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Research on multi-agent systems, in which au-
tonomous agents are able to learn cooperative behav-
ior, has been the subject of rising expectations in re-
cent years. We have aimed at the group behavior
generation of the multi-agents who have high levels
of autonomous learning ability, like that of human
beings, through social interaction between agents to
acquire cooperative behavior. The sharing of envi-
ronment states can improve cooperative ability, and
the changing state of the environment in the informa-
tion shared by agents will improve agents’ coopera-
tive ability. On this basis, we use reward redistribu-
tion among agents to reinforce group behavior, and we
propose a method of constructing a multi-agent sys-
tem with an autonomous group creation ability. This
is able to strengthen the cooperative behavior of the
group as social agents.

Keywords: group behavior learning, multi-agent sys-
tems, reinforcement learning, state communication, social
interaction

1. Introduction

In Multi-Agent Systems (MAS), it is necessary that
plural autonomous agents cooperate to achieve the objec-
tive. At the same time, it is very important for agents
to have the ability to learn because the tasks are gen-
erally complex [1]. Reinforcement Learning (RL) is a
machine learning method by which a machine learns the
behavior suitable to solving the problem autonomously
through repeated trials and errors without teaching sig-
nals [2]. It is easy for RL to adjust to dynamic environ-
mental transformations flexibly. It is expected that a MAS
will be constructed that is able to learn group behavior and
group strategy by the application of RL to autonomous
agents [3].

When RL is used for a MAS in that way, problems
such as perceptual aliasing problems, concurrent learn-
ing problems, and reward distribution problems will be
generated [4]. In a cooperative social environment, it
is effective for agents to learn by sharing sensing infor-

mation, episodes, and learned policies, or by exchang-
ing advice [5]. The sharing of environment states can
improve cooperative ability. However, one of the main
problems concerned with learning in a MAS environ-
ment is how agents can benefit from mutual interaction
during the learning process [6]. Some researchers deal
with the influence of interaction by handling the loss
of stationarity based on game theory, such as friend-or-
foe Q-learning in general-sum games [7] and correlated
Q-learning [8]. Nevertheless, these methods may fail to
learn best-response policies even against simple, non-
learning opponents. Besides, best-response learners learn
best-responses by adjusting self-strategies or by modeling
the strategies of opponents while still considering whether
the resulting algorithm converges in some form [9].

In this paper, agents can benefit from the communi-
cation of state interaction. In the state communication
model, when an agent gets an environment state that other
agents do not get due to their restricted perception, if it
cannot achieve the task by itself, it will change the en-
vironment state to the special signal information among
agents in order to tell other agents. Under the hint of spe-
cial signal information, the overall performance of agents
will gradually increase. This state communication is dif-
ferent from the exchanging of information that is unre-
lated to the target because special signal information in-
cludes some information about task performance.

In addition, in MAS, although the purpose of each
agent is to obtain more desired rewards, it does not mean
that the whole system can obtain more desired rewards. If
the reward cannot be distributed appropriately, it not only
has a bad effect on the behavior of each agent but also
reduces the overall performance of the system [10]. In
our proposed method, it is possible for the exchanging of
rewards among agents to reinforce cooperative behavior
autonomously when the expected actions have appeared.
Therefore, all agents not only get the reward from the
environment but also exchange the reward among them-
selves based on signal information hints and their actions.
Agents are able to exhibit excellent cooperative group be-
havior by taking rewards as a social interaction strategy,
as people do in society. In order to evaluate the interaction
ability of agents, a method of evaluation is also proposed
based on task mining and cooperative support abilities.
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We perform prey chase simulations to prove the effective-
ness of the proposed methods.

2. Multi-Agent Reinforcement Learning

Multi-Agent Systems (MAS) have been widely used to
solve problems which are difficult or impossible for an in-
dividual agent in a monolithic system made up of an enor-
mous number of autonomous agents. On the other hand,
Reinforcement Learning (RL) is an attractive method, as
it allows the agent to learn a behavior on the basis of
sparse, delayed reward signals provided only when the
agent attains desired goals. The popular reinforcement
learning methods are Q-learning and profit sharing [11].
MAS may be formed by adaptive agents which interact
and cooperate for the resolution of certain tasks using RL
algorithms [2].

2.1. Multi-Agent Systems

A Multi-Agent System (MAS) is composed of multiple
autonomous agents that solve problems by working with
each other autonomously. Communication and cooper-
ation among intelligent agents can be used to deal with
incomplete and uncertain problems [12]. The actions of
agents are not restricted by others in MAS, but the actions
of any one agent will have a significant impact on other
agents, not only on the environment. Therefore, the in-
teraction of agents becomes especially important in joint
tasks that cannot be completed by a single agent.

2.2. Reinforcement Learning in MAS

Reinforcement Learning (RL) is a computational
paradigm of learning in which an algorithm attempts
to maximize a performance measurement based on the
reward that it gets upon interacting with an environ-
ment [13]. The cooperative learning of multi-agents be-
comes possible by using RL in MAS. In the reinforce-
ment learning of MAS, the state of the environment will
become a new environment through the influence of mul-
tiple agents, not through that of single agents as in normal
RL. The learning of agents becomes more difficult than in
a single environment because the actions of single agents
have unexpected effects on other agents and the environ-
ment [14].

Compared with normal RL, the RL of MAS keeps the
previous problems in normal RL and also has its unique
problems, which are identified by Arai [4] as follows:
1) when the state space is large, the situation is unable
to learn because the agent’s perception is limited or the
perceived information is imperfect. 2) When two or more
agents learn independently, it is difficult to judge to which
the result of learning should be credited. 3) Although the
task is completed, how to distribute the reward, etc., is
problematic.

Fig. 1. RL with interaction model in MAS.

3. Reinforcement Learning Based on Social
Interaction in MAS

In this paper, the agents learn cooperative behaviors
through the interaction of state communication and group
behavior learning, as shown in Fig. 1. In normal RL,
an individual agent can only use trial and error repeat-
edly through interaction with the environment. In our
proposed method, all agents can learn cooperative behav-
iors through trial and error attempts among autonomous
agents through the interaction information, not only with
the environment.

We have aimed at the formation of group behavior
among multi-agents who not only act based on their own
profit but also based on a consideration of joint profit with
other agents through the exchange of the reward as social
agents [15].

3.1. Reinforcement Learning Sharing Environment
State (RL-SES)

In a MAS environment, if the agent selects its action
based on the environment state as in normal RL, it will
have some problems, such as the perceptual aliasing prob-
lem identified by Arai [4]. In a cooperative social envi-
ronment, the agents learn not only by trial and error but
also through cooperation by sharing information instanta-
neously [5]. Therefore, we verify this idea by sharing the
state of the environment (which we call RL-SES). When
an agent experiences a new state that can not be perceived
by others, the new environment state will be shared by
other agents through Ss

t , which means the state related
by the agent who can perceive the new state. In the RL
method, the environmental state is described by St , not
including Ss

t . In the RL-SES method, the Q-value is de-
scribed as follows:

Q(St ∨Ss
t ,at)←Q(St ∨Ss

t ,at)+α[rt +

γ max
b∈A

Q(St+1∨Ss
t+1,b)−Q(St ∨Ss

t ,at)], (1)
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where,
St : environment state in current moment t,
Ss

t : shared state communicated by another agent in the
current moment t,

at : current action in current moment t,
α: learning rate,
γ: discount rate,
rt : immediate reward received after performing action

of action at at current state st .
The action evaluation value w(s,b) becomes similar to

that in Eq. (2) in the profit sharing method.

w(st ∨ ss
t ,b)← w(st ∨ ss

t ,b)+ f (h), . . . . . (2)

w(st∨ss
t ,b) is the action evaluation value when the state is

st ∨ ss
t and the action is b in current moment t. Reinforce-

ment function f (h) is the same as in the normal profit
sharing method. Efficient cooperative behaviors will be
expected under the communication of this new signal hint
among agents.

3.2. State Communication Reinforcement Learning
(SC-RL)

For agents in MAS, it is necessary to achieve a task
through autonomous cooperation when the task cannot
be achieved only by one agent. Therefore, in our paper,
once a target has been discovered, each agent sends spe-
cial signal information (called Help) to other agents if the
task cannot be achieved by itself alone in a dynamic en-
vironment. However, the other agents are uncertain of
the meaning of this Help or special signal information at
first and record it as a special state, similar to environment
changing information by Sh

t in order to communicate. In
this way, we proposed a State Communication Reinforce-
ment Learning (SC-RL) method by which agents can per-
ceive the change in an environment state though interac-
tion with other agents. In addition, this perception of en-
vironment changing information is also related to target
discovery or task performance.

When the target is discovered by an agent but the agent
cannot achieve it, it will send Help information to all oth-
ers, even they are outside the range of its own perception.
At the same time, other agents receive the coordinates
of the generated Help and compute the relative direction
from its current position to Help. The emergence of Help
and the relative direction will be recorded as the environ-
ment change information by others. All agents will per-
ceive the emergence of a task through the interaction of
the agents. Therefore, this SC-RL method based on the
emergence of Help and the relative direction can solve
the problem of perceptual aliasing in MAS. The Q-value
of SC-RL is changed as follows:

Q(St ∨Sh
t ,at)←Q(St ∨Sh

t ,at)+α[rt +

γ max
b∈A

Q(St+1∨Sh
t+1,b)−Q(St ∨Sh

t ,at)]. (3)

The action evaluation value w(s,b) becomes similar to
that in Eq. (4) in the profit sharing method.

w(st ∨ sh
t ,b)← w(st ∨ sh

t ,b)+ f (h), . . . . . (4)

Fig. 2. GB-RL based on group reward.

where Sh
t is the special information state of environmental

change called the Help state, as communicated by other
agents in current moment t. It includes the relative direc-
tion from one’s own position to the Help position. Effi-
cient group behaviors will be expected due to the influ-
ence of state communication among agents.

3.3. Group Behavior Reinforcement Learning
(GB-RL)

In the SC-RL method, interaction among agents is pos-
sible through the state communication about the emer-
gence of Help. This is never known to agents; they just
receive partial information from each other without any
evaluation regarding action in response to this informa-
tion. In our human society, if person A likes the behavior
of person B, then A will praise B. There is a possibil-
ity that that perfect behavior on the part of B will be re-
peated again for that praise [16]. Based on this idea, we
believe that if social agents want to have the strong coop-
erative ability of human beings, agents should be praised
if their actions are perfect. Through the power of praise,
we believe that agents also acquire group behavior learn-
ing ability.

In the Group Behavior Reinforcement Learning (GB-
RL) method, good behavior will be praised through a
group reward, as illustrated in Fig. 2. In this approach,
at a certain time t, if agent A1 discovers a target that it
cannot achieve by itself, it then sends Help information to
the other agents. A1 then achieves the target with the help
of other agents A2 and A3. Finally, A1 should distribute
a part of reward it received from the environment to A2
and A3 as a group reward to praise them for their help. A2
and A3 would get the reward from the agent A1, as agent
A1 sent Help information, but not from the agents that did
no. Because the cooperative behavior of agents A1, A2,
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and A3 was strengthened in the learning process, when
Help information appears the next time, the possibility of
selecting group cooperative behavior will rise.

In the SC-RL method, each agent interacts with other
agents through state communication. Therefore, agents
can have better interactive communication than through
the normal RL method, but they learn cooperative behav-
ior only by themselves. In the GB-RL method, each agent
not only interacts with other agents through state commu-
nication but also reinforces the cooperative behavior with
others by exchanging rewards, as in Fig. 2, when the ex-
pected action has appeared.

In the GB-RL approach, when the state is st in current
moment t, if the state changes to st+1 for the selection of
action at , then the Q-value becomes as shown in Eq. (5)
in the Q-learning method.

Q(St ∨Sh
t ,at)← Q(St ∨Sh

t ,at)+α[rt +β · rG
t +

γ max
b∈A

Q(St+1∨Sh
t+1,b)−Q(St ∨Sh

t ,at)] (5)

The action evaluation value w(s,b) is the same as in
Eq. (4) in the profit sharing method, but reinforcement
function f (h) becomes as follows in Eq. (6).

f (h) = α · γh(rt +β · rG
t ) . . . . . . . . . (6)

Each agent that gives help will obtain a group reward
rG
t , as shown in Eq. (7), from the agent who sent the sig-

nal.

rG
t =

θ · rt

n
, . . . . . . . . . . . . . . (7)

where,
β : rate of social interaction regarding the group reward,
rG
t : group reward in current moment t,

θ : percentage of reward given compared to rt
(θ ≤ θlim),

n: number of agents cooperating on help-sending agent
(n ≤ nlim).

For the agent sending new signal information, it is nec-
essary to supply reward n · rG

t to be given to cooperating
agents.

3.4. Evaluation of Interaction Ability
In SC-RL, when an agent finds a target, it will send

Help information to others if it cannot achieve the task by
itself, and such state communication causes all agents to
become aware that a task has emerged. The frequency of
sending Help information can be treated as task mining
ability in some learning trials. After Help information has
been sent out, others can cooperate better through group
rewards as GB-RL. Therefore, the social interaction cre-
ates relationships between agents, giving them the ability
to interact with different characters. This basic interac-
tion ability should include task mining and cooperative
support abilities.

In our proposal, R−→i j represents the reward transferred
from agent i to agent j, and ∑m

i=1 ∑m
j=1 R−→i j is the total re-

wards transferred among m agents. Interaction ability I−→i j

Fig. 3. Prey chase simulator without obstacles.

of agents i and j, agent i’s task mining ability Ti, and agent
j’s cooperative support ability Cj are defined in Eqs. (8),
(9), and (10), respectively, through transferred rewards.

I−→i j =
R−→i j

(
m

∑
i=1

m

∑
j=1

R−→i j )/m2
, . . . . . . . . . (8)

Ti =

m

∑
j=1

R−→i j

(
m

∑
i=1

m

∑
j=1

R−→i j )/m
, . . . . . . . . . . (9)

Cj =

m

∑
i=1

R−→i j

(
m

∑
i=1

m

∑
j=1

R−→i j )/m
, . . . . . . . . . . (10)

I−→i j describes the relative frequency of interaction when
agent i is in trouble with a joint task and agent j gives
help. Ti and Cj describe the overall performance of task
mining and cooperative support abilities with all m agents.
The performance among individuals can be estimated by
I−→i j , and agents’ overall performance as a group can be
estimated by Ti and Cj.

4. Simulation Experiments

We performed a prey chase simulation experiment to
prove the effectiveness of the proposed methods. Because
the profit sharing method has been proven more effective
than Q-learning in the dynamic environment, all experi-
ments are performed using the profit sharing method in
this paper. This simulation is programmed in the C lan-
guage with the OpenGL graphics library and executed on
a Linux system. The simulator is shown in Fig. 3.
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4.1. Simulation Preconditions
The preconditions of this simulation are as follows:

• The field is a 30× 30 grid in a two-dimensional en-
vironment.

• 20 hunter agents are set and represented as a square
on the grid. All agents have equal action and percep-
tion capabilities.

• Both the hunter and prey, the prey represented by a
triangle, can move in eight directions: up, down, left,
right, up and to the right, up and to the left, down and
to the right, and down and to the left. They can also
stay at their current positions.

• The perception range is set to 7× 7 grid squares in
all directions.

• The default positions of all agents are arranged ran-
domly, and a prey agent always moves randomly.

• All hunter agents can obtain the information other
agents have perceived through interactive communi-
cations.

• When the prey agent becomes adjacent to three or
more hunter agents, the task of pursuit is achieved.
All agents then return to the initial state.

• The task of hunter agents is to capture the prey agent
as quickly as possible. When the prey is captured,
they will obtain the basic reward rt , assumed to be
100.

The parameters in this simulation were set as follows:
γ = 0.8, α = 0.8, β = 1, and θ = 0.2. To confirm the ef-
fectiveness of the proposed method, we performed com-
parison experiments with the normal profit sharing rein-
forcement learning method. When an action is selected in
profit sharing, it is decided by the roulette selection of the
action evaluation value added to the rule.

4.2. Simulation Results
All of the methods were performed five times in this

simulation; the average and deviation range values of sim-
ulation results are shown in the graphs of the results. The
vertical axis shows the steps required for the prey to be
captured, and the horizontal axis represents the number
of trials taken for learning.

The results of the four methods compared in the simu-
lation experiment without obstacles are shown in Fig. 4.
From the average results in Fig. 4, we have confirmed
that the Reinforcement Learning Sharing Environment
State (RL-SES) method took less time to capture the
prey agent than did the normal Reinforcement Learning
(RL) method; the State Communication Reinforcement
Learning (SC-RL) method obtained better results than the
RL-SES method; and the Group Behavior Reinforcement
Learning (GB-RL) method obtained the best learning re-
sults of all. From the deviation range value results in
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Fig. 4. Results of experiment without obstacles.

Fig. 5. Prey chase simulator with obstacles.

Fig. 4, we have also confirmed that the stability of GB-
RL methods is better than that of the normal RL method.
The interaction among agents based on the emergence of
Help and the relative direction information produces effi-
cient group cooperative behavior. Furthermore, it can be
seen that the GB-RL method obtained better results than
the SC-RL method in the average and the deviation range
value. That shows the group rewards among agents can
serve to reinforce cooperative behaviors, thus promoting
efficient task achievement.

In addition, we also performed the comparison experi-
ments with obstacles on the board, as seen in Fig. 5. The
comparison experiment results of the four methods are
shown in Fig. 6. These results confirm that the perfor-
mance of SC-RL and GB-RL are better than those of RL
and RL-SES, even when the board has obstacles.

It is necessary for social agents to determine the best
decision even with several targets in a complex environ-
ment. We performed the simulation experiment with five
targets, as shown in Fig. 7. The comparison experiment
results of the four methods are shown in Fig. 8. These
results are similar to those obtained in experiments with
only one target, but the degree of convergence was not
very good because it is naturally more difficult to capture
five preys than only one.
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Fig. 6. Results of experiment with obstacles.

Fig. 7. Prey chase simulator with 5 targets.
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Fig. 8. Results of experiment with 5 targets.

Table 1. Total steps in target catching over 300 trials.

Methods RL RL-SES SC-RL GB-RL
no obstacle 89566 66102 26699 21779
obstacles 104340 106366 30310 25406
5 targets 163146 106533 68068 65214

The total number of steps taken to catch the target by
using four methods are shown in Table 1. These data
clearly show that our proposed methods are more effec-
tive than normal RL and RL-SES methods.

Fig. 9. Total transferred reward R−→i j among agents.

Fig. 10. Interaction ability.

4.3. Evaluation of Interaction Ability

We have aimed at the generation of group behavior
and recorded the interaction information among agents,
as shown in Fig. 9. The numbers down the left and across
the top represent twenty agents, and the other numbers
represent reward exchanging among agents. The agents
on the left first found a target and sent Help signals to the
agents across the top. The agents across the top received
the signal and selected their actions. Therefore, reward is
passed from the agents on the left to those across the top.
Based on Eq. (8), the ability for interaction among indi-
viduals is shown in Fig. 10. When a task-mining agent
is in trouble with a joint task, a cooperative support agent
gives help. Different interaction abilities among agents
become obvious when compared with the average value
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Fig. 11. Task mining and cooperative support ability.

of 1.
Along the horizontal axis of Fig. 9, we add the reward,

and the sum means the reward transferred to other agents
from each agent on the left. For the twenty agents on the
left, the higher the sum of the reward, the better the task
mining ability to search out a target. Based on such sum-
total rewards along the horizontal axis and Eq. (9), we can
get the relative percentage of task mining ability, shown in
Fig. 11. The better and worse performances are obvious
when compared with the average value of 1.

Using the same method, we also got cooperative sup-
port ability along the vertical axis of Fig. 9, as shown
in Fig. 11. For each agent, it shows the percentage of
transferred reward from other agents, and it represents
the cooperative support ability of agents across the top
in Fig. 9 because they received rewards from others only
when their behavior was cooperative.

In addition, the total performance of twenty hunter
agents to achieve tasks, based on the catch times over
300 trials, is shown in Fig. 12. It can be seen that
agents 6 and 17 have excellent performance in achieving
the task because they have many catches after 300 trials.
In Fig. 11, agents 6 and 17 have the best task mining abil-
ity and best cooperative support ability, respectively. On
the other hand, agent 9 also has excellent performance, al-
though not the best, in task mining ability and cooperative
support ability.

5. Conclusions

We have aimed at the formation of group behavior
among multi-agents through the interaction of state com-
munication and group behavior learning. In this paper, we
have proposed SC-RL, GB-RL for multi-agent reinforce-
ment learning and did simulation experiments to prove its
effectiveness. From the results of the comparison simu-
lation, we also found that the SC-RL method, where en-
vironment state information is shared among agents, ob-
tains better cooperative ability than the RL-SES and RL

Fig. 12. Performance of 20 hunters based on catch times.

methods. Agents can obtain some environment states that
are outside their range of perception and therefore can-
not be obtained directly through interaction with the other
agents.

In addition, we have proposed the GB-RL method,
which can provide some evaluation to strengthen group
behavior. Finally, the interaction among agents can be
changed to behavioral strategy communication, similar to
that in human society, and the autonomous cooperative
group behavior of the GBRL method has better perfor-
mance than do the other methods. From the performance
of twenty hunter agents, we also found the importance
of reward exchange among agents. Social interaction re-
lationships represent the interactive information among
agents through interaction ability, task mining ability, and
cooperative support ability.

In future studies, we plan to add more communica-
tion models to agents and give social agents robust au-
tonomous cooperative learning abilities. As a social
agent, it is necessary to understand more unknown sig-
nals, especially in complex environments.
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