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Abstract— This paper proposes a fuzzy classifier
system (FCS) using fuzzy rules given by hyper-cone
membership functions. The hyper-cone membership
function is expressed by a kind of radial basis func-
tion, and its fuzzy rules can be flexibly located in
input and output spaces. Therefore, The FCS can
generate excellent rules which have the best loca-
tion and shape of membership functions. We apply
the FCS to a fuzzy rule generation for the inverted
pendulum control. Also, we introduce the simplified
reward acquisition method for evaluation of inverted
pendulum performance.

Keywords— Fuzzy Classifier System, Fuzzy Rule
Generation, Genetic Algorithm, Inverted Pendulum.

I. Introduction

Fuzzy systems using fuzzy reasonings have been
applied in various fields such as fuzzy control. How-
ever, there are tuning problems in membership func-
tions and reasoning rules. Also, it is difficult to ob-
tain fine fuzzy rules showing best performance for
the system. Therefore, the study for automation
of this processes have led to many researches with
various tools for system development. For example,
there are neural networks[1]–[3], genetic algorithms
(GAs)[4]–[12], clusterings[13],[14] and so on.

Fuzzy rules generation methods using GAs can
include the framework of genetics-based machine
learning (GBML). In the GBML, there are two
frameworks of the Pits approach and the Michigan
approach. Almost fuzzy rule generation methods
by GA are classified into Pits approach[4]–[10]. In
these methods, however, much genetic information
is necessary, and it is difficult to apply to large-scale
system because many fuzzy systems are necessary in
GA coding.

One the other, fuzzy classifier systems (FCSs)

applying the Michigan approach are proposed.
Valenzuela-Rendon proposed FCSs and applied it
to an approximation of a single-input single-output
equation[11]. Furuhashi et al. expanded multiple
FCSs and applied it to obtaining fuzzy rules of a
ship control[12]. In these methods, GA was done
in one fuzzy system, and effective fuzzy rules were
found, because one rule is made to be an individual.
However, these methods are fixed membership func-
tions. Therefore, these are methods which choose
necessary fuzzy rules among the large number of
rules without tuning of the membership functions.

A purpose of our study is the development of the
automatic generation technique of fuzzy rules by
FCSs with the decision of the rule number, location
and rule shape. We presented automatic generation
methods of fuzzy rules using hyper-cone member-
ship functions by the Pits approach style GAs[8],[9].
The hyper-cone membership function is expressed
by a kind of radial basis function, and its fuzzy rule
can be flexibly located in input and output spaces.
In this paper, we propose an automatic generation
method of fuzzy rules using hyper-cone membership
functions by FCS. We apply this method to obtain-
ing fuzzy control rules of the inverted pendulum sys-
tem. Also, we introduce the simplified reward ac-
quisition method for evaluation of performance of
the inverted pendulum.

II. Fuzzy Rules Using Hyper-Cone
Membership Functions

A. Hyper-Cone Membership Functions

In this method, we give fuzzy rule Ri as below:

Ri : if x is Ai then y is Bi, i = 1, 2, · · · , n (1)
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Fig. 1. Shape of hyper-cone membership function (l = 2)

where i is rule number, n is the number of rules, x
and y are the input and output vectors, respectively,
and Ai and Bi are fuzzy subsets. In Eq.(1), the
input vector x and the output vector y are given
by

x=
[

x1 x2 · · · xl

]
T, y=

[
y1 y2 · · · ym

]
T

(2)
where l and m are the number of input and output
variables, respectively.

Ai and Bi of the rule Ri are expressed by hyper-
spherical fuzzy subsets directly corresponding to a
subspace in input and output spaces. Therefore,
fuzzy subsets Ai and Bi are defined by a hyper-
cone membership function described below. In this
fuzzy system, since there are n fuzzy rules, n hyper
cone membership functions are located in input and
output each space.

The hyper-cone membership function µAi(x)
which expresses Ai is defined by Eqs.(3) and (4)
in input space.

µAi : Ai → [0, 1] (3)

µAi(x) =
(

1 − ‖x − ai‖
αi

)
∨ 0 (4)

where ai and αi are the center vector and the radius
of the fuzzy subsets Ai. The membership function
µAi has a grade 1.0 at the center ai ∈ Rl of the
fuzzy subset Ai whose radius is αi. The member-
ship value decreases in proportion to the distance
from the center ai. At the circumference of this
sphere, a grade has 0.0. Fig.1 shows the hyper-cone
membership function in case of l = 2. Hyper-cone
membership function µBi is defined in m dimen-
sional output space by the same way as the input
membership function.

B. Reasoning Method

We find the reasoning result µB∗ from the input
and output membership functions, defuzzy it, and
calculate the real output value y∗.
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Fig. 2. An example of the reasoning method

In the first step, the truth value ωi of antecedent
part in a rule Ri for input vector x∗ is calculated
by Eq.(4). In other words, the membership value
is the truth value ωi. In the second step, we use
the truth value ωi to define a membership function
µBi

∗(y) as shown in Eq.(5).

µBi
∗(y) = ωi ∧ µBi(y) (5)

The shape of membership function µBi
∗(y) is the

truncated µBi(y) at ωi. We find the composite rea-
soning result µB∗(y) for each rule in Eq.(6).

µB∗(y) =
n∨

i=1

µB∗
i
(y) (6)

In the final step, output y∗ is given by the center of
gravity of the membership function µB∗(y).

y∗ =

∫
Dy

µB∗(y)ydy

∫
Dy

µB∗(y)dy
(7)

Fig.2 shows an example of the reasoning in the case
of l = 2, m = 2, n = 2.

In our method, all rules can not always cover
input space. Therefore, there often exists spaces
whose membership grade for input x∗ is zero. If an
input vector x∗ is determined in such a space, a rule
Rφ to be fired is defined by

di = ‖x∗ − ai‖ − αi (8)
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Rφ =
{
Ri |min {di}

}
(9)

Eqs.(8) and (9) mean that only the rule having the
membership function closest to input vector x∗ is
fired with ωφ = 0.0. In case of Rφ, y∗ is given the
center coordinate of fuzzy set Bφ.

III. Fuzzy Classifier System

A. Overview of Fuzzy Classifier System

FCS consists of four blocks of “Fuzzy Rule
Base”, “Fuzzy Inference System”, “Apportionment
of Credit System” and “Rule Generation Mecha-
nism” as shown in Fig.3. Fundamental operations
of FCS are as follows.
[Fuzzy Rule Base]

In the Fuzzy Rule Base, suppose there existed n
fuzzy rules. Using these rules, fuzzy reasoning is
carried out in Fuzzy Inference System.
[Fuzzy Inference System]

In the Fuzzy Inference System, senses (inputs)
are received from an environment, and fuzzy rules
which suit these senses are chosen from the Fuzzy
Rule Base. Then, fuzzy reasoning is carried out
from those rules, and actions (outputs) to the envi-
ronment are decided.
[Apportionment of Credit System]

In the Apportionment of Credit System, rewards
are provided from the environment to the FCSs for
actions which were decided in the Fuzzy Inference
System. Also, rewards are distributed to each rule
as a credit. The reward is an evaluation from the
environment for the action. In other words, it is
an evaluation for the fuzzy system. The credit is
an evaluation of each rule, and higher the rule con-
tributes to obtain the reward, higher the evaluation
of the rule increases.
[Rule Generation Mechanism]

New rules are generated based on credit cfi by
GA. A coding of one rule in this GA is done as

one individual. Therefore, each credit is given a fit-
ness of each individual. In this GA method, popula-
tion is composed of n individuals because there are
n fuzzy rules. The population in next generation
is generated base on this population by selection,
crossover and mutation.

B. Fuzzy Classifier Systems Using Hyper-Cone
Membership Functions

Conventional FCSs beforehand define member-
ship functions of each variable, and search the nec-
essary rules by GAs[11],[12]. Therefore, these meth-
ods may dependent on a membership functions
shape and the number. In this method, the Fuzzy
Rule Base consisted of fuzzy rules using hyper-cone
membership functions is introduced in the FCSs.
In this fuzzy system, it is possible to appropriately
locate fuzzy rules, because shape and location of
membership functions can be handled as parame-
ters of each fuzzy rule.

Four blocks of the proposal FCS method is con-
sidered as following.
[Fuzzy Rule Base]

There exist n fuzzy rules using hyper-cone mem-
bership functions.
[Fuzzy Inference System]

Using these rules, fuzzy reasoning with the
method described in the chapter II is carried out.
[Apportionment of Credit System]

The approach of this block is equal to the normal
method. Rewards are provided from the environ-
ment, and each rule distributes there as a credit. In
this presented method, the credit cfi of each rule is
provided following method. When there are J ac-
tions in one trial, a reward rej(j = 1, 2, . . . , J) is
given in each action. The credit cfi(i = 1, 2, . . . , n)
is an evaluation of each rule, and higher the rule
contributes to obtain the reward, higher the eval-
uation of the rule increases. Therefore, the credit
cfi(i = 1, 2, . . . , n) is given from the reward in pro-
portion to the truth value of the rule. The credit
cfi is given as follows:

cfi =
J∑

j=1

µij

gj
× rej (10)

gj =
N∑

i=1

µij (11)

where µij is the truth value of fuzzy rule Ri in rea-
soning action (output) j.
[Rule Generation Mechanism]

Next generation fuzzy rules expressed hyper-cone
membership functions are generated by GA. Ge-
netic information of fuzzy rule Ri is location and
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Fig. 5. Composition of population

shape of input and output membership function.
Therefore, parameters of hyper-cone membership
functions composed one fuzzy rule are searched by
GA.

Genetic parameters of fuzzy rule Ri are as follow
• Center coordinate ai of fuzzy subset Ai,
• Radius αi of fuzzy subset Ai,
• Center coordinate bi of fuzzy subset Bi, and
• Radius βi of fuzzy subset Bi.

These parameters are coded as one chromosome like
Fig.4. In other words, one fuzzy rule is expressed
by one chromosome, and one chromosome is one
individual. Since there are n fuzzy rules, population
is composed of n chromosomes (see Fig.5).

This method is used genetic operations based on
the simple GAs. New fuzzy systems are generated
by selection, crossover and mutation operations (see
Fig.6). The fitness of each rule is the credit value
provided to each rule. The procedure of genetic
operations is as follows:
[Step1 ] An initial population is randomly pro-

duced. Also, the fitness (the credit cfi) of each
individual (rule) is calculated.

[Step2 ] We produce the population of the next
generation the by following operation.

[Step2-1 ] In Selection, two individuals (rules) are
selected by the roulette wheel model to cross
each other.

[Step2-2 ] In Crossover, two individuals cross each
other. In this method, one point crossover
method is used.

[Step2-3 ] In Mutation, the mutation rate is con-
stant at each gene.

[Step2-4 ] We add two individuals (fuzzy rules)
generated by the above procedure to the pop-
ulation of the next generation. If the number
of individuals in the next population is n, then
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11001001110001R2
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10010010101001R3

01000010101001R1

11000111100001R2

11101010100011Rn

10011010110010R3
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Crossover
Mutation

Current Generation
(Old Fuzzy System)

Next Generation
(New Fuzzy System)

Fig. 6. Genetic operations
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Fig. 7. Model of Inverted Pendulum

we go to Step3. If the number of individuals
in the next population is under n, then we go
back to Step2-1.

[Step3 ] Carrying out the new fuzzy system (new
population), rewards are provided from the en-
vironment, and the credit cfi of each rule is
calculated. In other word, fitness values are
provided.

[Step4 ] If a prespecified stopping condition is not
satisfied, return to Step2. If this condition is
satisfied, this process ends.

IV. Application of FCS to Inverted
Pendulum Control

A. Simulation Model of Inverted Pendulum

We generated fuzzy rule for the inverted pendu-
lum system by the presented method. The inverted
pendulum is the classical non-linear control system.
Fig.7 is showed its simulation model. In this figure,
a cart is put on a rail from the center to both sides
with d [m]. The friction between the rail and the
cart and the friction of the drive system jointed pole
on the cart are disregarded. In this system, the ob-
jective is to control the translational forces in order
to position the cart at the center of finite width rail
while balancing the pole on the cart simultaneously.

The state variables of the inverted pendulum are
following

θ: The angle of pole for verticality [deg],
θ̇: The angular velocity of pole [deg/s],
x: The distance of the cart from center [m],
ẋ: The velocity of cart [m/s].

The dynamic equation for the inverted pendulum is



expressed as follow:

θ̈ =
(mc + mp)g sin θ − (F + mplθ̇

2 sin θ) cos θ{
4
3 (mc + mp) − mp cos2 θ

}
l

(12)

ẍ =
4
3 (F + mplθ̇

2 sin θ) − mpg sin θ cos θ
4
3 (mc + mp) − mp cos2 θ

(13)

where, θ̈ is the angular acceleration of the pole
[deg/s2], ẍ is the acceleration of the cart [m/s2],
and F is the force [N] added to the cart. Also, in
these equations, mc is the weight of cart [kg], mp is
the weight of the pole [kg], l is the length of the pole
[m], and g is the gravitational constant [9.8m/s2].

Each state variable is calculated with the minute
sampling period τ by the Runge-Kutta method.
Therefore, Each variable of the sampling time (k +
1)τ is expressed by Eq.(14).




θ(k + 1) = θ(k) + τ θ̇(k)
θ̇(k + 1) = θ̇(k) + τ θ̈(k)
x(k + 1) = x(k) + τẋ(k)
ẋ(k + 1) = ẋ(k) + τẍ(k)

(14)

In this computer simulation, the sampling period τ
is 0.02[s].

In generated fuzzy systems, inputs are θ, θ̇, x and
ẋ, and output is F . Therefore, this application is
four inputs and one output problem.

B. Reward Acquisition Method

The reward for the FCSs is given by evaluating
the performance of the inverted pendulum simula-
tion. In this case, if states of the inverted pendulum
satisfy one of conditions of Eq.(15), the control is
failed (the pole fell down, or the cart fell down from
the rail), and the simulation is terminated.

{ |θ| > θmax

|x| > d
(15)

Simulations from multiple initial positions are eval-
uated in order to obtain controllable fuzzy systems
from all positions. In this method, complicate eval-
uation functions are not used for system evaluation,
but a simple reward acquisition method is intro-
duced as follows:

Rewards are separately provided for the angle of
the pole and the position of the cart every each time
step. Therefore, the reward rej1 of the pole and
the reward rej2 of the cart of the time step s are
calculated as follows:

∆θ = |θj−1| − |θj | (16)

rej1 =
{

1, ∆θ ≥ 0
0, ∆θ < 0 (17)

rej2 =
{

1, |xj | ≤ td
0, |xj | > td

(18)

where td is parameter of evaluating the cart posi-
tion. The rej1 is provided reward 1 if the angle of
the pole is smaller than the time step before one.
In other words, if the angle of the pole has been
improved, it is a good action, and reward is given.
Also, The rej2 gets reward 1 if the cart is to the
position within td from the center.

The reward rej of the time step j is caluculated
by adding rej1 and rej2.

rej = w1rej1 + w2rej2 (19)

where w1 and w2 are weights, respectively. The
credit cfi of each rule is calculated by Eq.(10).

This method is a comparatively simple method,
because whether it has improved the state in the
last time step or whether it keeps the state become
criterion.

C. Simulation Result

Parameters of the inverted pendulum are set as
follow;

l = 0.5 m
mg = 1.0 kg
mp = 0.1 kg
d = 2.4 m

θmax = 12.0 deg

A chromosome representing each rule is composed
of 34 bits genes and assigned as follows: each ele-
ment (x, ẋ, θ and θ̇) of the center coordinate ai

of fuzzy subset Ai is 5 bits, the radius αi of fuzzy
subset Ai is 4 bits, the center coordinate bi (F ) of
fuzzy subset Bi is 6 bits, and the radius βi of fuzzy
subset Bi is 4 bits.

We set the number of rules (the population size)
n = 15. The crossover rate was 25%, the mutation
rate was 3.0%, and the number of generation was
10000. The credit cfi was given by evaluations of
four initial positions ((θ0, x0) = (-10.0, -1.0), (-10.0,
1.0), (10.0, -1.0) and (10.0, 1.0)). Also, td was 0.8,
and weights w1 and w2 were set for 1.0 and 0.5,
respectively.

We tried ten times for different initial popula-
tions, and obtained fuzzy rule sets. Figs.8-10 show
simulation results of fuzzy rule sets obtained by the
FCS. In these figures, Fig.8 and Fig.9 are results of
initial position using evaluating, and Fig.10 is re-
sult of another position. From these figures, our
proposed method could control the inverted pen-
dulum in such a way that the pole would not fall,
and the angle of the pole has been converged on 0.
Also, the cart skillfully approaches to the center of



-12

-9

-6

-3

0

3

6

9

12

0 5 10 15 20
[sec]

-2.4

-1.8

-1.2

-0.6

0

0.6

1.2

1.8

2.4
The Angle of Pole The Position of Cart [m][deg]

Fig. 8. Simulation result (θ0, x0) = (10.0, -1.0)

-12

-9

-6

-3

0

3

6

9

12

0 5 10 15 20
[sec]

-2.4

-1.8

-1.2

-0.6

0

0.6

1.2

1.8

2.4
The Angle of Pole The Position of Cart [m][deg]

Fig. 9. Simulation result (θ0, x0) = (10.0, 1.0)

the rail. Moreover, expect from the edges of the
rail, it was controllable from most position. This
means that 15 rules using hyper-cone membership
functions were placed for the appropriate position
in input and output spaces by FCS, and obtained
fuzzy systems are versatile systems. Therefore, the
FCS using fuzzy rules expressed hyper-cone mem-
bership functions is effective in the design of fuzzy
systems. Also, even if the reward acquisition system
is simplified, useful fuzzy systems are obtained.

V. Conclusions

In this paper, we presented an automatic gen-
eration technique for fuzzy rules using hyper-cone
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Fig. 10. Simulation result (θ0, x0) = (10.0, 1.5)

membership functions by FCS, and applied this
method to the inverted pendulum problem. Also, a
simple reward acquisition method was introduced in
this method. The simulation results using obtained
fuzzy systems by FCS showed skillful performance.

There remains problems to be solved in future.
In obtained 15 rules, overlapping rules and resem-
bled rules were included. It is necessary to improve
GA methods so that it may not become same rules.
Also, methods which can decide the rule number are
necessary. We must apply the proposed method to
other problems and confirm the usefulness of this
method.
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