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Abstract— Recently, much attemtion has been paid to the 
methods for circuit analysis using wavelet transform. In 
particular, we have proposed the analysis methods using Haar 
wavelet transform. Haar wavelet can be easily treated, be 
adapted to time varying and nonlinear circuits and we can be 
easily derived differential and integral operator matrices by 
using block pulse functions. Furthermore, it can analyze a region 
near singular points more precisely. Therefore, we consider that 
it is suitable to analyze nonlinear time-varying circuits. In this 
paper, we propose the method to analyze the numerical solution 
of the periodic solution of the autonomous nonlinear circuit. 

Keywords—Haar Wavelet transform, periodic solution, 
autonomous circuits 

I. INTRODUCTION  
 

Recently, much attention has been paid to the methods for 
circuit analysis using wavelet transform [1]-[7]. We proposed 
the steady-state periodic solution analysis methods using Haar 
wavelet transform [2], [3], [5], [7]. Haar wavelet can be easily 
treated, be adapted to time varying and nonlinear circuits and 
we can be easily derived differential and integral operator 
matrices by using block pulse functions. These properties are 
based on the methods using Walsh transforms [8], [9]. 
Furthermore, from the orthogonality and the locality of Haar 
wavelet, it can analyze the region near singular points where 
the solution is steep more precisely. Then, we proposed the 
method which can analyze the region near singular points with 
adaptive resolutions [3].  

Moreover, the analysis methods for power electronics 
circuits using wavelet transform were proposed by Tam et al 
[4]. If we calculate steady-state waveforms of power electronic 
circuits using the successive integral methods such as the 
Runge-Kutta methods, the calculation cost is wasted due to the 
calculation of the long term transient response with sufficiently 
small step size to approximate the discontinuous dynamics 
caused by switches. To overcome such disadvantage of the 
successive integral method, in [4], the Chebyshev polynomials 
are used as the wavelet basis functions, and the periodic 
solutions of periodically driven power electronic circuits are 
calculated. However, it is considered that the calculation 
should be complicated and the Gibbs-phenomenon-like errors 
have been seen when the switching is occurred because of the 
use of the Chebyshev polynomials.  Therefore, we proposed 
the analysis methods using Haar wavelet transform in the non-
autonomous nonlinear circuits for steady-state periodic 

solution [7]. This method can derive the steady-state solution 
of the circuit because the period of the solution is determined 
by input excitations. And, we do not need to calculate the 
transient state of the circuit like the successive integral 
methods such as the Runge-Kutta methods. Therefore, these 
can shorten calculation time very much.  

However, these proposed methods [4], [7] cannot analyze 
the autonomous nonlinear circuits because the period of the 
solution is unknown. Therefore, using optimization method, we 
use the method to obtain the period of the circuit by deriving 
the minimum value of norm of the state equations [6]. 
Therefore, we consider that we can derive the periodic solution 
by using the method. In this paper, we propose the method to 
analyze the numerical solution of the periodic solution of the 
autonomous nonlinear circuit by using Haar wavelet transform 
and optimization method. And, we show calculation result of 
this method when a van der Pol oscillator is an example circuit. 

 

II. HAAR WAVELET MATRIX 
 

Haar functions are defined on interval ሾ0,1ሻ as follows, ݄૙ ൌ ૚√(1)                              ࢓ 

݄௜ ൌ ଵ√௠ ൈ ۔ۖەۖ
ۓ 2ೕమ ,     ௞ିଵଶೕ ൑ ݐ ൏ ௞ିభమଶೕ ,െ2ೕమ     ௞ିభమଶೕ ൑ ݐ ൏ ௞ଶೕ  ሾ0,1ሻ                    (2) ݊݅ ݁ݏ݅ݓݎ݄݁ݐ݋     0,

݅ ൌ 0,1, ڮ , ݉ െ 1, ݉ ൌ 2௔ 

where ܽ  is positive integer, and j and k are nonnegative 
integer which satisfy i ൌ  2௝ ൅ ݇ , i.e., ݇ ൌ 0,1, ڮ , 2௝ െ 1 ሺ݆ ൌ 0,1,2, ڮ ሻ. Figure 1 shows the waveforms of the Haar 
functions for  ܽ ൌ 2. 

H is ݉ ൈ ݉-dimensional Haar wavelet matrix defined as 

ࡴ ൌ ێێێۏ
ۍ ݄଴ሬሬሬሬԦ݄ଵሬሬሬሬԦ݄ڭ௠ିଵሬሬሬሬሬሬሬሬሬሬԦۑۑۑے

ې ؜ ൦ ݄ଵଵ ݄ଵଶ ڮ ݄ଵ௠݄ଶଵ ݄ଶଶ ڮ ݄ଶ௠ڭ ڭ ڰ ௠ଵ݄ڭ ݄௠ଶ ڮ ݄௠௠
൪       (3) 

where ݄పሬሬሬԦ  is 1 ൈ ݉ -dimentional Haar wavelet basis vector 
whose elements are the discretized expression of ݄௜ሺtሻ. Note 
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that H is an orthonormal matrix. ݕԦ  is ݉ ൈ 1 -dimentional 
vector whose elements are the discretized expression of ݕሺݐሻ  

which is the function that has square integrability on interval ሾ0,1ሻ. Ԧܿ is ݉ ൈ 1-dimentional coefficient vector. Using these 
vectors and matrix, Haar wavelet transform and inverse Haar 
wavelet transform are described as follows. Ԧܿ ൌ Ԧݕ Ԧ                                      (4)ݕࡴ ൌ ்ࡴ Ԧܿሺൌ ଵିࡴ Ԧܿሻ                    (5) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 : Haar wavelet function for ܽ ൌ 2. 
 

III. INTEGRAL AND DIFFERENTIAL OPERATOR MATRICES USING 
HAAR WAVELET 

 
Historically, the basic idea of operator matrix has been 

introduced by using Walsh functions [9]. However, in logical 
way, the matrices introduced by block pulse function are more 
fundamental. The block pulse function is the set of m 
rectangular pulses on interval ሾ0,1ሻ  which have 1/m pulse 
width and are shifted 1/m each other. 

The integral operator matrix of the block pulse function 
matrix B is defined as the following equation [4]-[5]. ׬ ࣎ࢊሻ࣎ሺ࡮ ؠ ࡮ࡽ · ૙࢏ሻ࢚ሺ࡮ ሻ࢓ൈ࢓ሺ࡮ࡽ (6)                          ൌ ૚࢓ ቂ૚૛ ሻ࢓ൈ࢓ሺࡵ ൅ ∑ ୀ૚࢏ஶ࢏ሻ࢓ൈ࢓ሺࡼ ቃ           (7) 

Where B(t) is  m ൈ m -dimensional matrix whose elements 
are the discretized expression of the block pulse function ܾ௜ሺtሻ, ݅ ൌ  0,1,2, ڮ , ݉ െ 1 and 

࢏ሺ௠ൈ௠ሻࡼ ൌ ൤ ૙ ሻ࢏ൈ࢏ሻ૙ሺ࢏ି࢓ሻൈሺ࢏ି࢓ሺࡵ ૙ ൨ 

for ݅ ൏ ሺ௠ൈ௠ሻ௜ࡼ ,݉ ൌ ૙ሺ௠ൈ௠ሻ 
for ݅ ൒ ݉ . And for ݅ ൏ ݉ , the inverse matrix ࡮ࡽሺ௠ൈ௠ሻିଵ  is 
calculated as follows [5]. ࡮ࡽሺ௠ൈ௠ሻିଵ ൌ 4݉ ቂଵଶ ሺ௠ൈ௠ሻࡵ ൅ ∑ ሺെ1ሻ௜ࡼሺ௠ൈ௠ሻ௜௠ିଵ௜ୀଵ ቃ    (8) ࡮ࡽ is called the integral operator matrix of the block pulse 
function, and the inverse matrix ࡮ࡽሺ௠ൈ௠ሻିଵ  is called the 
differential operator matrix of the block pulse function. 

Because the Haar wavelet matrix H is the orthonormal 
matrix, the integral matrix of H is given as follows. 

ࡴࡽ  ൌ ࢀ࡮ࡽࡴ ૚ିࡴ ൌ ࢀ࡮ࡽࡴ  (9)                   ࢀࡴ

 

Similarly, the differential operator matrix of H is given as 
follows. 

૚ିࡴࡽ  ൌ ࢀ࡮ࡽሺࡴ ሻି૚ିࡴ૚ ൌ ࢀ࡮ࡽሺࡴ ሻି૚(10)       ࢀࡴ 

 

IV. HAAR WAVELET EXPRESSION OF BLANCH 
CHARACTERISTICS OF NONLINEAR TIME VARYING CIRCUIT 

ELEMENTS 
 

The general interval ሾݐ௠௜௡, ௠௔௫ሻݐ is rescaled to interval ሾ0,1ሻ  because Haar wavelet function is defined on interval ሾ0,1ሻ . In this paper, if ݐ௠௜௡  is 0, capacitance c[F] and 
respectively, inductance l[H] can be described as ܥ ൌ  ,௠௔௫ݐ/ܿ
and L=l/ݐ௠௔௫ without losing the generality. Next, we show the 
Haar wavelet expression of branch characteristics of nonlinear 
time varying circuit elements for the expression in wavelet 
domain. 

Capacitor： vሺݐሻ ൌ ሺ0ିሻݒ ൅ ܥ1 න ݅ሺ߬ሻ݀߬,      ݒ଴ ؔ ሺ0ିሻ௧ݒ
଴ ࢂ  ൌ ૙ࢂ ൅  ࡵࡴࡽ૚ି࢝࡯

or    ࡵ ൌ ࢂ૚ሾିࡴࡽ࢝࡯ െ ࢝࡯ ૙ሿ                        (11)ࢂ ൌ ,ሺ݅଴ܥሾࢍࢇ࢏ࢊࡴ ,଴ሻݐ ,ሺ݅ଵܥ ,ଵሻݐ ڮ , ,ሺ݅௠ିଵܥ  ࢀࡴ௠ିଵሻሿݐ

Inductor： ݅ሺݐሻ ൌ ݅ሺ0ିሻ ൅ ܮ1 න ሺ߬ሻ݀߬,      ݅଴ݒ ؔ ݅ሺ0ିሻ௧
଴ ࡵ  ൌ ૙ࡵ ൅  ࢂࡴࡽ૚ି࢝ࡸ

or    ࢂ ൌ ࡵሾ࢝ࡸ૚ିࡴࡽ െ ࢝ࡸ ૙ሿ                         (12)ࡵ ൌ ,ሺ݅଴ܮሾࢍࢇ࢏ࢊࡴ ,଴ሻݐ ,ሺ݅ଵܮ ,ଵሻݐ ڮ , ,ሺ݅௠ିଵܮ  ࢀࡴ௠ିଵሻሿݐ
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Resistor： vሺݐሻ ൌ ܴ݅ሺݐሻ ࢂ ൌ ,ࡵ࢝ࡾ ࢝ࡾ ൌ ࢝ࡾ  ሿ                        (13)ࡾሾࢍࢇ࢏ࢊ ൌ ,ሾܴሺ݅଴ࢍࢇ࢏ࢊࡴ ,଴ሻݐ ܴሺ݅ଵ, ,ଵሻݐ ڮ , ܴሺ݅௠ିଵ,  ࢀࡴ௠ିଵሻሿݐ
 

V. METHOD TO FIND STEADY-STATE PERIODIC SOLUTIONS 
 

Consider the following ordinary differential equation, 

ሶ࢞  ൌ ,࢞ሺࢌ ሻݐ ؜ ,࢞ሺ࡭ ࢞ሻݐ ൅  ሻ                (14)ݐሺ࢛
 

 
where ࢞ሺݐሻ ൌ ሾݔଵሺݐሻ  ݔଶሺݐሻ ݔ   ڮ௡ሺݐሻሿ் א  ௡ൈଵࡾ   is an 
unknown state variable vector,  Aሺx, tሻ א R୬ൈ୬ is a nonlinear 
time varying parameter matrix, and ࢛ሺݐሻ ൌ  ሾݑଵሺݐሻ  ݑଶሺݐሻ ݑ   ڮ௡ሺݐሻሿ் א  ௡ൈଵࡾ  is an external 
force vector. However, in this paper is  uሺtሻ ൌ 0  because the 
circuit is the autonomous nonlinear circuit. Assume than this 
system has an unknown period T, and that we can find the 
periodic solution ࢖࢞ሺݐሻ with period T, i.e., ࢖࢞ሺݐሻ ൌ ݐሺ࢖࢞ ൅ ܶሻ 
for all t. In order to find the steady-state periodic solution, we 
should find the solution for the interval ሾ0,1ሻ  under the 
appropriate boundary conditions. For the wavelet expression 
of the differential equations, we define the discretized 
expression of ࢞ሺݐሻ  and ሻݐሺ࢛ as ݔపሬሬሬԦ ൌ ሾݔ௜ሺݐଵሻ  ݔ௜ሺݐଶሻ    ݔ    ڮ௜ሺݐ௠ሻሿ் א ௠ൈଵࡾ  and uనሬሬሬԦ ൌሾu୧ሺtଵሻ  u୧ሺtଶሻ    ڮ    u୧ሺt୫ሻሿT א R୫ൈଵ  for ݅ ൌ 1,2, ڮ , ݉ 
respectively. 
 
 
 
 

 

 
 

 

 

 

 

 

 

 

Fig.2: Definition of the analyzed interval and the time step. 

 

The wavelet transformed expression of Eq. (14) can be 
derived as 

 

ࢄ૚ሾି࢓ࡽ െ ૙ሿࢄ ൌ ࢄࡴ࡭ ൅  (15)                    ࢁ

 

where ࢄ ൌ ሾሺݔࡴଵሬሬሬԦሻࢀ   ሺݔࡴଶሬሬሬሬԦሻࢀ ؜ ࢀሿࢀ௡ሬሬሬሬԦሻݔࡴሺ    ڮ    ࢀ૛ࢄ   ࢀ૚ࢄൣ ࢀ൧ࢀ࢔ࢄ   ڮ    א  ൈ૚ is an unknown wavelet࢔࢓ࡾ
coefficients vector,  
૙ࢄ     ൌ ሾሺݔࡴଵ଴ሬሬሬሬሬሬԦሻ்   ሺݔࡴଶ଴ሬሬሬሬሬሬԦሻ் ௡଴ሬሬሬሬሬሬԦሻ்ሿ்ݔࡴሺ    ڮ    ଵ଴்ࢄሾ؜ ଶ଴்ࢄ    ௡଴்ࢄ   ڮ    ሿ் א  ప଴ሬሬሬሬሬԦ is also unknownݔ ప଴ሬሬሬሬሬԦ is an initial value vector. Note thatݔ .௠௡ൈଵࡾ
for this case. Moreover, 

 

૚ି࢓ࡽ ൌ ێێۏ
૚ିࡴࡽۍ ૙ ڮ ૙૙ ૚ିࡴࡽ ڮ ૙ڭ ڭ ڰ ૙ڭ ૙ ڮ ۑۑے૚ିࡴࡽ

ې א  (16)       ࢔࢓ൈ࢔࢓ࡾ

 

and, ࡴ࡭ א ௠௡ൈ௠௡ࡾ  is the wavelet region expression of A 
derived by the relationships described in Sect. Ⅳ . At this 
moment, as ࢄ  and ࢄ૙  are unknown, we cannot solve this 
algebraic equations. 

To determine the boundary condition, we set the analyzed 
interval as shown in Fig. 2. The time step ∆ݐ ൌ ்௠ିଵ  and ݐ௠௔௫ ൌ ܶ ൅  ,஻ሺ௠ൈ௠ሻࡽ Because of the feature of the matrix .ݐ∆
time ݐ௜  is calculated as  ݐ௜ ൌ ∆௧ଶ ൅ ሺ݆ െ 1ሻ∆ݐ   ሺ݆ ൌ 1,2, ڮ , ݉ሻ. 
Due to the periodicity, the relationship ݔ௜ሺݐଵሻ ൌ ݅ ௠ሻ for allݐ௜ሺݔ ൌ 1,2, ڮ , ݊  is derived. From Eq. (5), this relationship is 
rewritten as follows. 

 ሾ݄ଵଵ  ݄ଶଵ ࢏ࢄ௠ଵሿ݄  ڮ    ൌ ሾ݄ଵ௠  ݄ଶ௠  (17)       ࢏ࢄ௠௠ሿ݄  ڮ   

then, ሾ݄ଵଵ െ ݄ଵ௠   ݄ଶଵ െ ݄ଶ௠ ௠ଵ݄   ڮ    െ ݄௠௠ሿ࢏ࢄ ൌ ૙      (18) 

Setting ሾ݄ଵଵ െ ݄ଵ௠   ݄ଶଵ െ ݄ଶ௠ ௠ଵ݄   ڮ    െ ݄௠௠ሿ ؜ ࢈ࢎ ሻ࢈ࢎሺࢍࢇ࢏ࢊ and ࢓૚ൈࡾא ؜ ࢈ࡴ א  the relationship ,࢔࢓ൈ࢔ࡾ

ࢄ࢈ࡴ  ൌ ૙                                      (19) 

 

is derived. 

   To derive the unknown vector ݔ଴ሬሬሬሬԦ , we consider the 
relationship between ࢄ  and ࢄ૙ . From Eq. (15), we see the 
matrix ିࡴࡽ૚࢏ࢄ૙  from ିࡴࡽ૚ࢄ૙ . From the relationship ࢏ࢄ૙ ൌݔࡴԦ௜଴, 

૙࢏ࢄ૚ିࡴࡽ  ൌ  ૙                          (20)࢏ሬሬԦ࢞ࡴ૚ିࡴࡽ

 

If we set ିࡴࡽ૚ࡴ ؜ ௜௝൧ݍൣ א  ,௠ൈ௠ࡾ
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૙࢏ሬሬԦ࢞ࡴ૚ିࡴࡽ ൌ ൦ ଵଵݍ ଵଶݍ ڮ ଶଵݍଵ௠ݍ ଶଶݍ ڮ ڭଶ௠ݍ ڭ ڰ ௠ଵݍڭ ௠ଶݍ گ ௠௠൪ݍ
                 ൌ ൦ ଵଵݍ ൅ ଵଶݍ ൅ ڮ ൅ ଶଵݍଵ௠ݍ ൅ ଶଶݍ ൅ ڮ ൅ ௠ଵݍڭଶ௠ݍ ൅ ௠ଶݍ ൅ ڮ ൅ ௠௠൪ݍ ሺ࢏࢞
؜                   ሺ0ሻ                  (21)࢏࢞૙ࢗ

 

Then we define ࡽ૙ ൌ ૙ሻࢗሺࢍࢇ࢏ࢊ א ௠௡ൈࡾ
rewritten as ሺି࢓ࡽ૚ െ ࢄሻࡴ࡭ െ ሬሬԦ૙࢞૙ࡽ ൌ ૙
From Eqs. (22) and (19), we can deri
dimensional algebraic equations as follows, ൤ି࢓ࡽ૚ െ ࡴ࡭ െࡽ૙࢈ࡴ ૙ ൨ ൤ ૙ሬሬሬሬԦ൨࢞ࢄ ൌ ቂ

In this equation, the number of the u
variables coincides with the dimension of eݐ௠௔௫ is known in nonautonomous nonlinear c
we can solve the equation by the usual meth
[7]. However, the number of the unknown va
coincide with the dimension of equation 
unknown in autonomous nonlinear circuit
cannot solve the equation. Therefore, Eq. (23
the equation of norm as follows to equalize t
of Eq. (23) to 0. 

ሻࢄሺࡲ  ൌ ԡሺࢄ࢈ࡴሻࢀ ሼሺି࢓ࡽ૚ െ ࢄሻࡴ࡭ െ ૙ࡽ
 

We derive the period being F(X)＝0 by using
method to minimize the norm of this equatio
derive the unknown ݐ௠௔௫ ࢄ ,  and ݔ଴ሬሬሬሬԦ . In thi
Levenberg-Marquardt method as optimization
we derive the approximated solution of Eq. (14

 

VI. EXAMPLE 
 

In this section, we show a simple exampl
effectiveness of the proposed method. Th
oscillator shown in Fig. 3 is analyzed in thi
oscillator has nonlinear voltage controlled
whose characteristics are as follows. 

ሻ࢚࢛࢕ࢂሺࢌ  ൌ ૞ · ൫࢚࢛࢕ࢂ െ ૜࢚࢛࢕ࢂ ૜⁄
 

The circuit parameter is shown in Table 1 and
and inductance l[H] are ࡯ ൌ ݐ/௠௔௫ and L=lݐ/ࢉ
The circuit equations are written as follows. 

൦ݔ௜ሺ0ሻݔ௜ሺ0ሻݔڭ௜ሺ0ሻ൪ 

ሺ0ሻ 

ൈ௡ , Eq.(16) is 

                     (22) 

ive   nሺm െ 1ሻ -

ቂ૙૙ቃ                 (23) 

unknown of the 
equation because 
circuit. Therefore, 
hod shown in [5], 
ariables does not 
because ݐ௠௔௫  is 
. Therefore, we 
3) is rewritten to 
the left-hand side 

૙࢞૙ሬሬሬሬԦሽࢀԡ૛૛           (24) 

g the optimization 
on. Then, we can 
is paper, we use 
n method. Finally, 
4) from Eq. (5). 

le to confirm the 
he van der Pol 
is example. This 

d current source 

૜    ൯               (25) 

d capacitance c[F] ݐ௠௔௫ respectively. 

ቈࢂሶ ࡸሶࡵ࢚࢛࢕ ቉ ൌ ቎૞·൫૚ି࢚࢛࢕ࢂ૛ ૜⁄ ࡸ૚࡯  
TABLE I.  PARAMETER VALUES FO

Parameter 

Inductance L 

Capacitance C 

 

 

 

 

 

 

 

 

 

 

Fig. 3: A van der Po

 

If we set ࡵ ൌ ሻ࢚࢛࢕ࢂሺࢌ , the Ha
branch characteristics of the current 
Eq. (25) as 

Ԧܫࡴ  ൌ ࢍࢇ࢏ࢊࡴ ቈ5 ቆ1 െ ௢ܸ௨௧ଵଶ3ڮ , 5 ቀ
 

where ܫԦ and ௢ܸ௨௧ሬሬሬሬሬሬሬԦ are the discretized
and the voltage ࢚࢛࢕ࢂ , respective
orthonormal, Eq. (27) can be rewritt

Ԧܫࡴ  ൌ ݃ܽ݅݀ࡴ ቈ5 ቆ1 െ ௢ܸ௨௧ଵଶ3ڮ , 5 ቀ
If we set ࡵு ൌ ுࢂ Ԧ andܫࡴ ൌ ࢝ࡳ ௪ asܩሬܸࡴ ൌ ࢍࢇ࢏ࢊࡴ ቈ5 ቆ1 െ ௢ܸ௨௧ଶ3 ڮ ,

 ൯ െ ૚࡯૙ ቏ ൤ࡸࡵ࢚࢛࢕ࢂ ൨             (26) 

 

OR VAN DER POL OSCILLATOR. 

value

1H

1F

ol oscillator. 

aar wavelet expression of 
source can be derived from 

ଵቇ , 5 ቆ1 െ ௢ܸ௨௧ଶଶ3 ቇ, 
ቀ1 െ ௏೚ೠ೟೘మଷ ቁቃ ௢ܸ௨௧ሬሬሬሬሬሬሬሬԦ             (27) 

d expression of the current I 
ely. As the matrix H is 
ten as follows. 

ଵቇ , 5 ቆ1 െ ௢ܸ௨௧ଶଶ3 ቇ, 
1 െ ௏೚ೠ೟೘మଷ ቁቃ ࡴ்ࡴ ௢ܸ௨௧ሬሬሬሬሬሬሬԦ   (28) 

௢ܸ௨௧ሬሬሬሬሬሬሬԦ, and define the matrix 

௧ଵቇ , 5 ቆ1 െ ௢ܸ௨௧ଶଶ3 ቇ, 
, 5 ቀ1 െ ௏೚ೠ೟೘మଷ ቁቃ  , ࢀࡴ
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we can derive the wavelet transformed form of Eq. (25) as 

ுࡵ  ൌ  ு                               (29)ࢂ࢝ࡳ

 

as shown in Eq. (13). Using this relationship, the wavelet 
expression of Eq. (26) becomes a nonlinear algebraic equation. 
This equation can be solved by the optimization method such 
as Levenberg-Marquardt method. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4: Calculation results for the proposed method for ܽ ൌ 4, 5, 6. 

 

Figure 4 shows the calculation results for the proposed 
method. The most precise approximation is the case for ܽ ൌ 6 
in the example. In Fig.4, we can see that the approximation 
approaches to the calculation result using the Runge-Kutta 
method as the value of a becomes larger. The proposed method 
is easier to use than the method shown in [6]. Moreover, by 
combining with the method shown in [3], the proposed 
method will be improved by selecting the resolution 
adaptively around the region where the accuracy is not enough. 
Therefore, we consider that we can find more accurate result 
effectively. However, sometimes the proposed method does 
not converge to the appropriate result according to the initial 
value of the optimization method. This problem is one of our 
future works. 

 

VII. CONCLUSION 
 In this paper, we have proposed the method to derive 

steady-state periodic solution of the autonomous nonlinear 
circuit using Haar wavelet transforms, and confirmed its 
performance using the van der Pol oscillator as an example. 
Obtaining more precise solution, finding how to set the initial 
value of the optimization method, the improvement of the 
algorithm and the substantiate of the proposed method to the 
more complex circuits seem to be the future works. 
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