous
studies [6][8] revealed that the human motion can be rep-
resented in a few DoF space even though a human has
huge amount of degree of freedoms to generate his/her
motions. The other studies [9][12] also showed that the
humanoid motion can be represented in a few DoF space
as well. They suggest that humanoid motion models with
a few DoF space can be used to explore parameters effi-
ciently for the real-time imitation of the humanoid robot.

Yo Kondo and Yasutake Takahashi[9] introduced the
idea above for the real-time imitation of the humanoid
robot. They built an imitation system and adopted auto-
encoder to build humanoid robot motion models. They
greatly reduce the computational cost in imitation by us-
ing 3D humanoid robot motion models. However, the
learning system they built is complex. They divided
full robot body joints into four parts, two arms and two
legs where they built hierarchical seven auto-encoders to
train the motion data separately. The seven auto-encoders
needs relatively long learning time and a lot of training
data. The motion trajectories in the learned space are un-
stable and vague.

In this paper, we use machine learning methods named
kernel PCA and Gaussian Process Dynamical Mod-
els(GPDM) addressing humanoid robot motion learning.
GPDM is very efficient for high dimensional data training
and motion learning[7, 13–15]. Unlike conventional deep
learning methods which are also powerful and widely ap-
plied for motion learning, GPDM does not need huge
amounts of training data. It can train a motion model effi-
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Fig. 1. (a) The left figure show the NAO robot motion data in 23D observation space. Each pose of a NAO robot is defined with 23
motion features. (b)Through the motion learning with kernel-PCA-GPDM method, high dimensional motion features are extracted
into a low 3D latent space. The features are learned in the low 3D latent space. The right side figure of kernel-PCA-GPDM module
shows a motion model learned with kernel-PCA-GPDM method. (c) After a motion model is built, we restore the learned 3D motion
features back to 23 dimension space. The motion model is verified by humanoid robot motion representation

ciently with modest amounts of training data and the time
cost is also much less. As shown in Fig. 1, the kernel-
PCA-GPDM method first projects 23 dimensional motion
data into 3D latent space. Then, the 3D motion feature
data are learned and motion models can be built in the 3D
latent space. Finally, we restore the learned 3D motion
data back to 23 dimension space. The motion model is
verified by means of motion representation.

Generally, the curse of dimensionality is a serious prob-
lem in motion learning. It is hard to learn high dimen-
sional data directly as the computational cost increases
greatly. In motion learning, the high dimensional data
is usually projected into a low state space. Raquel Ur-
tasun et al.[14] used a similar dimensionality reduction
method as Neil D. Lawernce[16] which turns out to be
equivalent to PCA. Jian Mi and Yasutake[17] also used
PCA for dimensionality reduction in their method. How-
ever, the humanoid robot motion models they built is not
smooth. Taehwan Kim et al.[8], Yo Kondo and Yasu-
take Takahashi[9] both adopted auto-encoder for dimen-
sionality reduction. Other methods, such as Locally lin-
ear embedding(LLE) and Isomap, are not suitable for hu-
manoid robot motion data because they assume the ob-
served data are densely sampled on manifold[6]. In this
paper, we use kernel PCA[18] replaced the standard-PCA
method in GPDM for dimensionality reduction. The ker-
nel PCA has advantages over the other methods such as
it addresses linear/non-linear data efficiently with differ-
ent kernels and we build smooth humanoid robot motion
models using kernel-PCA-GPDM method. In this paper,

1. We build motion models of a humanoid robot instead
of focusing on human motion models.

2. The full body joints data of a humanoid robot is
learned with kernel-PCA-GPDM rather than divid-
ing the full robot body joints data into several parts.

3. We investigate performances of different kernel
functions to figure out which kernel-PCA-GPDM ex-
ecutes better humanoid robot motion modeling. In
details, as shown in Fig. 1, we reduce the motion
data of a humanoid robot from 23 high dimension

observation space into a 3 dimension latent space and
then, motion models are learned with kernel-PCA-
GPDM method in the 3D low latent space.

4. A novel RBF-Hyperbolic Tangent(RBF-HT) kernel-
PCA-GPDM method is proposed for motion learn-
ing.

5. Three types of humanoid robot motion mod-
els are learned with kernel-PCA-GPDM and we
also compare our proposed RBF-HT kernel-GPDM
method with auto-encoder-GPDM and standard-
PCA-GPDM methods. The results show the effi-
ciency of our proposed method.

6. The motion model is verified through the motion rep-
resentation by restoring the learned 3D motion data.

2. Joints definition of a NAO humanoid robot

Fig. 2. 25 joints definitions of a NAO robot

In our research, we use an Aldebaran NAO robot shown
in Fig. 2. The Aldebaran NAO robot is very famous
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among humanoid robots. It has 25 DOF joints and can
perform many tasks. Kinds of research are based on NAO
platform because it is very powerful for programming.
Rodrigue et al.[19] used a NAO robot as a home reha-
bilitation assistant. Chao Li et al.[20] performed visual
localization and object tracking with a NAO robot in dy-
namic environment. Yongsheng et al.[1], in their work,
a Kinect was used with a NAO robot to realize real-time
full body human imitation.

The definition of 25 joints are indicated in Fig. 2. There
are 26 joints shown in Fig. 2. In fact, the LHipYawPitch
joint and RHipYawPitch joint share the same motor and
cannot be controlled separately. We consider LHipYaw-
Pitch joint and RHipYawPitch joint as one joint. The sen-
sors that a NAO robot uses for collecting data are Mag-
netic Rotary Encoders (MRE). The MRE sensors are em-
bedded in the joints of a NAO robot. In this way, the joint
angles data can be obtained when a NAO robot moves.

3. Related Work

A lot of works address the problem of human
motion imitation and building human motion models
[21][22][23]. Here, we pay attention to humanoid robot
motion models. We briefly introduce several previous re-
search related to our work.

Yongsheng Ou et al[1] used a Microsoft Kinect sensor
for real-time human motion imitation with a NAO robot.
They solved inverse kinematics by means of Levenberg-
Marquart optimization process for imitation. They fo-
cused on mimicking human motions. Similarly, Haiyu
Zhu et al[24] provided a method using one RGB cam-
era for the purpose of building personalized parametric
models of a dynamic human body. Judith Bütepage et
al[25] developed an unsupervised representation learning
scheme for long-term prediction of human motion. They
addressed the problems of representation learning for hu-
man motion prediction and classification. Our research
is different from those research, we focus on the field of
studying humanoid robot motions instead of learning hu-
man motion models nor the imitation systems. In order to
investigate the characteristic of humanoid robots move-
ments, it is necessary to study the humanoid robot mo-
tions and build humanoid robot motion models directly
rather than human motion models.

Auto-encoder, a common machine learning method,
is widely used in dimensionality reduction and train-
ing data[8][26][27]. Taehwan Kim et al[8] used auto-
encoder-GPDM method for human motion learning. They
reduced accelerometer and gyro sensor data from 16D to
2D. Unlike their research, we address humanoid robot
joints data. Yo Kondo and Yasutake Takahashi[9], also
addressed humanoid robot joints data. They used an auto-
encoder method for dimensionality reduction. In their
research, they used auto-encoder to reduce high dimen-
sional humanoid robot joints data from the 18 dimen-
sion space to a 3D latent space. For details, they di-
vided the NAO robot body joints into 4 parts, two arms

and two legs. The four parts were processed with auto-
encoder separately. In the whole process, they used seven
networks and reduced 18 dimensional robot joints data
into a 3D space. In their research, complex networks
are adopted to train amounts number of motion data in
3D space. Correspondingly, the complex networks need
much more time to train motion data. On the contrary,
we want to process the 23 dimensional robots joints data
directly with kernel-PCA-GPDM rather than divide the
robots joints data into several parts. In the meantime, we
want to cut down the computational cost of training robots
motion data to build an efficient humanoid robot motion
model with small amount data.

Gaussian process dynamical model is an efficient ma-
chine learning method for motion data training. Jack M.
Wang et al[6], used Gaussian Process Dynamical Model
to address high dimensional human pose and motion data
on CMU data base. In their research, they reduced the
high dimensional data from 50 DOFs to 3 DOFs with
GPDM and their method learned an effective representa-
tion of nonlinear dynamics in the latent space. Raquel Ur-
tasunet al[28], also used GPDM method for learning hu-
man pose and motion priors for 3D people tracking. Un-
like those researches, we are aiming at training humanoid
robot motion data and building efficient humanoid robot
motion models in a low latent space. In [17], they used
PCA in their GPDM method. However, PCA is not suit-
able for humanoid robot motion data because the motion
data is nonlinear. In this paper, we propose a kernel-PCA-
GPDM method to build humanoid robot motion models
with small amount of humanoid robot motion data. Par-
ticularly, a novel RBF-HT kernel is proposed to build
smooth motion models. We can predict the next states
of a humanoid robot with the learned motion models. It
is helpful in humanoid robots motion design, humanoid
robots control and other humanoid robots fields, such as
humanoid rescue robots, humanoid rehabilitation robots,
etc..

4. Data Process using kernel PCA Gaussian
Process Dynamical Models

Gaussian Process Dynamical Model(GPDM) is a latent
variable dynamical model[6]. Typically, GPDM is non-
linear, efficient for motion model building with a small
amount of motion data. Besides, GPDM is also powerful
in training time series data[29]. In this section, we briefly
introduce the kernel-PCA-GPDM method.

4.1. Dimensionality reduction: Principal Compo-
nents Analysis

Dimensionality reduction plays an important part of
GPDM. The extracted motion features affect the data
training greatly. Good extracted motion features help to
build good motion models. It is important to figure out a
suitable way to realize proper dimensionality reduction.
The principal components analysis(PCA)[30] is widely
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Fig. 3. Dimensionality reduction with PCA: MD→ 3D

used in feature extraction and dimensionality reduction.
Figure 3 shows a PCA dimensionality reduction model
where high dimensional humanoid robot motion data is
projected from the M dimension observation space yyy to a
3D low latent space xxx.

A vector in the observation space yyy corresponds to
a pose configuration of a humanoid robot. Sequences
of poses define a motion trajectory. In Fig. 3, Y =
[yyy111,yyy222, · · · ,yyyNNN ]

T , is the data set of observation vector. N
is the number of elements that Y contains. Each ele-
ment Yn represents a pose of the motion trajectory. yyynnn =
[y1,y2, · · · ,yM]T , here, M is the dimension of pose yyynnn. X =
[xxx111,xxx222, · · · ,xxxNNN ]

T , is the latent variable addressed by PCA.
The high dimensional motion data is reduced from MD
to 3D which is shown in Fig. 3. Each xxxnnn = [x1,x2,x3]

T

contains a 3D vector. Algorithm 1 shows the procedure
of standard PCA reduce high dimensional data to d di-
mension[17]. The standard PCA performs dimensionality
reduction directly from high dimension space into low di-
mension space. However, it addresses linear transforma-
tion. It cannot perform good feature extraction on nonlin-
ear motion data.

Algorithm 1 Principal Components Analysis: reduce
high dimensional data to d dimension

1: Input data set Y = [yyy1,yyy2, · · · ,yyyN ]
T , output data set X ;

2: Y ← Normalization on Y ;
3: Calculate covariance matrix: ∑cov;
4: Calculate eigenvectors UUU and eigenvalues λλλ ;
5: Reshape {λλλ , UUU} to {λi, Ui}, where 1 ≤ i ≤ N and

λ1 ≥ λ2 ≥ ·· · ≥ λN ;
6: X = YUUU1:d where d < N.

4.2. Kernel Principal Components Analysis

Fig. 4. Dimensionality reduction with kernel PCA

Instead, we use kernel principal components analysis
for nonlinear humanoid robot motion data. Unlike PCA,
kernel PCA addresses nonlinear data. It first maps the in-
put data yyynnn into a much higher dimensional Hilbert space
ϕϕϕ(((yyynnn))) as shown in Fig. 4. The dimension of the Hilbert
space ϕϕϕ(((yyynnn))): Dϕ(yyyn)

→ ∞. The kernel PCA maps data
from the Hilbert space to a low space instead of the orig-
inal space. However, it is difficult to obtain the nonlinear
mapping ϕ(yyyn). To solve this problem, a kernel function
k(ϕi,ϕ j) is adopted in kernel PCA[18]. In this way, we
transform the original problem ϕ(yyyn) into kernel comput-
ing. The kernel PCA is shown in Algorithm 2. In ker-
nel PCA, kinds of kernel functions are used such as lin-
ear kernel function, Gaussian kernel function, Hyperbolic
Tangent(Sigmoid) kernel function, etc.. The linear kernel
function is defined in Eq. (1). It is the simplest kernel
function and defined by inner product < y,y′ >. Equa-
tion (2) shows a polynomial kernel function. It is defined
by three parameters, ξ , a constant c and the polynomial
degree d. The Hyperbolic Tangent(Sigmoid) kernel func-
tion is also known as Multilayer Perceptron(MLP) kernel
is defined in Eq. (3). It is popular as activation func-
tion in neural networks. Two parameters are in this ker-
nel function, ξ and c. The Gaussian kernel function is
shown as Eq. (4). It is also known as Radial basis func-
tion(RBF) kernel and is widely used in machine learning
field. The parameter σ plays the major role which should
be estimated according to the training data. If σ is over-
estimated, the high dimensional projection will lose its
nonlinear power. Otherwise, if σ is underestimated the
function will lack regularization and it will be sensitive
to noises in the training data. It is very important to fig-
ure out an appropriate σ . Those are the four popular ker-
nels in machine learning. In this paper, we also propose
a novel kernel named RBF-HT kernel by combining the
RBF kernel and Hyperbolic Tangent kernel. The details
of the novel kernel is described in Section 5.4 .

Algorithm 2 Kernel PCA: map high dimensional data
into d dimension

1: Input data set Y = [yyy1,yyy2, · · · ,yyyN ]
T , output data set X ;

2: Select a kernel k(ϕi,ϕ j), where ϕi,ϕ j ∈ ϕ(yyyn);
3: Construct and centralize kernel matrix K = [k(ϕi,ϕ j)]:

K̃ = centralize(K)[31];
4: Address eigenvalue problem K̃αi = λiαi, where αi is

coefficient;
5: Each output xxxi = ∑N

i=1 α jiK(yyy,yyyi).

k(y,y′) = yT y′ . . . . . . . . . . . . . (1)

k(y,y′) = (ξ yT y′+ c)e . . . . . . . . . . (2)

k(y,y′) = tanh(ξ yT y′+ c) . . . . . . . . (3)

k(y,y′) = exp
(
− 1

2σ2

∥∥y− y′
∥∥2
)

. . . . . (4)
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4.3. Dynamical Models

In our work, the humanoid robot motion data are pre-
processed with kernel PCA reducing 23 high dimensional
data into 3D. Then, the motion data are learned in the 3D
latent space. In Gaussian Process Dynamical model, the
learning parameters are {Y T ,XT , ᾱ, β̄ ,ω} where Y T ,XT

are the observation and corresponding latent variable data
sets, ᾱ, β̄ and ω are the learning hyper-parameters and
scale parameter, respectively. The state space models for
the dynamical systems are defined as follows:

xxxt = fx(xxxt−1)+N(0,σ2
x I) . . . . . . . . (5)

yyyt = fy(xxxt)+N(0,σ2
y I) . . . . . . . . . (6)

where, xxxt is the d dimensional latent coordinates
at time t and yyyt is the observation pose vector.
N(0,σ2

x I),N(0,σ2
y I) are white Gaussian noise processes.

fx, fy are combination of nonlinear basis functions
φ(x),ψ(x) with weights A and B. Consequently, Eq. (5)
and Eq. (6) become

xxxt = ∑
i

aiφi(xxxt−1)+N(0,σ2
x I) . . . . . . (7)

yyyt = ∑
j

aiψ j(xxxt)+N(0,σ2
y I), . . . . . . . (8)

here, A = [a1,a2, · · · ], B = [b1,b2, · · · ]. In regression,
the number of basis functions should be selected first to
fit the model. Then, the parameters A and B should be es-
timated. Note that, parameters A and B are nuisance from
the view of Bayesian perspective, so that it is necessary
to marginalize over the parameters. Parameter A can be
marginalized out as [6] performed. Parameter B can be
marginalized out in a similar way as [32][33] to obtain
the probability of the training data which is shown in Eq.
(9).

p(Y |X ,β ,ω) =
|ω|N√

(2π)NM|KM
Y |

exp
(
−1

2
tr(K−1

Y Y ω2Y T )

) . . (9)

A kernel matrix KY is defined by (KY )i j = kY (xi,x j) In
this research, the RBF kernel is adopted to the GPDM,
defined as follow,

kY (x,x′) = β1exp
(
− 1

2β 2
2

∥∥x− x′
∥∥2
)
+β3δx,x′ . (10)

x and x′ are latent variables in xxx. β1 is the scale param-
eter. β2 is the standard deviation that controls the kernel
width and β3 represents the variance of the noise in Eq.
(6).

Similarly, the probability of the latent variable X is cal-
culated by

p(X |α) =
p(xxx111)√

(2π)(N−1)d |KX |d

exp
(
−1

2
tr(K−1

X XoXo
T )

)
,

. . . . (11)

where d is the latent space dimension (in our research,
set as 3). Xo = [xxx2,xxx3, · · · ,xxxN ], and kernel matrix KX
is (N − 1)× (N − 1) which is generated from data set
[xxx1,xxx2, · · · ,xxxN−1]. In addition, xxx111 is assumed to have an
isotropic Gaussian prior. A combination kernel of linear
and RBF is adopted.

kX (x,x′) =α1exp
(
− 1

2α2
2

∥∥x− x′
∥∥2
)

+α3xT x′+α4δx,x′

. . . . (12)

where x and x′ are latent variables in xxx1:N−1. α1 and
α2 are parameters of the part of RBF kernel while α3 is
the parameter of the linear kernel part. In details, α1 is
the scale parameter of RBF kernel, and α2 is the standard
deviation that controls the RBF kernel width; α3 is the
scale parameter of the linear kernel; α4 is the variance of
the noise in Eq. (5). The advantage of the combination
kernel is that the linear part can work efficiently when the
predictions are far from original data.

The hyper-parameters are estimated through GPDM
learning. The motion models are built by training the in-
put pose data. We take a similar way as [6] performed
to apply simple prior distributions over the kernel hyper-
parameters. p(ᾱ) ∝ ∏i α−1

i , p(β̄ ) ∝ ∏i β−1
i and p(ω) =

∏M
m=1

2
k
√

2π exp(−ω2
m

2k2 ). Take all the parameters into con-
sideration, the model defined by GPDM along time series
data is

p(X ,Y,α,β ,ω) =

p(Y |X ,β ,ω)p(X |ᾱ)p(ᾱ)p(β̄ )p(ω).
. (13)

In the process of GPDM, the observation data Y , as
the training data, is known. The latent variable X is
first initialized by kernel PCA as shown in Algorithm
2. Through the learning of Y , the unknown parameters
{X , ᾱ, β̄ ,ω} are estimated.

L =
M
2

ln|KY |+
1
2

tr(K−1
Y YW 2Y T )−Nln|ω|

+
d
2

ln|KX |+
1
2

tr(K−1
X XoXT

o )

+∑
i

lnαi +∑
i

lnβi + γ

. (14)

Here, γ is a constant. According to Eqs. (9) and (11), we
can obtain

log(p(Y |X ,β ,ω)) = log(
|ω|N√

(2π)NM|KM
Y |

exp
(
−1

2
tr(K−1

Y Y ω2Y T )

)
),

. . (15)

log(p(X |α)) = log(
p(xxx111)√

(2π)(N−1)d |KX |d

exp
(
−1

2
tr(K−1

X XoXo
T )

)
).

. . (16)

With Eqs. (15) and (16), the hyper-parameters are es-
timated by minimizing the negative log posterior of Eq.
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(14). ω is estimated by minimizing L (Eq. (14)) with
respect to {X , ᾱ, β̄}. A scaled conjugate gradient method
is applied and looped for L times as shown in line 9, Al-
gorithm 3. As shown in Algorithm 3, the GPDM learns
Iteration times in the whole process.

Algorithm 3 GPDM

1: Input data Y , output parameters{X ,α,β ,W}
2: Initialize X with kernel PCA based on Y with d di-

mensions, as Algorithm 1
3: Initialize α = (α1,α2,α3,α4), β = (β1,β2,β3), ω j
4: for i = 1 to Iteration do
5: for j = 1 to M do
6: ω : estimated by minimizing L (Equation (14))
7: end for
8: for l = 1 to L do
9: {X , ᾱ, β̄}: estimated by optimizing L ∝

{X , ᾱ, β̄}
10: end for
11: end for

5. Motion models of a NAO Robot building
with kernel-PCA-GPDM method

In this paper, three motion models are learned in 3D
latent space using kernel-PCA-GPDM method. For the
NAO robot, we use software Choregraphe and Webots to
design and simulate motion models. The three motion
models we build are models of walk-forward, lateral-walk
and hand-wave. Figure 5(a) shows the walk-forward
model of a NAO robot. Figure 5(b) shows the lateral-
walk model of a NAO robot. In Fig. 5(c), the NAO robot
waves a single hand. The NAO robot acts along time t
which is shown in Fig. 5. We collect time series pose
data of a NAO robot and each pose is defined by 25 joints
data. In the experiments, we collect 1000 frames source
data for each motion. 500 frames of each motion data are
selected to form the training data set. The parameters in
Algorithm 3 are set as Iteration = 50, L = 10.

5.1. Motion models built with standard-PCA-
GPDM method

We first address time series motion data with standard-
PCA-GPDM method. Here, we choose the source data
of walk-forward to calculate the cumulative contribution
rate. The statistic data of cumulative contribution rate
under different dimensions is shown in Table 1. Gen-
erally, the cumulative contribution rate should be larger
than 85% because if the cumulative contribution rate is
less than 85%, which means much data loss and the data
cannot represent the original data well. This is the reason
we reduce the high dimension data into 3D latent space
instead of 2D latent space. The motion models learned
by standard-PCA-GPDM method are shown in Fig. 6.
23 dimensional motion data are projected into a 3D la-
tent space. The 3D latent space is defined by three axes

(a)

(b)

(c)

Fig. 5. Three types motions of a NAO robot. (a) shows a
NAO robot walks forward, (b) is the lateral walk , (c) repre-
sents that a NAO robot waves right hand.

(pc1, pc2, pc3) as shown in Fig. 6. pc1 represents the
first component which has the largest variance in PCA and
kPCA. pc2 and pc3 are the second and third components.
Figure 6(a) is the motion model of walk-forward. Each
point in the learned 3D motion model represents a pose
state of the robot. An original robot pose is defined by 23
dimensional data. Through the learning, the robot pose
is represented by 3D data. The trajectories in 3D latent
space show how the robot motion changes along time t.
The red arrows show the direction of the humanoid robot
movements. Two latent points are marked out in Fig. 6(a)
that one shows the robot pose at time t, consequently, the
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Table 1. Cumulative contribution rate of PCA: using walk-
forward source data

Dimension (mmm−−−DDD) cumulative contribution rate(%)
1D 51.09
2D 83.12
3D 90.74
4D 96.68
5D 99.27
6D 99.64

next one is the pose state at time t+1. Figure 6(b) shows
the motion model of lateral-walk. The hand-wave model
is shown in Fig. 6(c). Obviously, the models learned with
standard-PCA-GPDM is not good as Fig. 6 shows that
the learned trajectories in 3D latent space are not smooth.
Compared with Figs. 6(a) and 6(b), Fig. 6(c) is much
better. However, as the black solid ellipse shows in Fig.
6(c), the smoothness get worse. This also proves that the
standard PCA method is not suitable for nonlinear motion
data.

5.2. Auto-encoder-GPDM method

Fig. 7. Auto-encoder-GPDM

Yo Kondo and Yasutake Takahashi[9] used an auto-
encoder method for address humanoid robot motion mod-
els. They only used an auto-encoder method rather than
auto-encoder-GPDM method. In their research, they did
not get a good result with auto-encoder addressing high
dimensional humanoid robot motion data directly. In-
stead, the divided the humanoid robot body into four parts
and constructed seven networks to realize dimensionality
reduction. Taehwan Kim et al[8] used an auto-encoder-
GPDM method for human motion learning. In our re-
search, we also did experiments with the auto-encoder-
GPDM method for high dimensional humanoid robot mo-
tion learning.

Figure 7 shows the auto-encoder-GPDM method we
adopted in our experiments. In our experiments, we ad-
dress the full humanoid robot motion data directly as

Fig. 7 shows. 23 dimensional humanoid robot motion
data are mapped with auto-encoder directly as input data.
Only one hidden layer with three neurons is used in our
auto-encoder-GPDM. In this process, we extract the fea-
tures into a low 3D feature space. Then, the features are
learned and the motion models can be built. The mo-
tion models built with an auto-encoder-GPDM method
are shown in Fig. 8. The 3D feature space is defined by
( f e1, f e2, f e3). f e1, f e2, f e3 are the features learned by
auto-encoder-GPDM. It is easy to find that the motion
models built with the auto-encoder-GPDM method are
not smooth. This result is almost the same as Yo Kondo
and Yasutake Takahashi[9] that they divided the full hu-
manoid robot body into four parts instead of addressing
the full robot body data.

5.3. Motion models built with kernel-PCA-GPDM
method

Feature extraction is important in addressing high di-
mensional data set and machine learning. Good feature
extraction methods help to learn good models in ma-
chine learning. In this paper, we investigate performances
of kernel-PCA-GPDM method using different kernels.
Through the analysis of the learned output motion mod-
els, we can figure out which kernel performs better in hu-
manoid robot motion learning. Four different kernel func-
tions defined from Eq. (1) to Eq. (3) are adopted in kernel
PCA to extract high dimensional data feature of a NAO
robot body joints into 3D low latent space. Table 2 shows
the cumulative contribution rate using kernel PCA with
different kernels. In 2D latent space, all the cumulative
contribution rates of the four types kernel functions are
larger than 85% and less than 88%. To ensure that all the
features are extracted into low latent space, we choose to
extract high dimensional data into 3D latent space where
the cumulative contribution rates are larger than 94%. Ac-
cording to the cumulative contribution rate Table 2, it is
easy to find out that the extracted features in 3D latent
space can represent the original high dimensional motion
data well with the cumulative contribution rate larger than
94%.

The humanoid robot motion models are learned with
kernel-PCA-GPDM method in a low 3D latent space. Fig-
ure 9 shows the motion models learned with a linear
kernel-PCA-GPDM method. A very simple linear ker-
nel function(Eq. (1)) is used. This linear kernel func-
tion does not need other parameters. Compared with Fig.
6, the motion models learned with linear kernel-PCA-
GPDM method become smoother. However, it is still not
smooth shown as Fig. 9(a) and Fig. 9(b). Unfortunately,
for the learned hand-wave model in Fig. 9(c), the black
solid ellipse part is almost nearly overlapped. It is difficult
to express the motions of a robot with overlapped points
because each point of the 3D space trajectory we learned
stands for a pose state along time t. A good model should
express the motions clearly and smoothly.

Figure 10 shows the three motion models learned with
a polynomial kernel-PCA-GPDM method. The polyno-
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Table 2. Cumulative contribution rate of kernel PCA: using walk-forward source data.

Dimension Kernel function
mmm−−−DDD Linear(%) Polynomial(%) RBF(%) Hyperbolic Tangent(%)

1D 52.82 52.17 52.07 52.67
2D 87.83 85.78 86.95 87.35
3D 94.58 94.59 94.03 94.58
4D 97.77 97.69 97.31 97.75
5D 99.41 99.29 98.98 99.37
6D 99.63 99.57 99.21 99.61
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mial kernel function is defined in Eq. (2). There are three
parameters ξ , c and e in polynomial kernel function. Here
we use a common set ξ = 1

M , c = 0, e = 3 where M is the
dimension of input data set. e, we choose the dimension
of latent space that the high dimensional motion data pro-
jected into. From Fig. 10(a) and Fig. 10(b), we can get
that the polynomial kernel-PCA-GPDM method did not
work well on the walk-forward model and the lateral-walk
model. It works well on the hand-wave model as shown
in Fig. 10(c) even though some points are detached from
the main trajectory where the points are circled in a solid
black ellipse.

Figure 11 is the models learned with a Hyperbolic Tan-
gent kernel-PCA-GPDM method. The Hyperbolic Tan-
gent kernel is shown in Eq. (3). In the learning process,
ξ = 1

M , c=−1. Figure 11 shows that the Hyperbolic Tan-
gent kernel-PCA-GPDM trains smoother motion models
than the two kernels PCA GPDM we described before.
Especially for the later-walk model and the hand-wave
model, the Hyperbolic Tangent kernel-PCA-GPDM per-
forms better. The lateral-walk motion model shown in
Fig. 11(b) is much smoother compared to the three ker-
nels PCA methods. For the hand-wave motion model, it
has the same problem as the model learned with poly-
nomial kernel-PCA-GPDM method where few points are
detached from the main trajectory as shown in Fig. 11(c).
As for the walk-forward motion model, we aim to build a
much smoother motion model.

In kernel functions, the RBF kernel is useful and is
widely applied in machine learning. As we described in
Section 4.2, the RBF kernel function is shown as Eq. (4).
The RBF kernel-PCA-GPDM method works well as Fig.
12 shows. Figure 12(a) illustrates a smooth walk-forward
motion model is learned. The lateral-walk motion model
is also much smoother. Figure 12(c) shows a smooth
hand-wave motion model. However, the trajectory shown
in the ellipse are crowded and nearly overlapped. It is hard
to express the hand-wave motion clearly with this motion
model. In order to solve this problem, we put forward
a novel kernel function combining an RBF and a Hyper-
bolic Tangent kernel.

5.4. A novel RBF-HT kernel-PCA-GPDM method
Among those four kernels PCA GPDM method, we

found that the Hyperbolic Tangent kernel and the RBF
kernel performs better than the other two kernels PCA
GPDM methods. The method using RBF kernel build a
much smoother motion models. However, as Fig. 12(c)
shows, some latent points of the motion model are over-
lapped. In order to figure out a way to solve this prob-
lem, we develop a novel kernel function by combining
an RBF kernel and a Hyperbolic tangent kernel where it
is named RBF-HT kernel. The novel kernel function is
defined in Eq. (17). In the experiments, the parameters
in Eq. (17) are set by empirical values where ξ1 = 0.1,
σ = 4, ξ2 = 20, ξ3 = 0.04, c1 = −1, c2 = 0. The result
of the RBF-HT kernel-PCA-GPDM method is shown in
Fig. 13. From the result, we can easily get that the RBF-
HT kernel performs well. The ellipse part in Fig. 12(c)

are overlapped. With the RBF-HT kernel method, the mo-
tion model can clearly illustrate the hand-wave motion as
shown in Fig. 13(c). This proves the efficiency of our
proposed RBF-HT kernel method.

k(y,y′) =ξ1exp
(
− 1

2σ2

∥∥y− y′
∥∥2
)
+

ξ2tanh(ξ3yT y′+ c1)+ c2

. . . . (17)

6. Motion models built with RBF-HT kernel-
PCA-BGPDM method

To make the motion models smoother, Eq. (14) is
changed to a new equation

L =
M
2

ln|KY |+
1
2

tr(K−1
Y YW 2Y T )−Nln|W |+

M
d
(

d
2

ln|KX |+
1
2

tr(K−1
X XoXT

o ))

+∑
i

lnαi +∑
i

lnβi + γ.

(18)

The parameter M
d is used for minifying the differences

in the regressions to make the influence of dynamics
and reconstruction could be balanced[14]. The RBF-HT
kernel parameters configuration are same as Fig. 13.
Figure 14 shows the motion models learned with the
RBF-HT kernel-PCA-BGPDM method. The trajectories
in 3D latent space are much smoother than the method
of GPDM especially for the two motion models, walk-
forward model and lateral-walk model. The walk-forward
motion model in Fig. 14(a) is a good motion model. As
Fig. 14(b) shows, the lateral-walk motion model is also
smooth except few points in the solid black ellipse. The
hand-wave motion model in Fig. 14(b) is smoother than
the model learned with GPDM. To learn a much smoother
hand-wave motion model, we re-configure the parame-
ters of the RBF-HT kernel where ξ1 = 0.1, σ = 3.46,
ξ2 = 0.1, ξ3 = 0.04, c1 = −0.1, c2 = 0.01. The result is
shown in Fig. 15. Figure 15(c) illustrates that the new
configuration of the RBF-HT kernel parameters works
well. The hand-wave motion model is much smoother
than the previous motion models. From Figs. 15(a) and
15(b), we can easily get that the new configuration of
the RBF-HT kernel function performs well and generates
smooth motion models. Even through the walk-forward
and lateral-walk models are much smoother in Fig. 14,
the motion models in Fig. 15 are also smooth. Noises
exist in lateral-walk motion model as shown in the solid
black circle in Fig. 15(b). We find that noises exist no
matter how we re-configure the RBF-HT kernel parame-
ters. Unlike a human, it is difficult for a NAO robot to
keep its body balance and motion stability when it per-
forms some motions. Usually, a NAO robot need to slow
down the motion speed and narrow its movement range
in order to keep its body balance and motion stability.
Even though, there’s more or less jerking when a robot
performs human-like motions. It cannot be avoided that
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noises exist when a NAO robot lose its balance in col-
lecting motion data. Compared with walk-forward and
hand-wave motions, the lateral-walk motion is more diffi-
cult for the NAO robot to maintain its balance and motion
stability while perform the motion precisely. Noises still
exist after learning with kernel-PCA-GPDM. The NAO
robot keeps better body balance and motion stability in
walk-forward and hand-wave motions so that we hardly
find noises in walk-forward motion model(Fig. 14(a))
and hand-wave motion model(Fig. 15(c)). The result is
consistent with the humanoid robot motion data. Above
all, the motion models learned with the RBF-HT kernel-
PCA-GPDM method work efficiently in humanoid robot
motion model learning.

7. Humanoid robot motion representation

To verify the motion models learned with kernel-PCA-
GPDM method, we restore the learned 3D motion data
back to 23 dimension observation space. In this way, we
realize humanoid robot motion representation. The re-
stored joints data are applied into a NAO robot in simula-
tion. Here we choose walk-forward model as an example.
Through the simulation, we find that the NAO robot walks
more stably with the learned motion data. The robot walks
with less effect of noise data. This proves the efficiency of
our learned motion models. We also compare the restored
motion joints data with the original motion joints data.
Figure 16 shows some important joints angles. The pur-
ple line shows the original training joints angles and the
green line show the restored joints angles using kernel-
PCA-GPDM method. From Fig. 16(a) and Fig. 16(b),
it is obviously that the restored data is almost overlapped
with the original data for robot joints LShoulderPitch and
RShoulderPitch. For both left and right KneePitch joints
and AnklePitch joints, the restored data are also over-
lapped with the original data. The restored joints angles
become smoother than the original data. This is why the
robot moves more stably. As Fig. 16(c), Fig. 16(d), Fig.
16(e) and Fig. 16(f) show that the range of restored joints
angles is smaller than the original data for some joints
even though the motion model we build is efficient. This
is the reason that the movement range of some robot joints
becomes smaller compared with the original joints move-
ment range.

8. Conclusions and Future work

In this paper, we use kernel-PCA-GPDM method for
training full body robots joints data and building hu-
manoid robot motion models with a small amount of
motion data. A novel RBF-HT kernel is proposed to
build smooth motion models in kernel-PCA-GPDM. To
achieve good motion models, we first reduce the 23 high
dimensional motion data into 3D latent space. Then,
through the learning of kernel-PCA-GPDM method, we
build efficient humanoid motion models with small num-

bers of motion data. In the experiments, different kernel-
PCA-GPDM methods are invested to find out which
method performs better. Besides, we compare our
kernel-PCA-GPDM method with standard-PCA-GPDM
method. Further more, we execute a comparison between
our kernel-PCA-GPDM method and an auto-encoder-
GPDM method. The comparison indicates that our
proposed kernel-PCA-GPDM method builds humanoid
robot motion models efficiently. A kernel PCA balanced
GPDM method is adopted to optimize the motion mod-
els. Smooth motion models are learned with the RBF-
HT kernel-PCA-BGPDM method. Finally, the learned 3D
motion features are restored back to 23 dimension space.
The results verified that our method could build humanoid
robot motion models efficiently. In the future, we will
apply the learned 3D motion models into real-time imita-
tion system in order realize quick exploration in low latent
space. Besides, we want to build much more humanoid
robot motion models through an imitation system, espe-
cially for some complex motions. Based on the humanoid
robot motion models, we will make the robot recognize
and classify human motions in imitation systems. As our
motion models are dynamically learned, the robot motion
models can be used to predict next state of human motions
after the robot recognize human motion.
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Humanoid robot motion modeling based on time-series data using kernel PCA and
Gaussian Process dynamical Models
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Fig. 16. Robot joints angle representation: the purple line is the training joints angle and the green line is the representation
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