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Abstract— Recently, much attemtion has been paid to the solution [7]. This method can derive the steady-state solution
methods for circuit analysis using wavelet transform. In of the circuit because the period of the solution is determined
particular, we have proposed the analysis methods using Haar by input excitations. And, we do not need to calculate the
wavelet transform. Haar wavelet can be easily treated, be  transient state of the circuit like the successive integral

adapted to time varying and nonlinear circuits and we can be  methods such as the Runge-Kutta methods. Therefore, these
easily derived differential and integral operator matrices by can shorten calculation time very much.

using block pulse functions. Furthermore, it can analyze a region
near singular points more precisely. Therefore, we consider that However, these proposed methods [4], [7] cannot analyze
it is suitable to analyze nonlinear time-varying circuits. In this the autonomous nonlinear circuits because the period of the
paper, we propose the method to analyze the numerical solution solution is unknown. Therefore, using optimization method, we
of the periodic solution of the autonomous nonlinear circuit. use the method to obtain the period of the circuit by deriving
the minimum value of norm of the state equations [6].
Keywords—Haar  Wavelet  transform,  periodic  solution, — Therefore, we consider that we can derive the periodic solution
autonomous circults by using the method. In this paper, we propose the method to
analyze the numerical solution of the periodic solution of the
autonomous nonlinear circuit by using Haar wavelet transform
and optimization method. And, we show calculation result of
Recently, much attention has been paid to the methods for  this method when a van der Pol oscillator is an example circuit.
circuit analysis using wavelet transform [1]-[7]. We proposed
the steady-state periodic solution analysis methods using Haar
wavelet transform [2], [3], [5], [7]. Haar wavelet can be easily I

L INTRODUCTION

. . . . . HAAR WAVELET MATRIX
treated, be adapted to time varying and nonlinear circuits and
we can be easily derived differential and integral operator
matrices by using block pulse functions. These properties are Haar functions are defined on interval [0,1) as follows,
based on the methods using Walsh transforms [8], [9]. 1
Furthermore, from the orthogonality and the locality of Haar ho = Jm (D
wavelet, it can analyze the region near singular points where ) )
the solution is steep more precisely. Then, we proposed the 2% k1 oy k=
method which can analyze the region near singular points with 1 o2 T 2) !
adaptive resolutions [3]. h; = e I k3 K 2
m —22 Py <t< 2
Moreover, the analysis methods for power electronics LO otherwise in [0,1)

circuits using wavelet transform were proposed by Tam et al

[4]. If we calculate steady-state waveforms of power electronic i=01-,m-1m=2%

circuits using the successive int@gral mqthods such as the where a is positive integer, and j and k are nonnegative
Runge-Kutta methods, the calcula_ltlon cost is wagted due to the integer which satisfy i = 2/ + k, ic, k=0,1,-+,2/ — 1
calculation of the long term transient response with sufficiently
small step size to approximate the discontinuous dynamics
caused by switches. To overcome such disadvantage of the

(j =0,1,2,--+). Figure 1 shows the waveforms of the Haar
functions for a = 2.

successive integral method, in [4], the Chebyshev polynomials H is m X m-dimensional Haar wavelet matrix defined as
are used as the wavelet basis functions, and the periodic .
solutions of periodically driven power electronic circuits are hg hyy hyy, - hpy
calculated. However, it is considered that the calculation H= Ry |a|her h2a o ham 3)
should be complicated and the Gibbs-phenomenon-like errors N T e : : :
have been seen when the switching is occurred because of the — h h e h

. h mil m2 mm
use of the Chebyshev polynomials. Therefore, we proposed m—1
the analysis methods using Haar wavelet transform in the non-  yhere ;TL is 1 X m-dimentional Haar wavelet basis vector

autonomous nonlinear circuits for steady-state periodic  whose elements are the discretized expression of h;(t). Note
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that H is an orthonormal matrix. j is m X 1-dimentional
vector whose elements are the discretized expression of y(t)

which is the function that has square integrability on interval
[0,1). ¢ is m X 1-dimentional coefficient vector. Using these
vectors and matrix, Haar wavelet transform and inverse Haar
wavelet transform are described as follows.

¢ = Hy “)
y=H'¢(=H0) (5)
hy(2) 3
0 1
h (@) =
,|° > 1
2
h(® &
T
"z
hy (2)
[T
V2

Fig. 1 : Haar wavelet function for a = 2.

III. INTEGRAL AND DIFFERENTIAL OPERATOR MATRICES USING
HAAR WAVELET

Historically, the basic idea of operator matrix has been
introduced by using Walsh functions [9]. However, in logical
way, the matrices introduced by block pulse function are more
fundamental. The block pulse function is the set of m
rectangular pulses on interval [0,1) which have 1/m pulse
width and are shifted 1/m each other.

The integral operator matrix of the block pulse function
matrix B is defined as the following equation [4]-[5].

JyB(¥)dt = Qp - B(D) (©)

(7

Where B(t) is m X m -dimensional matrix whose elements
are the discretized expression of the block pulse function b; (t),
i=012,--,m—1and

11 o i
QB(mxm) = m [E I(mxm) + Zi:l Pmem)]

253

0 | Ton-nx(n-i)
Oixiy | 0

]

i _
(mxm) —
fori < m,

Pémxm) = O(mxm)

for i =m. And for i <m, the inverse matrix QE%me) is
calculated as follows [5].

— 1 — . .
QB(lmxm) =4m [El(mxm) + 2;211(_1)1P2m><m)] ®)

Qjp is called the integral operator matrix of the block pulse
function, and the inverse matrix Qg,%mxm) is called the
differential operator matrix of the block pulse function.

Because the Haar wavelet matrix H is the orthonormal
matrix, the integral matrix of H is given as follows.

Qu =HQ3H™' = HQLH" )

Similarly, the differential operator matrix of H is given as
follows.

Qx' =HWQY) ™ 'H'=HQRH" (10

IV. HAAR WAVELET EXPRESSION OF BLANCH
CHARACTERISTICS OF NONLINEAR TIME VARYING CIRCUIT
ELEMENTS

The general interval [tpin, tmax) 1S rescaled to interval
[0,1) because Haar wavelet function is defined on interval
[0,1). In this paper, if t,,, is 0, capacitance c[F] and
respectively, inductance /[H] can be described as C = ¢/t,qy,
and L=l/t,,,, without losing the generality. Next, we show the
Haar wavelet expression of branch characteristics of nonlinear
time varying circuit elements for the expression in wavelet
domain.

Capacitor :

1t '
v(t) = v(0_) +Ef i(t)dr, wvy=v(0.)

0
V=Vy+C,'Qul

or I=C,Qyz[V—"V,] (11)
C,, = Hdiag[C(io, ty), C(ir, t1), ) C(imoy, tns) JHT
Inductor :
1 t
i(t) =i(0.) +Zf0 v(t)dr, ip:=1i(0_)
I=1y+L,'QuV
or V=QzL,[I - I,] (12)

L, = Hdiag[L(iy, t,), L(i1, ty),*, L(im—1, tme1) JHT
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Resistor :
v(t) = Ri(t)
V=R,I, R, =diag[R]
R, = Hdiag[R(iy, t), R(i1, t1),, R(ime1, tm_q)JHT

(13)

V. METHOD TO FIND STEADY-STATE PERIODIC SOLUTIONS

Consider the following ordinary differential equation,

x=f(x1t) 2 Alx, t)x + u(t) (14)

where  x(t) = [x;(t) x,(t) -+ x,()]T € R is an
unknown state variable vector, A(x,t) € R™" is a nonlinear
time varying parameter matrix, and
u(t) = [u () uy(t) - u,(®)]” € R is an external
force vector. However, in this paper is u(t) = 0 because the
circuit is the autonomous nonlinear circuit. Assume than this
system has an unknown period 7, and that we can find the
periodic solution x,(t) with period 7, i.e., x,,(t) = x,(t + T)
for all . In order to find the steady-state periodic solution, we
should find the solution for the interval [0,1) under the
appropriate boundary conditions. For the wavelet expression
of the differential equations, we define the discretized

expression of x(t) and u(t) as
X, =[x (t) x:(t2) x;(tm)]" € R™ and u; =
[u;(t;) u;(ty) ui(tp)]T € R™T for i=12,--,m
respectively.
x(0)
A
x (¢ )x,-(tz)x (t) xi(t,,,)
0 T 7 1 P >
At! At At ;0 At
/ / \ / \
! ! 4 \
! T= m—l At \
At 2At 3A:¢ (m-1) mAt=t__
< T >
) analyzed interval :

Fig.2: Definition of the analyzed interval and the time step.

The wavelet transformed expression of Eq. (14) can be
derived as
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Ql[X —Xol =AyX+U (15)

where X = [(Hx))" (Hx;)" (Hx)'T"

2 [x] x7T X,Tl]T € R™*1 is an unknown wavelet
coefficients vector,

Xo = [(Hx10)" (Hxzo)"

[XTo X%o Xhol" € R,

X0 is an initial value vector. Note that x,, is also unknown
for this case. Moreover,

(Hxno)']" 2

[@x' O 0]
Q;ll — | 0 Q;,l 0 I g€ Rmnxmn (16)
0 0 Qx'

and, Ay € R™™" is the wavelet region expression of A
derived by the relationships described in Sect. IV. At this
moment, as X and X, are unknown, we cannot solve this
algebraic equations.

To determine the boundary condition, we set the analyzed
interval as shown in Fig. 2. The time step At =$ and
tmax = T + At. Because of the feature of the matrix Qg mxm)s
time t; is calculated as t; = % +(G—-DAt (=12,,m).
Due to the periodicity, the relationship x;(t;) = x;(t,,) for all

i=1,2,+,nis derived. From Eq. (5), this relationship is
rewritten as follows.

[hi1 har o hnalXi = [ham Rom 0 Rpn] X (17)
then,
[Ai1 = Rim Rot —ham = By — R ]X; =0 (18)
Setting (M1 — him ha1 — o hmi = hm] 2 hy, €
RY™™ and diag(hy) 2 H, € R™™" the relationship
H,X=0 (19)
is derived.

To derive the unknown vector X,, we consider the
relationship between X and X,. From Eq. (15), we see the
matrix Qz'X;o from Qz'X,. From the relationship X;o =
Hina

Qi'Xio = Qy'HZyo (20)

If we set Qg H 2 [qi]-] € R™ ™,
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di1 q12 q1m | [%:(0)
Qi = 1 M |60
Am1  9m2 Amm] Lx; (0)
Q1+ izt qim
dz1 t q22 + “t qam x,(0)
Gmi t qmz + -+ qmm
£ qox;(0) €2y
Then we define Qo = diag(qy) € R™*" , Eq.(16) is

rewritten as

(Qn' —Ap)X — Qo% =0 (22)
From Egs. (22) and (19), we can derive n(m-—1) -
dimensional algebraic equations as follows,
Q' — Ay —Qo] [X _[0
H, 0 Jlxol — [o] (23)

In this equation, the number of the unknown of the
variables coincides with the dimension of equation because
tmax 18 known in nonautonomous nonlinear circuit. Therefore,
we can solve the equation by the usual method shown in [5],
[7]. However, the number of the unknown variables does not
coincide with the dimension of equation because t,,,, 1S
unknown in autonomous nonlinear circuit. Therefore, we
cannot solve the equation. Therefore, Eq. (23) is rewritten to
the equation of norm as follows to equalize the left-hand side
of Eq. (23) to 0.

FX) = (H,X07 {(@n' — A)X — QoXo}"1I3 (24)

We derive the period being F(X) =0 by using the optimization
method to minimize the norm of this equation. Then, we can
derive the unknown t,,,,, X and X,. In this paper, we use
Levenberg-Marquardt method as optimization method. Finally,
we derive the approximated solution of Eq. (14) from Eq. (5).

VI. EXAMPLE

In this section, we show a simple example to confirm the
effectiveness of the proposed method. The van der Pol
oscillator shown in Fig. 3 is analyzed in this example. This
oscillator has nonlinear voltage controlled current source
whose characteristics are as follows.

f(Vout) =5 (Vout - Vt3mt/3 ) (25)

The circuit parameter is shown in Table 1 and capacitance c[F]

and inductance /[H] are € = ¢/t,4, and L=l/t,,, respectively.

The circuit equations are written as follows.

255

, 5-(1-V2,,/3 ) 1
Vout — C : _E [Vout (26)
IL 1 0 IL
L

TABLE 1. PARAMETER VALUES FOR VAN DER POL OSCILLATOR.
Parameter value

Inductance L 1H

Capacitance C 1F

[ [L

> ] »-

+
f( Vuut) C 1 L Vuut

R

Fig. 3: A van der Pol oscillator.

If we set I = f(Vyy,), the Haar wavelet expression of
branch characteristics of the current source can be derived from

Eq. (25) as
Vozutl Vozutz
5 <1 3 ,511 3 )

(1)

HI = Hdiag

@7)

where I and Vour are the discretized expression of the current 7
and the voltage V,,; , respectively. As the matrix H is
orthonormal, Eq. (27) can be rewritten as follows.

o

5 (1 - um) | HTHY,,; (28)

2

2
Voutl Voutz

3

HI = Hdiag [5 (1 -

If we set I, = HI and Vy = HV,,,, and define the matrix

Gy, as
Vozutl 51— Vozutz
3 ) 3 )

(1

G, = Hdiag [5 (1 -
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we can derive the wavelet transformed form of Eq. (25) as

Iy =6,Vy 29

as shown in Eq. (13). Using this relationship, the wavelet
expression of Eq. (26) becomes a nonlinear algebraic equation.
This equation can be solved by the optimization method such
as Levenberg-Marquardt method.

3 ] O Vout(a=6)
O Vout(a=5)

Vout[V]

X Vout(a=4)

Runge-Kutta method

Fig. 4: Calculation results for the proposed method for
a=4>5,6.

Figure 4 shows the calculation results for the proposed
method. The most precise approximation is the case fora = 6
in the example. In Fig.4, we can see that the approximation
approaches to the calculation result using the Runge-Kutta
method as the value of a becomes larger. The proposed method
is easier to use than the method shown in [6]. Moreover, by
combining with the method shown in [3], the proposed
method will be improved by selecting the resolution

adaptively around the region where the accuracy is not enough.

Therefore, we consider that we can find more accurate result
effectively. However, sometimes the proposed method does
not converge to the appropriate result according to the initial
value of the optimization method. This problem is one of our
future works.

VIIL

In this paper, we have proposed the method to derive
steady-state periodic solution of the autonomous nonlinear
circuit using Haar wavelet transforms, and confirmed its
performance using the van der Pol oscillator as an example.
Obtaining more precise solution, finding how to set the initial
value of the optimization method, the improvement of the
algorithm and the substantiate of the proposed method to the
more complex circuits seem to be the future works.

CONCLUSION
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