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We study how to unambiguously identify a given quantum pure state with one of the two reference pure
states when no classical knowledge on the reference states is given but a certain number of copies of each
reference quantum state are presented. By unambiguous identification, we mean that we are not allowed to
make a mistake but our measurement can produce an inconclusive result. Assuming the two reference states are
independently distributed over the whole pure state space in a unitary invariant way, we determine the optimal
mean success probability for an arbitrary number of copies of the reference states and a general dimension of
the state space. It is explicitly shown that the obtained optimal mean success probability asymptotically
approaches that of the unambiguous discrimination as the number of the copies of the reference states
increases.
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I. INTRODUCTION

In quantum mechanics one cannot perfectly clone an un-
known state �1�, which makes the problem of distinguishing
quantum states nontrivial �2,3�. Imagine we are presented
with an unknown quantum pure state � on a d-dimensional
vector space Cd. Let us assume that the input state � is guar-
anteed to be either one of two reference states �1 and �2,
each being also a pure state on Cd. Then how well can we
identify the input state with one of the two reference states?

We can consider two cases depending on what kind of
information on the reference states is available. In the first
case, it is assumed that we have complete classical knowl-
edge on the two reference states �1 and �2. This is the stan-
dard setting of quantum-state discrimination, which was
solved by Helstrom �2�.

On the other hand, we can also consider the case where
only a certain number �N� of copies of �1 and �2 are pre-
sented, with no classical knowledge on them available �4�.
See also related works in the case of qubits �5,6�. In this
case, we could obtain only limited classical information on
the reference states, since the no-cloning theorem �1� does
not allow us to increase the number of copies of the refer-
ence states. The best we can do is to perform a positive-
operator-valued measure �POVM� measurement on the total
state � � �1

�N
� �2

�N and try to identify the input state � with
one of the reference states �1 and �2. If the number of copies,
N, is infinite, the problem is reduced to quantum-state dis-
crimination, since we could always obtain complete classical
knowledge of a quantum state. In our previous paper �4�, we
called this problem “state identification” and determined the
optimal mean identification probability for an arbitrary num-
ber �N� of copies of the reference states in a general dimen-
sion d.

In the standard setting of the discrimination problem, we
are allowed to make an error and are interested in the optimal
strategy that makes the error probability minimum. On the
other hand, an error is not allowed in the problem of unam-
biguous discrimination �7–9�. Instead our measurement can
produce one of three outputs 1, 2, or 0. If the output is 1 �2�,

we are certain that the input state � is �1 ��2�, and the output
0 means that we do not know the identity of the input, which
is called an inconclusive result. The optimal strategy is the
one that minimizes the probability of the inconclusive result.

We can also generalize the unambiguous discrimination
problem to the case in which a finite number �N� of copies of
the reference states are presented without any classical infor-
mation on them, which will be called the problem of unam-
biguous state identification in this paper. Bergou and Hillery
studied this problem in the case of qubits �d=2� when the
number of copies of reference states, N=1 �10�. They called
the optimal strategy a programmable state discriminator
since the strategy is not “hard wired” but supplied by the
reference states stored in registers in the machine.

The problem of the quantum-state comparison �11,12� is
related to the state identification problem. One’s task here is
to establish whether or not two quantum systems have been
prepared in the same state. The symmetry under interchang-
ing the systems is essential in the state comparison, since the
combined system is symmetric when the two systems are in
the same state, whereas it has no definite exchange symmetry
otherwise. The exchange symmetry plays a crucial role also
in the state identification, but in a more involved way.

In this paper we study the problem of unambiguous iden-
tification of pure states for an arbitrary number N of copies
of the reference states in a general dimension d. The two
pure reference states �1 and �2 are independently distributed
over the whole state space on Cd in a unitary invariant way.
The input state � is assumed to be either one of the two
reference states with the equal probabilities. We determine
the optimal POVM and the optimal mean unambiguous iden-
tification probability, which can be explicitly shown to ap-
proach the mean unambiguous discrimination probability in
the large-N limit.

II. MEAN UNAMBIGUOUS PURE-STATE
DISCRIMINATION

In this section we average the unambiguous discrimina-
tion probability, assuming that the two reference states are
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independently distributed on Cd in a unitary-invariant way.
This mean unambiguous discrimination probability will be
later compared with the mean unambiguous identification
probability in the large-N limit.

More precisely the unitary distribution of the reference
states is specified in the following way. Expand a pure state
as ���=�i=1

d Ci�i� in terms of an orthonormal base ��i�	 of Cd.
The distribution is then defined to be the one in which the
2d-component real vector �xi=Re ci ,yi=Im ci	 is uniformly
distributed on the �2d−1�-dimensional hypersphere of radius
1 with the integration measure given by

dcdc+ 
 �
i=1

d

�dxidyi����
i

�xi
2 + yi

2� − 1 . �1�

Evidently the distribution does not depend on the choice of
the orthonormal base ��i�	.

The optimal success probability of unambiguous discrimi-
nation of two known pure states �1= ��1���1� and �2

= ��1���1� on Cd is given by �7–9�

pmax��1,�2� = 1 − ���1��2�� . �2�

We calculate the mean unambiguous discrimination probabil-
ity

pmax�d� = �pmax��1,�2�� , �3�

where �¯� means the average over �1 and �2, which are
independently distributed according to the unitary distribu-
tion defined above.

The average ����1 ��2��� can be calculated in terms of an
integration over a �2d−1�-dimensional hypersphere as

����1��2��� =
� dcdc+�c1�

� dcdc+1

, �4�

with the integration measure given by Eq. �1�.
We obtain

pmax�d� = 1 −
2d−1�d − 1�!
�2d − 1�!!

, �5�

which is certainly less than the mean discrimination prob-
ability given in �4�:

� 1

2
�1 + �1 − ���1��2��2�� =

1

2
+

d − 1

2d − 1
. �6�

III. UNAMBIGUOUS PURE-STATE IDENTIFICATION

Suppose we are given an unknown pure state � on Cd. We
know that � is either one of the two reference states �1 and �2
on Cd, with equal prior probabilities. Let us assume that we
have no classical knowledge on the reference states, but a
certain number �N� of copies of each state are available.
What is the optimal strategy to unambiguously identify the
input state with one of the reference states when the two

reference states are independently distributed over the whole
pure-state space in a unitary invariant way? And what is the
optimal mean probability of success?

We assume that the input state � is prepared in system 0
and N copies of each reference state �a �a=1,2� in systems
a1 ,a2 , . . . ,aN, which will be collectively denoted by a. We
specify the system which an operator acts on by the system
number in the parentheses; namely, ��0� means that this is an
operator acting on system 0, for example.

Our task is then to unambiguously distinguish two states
�1�0��1

�N�1��2
�N�2� and �2�0��1

�N�1��2
�N�2�. The mean suc-

cess probability of identification is given by

p�N��d� =
1

2�
a=1

2

�tr�Ea�a�0��1
�N�1��2

�N�2��� , �7�

where �E0 ,E1 ,E2	 is a POVM acting on the whole system
and �¯� represents the average over �1 and �2 defined in the
preceding section. When the outcome of the POVM is a
�=1,2�, we identify the input � with �a with certainty. Out-
come 0 of the POVM means we have an inconclusive result.
Note that the POVM should be independent of �1 and �2
since we are given no classical knowledge on them.

The average over the reference states can be easily per-
formed by the use of formula for the average of the n-fold
tensor product of an identical pure state �:

���n� =
Sn

dn
, �8�

where Sn is the projection operator onto the totally symmet-
ric subspace and dn is its dimension, dn=tr�Sn�=n+d−1Cd−1

�13�. We find

p�N��d� =
1

2dN+1dN
�tr�E1SN+1�01�SN�2��

+ tr�E2SN�1�SN+1�02��	 , �9�

where SN+1�01� is the projector onto the totally symmetric
subspace on systems �0,1�= �0,11 ,12 , . . . ,1N� and other S’s
are defined similarly.

The POVM should satisfy the following conditions:

E0,E1,E2 � 0, E0 + E1 + E2 = 1 �10�

and, for any �1 and �2,

tr�E1�2�0��1
�N�1��2

�N�2�� = 0,

tr�E2�1�0��1
�N�1��2

�N�2�� = 0, �11�

which implies no error is allowed. It is evident that the above
no-error conditions are equivalent to

E1SN�1�SN+1�02� = SN�1�SN+1�02�E1 = 0,

E2SN�2�SN+1�01� = SN�2�SN+1�01�E2 = 0. �12�

Now we observe that the set of POVM’s satisfying con-
ditions �10� and �12� is convex. Namely, if each of two
POVM’s Ea and Ea� respects conditions �10� and �12�, so
does their convex linear combination qEa+ �1−q�Ea� for any
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0�q�1. And the resulting probability, Eq. �9�, is also a
convex combination: p�qE+ �1−q�E��=qp�E�+ �1−q�p�E��
in an obvious abbreviated notation.

We exploit this convexity of the POVM to impose some
symmetries on the optimal POVM without loss of generality.
First we notice the problem is symmetric under the exchange
between systems 1 and 2. Suppose a POVM Fa is optimal.
Then another POVM Fa�, defined by

F1� = TF2T, F2� = TF1T, F0� = TF0T , �13�

is also legitimate and optimal. Here we introduced the ex-
change operator T between systems 1 and 2. Then a new
POVM Ea= 1

2 �Fa+Fa�� is also optimal and satisfies the ex-
change symmetry between systems 1 and 2,

E2 = TE1T, E0 = TE0T . �14�

The second symmetry we consider is the unitary symme-
try of the distribution of the reference states. If a POVM Fa
is optimal, another POVM defined by

U��2N+1�Fa�U+���2N+1� �a = 0,1,2� , �15�

is also legitimate and optimal for any unitary operator U. Let
us construct a POVM by

Ea =� dUU��2N+1�Fa�U+���2N+1� �a = 0,1,2� , �16�

where dU is the normalized positive-invariant measure of the
group U�d�. The new POVM Ea is clearly a legitimate opti-
mal POVM. Furthermore, since Ea commutes with U��2N+1�

for any U, we conclude that Ea is a scalar with respect to the
group U�d�. Thus we can assume that the optimal POVM
satisfies the exchange symmetry of Eqs. �14� and is scalar
with respect to the group U�d�.

By the exchange symmetry, the mean probability, Eq. �9�,
to be optimized takes the form

p�N��d� =
1

dN+1dN
tr�E1SN+1�01�SN�2�� . �17�

And the conditions E1 should satisfy are given by

E1 � 0, 1 � E1 + TE1T , �18�

and the no-error conditions

E1SN�1�SN+1�02� = SN�1�SN+1�02�E1 = 0. �19�

Finally we note that we can work in the subspace Vsym, in
which each of systems 1 and 2 is both totally symmetric.
With this in mind, we set SN�1�=SN�2�=1 hereafter.

IV. CASE OF QUBITS „d=2…

In this section we study the case of qubits �d=2�, where
the individual system can be regarded as a spin-1 /2 particle
and the problem reduces to the angular momentum recou-
pling. In the subspace Vsym, each system a �=1,2� consisting
of N spin-1 /2 particles is totally symmetric, implying the
total angular momentum of each system is j
N /2.

We can construct the total angular momentum of the
whole 2N+1 systems in two ways. First the combined sys-
tem of 0 and 1 has the angular momentum J1= j−
 j−1/2 or
J1= j+
 j+1/2. Then this intermediate angular momentum
J1 is coupled with the angular momentum j of system 2,
resulting in the total angular momentum of the whole system
J. Using the standard notation �14�, we write the resultant
eigenstate with the total angular momentum J and its z com-
ponent M as

�AJ1
;JM� 
 �� j 1

2�J1, j ;JM� �J1 = j−, j+� , �20�

where we ordered three systems as 1 � 0 � 2 on the right-
hand side. Note that the state �Aj+

;JM� is totally symmetric
in the subspace of systems 0 and 1 and the state �Aj−

;JM� is
not—that is,

SN+1�01��Aj+
;JM� = �Aj+

;JM� ,

SN+1�01��Aj−
;JM� = 0. �21�

Another coupling scheme is that systems 0 and 2 are first
coupled to the intermediate angular momentum J2. This cou-
pling scheme defines another orthonormal base in the whole
space,

�BJ2
;JM� 
 � j,� 1

2 j�J2;JM� �J2 = j+, j−� , �22�

where the three systems are ordered in the same way as in
Eq. �20�. The state �BJ2

;JM� has the following exchange
symmetries:

SN+1�02��Bj+
;JM� = �Bj+

;JM� ,

SN+1�02��Bj−
;JM� = 0. �23�

For a given set of J��2j+1/2� and M, the two bases �20�
and �22� are related by a unitary matrix, which can be taken
to be real by the standard phase convention,

�AJ1
;JM� = �

J2=j+,j−

RJ1J2

J �BJ2
;JM� , �24�

where the recoupling coefficient RJ1J2

J is expressed by the
Racah coefficient,

RJ1J2

J = ��2J1 + 1��2J2 + 1�W� j 1
2Jj ;J1J2� , �25�

and its explicit form is given by the following 2�2 orthogo-
nal matrix:
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RJ =�
J +

1

2

2j + 1

��2j + J +
3

2
�2j − J +

1

2


2j + 1

��2j + J +
3

2
�2j − J +

1

2


2j + 1
−

J +
1

2

2j + 1

� , �26�

where rows and columns are allocated in the descending or-
der of J1 and J2, respectively �14�.

Now the no-error conditions �19� imply that E1 is an op-
erator in the space spanned by �Bj−

;JM�, which is annihilated
by SN+1�02� as shown in Eq. �23�. Furthermore, E1 can be
assumed to be a U�2� scalar owing to the argument in the
preceding section. This means that E1 is diagonal with re-
spect to J and is proportional to the identity for M. Combin-
ing these two properties, we find that E1 should have the
form

E1 = �
J=1/2

2j−1/2

eJ �
M=−J

J

�Bj−
;JM��Bj−

;JM� , �27�

where coefficients eJ should be non-negative by the positiv-
ity of E1.

An upper bound is further imposed on the coefficient eJ
by the remaining condition 1�E1+TE1T in Eq. �18�. This
condition can be written as

1 � �
J=1/2

2j−1/2

eJ �
M=−J

J

��Bj−
;JM��Bj−

;JM� + �Aj−
;JM��Aj−

;JM��

= �
J=1/2

2j−1/2

eJ �
M=−J

J

�
J1,J2

�BJ1
;JM�OJ1J2

�J� �BJ2
;JM� , �28�

where the matrix OJ1J2

�J� is expressed in terms of the recou-
pling coefficients as follows:

O�J� = � �Rj−j+
J �2 Rj−j+

J Rj−j−
J

Rj−j+
J Rj−j−

J 1 + �Rj−j−
J �2 . �29�

Eigenvalues of O�J� are readily calculated and found to be
1± �Rj−j−

J �. Thus constraints on the coefficient eJ are given by

0 � eJ �
1

1 + �Rj−j−
J �

. �30�

Now it is easy to express the trace in Eq. �17� in terms of
the recoupling coefficients and eJ:

tr�E1SN+1�01�SN�2�� = �
JM

�Aj+
;JM�E1�Aj+

;JM�

= �
JM

�Rj+j−
J �2�Bj−

;JM�E1�Bj−
;JM�

= �
J=1/2

2j−1/2

�2J + 1��Rj+j−
J �2eJ. �31�

Therefore the probability, Eq. �17�, reaches its maximum
when the coefficients eJ takes its upper bound given in Eq.
�30�.

Thus the optimal mean unambiguous identification prob-
ability is given by

pmax
�N� �d = 2� =

2J + 1

2N+12N
�

J=1/2

2j−1/2 �Rj+j−
J �2

1 + �Rj−j−
J �

=
2J + 1

2N+12N
�

J=1/2

2j−1/2

�1 − �Rj−j−
J �� . �32�

We used the orthogonality of the recoupling matrix in the
above derivation. Inserting the explicit form of the recou-
pling coefficients and performing the sum in the above ex-
pression, we find a simple formula for pmax

�N� �d=2�:

pmax
�N� �d = 2� =

N

3�N + 1�
. �33�

The optimal POVM is then given by

E1 = �
J=1/2

2j−1/2
1

1 + �Rj−j−
J � �

M=−J

J

�Bj−
;JM��Bj−

;JM� ,

E2 = TE1T, E0 = 1 − E1 − E2. �34�

As N goes to infinity, pmax
�N� �d=2� approaches 1/3, which is

equal to the mean unambiguous discrimination probability
pmax�d=2� given in Eq. �5�. When N=1, on the other hand,
the optimal POVM takes the form

E1 = 2
3 �1 − S2�02��, E2 = 2

3 �1 − S2�01�� ,

E0 = 1 − E1 − E2, �35�

which reproduces the one given by Bergou and Hillery �10�
in the case of the equal prior probabilities. For a two-spin-
1 /2-particle system, the state is either symmetric �triplet
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state� or antisymmetric �singlet state�. Therefore, the optimal
POVM for N=1 can also be written as

E1 = 2
3 ���02�����02��, E2 = 2

3 ���01�����01�� , �36�

where we introduced the singlet state ���01��= ��0��1�
− �1��0�� /�2 for systems 0 and 1 and similarly ���02�� for
systems 0 and 2.

One might wonder if we really need the complicated ex-
plicit form �26� of the Racah coefficients to obtain the simple
final result of Eq. �33�. Actually we can avoid the explicit use
of Racah coefficients if we exploit the algebraic properties of
angular momentum operators. We will show it in the general
dimensional case treated in the next section.

V. CASE OF ARBITRARY DIMENSION d

In this section, we generalize the argument in the preced-
ing section to the arbitrary dimensional case. The essential
point was the intimate relation between the symmetry prop-
erties under system permutations and the angular momentum
of the combined system. The symmetry under system permu-
tations is characterized by the representation of the symmet-
ric group S2N+1. And the angular momentum specifies the
representation of SU�2�, more generally the unitary group
U�2�. Therefore, in the case of arbitrary dimension d, we
should classify the states according to representations of the
symmetric group S2N+1 and the unitary group U�d�.

Let us introduce the orthonormal base of the total space
�Cd���2N+1� according to irreducible representations of the
symmetric group S2N+1 and the unitary group U�d�. We write
states in this base as

��,a,b� . �37�

Here � represents an irreducible representation of S2N+1,
which is specified by a Young diagram. By the expression
�= ��1 ,�2 , . . . �, we denote a Young diagram consisting of a
set of rows with their lengths given by �1 ,�2 , . . .. The label a
indexes orthogonal vectors in a particular S2N+1 representa-
tion space and it runs from 1 to the dimension of the S2N+1
representation. It is known that the � also specifies irreduc-
ible representations of the unitary group U�d� and its vectors
are indexed by b, which runs from 1 to m��d�, the multiplic-
ity of representation � of S2N+1 on �Cd���2N+1� �15�.

As stated before, we can work in the subspace Vsym,
where systems 1 and 2 are both totally symmetric, SN�1�
=1 and SN�2�=1. Possible Young diagrams � appearing in
Vsym and the range of the index a associated with a particular
� can be determined by decomposing the product of three
U�d� irreducible representations �1� � �N� � �N�. We decom-
pose the space Vsym into three orthogonal subspaces Vn �n
=1,2 ,3� according to the number of rows, n, of the Young’s
diagram �see Fig. 1�.

The subspace V1 consists of totally symmetric states:

��2N + 1�,b�, b = 1, . . . ,m�2N+1��d� , �38�

where we omitted the index a, since the totally symmetric
representation of S2N+1 is one dimensional. The states in V2

belong to representations specified by Young’s diagrams of
two rows ��1 ,�2�, where N+1��1�2N and �2=2N+1
−�1. Since each of these U�d� representations appears twice
in Vsym, we distinguish the two by label a=1,2 as follows:

���1,�2�,a,b�, a = 1,2, b = 1, . . . ,m��1,�2��d� . �39�

The remaining states are those whose Young’s diagram has
three rows and span the subspace V3:

���1,�2,1�,b�, b = 1, . . . ,m��1,�2,1��d� , �40�

where N��1�2N−1 and �2=2N−�1. We do not need the
label a for these states, because each representation of this
type occurs only once in Vsym. Note that the length of the
third row is always 1.

Now let us determine a possible form of the POVM ele-
ments E1 and E2. First of all, E1 should respect the no-error
conditions, Eq. �19�. If �x� is in V1, it is clear that
SN+1�02��x�= �x�. It is also easy to see that SN+1�02��x�=0 for
�x��V3, because representations with the Young’s diagram
of three rows cannot be constructed otherwise. States in V2
for a given set of � and b can be constructed in two different
ways. We can assume the label a=1,2 for states in V2 is
chosen such that

SN+1�02����1,�2�,1,b� = 0,

SN+1�02����1,�2�,2,b� = ���1,�2�,2,b� . �41�

We should also remember that the POVM element E1 can be
chosen to be a scalar with respect to U�d�. All these facts
lead to the following form for E1:

E1 = �
�1

e��1,�2��
b

���1,�2�,1,b����1,�2�,1,b�

+ �
�1

e��1,�2,1��
b

���1,�2,1�,b����1,�2,1�,b� , �42�

where e� are some non-negative coefficients. The coefficient
e� depends only on �, and the orthonormal states
���1 ,�2� ,1 ,b� and ���1 ,�2 ,1� ,b� are complete in the space
annihilated by the projector SN+1�02�. Therefore, this E1 can
be most conveniently expressed as the following operator
form:

E1 = e�1 − SN+1�02�� ,

FIG. 1. Decomposition of the product of three U�d� irreducible
representations �1� � �N� � �N�. The decomposition leads to the
three orthogonal subspaces Vn �n=1,2 ,3� according to the number
of rows, n, of the Young’s diagram.
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e = �
�

e�	�, �43�

where 	� is the projection operator onto the U�d� represen-
tation space specified by �. Furthermore, we can express E2
as

E2 = e�1 − SN+1�01�� �44�

by the same operator e, since 	� is symmetric under the
exchange of systems 1 and 2 and we can assume E2=TE1T
owing to the conclusion in Sec. II.

Now that we have determined the possible form of E1 and
E2, we can proceed to the positivity condition of E0: namely,
1�E1+E2. This condition can be written as

1 � E1 + E2 = e�2 − SN+1�01� − SN+1�02�� = e�1 − A� ,

�45�

where we introduced an operator A in the subspace Vsym to
be

A 
 SN+1�01� + SN+1�02� − 1. �46�

It is convenient to introduce another operator, which is the
difference of the two projectors:

D 
 SN+1�01� − SN+1�02� . �47�

Note that operators A and D are diagonal with respect to �
and proportional to identity for the index b, since these op-
erators involve just permutation operators. We also observe
the relations

A2 = 1 − D2, �48�

AD + DA = 0, �49�

which can be shown by an explicit calculation using
SN+1�01�2=SN+1�01� and SN+1�02�2=SN+1�02�.

The operator A is −1 in the subspace V3, since both pro-
jectors SN+1�01� and SN+1�02� annihilate any states in V3. In
the subspace V2, two eigenvalues of A have opposite signs in
the invariant subspace associated with a given set of � and b.
This is because A and D anticommute and the operation of D
changes the sign of eigenvalue of A. Note that D does not
annihilate any state in V2. Combining these facts, we con-
clude that the positivity condition of �45� implies the follow-
ing inequality:

1

1 + �A�
� e , �50�

in subspaces V2 and V3.
Let us go back to the mean success probability, Eq. �17�,

and write it with the form of E1 given by Eq. �43�.

p�N��d� =
1

dN+1dN
tr�e�1 − SN+1�02�SN+1�01��	 , �51�

which can be further rewritten as

p�N��d� =
1

2dN+1dN
tr�e�1 − A2�� . �52�

In the above equation, we find that the subspaces V1 and
V2 have no contribution to the trace sum. And �A� in the
upper bound of e in Eq. �50� commutes with 1−A2 in the
trace. Therefore, we immediately obtain the optimal mean
success probability as follows:

p�N��d� �
1

2dN+1dN
tr� 1

1 + �A�
�1 − A2�� =

1

2dN+1dN
tr�1 − �A��


 pmax
�N� �d� . �53�

The optimal success probability is thus attained by

E1 =
1

1 + �A�
�1 − SN+1�02�� ,

E2 =
1

1 + �A�
�1 − SN+1�01�� ,

E0 =
A + �A�
1 + �A�

. �54�

Here we took e��1,�2,1�=
1
2 for simplicity, which is the maxi-

mum value allowed by Eq. �50�, though the subspace V3 does
not contribute to pmax

�N� �d�.
We must still determine eigenvalues of �A� in the subspace

V2 in order to evaluate pmax
�N� �d� further. As mentioned above,

the operator A is proportional to identity with respect to the
index b for a given particular �. Therefore, eigenvalues of A
are independent of the dimension d up to multiplicity. Thus
we can assume the dimension d is equal to 2, which allows
us to exploit the angular momentum algebra.

Assuming d=2, we introduce three sets of angular mo-
mentum operators: s�0�
 1

2��0� for system 0, j�1� for sys-
tem 1, and j�2� for system 2. In the subspace Vsym, we have
j�a�2= �N /2��N /2+1�, since the total angular momentum of
system a=1,2 is N /2. It is then easy to show that the pro-
jector SN+1�0a� can be written in terms of the angular mo-
mentum operators as follows �a=1,2�:

SN+1�0a� =
1

N + 1
�2j�a� · s�0� +

N

2
+ 1 . �55�

Using this form for the projectors, we calculate A2. After
some algebraic calculation involving the Pauli matrices and
angular momentum commutation relations, we find

A2 =
1

�N + 1�2�J2 +
1

4
 , �56�

where J=s�0�+ j�1�+ j�1� is the total angular momentum op-
erator. The eigenvalue of J2 is J�J+1� �J= 1

2 , . . . ,N+ 1
2

�,
which implies that eigenvalues of A are given by ±�J
+ 1

2
� / �N+1� with multiplicity 2J+1.
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For a general dimension d, we thus conclude that A in V2
has eigenvalues ±��1−N� / �N+1� with multiplicity m��1,�2�
��d�, since the total angular momentum J in the case of d
=2 is given by J= ��1−�2� /2=�1−N− 1

2 .
Finally we obtain the formula for the optimal success

probability:

pmax
�N� �d� =

1

dN+1dN
�

�1=N+1

2N

m��1�2��d��1 −
�1 − N

N + 1
 , �57�

where m��1,�2��d� ��2=2N+1−�1� is the multiplicity of the
S2N+1 irreducible representation ��1 ,�2� and given by �15�

m��1,�2��d� =
��1 + d − 1�!��2 + d − 2�!��1 − �2 + 1�

�d − 1�!�d − 2�!��1 + 1�!�2!
.

�58�

Let us study the asymptotic value of pmax
�N� �d� when the

number of the copies N is very large. In this case we can
replace the sum in Eq. �57� by a continuous integration with
respect to x=�1 /N−1. We find

pmax
�N� �d� → 2�d − 1��

0

1

dx�1 + x�d−2�1 − x�d−1

= 1 −
2d−1�d − 1�!
�2d − 1�!!

�N → 
� , �59�

which is equal to pmax�d� given by Eq. �5�. Thus, as ex-
pected, the unambiguous identification reduces to the unam-
biguous discrimination as the number of the copies goes to
infinity. Figure 2 displays how the unambiguous identifica-
tion probability approaches the unambiguous discrimination
probability as the number of the copies increases.

VI. CONCLUDING REMARKS

We have studied the problem of unambiguously identify-
ing the input state of a d-dimensional system with one of the
two reference states when N copies of each reference state
are presented with no classical information. We have deter-
mined the optimal mean unambiguous identification prob-
ability pmax

�N� �d� as a function of d and N.
It is interesting to compare the results in this paper and

those for the identification problem without the no-error con-
ditions, which was studied in our previous paper �4�. In both

problems the symmetry under system permutations plays an
essential role. This is also true in the state comparison stud-
ied by Barnett, Chefles, and Jex �11�, in which one’s task is
to establish whether or not two quantum systems have been
prepared in the same state. In this case the symmetry under
exchanging the two systems can characterize the optimal
POVM. In the state identification, however, we must distin-
guish the two states �1�0��1

�N�1��2
�N�2� and

�2�0��1
�N�1��2

�N�2�. Therefore, we must consider the symme-
tries with respect to partial permutations among systems 0
and 1 and among systems 0 and 2. The relevant operators are
noncommutable projection operators SN+1�01� and SN+1�02�,
which makes the optimization of the success probability
rather involved. The success probability is expressed by the
trace of the modulus of some linear combination of the sym-
metrizers SN+1�01� and SN+1�02�: D=SN+1�01�−SN+1�02� in
the case of the identification problem without the no-error
conditions and A=SN+1�01�+SN+1�02�−1 in the unambigu-
ous identification problem considered in this paper.

As for the optimal POVM, it was shown that the optimal
success probability can be attained by a projective measure-
ment in the identification problem without the no-error con-
ditions, whereas the optimal POVM obtained for the unam-
biguous identification considered here is not a projective
measurement.
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