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                  ABSTRACT 

A highly sensitive method for the detection of blood leakage has been 
developed, and a practical sensor system for blood concentration 
measurement has been constructed. The present method is based on the 
attenuation of laser light by blood cells. The effects of the fluctuations of 
the incident laser light power are eliminated by normalizing the 
attenuated light intensity by the incident light intensity. A part of the 
incident laser light is reflected by a beam splitter mounted at the entrance 
of the test cell, of which the power is measured to provide base data for 
normalization. The optical path is extended to enhance sensitivity by 
using a pair  of side mirrors. This  multi-reflection method is very 
effective to increase sensitivity; the maximum sensitivity obtained for 
blood concentration is about 4  x  10-6 by volume, which is significantly 
higher than that of the conventional sensors.

               1 INTRODUCTION 

Recently, high sensitivities are needed more and more in the field of 

medical electronics. One typical application is a blood leak sensing 

system used in an artificial  dialyzer® A number of sensors such as a 

temperature sensor, flow rate sensor, pressure sensor, negative pressure 

sensor and bubble sensor are used as well as a blood leak sensor in an 

artificial  dialyzer® A number of dialyzing treatments are normally 

needed in any one week for a patient suffering from a kidney disorder , 
and therefore a blood leak could potentially cause fatal damage, even



if leakage in each dialyzing treatment is a very small amount. For this 

reason numerous research projects have focused on a blood leak 
sensor.' 

 Most instruments used to detect blood are based on an optical 

non-intrusive method using an infrared ray or a visible ray from a 

semi-conductor laser or a diode. In the systems presently used for the 

dialyzing treatment, an alarm is triggered  only when blood concentra-

tion exceeds a pre-set threshold level, and even then no quantitative 

data of the total amount of blood leakage is provided. Furthermore, a 

patient's life is in danger during the treatment since the sensitivity of 
the sensor in current use is too low to detect a minor leakage. A patient 

can be released from the danger if a highly sensitive blood leak sensor 

is developed which gives a linear sensitivity with concentration in real 

time. 

 The main principle of the present method is based on the light 

attenuation theory. Laser light is attenuated by the presence of blood 

cells in the optical path in a container, and thus the measurement of 

light attenuation gives the concentration of  blood. The sensitivity and 

the accuracy may then depend on the sensitivity and the stability of the 

intensity measurement system, and on the fluctuations of the incident 

light, respectively. The sensitivity for blood detection of present ranges 

between  0-01 and  0-001 in weight (weight ratio of blood to 
solution), which is too small for recent medical appliances. 
 The purpose of this study is to propose a simple method for the 

improvement of both the sensitivity and stability of blood concentration 

measurement, without using complicated equipment to stabilize the 

laser output, and to describe the construction of a practical sensor 

system.

2 PRINCIPLE  AND METHOD

Light intensity decreases by absorption or scattering when it propagates 

in a non-transparent medium. We can then determine the concentration 

or density of the medium by measuring the light attenuation. Since the 

intensity decreases in proportion to an optical path length through the 

medium  (if the medium is homogeneous), the path length is extended 
by the multi-reflection technique, using a pair of side mirrors mounted 

on the test cell in order to enhance the sensitivity. The present 

technique is effective for a higher sensitivity, however the use of a 

narrow-beamed laser is necessary to avoid an over-enlarging beam size 

at the exit of the cell.
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 Figure 1 shows the experimental setup. Laser light from a semi-

conductor laser is divided into two beams by a beam splitter, one is a 

reflected beam and the other a transmitted beam. The reflected beam 

directly enters a light power meter  (Si) and its power is measured to 

provide the incident laser light level to be used for the normalization of 
the attenuated light. The transmitted beam enters a cell in which a test 

subject is filled and is led to a light power meter (S2) after the 
multi-reflection on a pair of side mirrors inside the cell. The attenuated 

power is measured by the meter (S2) and is divided by the power of the 
incident light given by  S1. This normalization automatically eliminates 

errors due to the unknown fluctuations in the intensity of the incident 

beam. The multi-reflection extends the optical path length and thereby 

increases the sensitivity. A semi-conductor laser with a wavelength of 

680 nm has been chosen because it is reasonably priced and is easily 

available for practical use. A physiological salt solution mixed with 

blood was used as a test subject in order to evaluate the system 
sensitivity and stability. The light attenuation of the laser was caused by 

scattering rather than by absorption, since the laser light irradiates a red 

corpuscle. 

 The principle of the method is also shown by a schematic diagram in 

Fig. 2. Although the light attenuation due to  light scattering in a weak 

solution has been discussed in detail in the  literature,'• Lambert's law 

of simple estimation of attenuation has been used, whereby the light 

decreases exponentially with the path length in the medium. That is, the 

light power  (t) at a distance (x) from the entrance is related to the 
incident light power  (4), as follows 

 /0(x)  =  Ij exp  (—ax) (1)
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                 Fig. 2. Schematic diagram of the optics. 

 where a is an  absorption  coefficient  is  depends only on the 

concentration or  the  density of the subject (n), to be measured. 
 Applying  eqn (1)  to  the present  method (see Fig. 2), the light  power, 

 (1'2)  received in  the  second sensor (S2) canbe related to the light power 
(4), receivedin  the  first sensor (Si) as follows                                     ows 

 12/11  =  (T2T  I  r°'){10(x)11J1 =  (T2r  r') exp  ap  L')rP (2) 

 where 

 L'  =  L  /  cos  6,  a  —=  a  (n) 

 were  T  and  T' are  the  transmissivities of the  beam splitter and the test 
cell glass, respectively,  r' and r are the  refiexibilities of the beam splitter 

 and the  side  mirrors in  the cell, respectively,  P is a normalized optical 
 at  length  defined by  p=  x  I  L'  ,  where x shows a total optical path 

 length. As is shown in  eqn (2), the  normalized output light power, 12/11, 
isdirectlyproportional to  10(x)/11.A logarithmic expression of  eqn (2)is 
given as 

       log  (12/11) = (log r  aL'  logioe)P  + log  (T2T  I  r'r) (3) 

An absorbance defined by log  (12/11) is thus directly proportional to  p. 
 As shown in Fig. 3, the linearity between log  (12/4) and p was  deter-

mined  experimentally.  The gradient of the straight line, log r — aL'logioe, 

 shows  an apparent absorption coefficient a'(= log raL,logioe)



Fig. 3.
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from which an absorption coefficient a can be calculated as follows 

        a  = [(log r  —  a')/(L  logioe)lil  w,2/(4)21-1/2 (4) 

The multi-reflections technique does not allow us to set the incident 

angle of the laser beam to be normal to the mirrors in order to maintain 

its consecutive reflections. This requires the term [1  w,2/(4)2]-1/2 in 
eqn (4), which compensates for its effects on a. In this setup, the value 
of p in the equation is usually larger than three and the magnitude of 

the effects of the shift is considered to be less than  3%. 

 The measured data of the light power,  ./1 and  12, are processed by a 

data processing system, shown in Fig. 4. The continuous analog signals

A / D converter 
(sampling, 
quantization)

Averaging

Display

  fg A Block diagram for the data acquisition system.



of  Il and  12 are sampled, digitized and stored in a computer where the 
operation of  /2//, is completed. Results are given in the form of curves 
after smoothing. The resolution of the data acquisition system is 12 bits 
and the sampling rate is about 800/s. One data point in the figure is 
made by averaging 50 measured data , and then requires 63  aus sampling 
time.

3 EXPERIMENTAL RESULTS  AND DISCUSSION

Before taking experimental data, measurements were made in order to 

determine the system parameters of the optical components , such as the 
transmissivity (T and T'), and the reflection coefficient, (r and r') . The 
measurements gave T =  0.93, T'  =  0.90, r  =  0.90 and r' =  0.04 . This 

gives us  VT'  IWO =  21.6, which is in good agreement with the 
experimental data obtained at p = 0 in Fig. 3. 

 First, the effects of the optical path length were investigated . 
Experiments were carried out by changing only the optical path length , 
p, keeping the concentration and laser output constant. Second, a series 
of experiments were conducted for various concentrations and laser 
outputs. Results obtained are summarized in Figs. 3 and 5. The 
normalized output light power,  /2//j, in the logarithmic scale decreases 
linearly with the no alized optical path length , p, as shown in Fig. 3, 
as well as with the concentration , n, as shown in Fig. 5. The straight
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 Fig. 6. Effect of the blood concentration, n, on the absorption coefficient, a.

lines in  Figs. 3 and 5 correspond to each concentration and normalized 

optical path length, respectively, and were obtained by the least squares 

method. It can be seen from these two figures that the normalized 

output power decreases almost exponentially with the product of the 

normalized optical path length, p, and the concentration, n. Combining 

this with eqn (2) implies that the absorption coefficient, a, is to be 
proportional to  n. 

 The absorption coefficient, a, for each concentration, n, is shown in 

Fig. 6, which is determined from the gradient of the straight lines in Fig. 

3. As seen in the figure, the absorption coefficient increases linearly 

with concentration as discussed above, and can be expressed as follows 

 a  =  cn  +  no (5) 

where c is a constant independent of concentration (n) and optical path 
length  (p). no is the absorption coefficient of the solution without blood 
and is estimated  exper°  entally to be  no  =  3.55  X  10'/mm, as seen in 
Fig. 6. The constant c can also be determined experimentally by the 
gradient of the straight line in Fig. 6 and is calculated as  36-4/(mm  x 
concentration in volume). It depends  only on the interaction between 
blood and the laser, and therefore the wavelength of the laser plays an 
° 

portant role in determining c. 
 When red laser light is used, as in this case, red corpuscles scatter the 

red light; the  constant c is mainly determined not by absorption but by 

scattering. If a blue laser is used, on the other hand, the attenuation is



caused by absorption. Combining eqn (5) with Lambert's law (eqn (2)) 
results in the following Lambert-Beer's  law' which is applicable for a 

diluted solution, as in this case 

 /2//,  =  (T21"10 exp {—(cn +  no)plArP-1 (6) 

 The sensitivity is determined in practice by dividing an increment of 

the normalized output laser power by the corresponding increment of 

the blood concentration, n, in a solution,  i.e. 

 S(p)  =-1A(12)11211Ani 

              =  ii0(12111)1(1211011  Anl= (7) 

Then the relative sensitivity K divided by S(1) gives, 

              K(p)  =  S(p)/S(1)  = p (8) 

The sensitivity for p = 1 corresponds to one of the conventional sensors. 

It is apparent that the sensitivity of the present method is p times higher 

than that of conventional sensors, although there is an advantage with 

the conventional sensors in that they do not require an expensive laser 

(an economical laser diode is quite enough for conventional sensors 
since the path length is shorter). 

 The normalized optical path length (p) can be multiplied by 
repeating the reflection on the pair of side mirrors, if necessary, to 
increase the sensitivity. However, the maximum sensitivity is limited by 
a cross sectional area of the laser beam after the multi-reflections 
because the laser beams should not overlap each other on the side 
mirrors. The maximum sensitivity can then be given by  Amax = 
where W' is a width of the side mirrors as shown in Fig. 1, and d the 
laser beam diameter. 

 The normalized output power  12/11 is completely independent of the 
fluctuations of the laser output power, as can be seen in eqns (2) and 
(3). This means that a laser can be used without any complicated 
stabilizing equipment or compensator for the light source, and is 
another distinguishing feature of the present system, in addition to its 
high sensitivity. The independence of  IA from the laser fluctuations 
has been confirmed by varying the laser output over an intentionally 
wide range. The result is shown in Fig. 7. The normalized output laser 

power is almost constant over the range of the laser output,  ///max, 
where  La, is the maximum output power of the laser. 

 The cell configuration used in this study is rectangular as shown in 
Fig. 1. However, a cylindrical cell, as shown in Fig. 8, may be more 

practical from the view point of commercial production. With this
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configuration, star-shape multi-reflections can be applied and then both 

the inlet and outlet of the laser lights can access the same window.

4 CONCLUSIONS

The sensitivity of the sensor for blood leak detection has been 
• 

proved by the use of a beam splitter and a pair of side mirrors. This o 
provement gives a few tens of times higher sensitivity than conven-

tional sensors currently on the market. Furthermore, the fluctuations of 

the laser power are completely compensated for by using a beam 

splitter.
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