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Abstract 
 

Analytic solutions for surface plasmon polaritons in a circular paraboloidal 

geometry are theoretically studied by solving the wave equation for the magnetic field 
in paraboloidal coordinates, using the quasi-separation of variables in combination with 
perturbation methods. It is found that solutions do not exist for a metallic solid 

paraboloid, but they can be obtained for a metallic hollow paraboloid in the form of 
standing waves. This paper provides the zeroth- and first-order approximate solutions of 
plasmonic modes for a metallic hollow paraboloid and graphically represents the 

zeroth-order solution in electric field-line patterns.  
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1. Introduction 
 

Electromagnetic waves excited at a metal-dielectric interface are known as surface 

plasmon polaritons (SPPs) [1]. Because of the capability of SPPs to localize and guide 
optical energy in nanoscale metal-dielectric structures, renewed interest in SPPs has 
been focused on the context of surface plasmon-based circuits [2–5], or “plasmonics,” 

which is considered to be a strong candidate for developing the intermediary technology 
of merging photonics and electronics at nanoscale dimensions [5]. The fundamental 
building blocks in such plasmonic optoelectronic circuits are subwavelength plasmonic 

waveguides [6–10], which were first explored by J. Takahara (one of the authors) and 
his co-workers in 1997 [10]. In recent years, particular attention has been paid to 
tapered metal-dielectric structures such as metallic cones [11–14] and wedges [15–19] 

for the development of tapered plasmonic waveguides capable of delivering and 
concentrating optical radiation energy at the nanoscale, namely, nanofocusing the 
optical energy [12]. Although tapered plasmonic waveguides have been examined 

analytically [20–27], numerically [27–34], and experimentally [35–37], we do not have 
sufficient data on plasmonic modes for development of tapered plasmonic waveguides, 
as expected for the actual designs, such as the effects of the tip radius and the taper 

angle, mainly because until recently, we did not have a suitable method to solve such 
data in theoretical physics.  

In conventional theoretical physics, the problem of plasmonic modes for the 

tapered plasmonic waveguides was tackled by using two analytical methods based upon 
the Fourier method of separation of variables (SOV) or the classical SOV (CSOV): the 
geometrical-optics (GO) approximation (also called the adiabatic approximation) [12, 

13, 16–18, 23–27] and the local SOV (LSOV) approximation [11, 15, 20–22]. The 
former technique is the geometrical replacement of tapered structures by an infinite 
series of infinitesimal untapered structures; it is easy to determine plasmonic modes for 

the untapered structures by means of CSOV. The latter technique is employed to solve 
the wave equation for plasmonic modes by means of CSOV locally at the apex point of 
the tapered structures. The two analytical methods are rough approximations because an 

uncountably infinite number of boundary conditions at all points on the tapered surface 
cannot be taken into account; as a result, the tip radius effect of tapered plasmonic 
waveguides, which is an important factor for actual experiments, cannot be taken into 
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account by using the two analytical methods based upon the CSOV. Recently, we 
proposed a new analytical method called the quasi-separation of variables (QSOV) [14, 
19], which is employed to determine plasmonic modes for tapered plasmonic 

waveguides. The new analytical method is an incomplete SOV and is considered to be 
an extension of the CSOV. In our previous papers [14, 19], we applied this new method 
to metallic cones [14] and wedges [19] and successfully obtained their plasmonic modes 

more accurately than ever because boundary conditions at all points on the tapered 
surface were satisfied. Many tapered metal-dielectric structures still remain to be 
investigated by using the QSOV method for tapered plasmonic modes. Thus, we can 

attain knowledge of plasmonic modes for tapered metal-dielectric structures that would 
be impossibly difficult to investigate by using the previous analytical methods based on 
the CSOV.  

In this paper, we describe a theoretical investigation of plasmonic modes in 
circular paraboloidal geometry by solving the wave equation for the magnetic field by 
means of the QSOV in combination with perturbation methods. The circular 

paraboloidal geometry is one of the geometries with a finite radius of curvature at the 
tip, which is difficult or impossible to investigate by employing the previous analytical 
methods based upon the CSOV. We observed that plasmonic modes cannot exist for the 

metallic solid paraboloid but can be obtained for the metallic hollow paraboloid as 
standing waves; this fact indicates that the circular paraboloidal geometry cannot be 
investigated by using the previous analytical methods in which only the nanofocusing 

(also called superfocusing4) can be treated approximately. Therefore, it is important to 
point out that the metallic solid paraboloid is a nonideal typical structure that can be 
used for nanofocusing, as described in [38, 39]. From the viewpoint of nanofocusing, 

the plasmonic modes for circular paraboloidal geometry are completely different from 
those for conical [14] and wedge-shaped [19] geometries; the data on the plasmonic 
modes could not be obtained without the new analytical method using QSOV. In order 

to theoretically clarify the actual nanofocusing of SPPs, which has already been 
discussed numerically [40, 41] and experimentally [42], the results of our theoretical 
study presented in this paper strongly suggest that the effects of the tip radius and the 

taper angle on the nanofocusing should be analytically examined in other geometries 
such as half two-sheet hyperboloidal geometry [43, 44] (this geometry will be studied 
by means of QSOV in detail elsewhere).  
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4 The term “superfocusing” is more general than “nanofocusing” because the former can 
be used for waves of any nature, whereas the latter is specific to the optical range in 

electromagnetic waves. 
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2. Quasi-separation of variables applied to the wave equation for a magnetic field 
 

We consider two circular paraboloidal structures: (1) a metallic circular paraboloid 

surrounded by a dielectric and (2) a dielectric circular paraboloid surrounded by metal; 
in this paper, the abovementioned structures are simply called metallic solid paraboloid 
and metallic hollow paraboloid, respectively. As shown in figure 1, the paraboloidal 

coordinate !,",#( )  can be used to describe an infinite circular paraboloid with a 
surface ! = !

0
, permittivity !

1
, and surrounded by matter with permittivity !

2
. The 

paraboloidal coordinates are related to the rectangular coordinates x, y, z( )  according 

to the following transformations [45–47]: 

 x = s !" cos#, y = s !" sin#, z =
s

2
! $"( ) , (1) 

where 0 ! " < # , 0 ! " < # , 0 ! " < 2#  and s > 0  is a scale factor. Curves of 
constant !  and !  in the cross-section of the y-z plane are shown in figure 2, where 
the y- and z-coordinates are normalized by the scale factor s. When the imaginary parts 
of the permittivities are ignored, we obtain the conditions !

1
< 0  and !

2
> 0  for the 

metallic solid paraboloid and the conditions !
1
> 0  and !

2
< 0  for the metallic 

hollow paraboloid. We consider the plasmonic modes induced by transverse magnetic 
(TM) waves, whose magnetic field H x, t( )  at time t at the point located by the 

coordinate vector x possesses only an azimuthal component of the form 

 H x, t( ) = 0,0,H! x, t( )( )  (2) 

in the paraboloidal system of coordinates. Assuming the harmonic time dependence 
e
! i" t , we describe H! x, t( )  as 

 H! x, t( ) = Re H! x( )e" i# t$% &' , (3) 

where !  is the angular frequency of interest. Substituting the H x, t( )  given by (2) 

and (3) into the vector differential equation obtained by combining the two Maxwell 
curl equations in the absence of sources (see Appendix A), we observe that H! x( )  in 

(3) has an azimuthal symmetry described by 

 H! x( ) = H! ",#( ) =
H!1 ",#( ), 0 $ # $ #

0

H!2 ",#( ), #
0
$ # < %,

&
'
(

)(
 (4) 

which satisfies the following wave equation: 
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4 !

! +"
#2

#!2
H$ j !,"( ) !%& '( +

4 "
! +"

#2

#"2
H$ j !,"( ) "%& '( + ) j

* 2

c
2
H$ j !,"( ) = 0, j = 1,2,

 (5) 

where c is the velocity of light in vacuum. Equation (5) can be described more explicitly 
as 

 

  

!

!!
!
!

!!
H" j !,#( )

"

#
$$$

%

&
''''
+
!

!#
#
!

!#
H" j !,#( )

"

#
$$$

%

&
''''

(
1

4

1

!
+
1

#

"

#
$$$

%

&
''''
H" j !,#( )+

!+ #

4
$ j s

2
k
0

2
H" j !,#( ) = 0, j =1,2,

 (6) 

where k
0
 is the wave number in vacuum defined as 

 
  

k
0

=
!

c
. (7) 

As described in our previous papers [14, 19], we aim to determine solutions of the 
following form by using the QSOV: 
 

  
H! j ",#( ) = !

j
"( )" j

#,"( ), j =1,2  (8) 

with the boundary conditions 
 

  
!

j
!
0
,"( ) =1, j =1,2  (9) 

to determine 
  
!

j
!,"( )  uniquely. By substituting (8) into (6), we obtain 

 

  

!
1

" j !( )

#

#!
!
#

#!
" j !( )

$

%
&&&

'

(
))))
+
" j s

2
k
0

2

4
!!

1

4!

$

%

&&&&

'

(

)))))

*

+

,
,
,

-

.

/
/
/
=

1

0 j #,!( )

#

##
#
#

##
0 j #,!( )

$

%
&&&

'

(
))))
+
" j s

2
k
0

2

4
#!

1

4#

$

%

&&&&

'

(

)))))

+
1

0 j #,!( )" j !( )

#

#!
!" j !( )

#

#!
0 j #,!( )

$

%
&&&

'

(
))))
+
#

#!
0 j #,!( )

$

%
&&&

'

(
))))
!
#

#!
" j !( )

*

+

,
,

-

.

/
/

1

2

333333

4

333333

5

6

333333

7

333333

, j =1,2.

 (10) 

Because the left-hand side of (10) depends on !  alone and the right-hand side depends 

on both !  and ! , both the sides must depend upon !  alone. By setting both sides 
equal to 

  
!
j
"( ) , we obtain 

 
  

1

! j !( )

"

"!
!
"

"!
! j !( )

#

$
%%%

&

'
((((
+
" j s

2
k
0

2

4
!)

1

4!

#

$

%%%%

&

'

(((((
=)# j !( ), j =1,2  (11) 

and 
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1

! j !,"( )

"

"!
!
"

"!
! j !,"( )

#

$
%%%

&

'
((((
+
# j s

2
k
0

2

4
!)

1

4!

#

$

%%%%

&

'

(((((

+
1

! j !,"( )* j "( )

"

""
"* j "( )

"

""
! j !,"( )

#

$
%%%

&

'
((((
+
"

""
! j !,"( )

#

$
%%%

&

'
((((
"
"

""
* j "( )

+

,

-
-

.

/

0
0
= $ j "( ), j =1,2.

 (12) 
Here, 

  
!
j
"( )  for 

 
j =1,2  are called quasi-separation invariants or separation quantities 

in analogy with the separation constants in the CSOV. By multiplying (11) by 

  
!

j
!( ) / !  and rearranging the terms, we obtain the following radial equations: 

 
  

!2

!! 2
" j !( )+

1

!

!

!!
" j !( )+

" j s
2
k
0

2

4
+
# j !( )

!
#

1

4! 2

$

%

&&&&

'

(

)))))
" j !( ) = 0, j =1,2 . (13) 

By multiplying (12) by 
  
!

j
!,"( )  and rearranging the terms, we obtain the following 

extended angular equations: 

 
  

!

!!
!
!

!!
" j !,"( )

#

$
%%%

&

'
((((
+
# j s

2
k
0

2

4
!)

1

4!
)$ j "( )

#

$

%%%%

&

'

(((((
" j !,"( ) =)Fj !,"( ), j =1,2  (14) 

where 

 
  

F
j
!,"( ) =

!2

!" 2
"

j
!,"( )+ 1+

2"

#
j
"( )

!

!"
#

j
"( )

$

%

&&&&

'

(

)))))

!

!"
"

j
!,"( ), j =1,2 . (15) 

We can replace (6) with (13) and (14), which satisfy the boundary conditions of (9).  

 



 10 

3. Unification of the radial equations in the two regions 
 

The radial equations (13) are separately expressed in the two different regions 
j = 1,2 . Remarkably, the equations can be transformed into a unified form that is 

independent of the regions by considering the limiting cases ! " 0 +  and ! " # . 
For ! " 0 + , because the conditions 

 
 

! j 0( )

"
#
1

4"2
!

$ j s
2
k
0

2

4
, j = 1,2 " % 0 +( )  (16) 

are acceptable, (13) can be described as 

 
  

!2

!! 2
"

j
!( )+

1

!

!

!!
"

j
!( )+

"
j
0( )

!
#

1

4! 2

$

%
&&&&

'

(

))))
"

j
!( ) = 0, j =1,2 !* 0+( ) , (17) 

in which the material terms ! j  are neglected, and therefore the different expressions in 

the regions j = 1,2  are a superfluity of equations. By setting 
 !

u
0( ) = ! j

0( ), j = 1,2  (18) 
 

  
!
u
!( ) = !

j
!( ), j =1,2 !" 0+( ) , (19) 

we describe (17) as 

 
  

!2

!! 2
"
u
!( )+

1

!

!

!!
"
u
!( )+

"
u
0( )
!
#

1

4! 2

$

%
&&&

'

(
))))
"
u
!( ) = 0 !* 0+( )  (20) 

in the unified notation for the two different regions. Equation (20) is used for 
investigating asymptotic solutions for 

  !u !( ) , as ! " 0 + . Two nontrivial linearly 

independent particular solutions to (20) are expressed by 

 
  
!
u
!( ) = H

1

(1)
2"!1/2( ), H

1

(2)
2"!1/2( ) !" 0+( )  (21) 

with the definition 

 ! = "
u
0( ) , (22) 

where H
1

(1)  and H
1

(2)  denoted Hankel functions of the first and second kinds [45], 

respectively. By taking into account the time dependence e! i" t  in (3), we observe that 

  
H
1

(1)
2!"1/2( )  and 

  
H
1

(2)
2!"1/2( )  in (21) correspond to the outgoing and incoming 

waves, respectively, for ! " #  (using this condition may appear strange for 
discussions on the condition ! " 0 + , but is very useful for characterization, as shown 
in Section 4) when !  in (22) represents a positive real number: 
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 ! > 0 . (23) 

It is important to point out that 
  
H
1

(1)
2!"1/2( ) and 

  
H
1

(2)
2!"1/2( )  in (21) do not belong 

to a class of functions that characterize the superfocusing (or nanofocusing) property. 

For ! " # , because the physical situation is considered to be similar to that for 
SPPs in planar geometry, (13) can be described with a unified notation for the two 

regions, as follows: 
 

  
!
u
!( ) = !

j
!( ), j =1,2 !"#( ) , (24) 

and this unified radial function satisfies the Sommerfeld radiation conditions [47]: 

 lim
r!"

r
#$u

#r
± ikp$u

%
&'

(
)*
= 0  (25) 

where 

 r = x
2
+ y

2
+ z

2  (26) 

and kp  denotes the wave number of SPPs in the planar geometry, expressed by [48, 

49]: 

 kp =
!

c

"
1
"
2

"
1
+ "

2

. (27) 

By using (1), (25) can be transformed into the form: 

 lim
!"#

! +$
2

2

s

%
%!

+
2

s

%
%$

± ikp
&
'(

)
*+
,u !( ) = 0  (28) 

or 

 lim
!"#

! +$
2

2

s

%
%!

± ikp
&
'(

)
*+
,u !( ) = 0 . (29) 

This equation allows us to select simple candidates for the unified radial function, as 
follows: 

 
  
!u !( ) = exp iskp! / 2( ), exp "iskp! / 2( ) !#$( ) , (30) 

which, unfortunately, do not belong to a class of solutions for (13). By carefully 
selecting candidates for (29) so that 

 
  

!u !( ) =
1

!
exp iskp! / 2( ),

1

!
exp "iskp! / 2( ) !#$( ) , (31) 

we obtain their differential equation 
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!2

!! 2
"u !( )+

1

!

!

!!
"u !( )+

s
2
kp
2

4
#

1

4! 2

$

%

&&&&

'

(

)))))
"u !( ) = 0 !*+( ) , (32) 

which can be derived from (13) by setting: 

 
  
!
j
"( ) =

s
2#

j

2

4
" "!"( )  (33) 

with 

 
  
! j = kp

2
!" jk0

2  (34) 

and by using (24). Equation (32) is regarded as the limiting equation of (13) for 

! " # . 
At this stage, we are ready to look for a unified form of (13) by following an 

inversion process of finding the limiting equations (20) and (32) as ! " 0 +  and 

! " # , respectively. A simple candidate for the unified radial equation is expressed by 

 
  

!2

!! 2
"u !( )+

1

!

!

!!
"u !( )+

s
2
kp
2

4
+
"u 0( )
!
#

1

4! 2

$

%

&&&&

'

(

)))))
"u !( ) = 0 0* !<+( ) , (35) 

which approaches (20) and (32) as ! " 0 +  and ! " # , respectively. Then, it can be 
inferred without difficulty that the more general candidate is expressed by 

 
  

!2

!! 2
"u !( )+

1

!

!

!!
"u !( )+

s
2
kp
2

4
+
"u 0( )+ A !( )

!
#

1

4! 2

$

%

&&&&

'

(

)))))
"u !( ) = 0 0* !<+( )(36) 

where A !( )  is arbitrary only if 

 lim
!"0

A !( ) = 0, lim
!"#

A !( ) / ! = 0 . (37) 

By setting 

 A !( ) = "
u
!( ) #"

u
0( ) , (38) 

we can rewrite (36) as 

 
  

!2

!! 2
"u !( )+

1

!

!

!!
"u !( )+

s
2
kp
2

4
+
"u !( )
!
#

1

4! 2

$

%

&&&&

'

(

)))))
"u !( ) = 0 0* !<+( ) , (39) 

where !
u
"( )  satisfies the condition 

 lim
!"#

$
u
!( ) / ! = 0  (40) 

from (37) and (38). By comparing (39) with (13), we find that the unification conditions 
are given by 
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!
j
"( ) = !

u
"( )+

s
2#

j

2

4
", j =1,2 0! "<"( ) , (41) 

which allows for a unified notation of the radial functions, as follows: 
 

  
!
u
!( ) = !

j
!( ), j =1,2 0" !<#( ) . (42) 

Further discussion on the unified radial equation (39) would require more detailed 
information on the unified separation quantity 

  !u "( ) , which can be determined from 

the boundary conditions.  
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4. Boundary conditions for the radial and extended angular functions 
 

In the preceding section, we showed that the original radial equations (13) are 

simplified to the unified radial equation (39) in which the unified radial function for 

! " 0 +  can be expressed by a linear combination of the outgoing wave, 
  
H
1

(1)
2!"1/2( ), 

and the incoming wave, 
  
H
1

(2)
2!"1/2( ) , as shown in (21). In this case, the unified radial 

function 
  !u !( )  is divided into an incoming part, 

  !in !( ) , and an outgoing part, 

  !out
!( ) , as follows: 

 
  !u !( ) = !

in
!( )+!

out
!( ) , (43) 

which satisfies the boundary condition 

 
  
lim
!!0+
"
in
!( ) = lim

!!0+
"
out
!( ) . (44) 

By using the asymptotic formulas [45] 

 
   
H
1

(1)
2!"1/2( )!!

i

#!"1/2
, H

1

(2)
2!"1/2( )!

i

#!"1/2
"" 0+( )  (45) 

we can select from (44) the following values: 

 
   
!
in
!( )!"iH0

H
1

(2)
2"!1/2( ), !out

!( )! iH0
H
1

(1)
2"!1/2( ) !# 0+( )  (46) 

where H
0

 denotes the complex amplitude of the magnetic field to be determined by 

the initial conditions. By substituting (46) into (43), we determine the boundary 
conditions of the unified radial function, as follows: 

 
   
!
u
!( )!

2H
0

"#!1/2
!" 0+( ) , (47) 

which has an undetermined constant ! , defined by (22), and therefore (47) is 

unsuitable for the practical applications. For (47), by setting  

 
  

!H
0

=
H
0

!
, (48) 

we obtain the practical boundary condition of the unified radial function as follows: 

 
   
!
u
!( )!

2 "H
0

"!1/2
!# 0+( ) . (49) 

It must be noted that this boundary condition is not limited to the case ! > 0  in (23), or 
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!
u
0( ) > 0  from (22); however, it can be applied to any values of !

u
0( )" #$,$( )  

because the outgoing and incoming waves for the unified radial equation (39) are 
described by using Coulomb wave functions, as shown in (140) and (141). 

In order to obtain the boundary conditions of the angular functions, the continuity of 

the radial electric field at the metal-dielectric surface ! = !
0( ) can be employed. The 

Ampére-Maxwell equation in the absence of current density allows us to describe the 

electric field as a function of the magnetic field. Because the magnetic field possesses 
only the azimuthal component with azimuthal symmetry, the electric field E x, t( )  can 

be described as 

 E x, t( ) = E! !,", t( ),E" !,", t( ),0( ) , (50) 

in which we see that  

 E! !,", t( ) = Re E! !,"( )e# i$ t%& '(  (51) 

 E! ",!, t( ) = Re E! ",!( )e# i$ t%& '(  (52) 

where 

 E! !,"( ) =
E!1 !,"( ), 0 # " # "

0

E!2 !,"( ), "
0
# " < $

%
&
'

('
 (53) 

 E! ",!( ) =
E!1 ",!( ), 0 # ! # !

0

E!2 ",!( ), !
0
# ! < $.

%
&
'

('
 (54) 

Each component of the electric field is described as 

 
  

E! j !,"( ) =
2i

# j sk0 !+ "

!

!"
H$ j !,"( ) "( ), j =1,2  (55) 

 
  

E! j ",!( ) =!
2i

# j sk0 "+ !

"

""
H$ j ",!( ) "( ), j =1,2 . (56) 

By substituting (8) into (55), and using (42), we can rewrite the radial electric field as  

 
  

E! j !,"( ) =
2i

# j sk0 !+ "
!u !( )

"

""
# j ",!( ) "( ), j =1,2 , (57) 

which is continuous at the metal-dielectric surface ! = !
0( ) . Subsequently, we obtain 

 
1

!
1

lim
"#"0 $0

%
%"

&
1
",'( ) "() *+ =

1

!
2

lim
"#"0 +0

%
%"

&
2
",'( ) "() *+  (58) 

for the boundary conditions of the angular functions.
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5. Application of perturbation methods for solving the extended angular equations 
 

According to (41) and (42), the extended angular equations (14) and (15) can be 

simplified into the following expressions: 

  

!

!!
!
!

!!
" j !,"( )

#

$
%%%

&

'
((((
+
# j s

2
k
0

2

4
!)

1

4!
)$u "( ))

s
2% j

2

4
"

#

$

%%%%

&

'

(((((
" j !,"( ) =)Fj !,"( ), j =1,2  (59) 

with 

 
  

F
j
!,"( ) =

!2

!" 2
"

j
!,"( )+ 1+

2"

#
u
"( )

!

!"
#
u
"( )

$

%

&&&&

'

(

)))))

!

!"
"

j
!,"( ), j =1,2 . (60) 

In spite of this simplification, we still face difficulty with regard to the fact that (59) and 
(60) include the as-yet-to-be-determined unified radial function 

  !u !( ). Moreover, we 

continue to face difficulty in solving such a complicated partial differential equation 

(PDE) containing first- and second-order partial derivatives with respect to !  and ! . 
In order to overcome such difficulties, let us apply perturbation methods to the extended 
angular equation (59) by placing 

  
F
j
!,"( )  on the right-hand side as a perturbing term 

because an exact solution can be obtained at the left-hand side. According to the 

perturbation theory [50], we introduce the perturbation parameter 0 ! " ! 1  into (59) 
and consider the perturbed equation 

  

!

!!
!
!

!!
" j !,"( )

#

$
%%%

&

'
((((
+
# j s

2
k
0

2

4
!)

1

4!
)$u "( ))

s
2% j

2

4
"

#

$

%%%%

&

'

(((((
" j !,"( ) =)&Fj !,"( ), j =1,2,

 (61) 

which should have a solution of the form 
 

  
!

j
!,"( ) =!

j

(0) !,"( )+ #!
j

(1) !,"( )+ #2!
j

(2) !,"( )+ """, j =1,2 . (62) 

Accordingly, !
u
"( )  and 

  !u !( ) should be described as 

 !
u
"( ) = !

u

(0) "( ) + #!
u

(1) "( ) + # 2!
u

(2) "( ) + $ $ $  (63) 
and 

 
  !u !( ) = !

u

(0) !( )+ "!
u

(1) !( )+ "2!
u

(2) !( )+ """  (64) 
respectively. For 

  !u !( ), the incoming 
  !in !( )  and the outgoing 

  !out
!( )  should be 

also described as 

 
  !in !( ) = !

in

(0) !( )+ "!
in

(1) !( )+ "2!
in

(2) !( )+ """ (65) 
and 

 
  
!
out
!( ) = !

out

(0) !( )+ "!
out

(1) !( )+ "2!
out

(2) !( )+ """ , (66) 
respectively. By substituting (62)–(64) into (61), and setting the coefficients of the 
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powers of !  equal to each other, we obtain the following system of equations for 

  
!

j

(0) !,"( ) , 
  
!

j

(1) !,"( ) , 
  
!

j

(2) !,"( ) ,…, in the power series of (62). 

Coefficient of ! 0  

  

!

!!
!
!

!!
" j

(0) !,"( )
#

$
%%%

&

'
((((
+
# j s

2
k
0

2

4
!)

1

4!
)$u

(0) "( ))
s
2% j

2

4
"

#

$

%%%%

&

'

(((((
" j

(0) !,"( ) = 0, j =1,2,  (67) 

Coefficient of ! 1  

  

!

!!
!
!

!!
" j

(1) !,"( )
#

$
%%%

&

'
((((
+
# j s

2
k
0

2

4
!)

1

4!
)$u

(0) "( ))
s
2% j

2

4
"

#

$

%%%%

&

'

(((((
" j

(1) !,"( ) =)N j

(1) !,"( ), j =1,2,

 (68) 

with the nonhomogeneous term 
 

  

N
j

(1) !,"( ) =
!2

!" 2
"

j

(0) !,"( )+ 1+
2"

#
u

(0) "( )

!

!"
#
u

(0) "( )
$

%

&&&&

'

(

)))))

!

!"
"

j

(0) !,"( )*#u
(1) "( )" j

(0) !,"( ), j =1,2,

 (69) 

Coefficient of ! 2  

  

!

!!
!
!

!!
" j

(2) !,"( )
#

$
%%%

&

'
((((
+
# j s

2
k
0

2

4
!)

1

4!
)$u

(0) "( ))
s
2% j

2

4
"

#

$

%%%%

&

'

(((((
" j

(2) !,"( ) =)N j

(2) !,"( ), j =1,2

 (70) 

with the nonhomogeneous term 

  

N
j

(2) !,"( ) =
!2

!" 2
"

j

(1) !,"( )+ 1+
2"

#
u

(0) "( )

!

!"
#
u

(0) "( )
$

%

&&&&

'

(

)))))

!

!"
"

j

(1) !,"( )

+
2"

#
u

(0) "( )

!

!"
#
u

(1) "( )
!

!"
"

j

(0) !,"( )*
2"#

u

(1) "( )

#
u

(0) "( ){ }
2

!

!"
#
u

(0) "( )
!

!"
"

j

(0) !,"( )

*#
u

(1) "( )" j

(1) !,"( )*#u
(2) "( )" j

(0) !,"( ), j =1,2,

 (71) 

etc. 
By setting ! = !

0
 in (62) and using (9), we obtain 

 
  
!

j
!
0
,"( ) =!

j

(0) !
0
,"( )+ #!

j

(1) !
0
,"( )+ #2!

j

(2) !
0
,"( )+ """=1, j =1,2 , (72) 

which leads to the following Dirichlet boundary conditions 
 

  
!

j

(0) !
0
,"( ) =1, !

j

(1) !
0
,"( ) = 0, !

j

(2) !
0
,"( ) = 0,... j =1,2  (73) 

by setting the coefficients of the powers of !  equal to each other in (72). In a similar 
manner, by substituting (62) into (58) and setting the coefficients of the powers of !  
equal to each other, we obtain the following Neumann boundary conditions: 
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1

!
1

lim
"#"0 $0

%
%"

&
1

(n) ",'( ) "() *+ =
1

!
2

lim
"#"0 +0

%
%"

&
2

(n) ",'( ) "() *+, n = 0,1,2,... . (74) 

It must be noted that imposing both the Dirichlet (73) and Neumann boundary 

conditions (74) provides the Cauchy boundary conditions [51], that is, we specify the 
values and normal derivatives of the functions 

  
!

j

(0) !,"( ) , 
  
!

j

(1) !,"( ) , 
  
!

j

(2) !,"( ) ,… in 

the power series (62) along the metal–dielectric boundary ! = !
0( ) .  

Perturbation methods should be applied to the unified radial equation (39). By 

substituting (63) and (64) into (39) and equating the coefficients of like powers of !  
on both the sides, we obtain the following system of equations for 

  !u
(0) !( ) , 

  !u
(1) !( ) , 

  !u
(2) !( ) ,…, in the power series (64). 

Coefficient of ! 0  

 
  

!2

!! 2
"u
(0) !( )+

1

!

!

!!
"u
(0) !( )+

s
2
kp
2

4
+
"u
(0) !( )
!
#

1

4! 2

$

%

&&&&

'

(

)))))
"u
(0) !( ) = 0 0* !<+( ),

 (75) 

Coefficient of ! 1  

 

  

!2

!! 2
"u
(1) !( )+

1

!

!

!!
"u
(1) !( )+

s
2
kp
2

4
+
"u
(0) !( )
!
#

1

4! 2

$

%

&&&&

'

(

)))))
"u
(1) !( )

=#
"u
(1) !( )
!
"u
(0) !( ) 0* !<+( ),

 (76) 

Coefficient of ! 2  

 

  

!2

!! 2
"u
(2) !( )+

1

!

!

!!
"u
(2) !( )+

s
2
kp
2

4
+
"u
(0) !( )
!
#

1

4! 2

$

%

&&&&

'

(

)))))
"u
(2) !( )

=#
"u
(1) !( )
!
"u
(1) !( )#

"u
(2) !( )
!
"u
(0) !( ) 0* !<+( ),

 (77) 

etc. 

By substituting (64) into (49), and setting the coefficients of the powers of !  equal 
to each other, we obtain the following Dirichlet boundary conditions: 

  
   
!
u

(0) !( )!
2 "H

0

"!1/2
!# 0+( )  (78) 

 
  !u
(1) !( ) = !

u

(2) !( ) = """= 0 !# 0+( ) . (79) 
By substituting (64), (65) and (66) into (43), and setting the coefficients of the powers 

of !  equal to each other, we obtain the following relations: 
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  !u
(n) !( ) = !

in

(n) !( )+!
out

(n) !( ), n= 0,1,2,... . (80) 

By substituting (65) and (66) into (44) and setting the coefficients of the powers of !  
equal to each other, we obtain the following Dirichlet boundary conditions: 

 
  
lim
!!0+
"
in

(n) !( ) = lim
!!0+
"
out

(n) !( ), n= 0,1,2,... . (81) 

Summing up the points we discussed in this section, we arrive at the following 

sequence of problems from which we can obtain the function sets 

!
u

(n) "( ),#
u

(n) "( ),$1

(n) %,"( ),$2

(n) %,"( ){ }  for n = 0,1,2,...  in sequence: 

 

P0

!
!"

"
!
!"

# j

(0) ",$( )
%
&'

(
)*
+

+ js
2k0

2

4
" ,

1

4"
,-u

(0) $( ) ,
s2. j

2

4
$

%

&'
(

)*
# j

(0) ",$( ) = 0, j = 1,2

# j

(0) "0 ,$( ) = 1, j = 1,2

1

+1
lim

"/"0 ,0

!
!"

#1

(0) ",$( ) "01 23 =
1

+2
lim

"/"0 +0

!
!"

#2

(0) ",$( ) "01 23

!2

!$2
4u

(0) $( ) +
1

$
!
!$

4u

(0) $( ) +
s
2
kp
2

4
+
-u
(0) $( )
$

,
1

4$2
%

&'
(

)*
4u

(0) $( ) = 0

4u

(0) $( )
$/0+
!
2 5H0

6$1/2

lim
$/0+

4in

(0) $( ) = lim
$/0+

4out

(0) $( ), 4u

(0) $( ) = 4in

(0) $( ) + 4out

(0) $( )

7

8

9
9
9
9
9
9
9

:

9
9
9
9
9
9
9

 (82) 
 

P1

!
!"

"
!
!"

# j

(1) ",$( )
%
&'

(
)*
+

+ js
2k0

2

4
" ,

1

4"
,-u

(0) $( ) ,
s2. j

2

4
$

%

&'
(

)*
# j

(1) ",$( ) = ,N j

(1) ",$( ), j = 1,2

# j

(1) "0 ,$( ) = 0, j = 1,2

1

+1
lim

"/"0 ,0

!
!"

#1

(1) ",$( ) "01 23 =
1

+2
lim

"/"0 +0

!
!"

#2

(1) ",$( ) "01 23

!2

!$2
4u

(1) $( ) +
1

$
!
!$

4u

(1) $( ) +
s
2
kp
2

4
+
-u
(0) $( )
$

,
1

4$2
%

&'
(

)*
4u

(1) $( ) = ,
-u
(1) $( )
$

4u

(0) $( )

4u

(1) $( )
$/0+

= 0

lim
$/0+

4in

(1) $( ) = lim
$/0+

4out

(1) $( ), 4u

(1) $( ) = 4in

(1) $( ) + 4out

(1) $( )

5

6

7
7
7
7
7
77

8

7
7
7
7
7
7
7

 (83) 
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P2

!
!"

"
!
!"

# j

(2) ",$( )
%
&'

(
)*
+

+ js
2k0

2

4
" ,

1

4"
,-u

(0) $( ) ,
s2. j

2

4
$

%

&'
(

)*
# j

(2) ",$( ) = ,N j

(2) ",$( ), j = 1,2

# j

(2) "0 ,$( ) = 0, j = 1,2

1

+1
lim

"/"0 ,0

!
!"

#1

(2) ",$( ) "01 23 =
1

+2
lim

"/"0 +0

!
!"

#2

(2) ",$( ) "01 23

!2

!$2
4u

(2) $( ) +
1

$
!
!$

4u

(2) $( ) +
s
2
kp
2

4
+
-u
(0) $( )
$

,
1

4$2
%

&'
(

)*
4u

(2) $( ) = ,
-u
(1) $( )
$

4u

(1) $( ) ,
-u
(2) $( )
$

4u

(0) $( )

4u

(2) $( )
$/0+

= 0

lim
$/0+

4in

(2) $( ) = lim
$/0+

4out

(2) $( ), 4u

(2) $( ) = 4in

(2) $( ) + 4out

(2) $( )

5

6

7
7
7
7
7
77

8

7
7
7
7
7
7
7

 (84) 
etc. 
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6. Zeroth-order approximate solutions for the metallic hollow paraboloid 
 
6.1 Extended angular functions of the zeroth order for the metallic hollow paraboloid 

 
The zeroth-order extended angular equations (67) can be reduced to confluent 

hypergeometric equations [45, 46, 52–54] whose solutions are expressed by several 

kinds of notations, depending upon the given parameters, such as Kummer, Whittaker, 
Coulomb wave, and parabolic cylinder functions. Selecting a suitable notation of 
confluent hypergeometric functions is important for rapidly determining the asymptotic 

behaviours of the functions for the given parameters. 
Hereafter, we use notations of metallic permittivity !

m
< 0  and dielectric 

permittivity !
d
> 0 . For the metallic hollow paraboloid, we assume !

1
= !

d
 and 

!
2
= !

m
. By substituting !

1
= !

d
 into the zeroth-order extended angular equations (67) 

for j = 1 , we obtain 

 
  

!

!!
!
!

!!
"
1

(0) !,"( )
#

$
%%%

&

'
((((
+
#
d
s
2
k
0

2

4
!)

1

4!
)$

u

(0) "( ))
s
2%

d

2

4
"

#

$
%%%%

&

'
((((
"
1

(0) !,"( ) = 0 0* !* !
0( )

 (85) 
where 

 
  
!d = kp

2
!"dk0

2 . (86) 

Equation (85) can be transformed into the following Coulomb wave equation (see 

Appendix B): 

 
  

!2

!!
d

2
Y !

d
,"( )+ 1"

2#
d
"( )

!
d

#

$
%%%%

&

'

((((
Y !

d
,"( ) = 0  (87) 

with 

 
  
!
d
"( ) =

#
u

(0) "( )+
s
2$

d

2

4
"

sk
0
%
d

1/2
 (88) 

by setting 

 
  !1

(0) !,"( ) = !
d

"1 2
Y !

d
,"( )  (89) 

where 

 
  

!
d

=
!

2
sk
0
"
d

1/2 . (90) 
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Two nontrivial linearly independent particular solutions to (87) are expressed by 
 

  
Y !

d
,"( ) = F

0
#
d
"( ),!

d( ), G
0
#
d
"( ),!

d( ) , (91) 
where F

0
 and G

0
 are the regular and the irregular Coulomb wave functions, 

respectively, with the angular momentum number being zero. Therefore, from (89) and 
(91), it is inferred that two linearly independent solutions to (85) are expressed by 
 

  
!
1

(0) !,"( ) = !
d

"1 2
F
0
#
d
"( ),!

d( ), !d
"1 2
G
0
#
d
"( ),!

d( ) . (92) 

By using equations (B.10) and (B.11), we obtain the asymptotic properties for the two 
solutions in (92), as follows:  
 

   
!
d

!1 2
F
0
"
d
#( ),!

d( )!C0
"
d
#( )( )!d

1 2 !
d
" 0( )  (93) 

 
   

!
d

!1 2
G
0
"
d
#( ),!

d( )!
1

C
0
"
d
#( )( )
!
d

!1 2 !
d
" 0( )  (94) 

where 

 C
0
!
d
"( )( ) =

2#!
d
"( )

e
2#! d "( ) $1

; (95) 

the properties are implied by (B.4). Because 
  !1

(0) !,"( )  is finite as !" 0  and 

satisfies the boundary condition 
  !1

(0) !
0
,"( ) =1  in (73), by taking into account (93) and 

(94) for the two linearly independent solutions in (92), we obtain 

 
  
!
1

(0) !,"( ) = !
0
!F

0
#
d
"( ),
!

2
sk
0
$
d

1/2
"

#
$$$

%

&
''' / F0 #d "( ),

!
0

2
sk
0
$
d

1/2
"

#
$$$

%

&
''', 0( !( !0 . (96) 

In a similar manner, by substituting !
2
= !

m
 into (67) for j = 2 , we obtain 

 

  

!

!!
!
!

!!
"
2

(0) !,"( )
#

$
%%%

&

'
((((
+
) #

m
s
2
k
0

2

4
!)

1

4!
)$

u

(0) "( ))
s
2%

m

2

4
"

#

$

%%%%

&

'

((((
"
2

(0) !,"( ) = 0 !
0
* !<+( )

 (97) 

where 

 
  
!m = kp

2
!"mk0

2 . (98) 

Equation (97) can be transformed into the following Whittaker’s equation 

 

  

!2

!!
m

2
Z !

m
,"( )+ "

1

4
+
#
m
"( )
!
m

+

1

4
"
1

2

#

$
%%%
&

'
(((

2

!
m

2

)

*

+
+
+
+
+
+

,

-

.

.

.

.

.

.

Z !
m
,"( ) = 0  (99) 

with 
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!
m
"( ) =!

#
u

(0) "( )+
s
2$

m

2

4
"

sk
0
%
m

1/2
 (100) 

by setting 

 
  !2

(0) !,"( ) = !
m

"1 2
Z !

m
,"( )  (101) 

where 

 
  
!
m

= !sk
0
"
m

1/2 . (102) 

Two nontrivial linearly independent particular solutions to (99) are expressed by 
 

  
Z !

m
,"( ) = M

#
m
"( ),1/2 !m( ), W

#
m
"( ),1/2 !m( ) , (103) 

where 
  
M
!
m
"( ),1/2  and 

  
W
!
m
"( ),1/2  denote the Whittaker functions of the first and second 

kinds, respectively, and they are defined by (B.8) and (B.7), respectively. Therefore, 

from (101) and (103), it is observed that two linearly independent solutions to (99) are 
expressed by 

 
  
!
2

(0) !,"( ) = !
m

"1 2
M
#
m
"( ),1/2 !m( ), !

m

"1 2
W
#
m
"( ),1/2 !m( ) . (104) 

By using the asymptotic formulas [53, 55, 56] 

 M! ,µ z( ) ~ ez /2z"!
# 2µ +1( )

# µ "! +
1

2

$
%&

'
()

z*+, arg z <
1

2
,$

%&
'
()

 (105) 

 W! ,µ z( ) ~ e" z /2z! z#$, arg z <
3

2
%&

'(
)
*+

, (106) 

we obtain the asymptotic properties for the two solutions in (104), as follows:  

 
   

!
m

!1 2
M
"
m
#( ),1/2 !m( )! e!m /2!

m

!1/2!"
m
#( ) 1

" 1!"
m
#( )( )

!
m
#$( )  (107) 

 
   
!
m

!1 2
W
"
m
#( ),1/2 !m( )! e!!m /2!

m

!1/2+"
m
#( )

!
m
"#( ) . (108) 

Because 
  !2

(0) !,"( )  tends to approach zero as !" #  and satisfies the boundary 
condition 

  
!
2

(0) !
0
,"( ) =1  in (73), by taking into account (107) and (108) for the two 

linearly independent solutions in (104), we obtain 

 
  
!
2

(0) !,"( ) = !
0
!W

#m "( ),1/2 !sk0 $m
1/2( ) /W#m "( ),1/2 !0sk0 $m

1/2( ), !0 " !<# . (109) 
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6.2 Characteristic equation for determining the unified separation quantity of the zeroth 

order for the metallic hollow paraboloid 

 
By substituting (96) and (109) into (58) for !

1
= !

d
 and !

2
= !

m
, we obtain 

 

  

1

2 !
d

!F
0
"
d
#( ),
$
0

2
sk
0
!
d

1/2
"

#
$$$

%

&
'''

F
0
"
d
#( ),
$
0

2
sk
0
!
d

1/2
"

#
$$$

%

&
'''

=(
1

!
m

!W
"m #( ),1/2 $0sk0 !m

1/2( )
W
"m #( ),1/2 $0sk0 !m

1/2( )
, (110) 

where we use notations of !F
L
",#( ) = $F

L
",#( ) / $#  and !W

" ,µ z( ) = #W
" ,µ z( ) / #z . 

Equation (110) is the characteristic equation for determining the zeroth-order unified 

separation quantity !
u

(0) "( )  for the metallic hollow paraboloid.  
Apparently, it is very difficult to solve (110) for !

u

(0) "( ) , analytically. In this case, 
we choose to solve it numerically. In numerical calculations, we use the dielectric 
permittivity !

d
= 1  and the metallic permittivity !

m
= "20  by assuming that the 

dielectric matter is air with a permittivity of !
d
= 1  and the metallic matter is gold with 

a permittivity of !
m
= "20.6 +1.57i  at the 750-nm wavelength [57]; the imaginary part 

of !
m

 is significantly smaller than the real part and thus can be ignored for the sake of 

simplicity.  

In (110), the scale factor s is arbitrary and remains undetermined. We set  
 s = !

0
, (111) 

where !
0
= 2"c /#( )  denotes the wavelength in vacuum. Subsequently, we obtain 

sk
0
= 2! , which can be substituted into (110).  

Figure 3 shows !
u

(0)
0( )  as a function of !

0
, which is obtained by numerically 

solving (110) for !
u

(0)
0( )  under the conditions ! = 0 , !

m
= "20 , !

d
= 1 , and 

sk
0
= 2! . In figure 3, the specific value of !

0
 for !

u

(0)
0( ) = 0  can be obtained 

analytically. By substituting ! = 0 , !
u

(0)
0( ) = 0  and sk

0
= 2!  into (110), we obtain 

 

  

1

2 !
d

!F
0
0,"#

0
!
d

1/2( )
F
0
0,"#

0
!
d

1/2( )
="

1

!
m

!W
0,1/2

2"#
0
!
m

1/2( )
W
0,1/2

2"#
0
!
m

1/2( )
, (112) 

which can be transformed into the form 

 
  

1

!
d

cot "#
0
!
d

1/2( ) =
1

!
m

 (113) 

by using the following formulas (see equation 14.6.4 of [53] and problem 19 of section 
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9 [45])  
 

  F0 0,!( ) = sin!  (114) 

 
  
W
0,1/2

z( ) =
!

z
K
1/2

z

2

!

"
###
$

%
&&&= e

'z /2 , (115) 

where K
1/2

 represents the modified Bessel function of the second kind (also called the 

Macdonald function) with the order parameter being 1 / 2 . Therefore, from (113), we 
obtain 

 
  

!
0

=
1

" #
d

cot
-1 #

d

#
m

!

"

####

$

%

&&&&&
for $u

(0)
0( ) = 0 . (116) 

From figure 3, we can easily infer that 
  !u
(0)
0( ) = 0  at 

  
!
0

= 0.429976 !!!  from (116) 
calculated for !

m
= "20  and !

d
= 1 .  

It is important to point out that the parameter 
 
!
0

 in figure 3 can be connected with 
the radius of curvature !

0
 for the circular paraboloid at the apex ( x = y = 0 , 

z = !s"
0
/ 2 ) depicted in figure 1. According to the formula for the curvature of space 

curves (for examples, see section 9.1.2-6 in [58]), we obtain 
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 (117) 

by regarding (1) as the space curve of a function for ! . By substituting (111) into (117), 
we obtain  

 !
0
=
"
0

#
0

, (118) 

which implies that the parameter 
 
!
0

 in figure 3 is equal to the radius of curvature !
0

 
divided by the wavelength in vacuum !

0
. The relationship in (118) is very useful for 

practical experiments because the right-hand side of (118) is expressed on the basis of 

experimental conditions.  
 
6.3 Approximate determination of the zeroth-order unified separation quantity based on 
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a figure-of-merit function 

 
From a practical viewpoint, it is not necessarily easy to solve the characteristic 

equation (110) for !
u

(0) "( ) , numerically. In figure 4, the solid lines indicate 
!
u

(0) "( ) #!
u

(0)
0( )  for specific values of 

  
!
0
(= "

0
/#

0
)  under the conditions !

m
= "20 , 

!
d
= 1 , and sk

0
= 2! ; the broken lines are fitting curves for the respective solid lines. It 

is noted that the solid lines in figure 4 cannot be obtained for the larger values of !  by 
employing the usual numerical methods for computing special functions, such as those 
currently used in commercial computer programs such as Mathematica (Wolfram 

Research, Inc.). For the curve fitting, taking into account the approximate behaviour of 

!
u

(0) "( )  for large values of !  (described in Appendix C), we select a figure-of-merit 
function with three parameters, p

1
, p

2
, and p

3
, expressed as follows: 

 !
u

(0) "( ) #!u
(0)
0( ) = p1 1# exp # p2 1# exp(#")( ) # p3"$% &'{ } , (119) 

which implies  

 !"u
(0)
0( ) =

d

d#
"
u

(0) #( )
#=0

= lim
#$%

"
u

(0) #( ) &"u
(0)
0( )

#
= p

1
p
2
+ p

3( ) . (120) 

In table 1, we show several values of p
1

, p
2

, and p
3

 for specific values of 

  
!
0
(= "

0
/#

0
)  obtained by fitting (119) to the solid curves shown in figure 4 (some of 

the curves are not shown in order to maintain clarity in the diagram). For the fitting to 
the solid curves for the specific values of 

  
!
0

= 0.8 , 
  
!
0

= 0.9  and 
  
!
0

=1.0 , we 

assume the two parameters, p
2

 and p
3

, to have the same values obtained for 

  
!
0

= 0.7  in table 1 because the solid curves for 
  
!
0

= 0.8 , 0.9, 1.0 are too short to be 

fitted well by (119). In table 1, we list several values of p
1
p
2
+ p

3( )  for specific values 

of 
  
!
0
(= "

0
/#

0
) , which provides the values of !"

u

(0)
0( )  as shown in (120).  

 
6.4 A unified radial function of the zeroth order for the metallic hollow paraboloid 

 

In the metallic hollow paraboloid, the zeroth-order unified separation quantity 

!
u

(0) "( )  determined by (110) is quite accurately estimated by the figure-of-merit 
function in (119). However, we cannot solve the zeroth-order unified radial equation 
(75) as an already-known differential equation. In this subsection, we demonstrate that 
(75) roughly approximates the Coulomb wave equation through transformations.  
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By using s = !
0
 in (111), we express the zeroth-order unified radial equation 

(75) as 
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By defining the modified wave number of SPPs in the planar geometry, k
mp

!( ) , as  

 k
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2

"
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"
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2
k
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4
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#
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or 
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"
, (123) 

we can express (121) as 

 

  

!
2

!! 2
"u
(0) !( )+

1

!

!

!!
"u
(0) !( )+

"
0

2
kmp !( )#
$

%
&

2

4
+
#u
(0)
0( )
!
'

1

4! 2

(

)

*
**

+
*
*
*

,

-

*
**

.
*
*
*

"u
(0) !( ) = 0 , (124) 

which can be transformed into the Coulomb wave equation if 
  
kmp !( )  is constant. We 

solve (124) under the rough approximation 
 

  
kmp !( )! kmp 0( )  (125) 

in which (124) approximates 
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where 

 
  
kmp 0( ) =

2

!
0

!
0

2
kp
2

4
+ !"u

(0)
0( ) . (127) 

from (122). The rough approximation in (125) can be numerically estimated by the 
following ratio: 

 

  

kmp !( )

kmp 0( )
=

"0
2
kp
2

4
+
p1 1! exp !p2 1! exp(!!)( )! p3!"

#
$
%{ }

!

"0
2
kp
2

4
+ p1 p2 + p3( )

, (128) 

which can be obtained from (119), (120), (122) and (127). By using the values of p
1
, 

p
2

, and p
3
 in table 1 for (128), we can create graphs of the ratio 

  
kmp !( ) / kmp 0( ) , as 

shown in figure 5. It is shown in figure 5 that (125) is better satisfied with an increasing 
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value of 
  
!
0
(= "

0
/#

0
)  and with a decreasing value of !  to zero. Numerically, (125) 

is reasonably satisfied in such a manner that 
  
kmp !( ) / kmp 0( )  at ! = 14  for !

0
= 0.1, 

0.2, 0.3, 0.5, and 1.0 are calculated to be 0.918, 0.953, 0.967, 0.979, and 0.985, 

respectively, as typical values shown in figure 5.  
The approximated differential equation (126) of the zero-order unified radial 

equation can be transformed into the following Coulomb wave equation (see Appendix 

B): 

 
!2

!" 2
X + 1#

2$
"

%

&'
(

)*
X = 0  (129) 

with 

 ! = "
#u
(0)
0( )

$
0
kmp 0( )

 (130) 

by setting 

 
  !u
(0) !( ) = ! "1/2X  (131) 

where 

 ! =
"
0
kmp 0( )

2
! . (132) 

For (129), outgoing and incoming Coulomb wave functions (see equations (B.17) and 

(B.18)) are described by 

 H
0

+ ! ,"( ) = G0
! ,"( ) + iF0 ! ,"( )  (133) 

and 

 H
0

! " ,#( ) = G0
" ,#( ) ! iF0 " ,#( ) , (134) 

respectively, where F
0

 and G
0
 denote the regular and the irregular Coulomb wave 

functions, respectively, with the angular momentum number being zero. Therefore, 
taking into account (131) together with (133) and (134), outgoing and incoming 

solutions for (126) are expressed by 
  
! !1/2H

0

+ ",!( )  and 
  
! !1/2H

0

! ",!( ) , respectively. 

For the limit ! " # , from the asymptotic formulas (B.19) and (B.20), it is inferred that  
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 (135) 
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For the limit ! " 0 + , from the asymptotic formulas (B.21) and (B.22), it is inferred 
that 
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where (132) is employed, and equation (B.4) implies 

 C
0
!( ) =

2"!

e
2"!

#1
. (139) 

Considering (81) for (137) and (138), we select 
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where 

 !!H
0
=
C
0
"( )

#
!H
0

 (142) 

is obtained by taking into account (78) and (80). Finally, by using (80) for (140) and 

(141), we obtain  
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#
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%
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'

(

))))
, (143) 

which indicates neither outgoing nor incoming waves but a standing wave with the free 
end.  

It is important to point out that the parameter !  of the irregular Coulomb wave 

function G
0
 in (143) can be studied from the viewpoint of the Sommerfeld parameter 

in Coulomb wave functions, which describes the strength of interaction between two 
charged particles for positive energy of relative motion [62]: positive and negative 
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values of the Sommerfeld parameter correspond to repulsive and attractive potentials, 
respectively, and the Sommerfeld parameter with a value of zero corresponds exactly to 

zero potential. From (130), it is inferred that ! is positive when !
u

(0)
0( ) < 0 , and it is 

negative when !
u

(0)
0( ) > 0 . The behaviour of !

u

(0)
0( )  as a function of 

  
!
0
(= "

0
/#

0
)  

for the specific condition !
m
= "20  and !

d
= 1  is shown in figure 3 in which 

!
u

(0)
0( ) = 0  is satisfied for 

  
!
0

= 0.429976  calculated from (116). For values of 

  
!
0
(= "

0
/#

0
)  smaller than 

  
!
0

= 0.429976  in figure 3, the Sommerfeld parameter !  

of Coulomb wave functions corresponds to repulsive potentials; for larger values, the 
Sommerfeld parameter !  corresponds to attractive potentials. This can be understood 

easily by employing a geometrical approach by using the relation 
  
!
0

= "
0
/#

0
 in 

(118): the Sommerfeld parameter !  of the irregular Coulomb wave function G
0
 in 

(143) corresponds to the repulsive and attractive potentials for smaller and larger radii 

of curvature, respectively, at the apex of the circular hollow paraboloid. 
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7. Non-existence of zeroth-order solutions for the metallic solid paraboloid 
 

In this section, we prove that no plasmonic modes exist for the metallic solid 

paraboloid by examining (67).  
For the metallic solid paraboloid, we can express !

1
= !

m
< 0  and !

2
= !

d
> 0 . 

By substituting !
2
= !

d
 into (67) for j = 2 , we obtain 
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 (144) 

which can be solved in the same manner as that employed in (85). Referring to (92), 
which provides two linearly independent solutions to (85), we observe that two linearly 
independent solutions to (144) are expressed by 
 

  
!
2

(0) !,"( ) = !
d

"1 2
F
0
#
d
"( ),!

d( ), !d
"1 2
G
0
#
d
"( ),!

d( ) . (145) 

By using (B.12) and (B.13), we find that the asymptotic behaviours of the two solutions 

in (145) are oscillatory, with the amplitude varying as !"1/2  for the limit of !" # ; 
this behaviour is similar to those exhibited by the outgoing and incoming solutions of 

the unified radial equation for ! " #  in (135) and (136). This clearly indicates that 
the two linearly independent solutions in (145) are unsuitable for composition of the 
zeroth-order extended angular function for 

  
!
0
! !<"  because their behaviour does 

not to localization but to propagation. Therefore, we can arrive at a very interesting 
conclusion that plasmonic modes do not exist for the metallic solid paraboloid.  
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8. First-order perturbation solutions for the metallic hollow paraboloid 
 

In this section, we consider the first-order perturbation solution for the metallic 
hollow paraboloid, by solving problem P

1
 of (83). Problem P

1
 is involved in the 

solving of nonhomogeneous ordinary differential equations (ODEs) in which 
homogeneous ODEs without nonhomogeneous terms are already solved in problem P

0
 

(82). Specific solutions to the nonhomogeneous ODEs for the unified radial and the 
extended angular functions can be obtained by using the variation of parameters and 
Green’s function methods, respectively.  

 
8.1 Extended angular functions of the first order for the metallic hollow paraboloid 

 
For P

1
 (83), we consider the first-order extended angular equation 
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under the boundary condition  
 !

j

(1) "
0
,#( ) = 0, j = 1,2 . (147) 

Generally, for the self-adjoint homogeneous differential equation 
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from chapter 10.5 in [59], it is observed that the nonhomogeneous differential equation 
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has the solution 
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with the Green’s function 
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where  u x( )  and  v x( )  represent two independent solutions of the homogenous 

differential equation (148) that satisfy the boundary conditions at  x = a  and  x = b , 
respectively, and 
  W t( ) = u t( ) !v t( )" v t( ) !u t( )  (152) 

is the Wronskian. 
For the dielectric region j = 1 , according to the Green’s function method, the 

nonhomogeneous ODE (146) under the boundary condition (147) has the solution 
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with the Green’s function 
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where, from (92), we can select 
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by taking account of  u1 0( ) = finite  and 
  v1 !0( ) = 0 . By using equation (B.14), the 

Wronskian of the pair, 
  u1 !( )  and 

  v1 !( ) , is obtained as  
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and by comparing (146) and (149), we can assume 
 

  
p
1
(!)= ! . (158) 

It follows that  
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For the dielectric region j = 2 , according to the Green’s function method, the 

nonhomogeneous ODE (146) under the boundary condition (147) has the solution 
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with the Green’s function 
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where, from (104), we can select 
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by taking account of 
  u2 !0( ) = 0  and  v2 !( ) = finite ; by using (B.9), the Wronskian 

of the pair, 
  u2 !( )  and 

  v2 !( ) , is obtained as 
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! 1"#
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$( )( )M#m $( ),1/2 !0sk0 "m

1/2( )W#m $( ),1/2 !0sk0 "m
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, (164) 

and by comparing (146) and (149), we assume 
 

  
p
2
(!)= ! . (165) 

It follows that  
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 (166) 

For numerical calculations, the scale factor s appearing in all the equations in this 
subsection is replaced with the wavelength in vacuum !

0
, as shown in (111). 

 
8.2 Determination of the unified separation quantity of the first order for the metallic 

hollow paraboloid 

 
For problem P

1
 (83), we consider the following boundary condition 
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which can be used to determine the first-order unified separation quantity !
u

(1) "( ) . By 
substituting (159) into the left-hand side of (167) and by using (B.14), we obtain  
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By substituting (166) into the right-hand side of (167) and by using (B.9), we obtain 
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By setting (168) equal to (169) according to (167), and by taking into consideration 

from (96), (109), (155), and (163) that u
1
!( ) = "

1

(0) !,#( )  and v
2
!( ) = "

2

(0) !,#( ) , we 
obtain 
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By substituting (69) into (170) and by rearranging terms, we determine for the 
first-order unified separation quantity that 
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 (171) 
 

8.3 Unified radial function of the first order for the metallic hollow paraboloid 

 
For problem P

1
 (83), here we consider the first-order unified radial equation 
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under the boundary conditions 

 !
u

(1) "( )
"#0+

= 0  (173) 
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#
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(1) !( ) = lim
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#
out

(1) !( ), #
u

(1) !( ) = #
in

(1) !( ) + #
out

(1) !( ) . (174) 

By using s = !
0
 in (111), we can rewrite (172) as 
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 (175) 
whose associated homogeneous ODE is the same as that in (121), which has already 

been solved in subsection 6.4. 
According to exercise 9.6.25 in [59], the nonhomogeneous, linear, second-order 

ODE 

 
 

d
2
y

dx
2

+ P x( )
dy

dx
+Q x( )y= F x( )  (176) 

has the solution 
 

 
y x( ) = c

1
y
1
x( )+ c

2
y
2
x( )+ y

p
x( )  (177) 

where  y1 x( ) and  y2 x( )  represent two nontrivial linearly independent solutions to the 

associated homogeneous ODE 
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d
2
y

dx
2

+ P x( )
dy

dx
+Q x( )y= 0  (178) 

and 
 
y
p
x( )  represents a particular solution expressed by 
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y
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where 
 
W y

1
s( ), y2 s( ){ }  denotes the Wronskian of  y1 s( ) and  y2 s( ) . The constants 

c
1
 and c

2
 in (177) and the lower limits of the two integrals in (179) are fixed 

according to boundary conditions. For the nonhomogeneous ODE (172), similar to how 

equation (121) is solved in subsection 6.4, by selecting 
  
!!1/2H
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0
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kmp 0( )! / 2( )  as two nontrivial linearly independent solutions, we obtain 

the Wronskian 
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by referring to (B.14). By taking into account the boundary conditions (173) and (174), 

we find that the solution is !
u

(1) "( ) = !
in

(1) "( ) + !
out

(1) "( ) , where 
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The functions !
out

(1) "( )  and !
in

(1) "( )  correspond to the outgoing and incoming waves 
for !" # , respectively. It must be noted that the solution can be simplified into the 

form 
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 (183) 
which indicates neither outgoing nor incoming waves but a standing wave with a free 
end. 
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The second-order perturbation solutions can be obtained in much the same manner 
as the first-order perturbation solutions. We do not provide the second-order solutions in 
this paper in order to reduce verbosity. It is potentially useful to indicate that the 

second-order perturbation solutions have been provided for wedge-shaped geometry 
(refer to appendices C and D in [19]). 
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9. Electric field-line representation 
 

It is very important to understand plasmonic modes not only mathematically but 

also visually. In this case where the electromagnetic field has only a φ-component of the 
magnetic field described as 

 H! ",#,t( ) = Re H! ",#( )e$ i% t&' () , (184) 

we can easily use a field-line pattern representation of the electric field, which is 
graphically simpler and more intuitively sophisticated than the field-vector pattern 

representation. 
We describe the field-line pattern representation of an electric field in detail. The 

tangent at an arbitrary point of electric field line indicates the direction of electric field 

vector E !,",t( )  at this point. This fact can be described mathematically by using a 

line vector element ds  as follows: 
 E !,",t( ) # ds = 0  (185) 
which can be simplified into the form 

 
d!

E! !,",t( ) !
#

d"

E" !,",t( ) "
= 0  (186) 

when 
 E !,",t( ) = E! !,",t( )e! + E" !,",t( )e"  (187) 
 ds = h!d!e! + h"d"e"  (188) 

where e!  and e!  denote the unit vectors to the ξ- and η-axes, respectively; h! and 
h!  denote the metric coefficients given in (A.5). For the magnetic field in (184), by 

using (50)–(56) with (111), we obtain the ξ and η components of the electric field as 
follows: 

 E! !,", t( ) = Re E! !,"( )e# i$ t%& '( =
2

) j*0k0 ! +"
+
+"

H, !,",t -
-
2$

.
/0

1
23

"
%

&
4

'

(
5 , (189) 
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By substituting (189) and (190) into (186), we obtain a differential equation 

expressed in terms of the total derivatives with respect to ξ and η as follows: 
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which can be described by the exact differential form 

 d! (",#) =
$

$"
! (",#)d" +

$

$#
! (",#)d# = 0  (192) 

with the solution 

 ! (",#) = constant , (193) 
if we set 

 ! (",#) = H$ ",#,t -
%
2&

'
()

*
+,

"# . (194) 

Because the time-varying scalar field for the electric field-line representation, denoted 

by f !,",t( ) , is proportional to the sinusoidal time dependence   e
!i!t , by taking into 

account (184) when estimating (194), we can set 

 f !,",t( ) = H# !,",t -
$
2%

&
'(

)
*+

!" . (195) 

The field-line pattern at time 
 
t = t

0
 is described by the scalar field with the contour 

 f !,",t
0( ) = C , (196) 

where C indicates the contour level. The contour interval can be controlled by the 

interval value of the contour level. The evolution of field-line patterns can be 
investigated for different moments: 
 

  
t = t

0
+ n! with n= 0,1,2,3,...  (197) 

where  !  denotes a suitable chosen duration between two neighbouring snapshots.  
For actual calculations, we rewrite (195) in a form that contains the unified radial 

function and the extended angular function. By using (184), (4), (8) and (42) for (195), 

we obtain the scalar field for the electric field-line representation as follows: 

 f !,",t( ) = Re #u !( )$ j ",!( ) !" exp %i&t + i' / 2( )() *+, j = 1,2 , (198) 

in which we actually have to use an approximate solution of the unified radial function 
and the extended angular function. The electric field-line representation becomes more 
accurate when a higher-order approximate solution is used. When the zeroth-order 

approximated solution is used in (198), the scalar field for the electric field-line 
representation becomes 
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 f
0th !,",t( ) = Re #u

(0) !( )$ j

(0) ",!( ) !" exp %i&t + i' / 2( )() *+, j = 1,2 . (199) 

The first-order approximated solution becomes  

 f 1st !,", t( ) = Re #u

(0) !( ) +#u

(1) !( ){ } $ j

(0) ",!( ) +$ j

(1) ",!( ){ } !" exp %i&t + i' / 2( )() *+ , j = 1,2.

 (200) 

In the same manner, we can express the scalar field for the electric-field-line 
representation when the second-order approximated solution is provided. 

Figure 6 shows the electric field-line patterns of the zeroth-order approximated 
plasmonic modes of the metallic hollow paraboloid for the surfaces (a) !

0
= 0.3  and 

(b) !
0
= 0.6 , calculated by using (199) with t = ! / 2" . In the calculations, we employ 

  !1
(0) !,"( ) , 

  !2

(0) !,"( ) , and 
  !u
(0) !( )  in (96), (109), and (143), respectively, with !

d
= 1 , 

!
m
= "20 , s = !

0
, 

 
!!H
0

=1 , and some specific values in table 1. The geometrical 
dimensions in figure 6 are normalized by the wavelength in vacuum, !

0
, on the 

horizontal and vertical axes. The blue and red lines in figure 6 indicate clockwise and 

counterclockwise loops, respectively, for the line of electric force. The field-patterns in 
figure 6 evolve with the behaviour of the standing waves. We select the two values of 
the parameter !

0
= "

0
/ #

0( )  in figure 6 to show the contrast between the positive and 

negative values of the Sommerfeld parameter for the irregular Coulomb wave function 
G
0
 in the zeroth-order unified radial function (143). Parts (a) and (b) in figure 6 

correspond to positive and negative values of the Sommerfeld parameter ! , 

respectively, because of the values of (a) ! = 0.3464  and (b) ! = "0.3295 , calculated 
on the basis of ! = "#u

(0)
0( ) / $0kmp 0( )  in (130) by using the specific values of !

u

(0)
0( )  

for (a) !
0
= 0.3  and (b) !

0
= 0.6  in table 1. The apparent distinction between parts (a) 

and (b) in figure 6 can be found in the behaviour of the electric field-line pattern along 
the vertical line passing through the paraboloid apex: the vertical electric field through 
the paraboloid apex is stronger for part (a) as compared to that for part (b), particularly 

around the origin of figures. This distinction can be understood from the viewpoint of 
the positive and negative values of the Sommerfeld parameter !  for the irregular 

Coulomb wave function G
0
 in (143); from (B.11) and (139), it is inferred that 
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which results in (a) 
  G0
!,0( ) =1.895  at ! = 0.3464  for !

0
= 0.3 , and (b) 

  G0
!,0( ) = 0.6382  at ! = "0.3295  for  !

0
= 0.6 ; for reference, 

  G0
!,0( ) =1  at 

! = 0 . Equation (201) indicates that 
  G0
!,0( )  rapidly increases as a function of the 

positive value of the Sommerfeld parameter ! , whereas 
  G0
!,0( )  gradually increases 

as a function of the negative value of ! ; this implies that the zeroth-order plasmonic 

modes more strongly localize at ! = 0  or the vertical line through the paraboloidal 
apex with an increasing positive value of ! . The Sommerfeld parameter !  is closely 

related to (96) in the dielectric region for ! = 0 : 
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with 

 
  
!
d
0( ) =

"
u

(0)
0( )

2#$
d

1/2
, (203) 

where we employ (111) and (88). Equation (203) shows that the Sommerfeld parameter 

  !d 0( )  for the regular Coulomb wave function F
0

 in the zeroth-order angular function 
(202) in the dielectric region is opposite in sign to the Sommerfeld parameter !  

defined as ! = "#u
(0)
0( ) / $0kmp 0( )  in (130). From (B.10) and (95), it is inferred that  

 
   
F
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d

1/2 2#!
d
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e
2#!d 0( )

!1
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By using (204) for (202), we obtain 
   !1

(0)
!,0( )! 3.154 !  as !" 0  for !

0
= 0.3  (a) 

and 
   
!
1

(0)
!,0( )!1.232 !  as !" 0  for !

0
= 0.6  (b). Equation (204) indicates that 

the value of 
  !1

(0)
!,0( ) / !  for !" 0  rapidly decreases as a function of the negative 

value of the Sommerfeld parameter 
  !d 0( ) , whereas it slowly decrease as a function of 

the positive value of 
  !d 0( ) ; this implies that the zeroth-order plasmonic modes for the 

metallic hollow paraboloid much more strongly localize around the paraboloid apex in 
the dielectric region with an decreasing negative value of 

  !d 0( ) , or equally with an 
increasing positive value of !  because of (130) and (203). Hence, the stronger electric 

field around the origin of the figures for part (a) as compared to that for part (b) can be 
attributed to the following two factors: the rapidly increasing values of the zeroth-order 
unified radial function (143) as !" 0  and the stronger localization in the dielectric 

region of the zeroth-order angular function (96) around the paraboloidal apex.  
Figure 7 shows the electric field-line pattern of the zeroth-order approximated 
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plasmonic modes of the metallic hollow paraboloid for the surface !
0
= 0.429976 ; the 

specific value of !
0
 for !

u

(0)
0( ) = 0  is calculated from (116) under the conditions 

!
m
= "20  and !

d
= 1 . The other calculation conditions for drawing figure 7 are 

identical to those in figure 6. Because !
u

(0)
0( ) = 0 , we obtain ! = 0 , 

  !d 0( ) = 0  and 

  !m 0( ) = 0  from (130), (203), and (100), respectively. By substituting ! = 0  into 

(143), we simplify the unified radial function of the zeroth order into the form 
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where we use the following formula (see equation 14.6.4 of [53]) 
 

  G0
0,!( ) = cos! . (206) 

By substituting 
  !d 0( ) = 0  into (202), and by using (114), we obtain 

 
  
!
1

(0)
!,0( ) = !

0
! sin !"#

d

1/2( ) / sin !0"#d1/2( ), 0" !" !
0 . (207) 

By substituting 
  !m 0( ) = 0  into (109) in the metallic region for ! = 0 , and then by 

using (115), we obtain 
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(0)
!,0( ) = !0 !exp " !"!0( )" #

m

1/2#
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&
'(
, !0 ) !<* . (208) 

Because equations (205), (207), and (208) are described by simple functions such as 

trigonometric and exponential functions, we can thoroughly study the electric field-line 

pattern of figure 7, calculated by using (199) with t = ! / 2" , as compared to that of 
figure 6. For ! = 0  and t = ! / 2" , the zeroth-order scalar field for the electric 
field-line representation in (199) is described from (205), (207) and (208) as  

 f
0th 0,!," / 2#( ) = 2 $$H0 !0 %

sin !"&d
1/2( ) / sin !0"&d

1/2( ), 0 ' ! ' !0

exp ( ! (!0( )" &m
1/2)

*
+
,, !0 ' ! < -,

.
/
0

10
 (209) 

which directly corresponds to the behaviour of the electric field-line pattern along the 
vertical line passing through the paraboloid apex in figure 7. Because the electric 
field-line pattern of figure 7 corresponds to the case ! = 0 , it is used as a fixed standard 

to thoroughly understand the electric field-line pattern of parts (a) and (b) in figure 6 
with ! > 0  and ! < 0 , respectively.  

In this study, we do not show the electric field-line patterns of the first-order 
approximated plasmonic modes of the metallic hollow paraboloid by using (200) 
because of some difficulties involved in numerical calculations. One of these difficulties 



 44 

lies in the impossibility of writing the first-order unified separation quantity (171) with 
elementary functions without any integrals. Another difficulty lies in the impossibility 
of numerically calculating the first-order unified separation quantity (171) for 
unrestricted values of !  by usual numerical methods for computing special functions 

such as those currently used in commercial computer programs such as Mathematica. 
Other difficulties lie in employing numerical calculus for double integration; it is a 

time-consuming and complex job for our present aim of identifying plasmonic modes in 
circular paraboloidal geometry.  
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10. Conclusions 
 

We studied plasmonic modes for circular paraboloidal geometry by solving the 

wave equation for the magnetic field in paraboloidal coordinates through the QSOV in 
combination with perturbation methods. By analytically solving the zeroth-order 
perturbation equations for unified radial and extended angular functions, we found that 

plasmonic modes are absent for the metallic solid paraboloid but present for the metallic 
hollow paraboloid in the form of standing waves and not as superfocusing waves. For 
the metallic hollow paraboloid, we showed that the unified radial function of the zeroth 

order is described by using the irregular Coulomb wave functions, and that the extended 
angular functions of the zeroth order are described by using the regular Coulomb wave 
functions and the Whittaker functions of the second kind in the dielectric and metallic 

regions, respectively. The unified radial and extended angular functions of the first 
order were obtained as analytic forms, including definite integrals, but they were not 
estimated numerically because of some difficulties involved in numerical calculations. 

By using the zeroth-order perturbed solutions, we obtained the electric field-line 
patterns of the zeroth-order approximated plasmonic modes in the metallic hollow 
paraboloid for relatively small and large radii of curvature at the paraboloid apex. The 

electric field-line patterns showed that the electric field around the paraboloid apex is 
stronger for the small radius of curvature as compared to that for the large one; this 
result was analytically studied from the mathematical viewpoint of the zeroth-order 

unified radial function and the extended angular function in the dielectric region. We 
firmly believe that the QSOV method employed for solving the wave equation is the 
optimum method to theoretically understand plasmonic modes in various tapered 

geometries.  
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Appendix A. Differential equations for the azimuthal magnetic field of transverse 
magnetic waves in a parabolic system of coordinates  
 

For the magnetic field H x ,t( )  at time t at the point located by the coordinate 

vector x, we assume a time dependence of e! i" t  and therefore describe  
 H x ,t( ) = Re H x( )exp !i" t( )#$ %& . (A.1) 

By using the two Maxwell curl equations in the absence of sources, for the magnetic 
field in (A.1) we obtain 

 ! " ! " H x( )( ) # $
%
2

c
2
H x( ) = 0 . (A.2) 

In the paraboloidal system of coordinates, we express the magnetic field H x( )  of 

transverse magnetic (TM) waves as 

 H x( ) = H! ,H" ,H#( )  (A.3) 

where 
 H! = 0, H" = 0, H# = H# !,",#( ) . (A.4) 

The metric coefficients of the paraboloidal coordinates in (1) are 

 h! =
s
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!
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By using (A.3)–(A.5), the curl of H x( )  is obtained as 
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By using (A.3)–(A.8), the curl of the curl of H x( )  equals 
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By substituting (A.9)–(A.11) into (A.2), we obtain 
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 (A.14) 
By solving the partial differential equations in (A.12) and (A.13), we obtain 

 H! ",#,!( ) " = f1 ",#( ) + g1 !,#( )  (A.15) 

 H! ",#,!( ) # = f2 ",#( ) + g2 !,"( ) , (A.16) 

respectively, where f
1
!,"( ) , f

2
!,"( ) , g1 !,"( ) , and g2 !,"( )  are arbitrary functions. 

Rewriting (A.15) and (A.16) as 

 H! ",#,!( ) =
f1 ",#( )

"
+
g1 !,#( )

"
 (A.17) 
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 H! ",#,!( ) =
f2 ",#( )

#
+
g2 !,"( )

#
, (A.18) 

respectively and by comparing the equations, we obtain 

 H! ",#,!( ) = f ",#( ) +
g !( )

"#
 (A.19) 

where f !,"( )  and g !( )  are arbitrary functions and satisfy the following relations: 
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f
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2
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"
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#
. (A.21) 

On the right-hand side of (A.19), the first term, f !,"( ) , is distinguished from the 

second term, g !( ) / "# , by the type of solutions obtained through the 
(quasi-)separation of variables. Hence, we divide solutions of H! ",#,!( )  into two 

types, as follows: 
 H! ",#,!( ) = f ",#( ) type I( )  (A.22) 

 H! ",#,!( ) =
g !( )

"#
type II( ) . (A.23) 

The solutions of type II in (A.23) are almost worthless because they do not satisfy the 

differential equation in (A.14) for any of the values of ! , except for ! = 0 . It is worth 
examining the solutions of type I in (A.22), which is independent of the azimuthal angle 
!  and therefore allows us to describe the differential equation in (A.14) in the 

simplified form 
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This is a differential equation for the azimuthal magnetic field of TM waves and is 
actually solved with the paraboloidal system of coordinates. 
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Appendix B. Some properties of Coulomb wave functions 
 

Coulomb wave functions are one of the most basic objects of particle theory in 

quantum physics; therefore, their descriptions can be found everywhere [52–54, 60–63]. 

We briefly describe the standard Coulomb wave functions F
L
!,"( )  and G

L
!,"( ) , 

which are solutions of the differential equation: 
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2
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(
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where L denotes the orbital angular momentum and !  denotes the Sommerfeld 

parameter [52, 63]. 
The Coulomb wave functions can be expressed with confluent hypergeometric 

functions. The regular Coulomb wave function F
L
!,"( )  can be expressed as [53] 

 F
L
!,"( ) = C

L
!( )"L+1e# i"M L +1# i!,2L + 2,2i"( )  (B.2) 

 C
L
!( ) = 2L e"#! /2
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$ 2L + 2( )
 (B.3) 

where the M–function is the confluent hypergeometric function of the first kind, often 
denoted by 

1
F
1
. For non-negative integer L, C

L
!( )  in (B.3) can be simplified into the 

following expression [62]: 
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The irregular Coulomb wave function G
L
!,"( )  can be expressed as [61] 

 G
L
!,"( ) = e#! /2ei $L !( )%L# /2{ }

W% i!,L+1/2 %2i"( ) % iFL !,"( )  (B.5) 

 !
L
"( ) = arg# L +1+ i"( ) , (B.6) 

where W! i",L+1/2 !2i#( )  represents the Whittaker function of the second kind, defined 

by [55]: 

 W! ,µ z( ) = e"z /2z1/2+µU
1

2
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#
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&
'(

. (B.7) 

Here the U-function is the confluent hypergeometric function of the second kind. 

Incidentally, the Whittaker function of the first kind is expressed by [55] 

 M! ,µ z( ) = e" z /2z1/2+µM
1

2
+ µ "! ,2µ +1, z

#
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&
'(

, (B.8) 
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and the Wroskian relation is [45]: 

 M! ,µ z( )
d

dz
W! ,µ z( ) "W! ,µ z( )

d

dz
M! ,µ z( ) = "

# 2µ +1( )

#
1

2
"! + µ

$
%&

'
()

, 2µ +1 * 0,"1,"2,... .

 (B.9) 

The functions F
L
!,"( )  and G

L
!,"( )  are real for real values of ! , ! > 0 , 

L ! 0  [52]. For the limit of !" 0 , they behave as [60]: 
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For the limit of !" # , they behave as [60, 62]: 
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Their Wronskian relation is [60, 62]: 

 G
L
!,"( )

d

d"
F
L
!,"( ) # FL !,"( )

d

d"
G

L
!,"( ) = 1 . (B.14) 

From equation 14.6.9 in [53], we obtain useful asymptotic formulas 

 
 

F0 !,"( ) !
1

2

"
2!

#
$%

&
'(

1/4

exp 2 2!" ) *!( ) 2! >> "( )  (B.15) 

 
 

d

d!
F0 ",!( ) !

1

2

!
2"

#
$%

&
'(

)1/4

exp 2 2"! ) *"( ) 2" >> !( ) , (B.16) 

which are used in appendix C. 

Outgoing and incoming Coulomb wave functions [63] are defined as  

 H
L

+ !,"( )= GL
!,"( )+iFL !,"( )  (B.17) 

and 

 H
L

! ",#( )= GL
",#( ) - iFL ",#( ) , (B.18) 

respectively. For the limit of !" # , they behave as 
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which are easily derived from (B.12) and (B.13). For the limit of !" 0 , they behave 

for L ! 0  as 
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which are easily derived from (B.10) and (B.11). 



 53 

Appendix C. Approximate behaviour of 
  !u
(0) "( )  in (110) for the limit of ! " #   

 
Because it is difficult to solve (110) numerically for large ! , it is very important 

to know the approximate behaviour of !
u

(0) "( )  for the limit of ! " # .  
From (B.15) and (B.16), it is inferred that 
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where !F
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",#( ) = $F
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",#( ) / $# . According to (20) of section 7 [46] and (4.4.35) of 

chapter 4 [54], we see that 
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and then 
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where !W
"# ,µ z( ) = $W

"# ,µ z( ) / $z . From (C.2) and (C.3), we see that 
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By using (C.1) and (C.4) for (110) with the limit ! " # , we obtain 
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By substituting (88) and (100) into (C.6), we obtain 
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which implies that 
  
!
u

(0) "( )  is proportional to !  for 
  
!!" . For the metallic hollow 

paraboloid, from (34), it is inferred that 
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By substituting (C.9) into (C.8), and by using (7) and (27), we obtain 
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This equation indicates that 
  !u
(0) "( )  behaves as a straight line with a slope of zero for 

  
!!" .  
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Figure Captions 
 
Figure 1. 
Geometry of a circular paraboloidal structure for the metallic solid paraboloid and the 
metallic hollow paraboloid. !

0
 is the radius of curvature for the circular paraboloidal 

structure at the apex. !
1

 and !
2

 are the permittivities inside and outside the 

paraboloid, respectively. H! ",#( )  is the magnetic field for plasmonic modes at 

paraboloidal coordinates !,",#( ) , which is directed along the φ-axis and independent 
of the azimuthal angle φ because of the azimuthal symmetry. ! = !

0
 is the equation for 

the surface of the circular paraboloidal structure. r is the distance from the origin to the 
point for the magnetic field of interest. 
 

Figure 2. 
Curves of constant !  and !  for paraboloidal coordinates in the cross-section of the 
y-z plane, calculated by (1). The curves of constant !  and !  are indicated by broken 
and solid lines, respectively.  
 
Figure 3. 
Numerical calculations of the zeroth-order unified separation quantity at ! = 0 , 
!
u

(0)
0( ) , as a function of the parameter !

0
 for the paraboloidal surface ! = !

0
 when 

! = 0 , !
m
= "20 , !

d
= 1 , and sk

0
= 2!  in (110). The specific value of !

0
 for 

!
u

(0)
0( ) = 0  is obtained as !

0
= 0.429976  from (116).  

 
Figure 4. 
Numerical calculations of the zeroth-order unified separation quantity !

u

(0) "( )  as a 
function of !  for various value of 

  
!
0
(= "

0
/#

0
)  when !

m
= "20 , !

d
= 1 , and 

sk
0
= 2!  in (110). For convenience of explanation, !

u

(0) "( ) #!
u

(0)
0( )  is indicated with 

a solid line. The broken lines are fitting curves based upon (119).  
 
Figure 5. 
Numerical calculations of the ratio 

  
kmp !( ) / kmp 0( )  in (128) as a function of !  for 

various values of 
  
!
0
(= "

0
/#

0
)  obtained by using !

m
= "20 , !

d
= 1 , and specific 
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values of p
1
, p

2
 and p

3
 in table 1.  

 
Figure 6. 
Electric field lines of the zeroth-order plasmonic mode of the metallic hollow 
paraboloid for (a) 

  
!
0
(= "

0
/#

0
)= 0.3  and (b) 0.6 , obtained using (199) at t = ! / 2" . 

In the calculations of the unified radial and the extended angular functions in (199), 
!
1
= 1  and !

2
= "20  are used. The blue and red lines indicate the clockwise and 

counterclockwise loops, respectively, of the line of electric force. The geometrical 
dimensions of the horizontal and vertical axes are normalized by the wavelength in 
vacuum !

0
.  

 
Figure 7. 
Electric field lines of the zeroth-order plasmonic mode of the metallic hollow 

paraboloid for 
  
!
0
(= "

0
/#

0
)= 0.429976 , the specific value of !

0
 for !

u

(0)
0( ) = 0  

when !
1
= 1  and !

2
= "20 . The other calculation conditions are the same as those in 

figure 6. The blue and red lines indicate the clockwise and counterclockwise loops, 
respectively, of the line of electric force. The geometrical dimensions of the horizontal 
and vertical axes are normalized by the wavelength in vacuum !

0
. 
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Table Captions 
 
Table 1. 
Values of the parameters in (119) for the specific value of 

  
!
0
(= "

0
/#

0
) . The values of 

!
u

(0)
0( )  are numerically calculated in the same manner as that employed for drawing 

the solid line in figure 3. The fitting parameters of p
1
, p

2
, and p

3
 are obtained by 

fitting the curves in figure 4. The values of p
1
p
2
+ p

3( )  equal to !"
u

(0)
0( )  in (120) are 

simply calculated from the fitting parameters just obtained. 
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