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Abstract: In 2008, Kundu and Bertino proposed a structural signature scheme for tree-structured data. A signature
generated by the scheme is redactable: for given tree-structured data and its signature, it is possible to compute
signatures of subtrees of the given tree without the secret signing key. Brzuska et al. formalized security
requirements of such kind of redactable signature schemes. They also proposed a provably secure redactable
signature scheme for tree-structured data using an ordinary signature scheme. This paper presents a new
redactable signature scheme for tree-structured data using an ordinary signature scheme and a Merkle tree
constructed by a keyed hash function such as HMAC. The proposed scheme assumes that the out-degree of
each node in a tree is at most constant. It is also shown that the proposed scheme is provably secure under
standard security assumptions of the underlying primitives. The proposed scheme first generates a digest of
given tree-structured data based on the Merkle tree using the keyed hash function, and computes a single
signature for the digest using the ordinary signature scheme. On the other hand, the total number of signatures
required by previous provably secure schemes is at least as large as that of the nodes of the tree.

1 INTRODUCTION

Background. It is expected that database outsourc-
ing using cloud service will be popular. An out-
sourced database is required to provide proofs of the
correctness of answers to queries. A digital signature
scheme is a cryptographic technique useful for this
kind of purposes. A signature makes it possible to
verify whether the corresponding data are corrupted
or not. On the other hand, even if queries are made on
the same data, answers vary according to contents of
queries or users’ access rights. It is obviously unrea-
sonable, however, to prepare signatures of all possible
answers in advance.

In 2008, Kundu and Bertino proposed a struc-
tural signature scheme for tree-structured data (Kundu
and Bertino, 2008). A signature generated by their
scheme is redactable: for given tree-structured data
and its signature, it is possible to compute signa-
tures of subtrees of the given tree without the se-
cret signing key. Their security analysis of their
scheme was informal, and some attacks against it
were presented (Brzuska et al., 2010; Samelin et al.,
2012a; Samelin et al., 2012b). Brzuska et al. formal-
ized unforgeability, privacy and transparency as se-

curity requirements of such kind of redactable signa-
ture schemes and showed that privacy is implied by
transparency (Brzuska et al., 2010). They also pro-
posed a provably secure redactable signature scheme
for tree-structured data using an ordinary signature
scheme. Their scheme satisfies unforgeability and
transparency if the underlying signature scheme sat-
isfies unforgeability.

Our Contribution. This paper presents a new
redactable signature scheme for tree-structured data
using an ordinary signature scheme and the Merkle
tree (Merkle, 1989a). The proposed scheme only al-
lows redaction of cutting leaf nodes. Iteration of cut-
ting leaf nodes enables cutting any subtree. In the pro-
posed scheme, to achieve secure redaction, a keyed
hash function such as HMAC (Bellare et al., 1996a)
is used to construct Merkle trees. It is also shown
that the proposed scheme satisfies unforgeability and
transparency if the underlying signature scheme sat-
isfies unforgeability and the underlying keyed hash
function is a pseudorandom function and collision-
resistant. HMAC satisfies both of the properties under
reasonable standard assumptions.

Unlike the previous schemes, the proposed



scheme uses the Merkle tree based on a crypto-
graphic hash function such as SHA-2 (FIPS PUB
180-4, 2012). An advantage of this approach is that
the proposed scheme is more efficient than the pre-
vious schemes. In our scheme, an ordinary signature
scheme is used only once for each signature gener-
ation to sign the digest corresponding to the root of
a Merkle tree. The previous schemes need at least as
many calls for the underlying signing procedure as the
number of the nodes of the tree-structured data. Gen-
erally, the amount of computation required for hash-
ing is much smaller than the amount of computation
required for signing. On the other hand, a disadvan-
tage of the proposed scheme is that the out-degree of
each node in tree-structured data should be at most
constant.

Related Work. The scheme of Kundu and
Bertino (Kundu and Bertino, 2008) is based on the
fact that a tree is uniquely identified by the pre-order
and post-order of its nodes.

The scheme of Brzuska et al. (Brzuska et al.,
2010) simply signs the nodes and the edges of tree-
structured data separately using an ordinary signature
scheme. When their scheme is applied to an ordered
tree, the orders of children of nodes are also authen-
ticated by ordinary signatures, which costs O(αβ2)
calls for the underlying signing procedure in the worst
case, where α is the number of the nodes and β is
the maximum of out-degrees of the nodes. They only
considered redaction of cutting leaf nodes.

The scheme of Samelin et al. (Samelin et al.,
2012a) signs the lists of the nodes of a tree in their
pre-order and post-order using a redactable signature
scheme for lists. Their scheme allows more flexible
redaction than the scheme of (Brzuska et al., 2010)
and ours: Non-leaf nodes as well as leaf nodes can
be redactable. Their scheme needs O(α) calls for the
underlying signing procedure.

The scheme of Pöhls et al. (Pöhls et al., 2012) also
allows redaction of non-leaf nodes. Their scheme is
based on the Merkle tree and the out-degrees of nodes
are not limited. Thus, their scheme is more flexible
than ours. However, their construction uses a collision
resistant one-way accumulator (Benaloh and de Mare,
1993; Barić and Pfitzmann, 1997) for the Merkle tree,
which makes the scheme less efficient.

Redactable signature schemes for general
graph-structured data have also been proposed
recently (Kundu and Bertino, 2010; Kundu et al.,
2012). Other types of redactable signature schemes
can be found in (Steinfeld et al., 2001; Johnson et al.,
2002; Miyazaki et al., 2003; Nojima et al., 2009;
Chang et al., 2009; Samelin et al., 2012b), which are

not explicitly intended for tree or graph-structured
data.

Sanitizable signature schemes (Ateniese et al.,
2005; Brzuska et al., 2009) originated from motiva-
tions similar to those of redactable signatures. Saniti-
zable signature schemes allow redaction only by priv-
ileged entities called censors or sanitizers.

Ahn et al. (Ahn et al., 2012) provided a general
framework for computing on signed data including
redactable signature schemes and sanitizable signa-
ture schemes. Their privacy notion called context hid-
ing is stronger than transparency in that the former re-
quires the unlinkability between an original signature
and the derived signatures.

Organization. The rest of the paper is organized
as follows. Section 2 gives some notations and def-
initions of signature schemes, collision-resistant hash
functions and pseudorandom functions. Section 3 de-
fines redactable signature schemes and their security
requirements. The proposed scheme is presented in
Sec. 4. Its security is discussed in Sec. 5. Section 6
concludes the paper.

2 PRELIMINARIES

Let N be the set of natural integers. Let FFF(X ,Y )
be the set of the functions from X to Y .

Let F = 〈F̀ 〉`∈N be a sequence of keyed functions
F̀ : K`×X`→ Y`, where K` is the key space. F̀ can
also be regarded as a set of functions from X` to Y`:
{F̀ (K, ·) |K ∈K`}. It is assumed to be easy to sample
an element uniformly at random from X` and K`.

For a set S, the notation s← S represents an as-
signment of an element chosen uniformly at random
from S to a variable s. For an algorithm M , the nota-
tion y←M (x) represents an assignment of an output
of M with an input x to a variable y.

2.1 Collision-Resistant Hash Function

Collision resistance is a property of many-to-one
functions. It informally means that it is difficult to
find a pair of distinct inputs transformed to a same
output.
Definition 1. Let F = 〈F̀ 〉`∈N, where F̀ is a keyed
hash function. If

Pr[A(1`,K) = (x,x′)∧ F̀ (K,x) = F̀ (K,x′)∧ x 6= x′]

is negligibly small as a function of ` for any efficient
collision-finder A , then F is called a sequence of
collision-resistant hash functions. K is uniformly dis-
tributed over K`.



2.2 Pseudorandom Function

Definition 2. For a sequence of keyed functions F =
〈F̀ 〉`∈N, let

Advprf
F (A) =

∣∣∣Pr[A F̀ (K,·)(1`) = 1]−Pr[Aρ(1`) = 1]
∣∣∣

be the advantage of a distinguisher A against F . K
is uniformly distributed over K`, and ρ is uniformly
distributed over FFF(X`,Y`). If Advprf

F (A) is negligibly
small as a function of ` for any efficient A , then F is
called a sequence of pseudorandom functions.

During security analysis of the proposed scheme,
we will deal with distinguishers with independent
multiple oracles. Let

Advm-prf
F (A) =

∣∣∣Pr[A F̀ (K1,·),...,F̀ (Km,·)(1`) = 1]−

Pr[Aρ1,...,ρm(1`) = 1]
∣∣∣ ,

where (K1,K2, . . . ,Km) are uniformly distributed over
K`

m and (ρ1,ρ2, . . . ,ρm) are uniformly distributed
over FFF(X`,Y`)m. The following lemma is a para-
phrase of Lemma 3.3 in (Bellare et al., 1996b):
Lemma 1. Let A be a distinguisher for F with access
to m oracles. Then, a distinguisher B for F can be
constructed with A as a subroutine such that

Advm-prf
F (A) = m ·Advprf

F (B) .

The running time of B is approximately total of the
running time of A and the time required to compute
F̀ to answer to the queries made by A . B makes at
most max{qi |1 ≤ i ≤ m} queries to its oracle, where
qi is the number of the queries made by A to its i-th
oracle.

2.3 Iterated Hash Function and HMAC

The proposed redactable signature scheme uses a hash
function with arbitrary input length satisfying that it is
collision-resistant and its keyed mode is a pseudoran-
dom function.

Widely deployed hash functions such as SHA-
1/2 are called iterated hash functions. An iterated
hash function H consists of iteration of a compres-
sion function f with fixed length input and output as
follows: H(M) = f ( f (· · · f ( f (IV,M1),M2), . . .),Ml),
where M = M1‖M2‖· · ·‖Ml is an input message and
IV is a fixed initial value. A compression func-
tion is a kind of hash function with inputs of fixed
length. This iteration is called Merkle-Damgård con-
struction (Damgård, 1989; Merkle, 1989b). An it-
erated hash function with appropriate input prepro-
cessing (padding with the Merkle-Damgård strength-
ening (Menezes et al., 1996)) is collision-resistant

if the underlying compression function is collision-
resistant (Damgård, 1989; Merkle, 1989b).

HMAC (Bellare et al., 1996a) is a keyed function
for generating message authentication codes, which
is constructed with an iterated hash function in the
following way:
HMAC(K,M) = H((K⊕opad)‖H((K⊕ipad)‖M)) ,

where H is a hash function, K is a secret key and
opad and ipad are distinct constants. It was shown
that HMAC is a pseudorandom function if the under-
lying compression function is a pseudorandom func-
tion (Bellare, 2006). Additionally, it is easy to see
that HMAC is collision-resistant in the sense that it
is difficult to find a pair of distinct inputs (K,M) and
(K′,M′) such that HMAC(K,M) = HMAC(K′,M′) if
H is collision-resistant.

2.4 Signature Scheme

A signature scheme Sig consists of three algorithms
(K,S,V) defined as follows.
Key Generation (sk,pk)← K(1`).

For a given security parameter `, the key genera-
tion algorithm K generates a pair of a secret (sign-
ing) key sk and a corresponding public (verifica-
tion) key pk.

Signing (M,σ)← S(sk,M).
Given a secret key sk and a message M, the sign-
ing algorithm S outputs M and its signature σ.

Verification d← V(pk,M,σ), where d ∈ {0,1}.
Given a public key pk, a message M and a sig-
nature σ, the verification algorithm V decides
whether σ is a valid signature for M with respect
to pk. If valid, V outputs 1. Otherwise, it outputs
0.
Existential unforgeability against adaptive chosen

message attacks is defined as follows.
Definition 3. A signature scheme Sig = (K,S,V)
is existentially unforgeable against adaptive chosen
message attacks if the probability that the experiment
EUSig

A given in Algorithm 1 outputs 1 is negligibly
small as a function of ` for any efficient forger A .

3 REDACTABLE SIGNATURE
SCHEME FOR
TREE-STRUCTURED DATA

3.1 Tree-Structured Data

The proposed redactable signature scheme is used to
sign directed-tree-structured data. A directed tree has



Algorithm 1 Experiment EUSig
A (`)

(sk, pk)← K(1`)
(M,σ)← AS(sk,·)(pk)

. Let M1,M2, . . . ,Mq be A’s queries to S.
if V(pk,M,σ) = 1∧M 6= Mi for 1≤ i≤ q then

return 1
else

return 0

a unique node with in-degree 0, which is called the
root. In the remaining part, a directed tree is simply
called a tree. For tree-structured data T and T ′, T ′� T
means that T ′ is a subtree of T and T ′ and T share the
root.

3.2 Redactable Signature Scheme for
Tree Structured Data

A redactable signature scheme tSig for tree-structured
data consists of four algorithms (tK, tS, tV, tC) de-
fined below.

Key Generation (sk,pk)← tK(1`).
Given a security parameter `, the key generation
algorithm tK generates a secret (signing) key sk
and a corresponding public (verification) key pk.

Signing (T,σ)← tS(sk,T ).
Given a secret key sk and tree-structured data T ,
the signing algorithm tS outputs T and its signa-
ture σ.

Verification d← tV(pk,T,σ), where d ∈ {0,1}.
Given a public key pk, tree-structured data T and a
signature σ, the verification algorithm tV decides
whether σ is a valid signature for T with respect
to pk. If valid, then tV outputs 1. Otherwise, it
outputs 0.

Cutting (T ′,σ′)← tC(pk,T,σ,L).
Given a public key pk, tree-structured data T , a
signature σ and a leaf L of T , the cutting algorithm
tC outputs T ′ = T\L and its signature σ′.
Notice that the secret key sk is not given to the

cutting algorithm.

3.3 Security

Brzuska et al. formalized unforgeability, privacy and
transparency as security requirements of redactable
signature schemes for tree-structured data (Brzuska
et al., 2010). They also showed that transparency
implies privacy. Namely, if a redactable signature
scheme satisfies transparency, then it also satisfies pri-
vacy.

Definition 4 (Unforgeability (Brzuska et al., 2010)).
A redactable signature scheme for tree-structured
data tSig = (tK, tS, tV, tC) is existentially unforge-
able against adaptive chosen message attacks if the
probability that the experiment EUtSig

A given in Algo-
rithm 2 outputs 1 is negligibly small as a function of `
for any efficient forger A .

Algorithm 2 Experiment EUtSig
A (`)

(sk, pk)← tK(1`)
(T,σ)← A tS(sk,·)(pk)

. Let T1,T2, . . . ,Tq be A’s queries to tS.
if tV(pk,T,σ) = 1∧T 6� Ti for 1≤ i≤ q then

return 1
else

return 0

Transparency informally states that no one should
be able to tell whether a signature of a tree is created
only with a signing algorithm or with both a signing
algorithm and a cutting algorithm.

Definition 5 (Transparency (Brzuska et al., 2010)). A
redactable signature scheme for tree-structured data
tSig = (tK, tS, tV, tC) is transparent if

Advtr
tSig(A) =

∣∣∣Pr[TrtSig
A (`) = 1]−1/2

∣∣∣
is negligibly small as a function of ` for any efficient
distinguisher A . The experiment TrtSig

A is given in Al-
gorithm 3.

Algorithm 3 Experiment TrtSig
A (`)

(sk, pk)← tK(1`)
b←{0,1}
d← A tS(sk,·),SorC(·,·,sk,b)(pk)
if d = b then

return 1
else

return 0

function SorC(T,L,sk,b)
if b = 0 then

(T,σ)← tS(sk,T )
(T ′,σ′)← tC(pk,T,σ,L)

else
T ′← T\L
(T ′,σ′)← tS(sk,T ′)

return (T ′,σ′)



4 PROPOSED SCHEME

The proposed scheme requires that the out-degree
of each node of given tree-structured data is at most
d. The proposed scheme is suitable for positional
trees. A positional tree is an ordered tree such that
children of a node are assigned distinct integers (e.g.,
in {0,1, . . . ,d − 1} in the current case) compatible
with their order. Nevertheless, the proposed scheme
is also applicable to unordered trees, which will be
mentioned later.

The algorithms for key generation, signing, veri-
fication and cutting of the proposed scheme are pre-
sented below. In the descriptions, a node of the tree
T = (VT ,ET ) is denoted by vi and the subscript i is
used as an ID of the node. In tree-structured data,
nodes and edges are assigned some data items in gen-
eral. It is assumed that data items assigned to a node
include the data items assigned to its incoming edge.

Key Generation (H,K;sk, pk)← tK(1`).
H is an iterated hash function composed of a com-

pression function chosen uniformly at random from a
set of functions corresponding to a given security pa-
rameter `. K is a secret key used for HMAC using H.
We will slightly abuse the notation and denote HMAC
using H with key K by HK . sk and pk are a secret key
and a corresponding public key of a signature scheme
Sig, respectively. Sig is an ordinary signature scheme.
H is public, and K is secret for a signer.

Signing (T,σ)← tS(H,K,sk,T ).
The signing process proceeds as follows:

1. For each node of the tree-structured data T , if it
has less than d children, then add dummy child
nodes and the corresponding dummy edges so that
it has exactly d children. This process is also ap-
plied to the leaves of T . Let V ′T and E ′T represent
the set of dummy nodes and the set of dummy
edges, respectively.

2. Select a nonce r ∈ {0,1}n uniformly at random,
where n = `O(1), and for each node vi ∈ VT ∪V ′T ,
compute the key ri = HK(r‖i). n should be large
enough to prevent collision of nonces. It is usually
sufficient if n = |K|.

3. Construct a Merkle tree using HMAC in the fol-
lowing way:

(a) For each dummy node vi ∈V ′T , compute the di-
gest ai = Hri(λ), where λ is an empty string. No
data items are assigned to dummy nodes and
their incoming edges.

(b) For each node vi ∈VT , compute the digest

ai = Hri(Di‖ai,0‖· · ·‖ai,d−1) ,

where Di is data assigned to vi, and
ai,0, . . . ,ai,d−1 are digests corresponding to the
children of vi.

4. Compute a signature σε of the digest aε corre-
sponding to the root vε of T using the signature
scheme Sig.

The signature σ of T consists of

• σε,

• digests corresponding to the dummy nodes, and

• keys corresponding to the nodes of T .

Namely, σ = (σε,{ai |vi ∈ V ′T},{ri |vi ∈ VT}). No-
tice that the secret keys corresponding to the dummy
nodes are never disclosed.

Figure 1 shows an example of binary-tree-
structured data augmented with dummy nodes and
edges by the proposed signing algorithm. Dummy
nodes and edges are represented by dotted lines. ai’s
and ri’s are digests and keys, respectively, included in
the signature.

r0 r1

r00 r01

a10

r11

a000 a001

r010

a011 a110 a111

a0100 a0101

rǫ

Figure 1: An example of binary-tree-structured data aug-
mented with dummy nodes and edges by the proposed sign-
ing algorithm. Dummy nodes and edges are represented by
dotted lines.

Verification d← tV(H, pk,T,σ).
The verification process proceeds as follows:

1. For the signature σ = (σε,{ai |vi ∈ V ′T},{ri |vi ∈
VT}), compute the digest a′ε corresponding to the
root from the digensts in {ai |vi ∈ V ′T} and the
keys in {ri |vi ∈VT}.

2. Output 1 if σε is a valid signature of a′ε with re-
spect to pk by Sig. Otherwise, output 0.

Cutting (T ′,σ′)← tC(H, pk,T,σ,L).
Since L is a leaf of T and T ′ = T\L, the signature

σ′ of T ′ consists of



• σε,

• the digests corresponding to L and the dummy
nodes except for the dummy children of L, and

• the keys corresponding to the nodes in VT\{L}.

Namely, σ′ = (σε,{ai |vi ∈ (V ′T\Child(L)) ∪
L},{ri |vi ∈ VT\{L}}), where Child(L) is the
set of children of L. It is easy to see that σ′ can
easily be obtained from σ. The cutting is simply a
process to regard the leaf cut off as a dummy node.
Figure 2 gives an example of binary-tree-structured
data obtained from the tree in Figure 1 by cutting a
leaf labeled by 010.

r0 r1

r00 r01

a10

r11

a000 a001 a010 a011 a110 a111

rǫ

Figure 2: An example of binary-tree-structured data ob-
tained from the tree given in Figure 1 by cutting a leaf la-
beled by 010. ai’s and ri’s are digests and keys, respectively,
included in the signature.

Remark 1. The proposed scheme presented above
can also be applied to unordered trees with slight
modification of HMAC. When constructing a Merkle
tree in Step 3(b) of Signing, compute the digest as fol-
lows:

ai = Hri(Di‖ai, j0‖· · ·‖ai, jd−1) ,

where ai, j0‖· · ·‖ai, jd−1 is concatenation of sorted
ai,0, . . . ,ai,d−1 in the lexicographical order. This mod-
ification is based on the commutative hash func-
tion introduced by Goodrich and Tamassia (Anagnos-
topoulos et al., 2001). HMAC with this modifica-
tion remains pseudorandom as a keyed function and
collision-resistant since the modification only makes
the domain smaller.

5 SECURITY ANALYSIS OF
PROPOSED SCHEME

In this section, the security of the proposed
redactable signature scheme is proved under stan-
dard assumptions on the security of the building
blocks. Adversaries are assumed to be computation-
ally bounded.

5.1 Unforgeability

The following theorem shows that unforgeability of
the proposed scheme is reducible to unforgeability of
the underlying ordinary signature scheme and colli-
sion resistance of the underlying hash function.

Theorem 1. If Sig is existentially unforgeable against
adaptive chosen message attacks and H is collision-
resistant, then tSig is existentially unforgeable.

Proof. Let A be any forger of tSig. For EUtSig
A (`), let

(H,K;sk, pk)← tK(1`) ,

(T̂ , σ̂)← A tS(H,K,sk,·)(H, pk) .

Let T1,T2, . . . ,Tq be queries to the oracle tS made by
A . Let aε,i be the digest corresponding to the root of
Ti and âε be the digest corresponding to the root of T̂ .
Let A(q) = {aε,i |1≤ i≤ q}.

Suppose that T̂ 6� Ti for 1 ≤ i ≤ q. Then, for the
success probability of A ,

Pr[tV(H, pk, T̂ , σ̂) = 1]

= Pr[âε 6∈ A(q)∧ tV(H, pk, T̂ , σ̂) = 1]+

Pr[âε ∈ A(q)∧ tV(H, pk, T̂ , σ̂) = 1]

≤ Pr[tV(H, pk, T̂ , σ̂) = 1 | âε 6∈ A(q)]+Pr[âε ∈ A(q)] .

The first term Pr[tV(H, pk, T̂ , σ̂) = 1 | âε 6∈A(q)] is
equal to the success probability of a forger B for Sig.
B can be constructed with A as a subroutine. The
running time of B is total of the running time of A
and the time required to execute the signing algorithm
tS of tSig using the signing oracle S of Sig to answer
to the queries made by A . The number of the queries
to S made by B equals that of the queries to tS made
by A .

The second term Pr[âε ∈ A(q)] is equal to the suc-
cess probability of a collision-finder C of H. C can
also be constructed with A as a subroutine. The run-
ning time of C is total of the running time of A and
the time required to execute the signing algorithm tS
of tSig.

If the random oracle model is required for the exis-
tential unforgeability of the underlying signature Sig,
then Theorem 1 is valid only in the random oracle
model.

5.2 Transparency

The following theorem implies that the trans-
parency of the proposed scheme is reducible to the
pseudorandom-function property of the underlying
HMAC.



Theorem 2. If HMAC is a pseudorandom function,
then tSig is transparent.

Proof. Let A be any distinguisher for tSig. In the ex-
periment TrtSig

A (`), suppose that A makes q1 queries
to tS and q2 queries to SorC. Suppose that the total
number of the nodes of tree-structured data in queries
made by A is N.

Let t̃Sig be same as tSig except for using a random
function ρ instead of HMAC HK when generating the
secret keys ri for the nodes in the trees. The domain
and range of ρ equal those of HK , respectively. ρ be-
haves as a random oracle: it selects the output uni-
formly at random for a new input. Then,

Advtr
tSig(A)≤

∣∣∣Pr[Trt̃Sig
A (`) = 1]−1/2

∣∣∣+∣∣∣Pr[TrtSig
A (`) = 1]−Pr[Trt̃Sig

A (`) = 1]
∣∣∣ .

For the second term, there exists a distinguisher D for
HMAC using H such that∣∣∣Pr[TrtSig

A (`) = 1]−Pr[Trt̃Sig
A (`) = 1]

∣∣∣ = Advprf
H (D) .

D can be constructed with A as a subroutine. The
running time of D is total of the running time of A
and the time required to execute the signing algorithm
tS of tSig and the sign-or-cut algorithm SorC using
its oracle to answer to the queries made by A in the
experiment. The oracle of D is HK for tSig and it is
ρ for t̃Sig. D makes at most N(d + 1) queries to its
oracle.

Let t̂Sig be same as tSig (t̃Sig) except for gener-
ating the secret keys ri for the nodes in the trees uni-
formly at random. Then,∣∣∣Pr[Trt̃Sig

A (`) = 1]−1/2
∣∣∣≤ ∣∣∣Pr[Trt̂Sig

A (`) = 1]−1/2
∣∣∣

+
∣∣∣Pr[Trt̃Sig

A (`) = 1]−Pr[Trt̂Sig
A (`) = 1]

∣∣∣ .

Notice that t̂Sig and t̃Sig are completely indistin-
guishable as long as there exists no collision in the
nonces r. Thus, the second term of the inequality
above is bounded from above by

Pr[Collision in r]≤ (q1 +q2)2/2n+1 ,

where n is the length of the nonce r. Hence,

Advtr
tSig(A)≤

∣∣∣Pr[Trt̂Sig
A (`) = 1]−1/2

∣∣∣+
Advprf

H (D)+(q1 +q2)2/2n+1 .

For the experiment Trt̂Sig
A (`), let us consider the

following distinguisher B for H. B has q2 oracles.
They are either Hs1 ,Hs2 , . . . ,Hsq2

or ρ1,ρ2, . . . ,ρq2 ,

where s1,s2, . . . ,sq2 are chosen independently and
uniformly at random, and ρ1,ρ2, . . . ,ρq2 are indepen-

dent random oracles. B runs Trt̂Sig
A (`) except that, for

the j-th query to SorC made by A , B computes the
digest corresponding to the leaf cut off using its j-th
oracle. Then,∣∣∣Pr[Trt̂Sig

A (`) = 1]−1/2
∣∣∣ = Advq2-prf

H (B)

since

Pr[BO1,O2,...,Oq2 = 1]

=

{
Pr[Trt̂Sig

A (`) = 1] if O j = Hs j for 1≤ j ≤ q2

1/2 if O j = ρ j for 1≤ j ≤ q2 .

From Lemma 1, there exists a distinguisher for H
such that Advq2-prf

H (B) = q2Advprf
H (C ). C makes at

most 1 query. The running time of C is approximately
total of the running time of B and the time required to
compute H to answer to the queries made by B .

Thus,

Advtr
tSig(A)≤ q2Advprf

H (C )+Advprf
H (D)+

(q1 +q2)2

2n+1 .

This completes the proof.

6 CONCLUSION

A redactable signature scheme for tree-structured
data has been proposed in this paper. It has also been
shown that it satisfies both unforgeability and trans-
parency. The proposed scheme is based on the Merkle
tree and expected to be quite efficient compared to
previous provably secure schemes. Future work in-
cludes experimental performance evaluation of the
proposed scheme together with previous schemes. It
does not seem difficult to extend the proposed scheme
to directed acyclic graphs, which is also left as future
work.
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