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Abstract 

The diffusion equation complicated by a delay of a concentration flux, J, from the 

formation of a concentration gradient, ∂c/∂x, was formulated in the context of 

electrochemical measurements. In contrast with the Fick’s first law, J = -D∂c/∂x, the 

flux at a short time is known to be delayed owing to a finite propagation speed of the 

gradient, called the memory effect or the second sound for thermal diffusivity. The 

modified Fick’s law contained the second time-derivative of the concentration 

multiplied by the relaxation time, τ, additive to the conventional diffusion equation. It 

was applied to chronoamperometry. The current-time curve was smoother than that for 

the Cottrell equation. The current at a short time was almost constant owing to the 

rate-determining step of the propagation velocity, (D/τ)1/2, and then decays obeying the 

Cottrell equation. This variation was similar to the curve mixed with the Butler-Volmer 

kinetics. The relaxation time was estimated from the period during which a diffusing 

particle can recognize the concentration gradient by collision with the nearest diffusing 

particle. The propagation velocity was of the order of some cm s-1, which is similar to 

the maximum values of the measurable charge transfer rate constant. 

 

key words: diffusion, memory effect, chronoamperometry, Butler-Volmer kinetics, 

Fick’s law, second sound 
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1. Introduction 

 

    Irreversible thermodynamics has derived the Fick’s first law by balancing the force 

of the gradient of chemical potential with the frictional force which acts on the flowing 

particle in a Newtonian fluid [1]. Consequently the flux of the diffusing particle is 

proportional to the concentration gradient with a diffusion coefficient as a constant of 

the proportionality. The proportionality of the flux to the gradient is also found in a heat 

flux caused by temperature gradients with a thermal conductivity, in a momentum flux 

caused by fluid velocity gradient with a viscosity, and in an electric current caused by 

the electric field [2]. These proportionalities can be generalized in terms of a relation 

between a cause (gradient) and an effect (flux). In general, an effect is realized 

necessarily after a delay of a cause rather than a simultaneous response. However, these 

fluxes have been assumed to appear simultaneously at the onset of the gradients at an 

infinite propagation velocity [3- 5] without any delay. This unrealistic point has been 

resolved by the concept of the second sound or the memory effect in the field of heat 

transport [6- 8].  

    We consider an example of the unrealistic diffusion from the electrochemical 

viewpoint. A concentration profile of an redox active species controlled by diffusion at 

chronoamperometry is expressed by the error function, erf[x/2(Dt)1/2], where x is the 

distance from the electrode, t is the electrolysis time and D is the diffusion coefficient of 

the electroactive species [ 9 ]. It varies asymptotically [ 10 ] in the form of 

2π-1/2[(Dt)1/2/x]exp(-x2/4Dt). When one mole is generated at the electrode, one particle 

can be detected necessarily at such x and t that 1/NA = 2π-1/2[(Dt)1/2/x]exp(-x2/4Dt) is 

satisfied, where NA is the Avogadro constant. This equation yields x/(Dt)1/2 = 14.4, 

leading to the velocity x/t = 210 m s-1 of transferring the particle for x = 1 nm and D = 

10-5 cm2 s-1. The velocity is close to the value of the ideal gas (2RT/wM)1/2 = 220 m s-1 

for the species with molecular weight wM = 100 g mol-1 at 25oC. The particle collides 

with solvent molecules so many times within 1 nm (3 times of the molecular distance in 
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water) that it cannot keep the velocity 210 cm s-1. Thus it cannot reach the position of 1 

nm. This contradiction is ascribed to the assumption of the simultaneous occurrence of 

the flux with the concentration gradient. The Fick’s first law is invalid at a short time. 

The contradiction has been long discussed in the field of heat transfer, including a 

number of debates [8]. 

    We take into account in this report a delay of the flux of electrochemical diffusion 

by use of the simplest relaxation that has been developed in the field of heat transfer. 

The diffusion equation including the delay, called diffusion with memory, will be solved 

under chronoamperometric conditions. The current is predicted to show a slower decay 

than the Cottrell equation. The delayed current may be similar to the current partially 

controlled by the charge transfer reaction, and hence the participation in the memory 

effect may be mistaken for a sluggish charge transfer reaction. The degree of the 

participation will be estimated to be close to the maximum values of the reaction rate 

constant. 

 

2. Diffusion equation with memory 

 

    Classical mechanics mentions that a gradient of potential is equivalent to a force，

and hence the force of a gradient of the chemical potential of a given species acts on the 

particles to drive them at velocity v. When the particle is a sphere in radius a, it is 

subjected to the frictional force, 6πηav, in the medium of the viscosity, η, according to 

the Stokes’ law. The driven particle is accelerated until the gradient of the chemical 

potential, -grad μ, is balanced with 6πηav. Let the concentration of the particle be so 

low that the chemical potential per particle is expressed by , where 

is the standard chemical potential, is the Boltzmann constant, and is the 

standard concentration. Then the force of the one-dimensional gradient is given 

by . Letting the molar flow rate of the species be , the balance 

of the forces is given by 

)/ln( οο ccTkB+μ
ομ Bk οc

)/)(/( B xccTk ∂∂− cvJ =

 3



)/(6)/)(/( cJaxccTk μπB =∂∂−                            (1) 

Applying the Stokes-Einstein relation [1] aTkD ηπ6/B=  to Eq.(1), we obtain the 

Fick’s first law 

)/( xcDJ ∂∂−=                                         (2) 

This derivation is based on the assumption that the onset of the flux occurs 

simultaneously with the formation of the gradient. Indeed, both hand sides in Eq.(2) do 

not include any time variable explicitly, indicating the simultaneous occurrence. 

    If a gradient is an external field like gravity or electricity, a particle in the field can 

read the magnitude of the gradient without any delay and respond simultaneously to the 

gradient. The diffusing particle, in contrast, forms itself the gradient. In order to 

recognize the gradient of the diffusing particle, the particle has to collide with at least 

the closest neighboring particles (Fig.1 (a), (b)). Once it recognizes the gradient, it can 

move and gain the velocity corresponding to the gradient (Fig.1 (c)). During the 

recognition period, τ, the amount proportional to the difference, ( ) )(/ tJxcD −∂∂− is 

supplied to the flux at as an excess. The amount of the supplied flux is also 

proportional to Δt/τ. Consequently, the flux at

tt Δ+

tt Δ+ is given by 

( ) ( )[ ])(//)()( tJxcDttJttJ −∂∂−Δ+=Δ+ τ  

Expanding J(t+Δt) in the Taylor series and taking the limit of Δt → 0, we obtain the 

equation for the first order relaxation [6] 

( ) ( xcDJtJ ∂ )∂+−=∂∂ //τ                                  (3) 

where τ is the relaxation time during which the Fick’s first law (Eq.(2)) holds. 

     Equation (3) is now combined with the equation for one-dimensional continuum: 

xJtc ∂∂−=∂∂ //                                          (4) 

Carrying out differentiation of Eq.(3) with respect to x and of Eq.(4) with respect to t 

leads to 

                                    (5) 
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Eliminating J from Eq.(5) by use of Eq.(4) and (6), we obtain 

                                      (7) 
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This corresponds to the Fick’s second law containing the memory effect. 

 Equation (7) obviously tends to the Fick’s second law at τ = 0. When τ is so large 

that the second term in Eq.(7) is smaller than the first term, in contrast, Eq.(7) tends to 

02

2

2

2

=
∂
∂

−
∂
∂

x
cD

t
c

τ
                                         (8) 

 

This is a hyperbolic differential equation or a wave equation. It has a solution 

( )ττ DxtAc //sin −=                                    (9) 

which expresses a wave propagating at the velocity (D/τ)1/2. Consequently, Eq.(7) 

contains properties of both time-evolving diffusion and propagating waves. If a 

concentration distribution is uniform in Eq.(7), the concentration is given by the first 

order transient, c = A1+A2exp(-t/τ), regardless of any boundary conditions. This 

irrational behavior is a limitation of Eq.(3), as has been stated [8]. 

 

 

3. Estimation of relaxation time 

 

     The relaxation time includes not only the time of the recognition of the next 

neighboring redox particles but also a delay by inertia of the particle to gain a given 

velocity. It may also include deviation from Stokes force, 6πηav. These factors are 

discussed here. 

    The present model of the molecular motion in solution is a number of imaginary 

collisions of a redox particle with solvent molecules by transferring the distance 

between the closest neighboring solvent molecules, as is illustrated as thin arrows in 

Fig.1(a). In other words, the redox particle translates between two molecules at the 
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velocity corresponding to the thermal energy, kBT, changes the direction of the motion 

randomly by collision at a site of a solvent molecule, and follows these processes 

iteratively. The redox particle cannot recognize the concentration until it has any 

communication with other redox particles. The simplest communication is collision of 

the particle with the closest neighboring redox particles (broad arrows in Fig.1 (a)) 

rather than the solvent molecules. The lower is the concentration of the redox species, 

the lower is the probability of the collision. The collision probability may be close to the 

probability of finding a redox particle at a given point. If the redox species is in an 

aqueous solution with molar concentration, c, the probability is given by c/(1000/18). 

Letting the weight of the redox particle be m, the translational velocity by the thermal 

fluctuation is expressed by the velocity for an ideal gas, mTk /2 B . Consequently the 

average velocity of the collision between two redox particles is given by 

[ ] MB wRTcmTkcv /2)6.55/(/2)18/1000/( ==                     (10) 

where the unit of c is mol dm-3, and wM is the molar weight of the redox species. Then 

the relaxation time is expressed by 
22 )6.55/(2// cRTDwvD M==τ                                  (11) 

    The inertia of the redox particle might influence the relaxation time. The effect of 

the inertia can be represented by the kinetic energy. When a redox particle with 

molecular weight 200 (g mol-1) gains the velocity of 1 cm s-1 by the diffusion force, the 

kinetic energy is 10-5 J mol-1. This is much smaller than the thermal energy, 2.5 kJ mol-1 

at 25oC and hence the effect of the inertial can be sufficiently negligible. Another 

possible source of the delay is the deviation of the friction force from the Stokes’ law at 

high velocity. The deviation is reportedly negligible when avρ/η < 0.05 [11] for the 

density ρ of a sphere. This contribution is ca 10-10 at v = 1 cm s-1, and hence the 

deviation from Stokes’ law has no effect on τ. 

    As a result, the velocity and the relaxation time are given by Eq.(10) and (11) 

respectively. A typical value of the velocity and the relaxation time are, respectively, 

0.56 cm s-1 and 31μs for c = 1 mM, wM = 50 (g mol-1) and D = 10-5 cm2 s-1. This 
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velocity is close to a maximum value of the standard charge transfer rate constants that 

can be evaluated by fast transient electrochemical measurements, as will be discussed 

later. Lower concentration increases largely the relaxation time. For example, 

concentration 1 μM yields 31 s, which may provide extraordinary voltammetric 

behavior. Domains of v and τ for conventionally used electrochemical measurements are 

ms 19  μs 0.19  s cm  s cm -1-1 <<<< τ,3.7023.0 v                     (12) 

for 30 g mol-1 < wM < 300 g mol-1 and 0.1 mM < c < 10 mM at D = 10-5 cm2 s-1. 

 

4. Chronoamperometry 

 

 We apply Eq.(7) to chronoamperometry on the assumption that the relaxation time is 

independent of the concentration. When the potential is stepped to the 

diffusion-controlled domain so that the surface concentration becomes zero, the initial 

and boundary conditions are given by 

∞→=== xtJcc  and for    00,*                                (13) 

 for    00 == xc                                              (14) 

The current equivalent to the flux at x = 0 is given by setting x to be zero in Eq.(3) 

( ) 000 /)/( === −∂∂−=∂∂ xxx JxcDtJτ                               (15) 

The boundary condition is expressed by this differential equation with respect to t. 

Carrying out the Laplace transformation of Eq.(15) for t, we have  

 ( ) 000 / === −−= xxx JxcDJs ddτ  

or 

( ) )1/(/ 00 sxcDJ xx τ+−= == dd                                    (16) 

where the upper bar means the Laplace transformation and s is the transformed variable. 

The Laplace transform of Eq.(7) with condition (13) is given by 

( ) ( )2**2 / xcDccssccs dd2=−+−τ  

The solution of the above equation including conditions (13) and (14) is 

[ ]( )xDssscc /)1(exp1/* +−−= τ                                (17) 
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When the differentiation of Eq.(17) at x = 0, i.e., ( ) sDscxc x /)1(/ *
0 +== τdd  is 

inserted into Eq.(16), we obtain 

)1(/*
0 +−== ssDcJ x τ                                       (18) 

Carrying out the inverse Laplace transformation of [s(τs+1)]-1/2 by use of a table of the 

Laplace transformation, the current density, j ( = -FJ) is expressed by 

)2/()2/(exp// 0
* τττ ttDcFj I −=                             (19) 

where I0(z) is the modified Bessel function of the first kind with the 0-th order [12]. 

     The modified Bessel function has the asymptotic form [12]: 

[ ]Λ+++= −− 22/1
0 128/98/11)2()( zzzzz πIe  

and hence the long term variation of the current is expressed by 

( Λ+++= 22* 32/94/1// tttDcFj ττπ )                       (20) 

When τ << t, this equation tends to the Cottrell equation. In contrast, the ascending 

series of the modified Bessel function [12] 

Λ+++= 64/4/1)(I 42
0 zzz  

rewrites e-zI0(z) as 

( )( ) ΛΛΛ −+−=++−+−=− 4/314/12/1)(Ie 222
0 zzzzzzz  

Hence Eq.(19) is expressed by 

( Λ−+−= 22* 16/32/1// τττ ttDcFj )                        (21) 

The current at a very short time is a constant, τ/* DFc , determined by the propagation 

velocity, τ/D . The constancy of the current at t → 0 resolves the irrationality of the 

infinite current at t → 0 for the Cottrell equation. Figure 2 shows variation of the 

dimensionless chronoamperometric curve for Eq.(19) by use of the approximate 

equation for I0(z) [12]. The current for t /τ < 0.53 is less than the Cottrell current owing 

to the finite propagation velocity. The suppressed current is retrieved for 0.53 < t/τ < 0.7. 

The current for 0.61 < t/τ is regarded as the Cottrell current within 5 % errors.  

    Figure 3 shows the dimensionless plot of the current against t-1/2 (Cottrell plot) 

computed from Eq.(19). There are three domains of showing approximate linearity, the 

proportionality for (τ /t)1/2 < 0.3, linearity with a negative intercept for 0.5 < (τ /t)1/2 < 
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1.0, and linearity with a positive intercept for 1.5 < (τ /t)1/2. The plot for a long time ( τ 

/t)1/2 < 0.3) is the same as the Cottrell variation, and the slope of j vs. t-1/2 gives 

Fc*(D/π)1/2. The current in the middle domain is larger than the Cottrell values owing to 

the higher terms in Eq.(20). Observed linearity depends on a selected time domain. 

    It is interesting to see concentration profiles especially in the light of the wave 

propagation. Unfortunately, there is no simple expression for inverse Laplace transform 

of Eq.(17). We derived the inverse Laplace transform approximately in Appendix 1 and 

obtained the approximate equation for small values of x2/Dτ: 

( ) ( ττττ DxtDxcc Dx // U2/Ie1/ 0
2/* −−≈ − )    for small x2/Dt   (22) 

where U(x) is a step function (U = 0 for x < 0, U = 1 for x > 0). Figure 4 shows 

concentration profiles for t /τ = (a1) 0.3 and (b1) 3.0 calculated from Eq.(22), exhibiting 

the stepwise variations of the concentration. The dimensionless distances, x(Dτ)-1/2, of 

the step from the electrode are 0.3 and 3.0 for curve (a1) and (b1), respectively. These 

profiles are quite different from those of Cottrell current, expressed by c/c* = 

erf[x/2(Dt)1/2], as shown in (a2) and (b2). In order to support the validity of the 

concentration profiles, we obtained the numerical solution of the boundary value 

problem by mean of the explicitly finite difference method. The technique is described 

briefly in Appendix 2. The computed values are plotted in Fig.4, confirming the 

variation of Eq.(22).  

    The current at a short time in Fig.2 is smaller than the Cottrell current. 

Conventionally, small deviation from the Cottrell current has been ascribed to sluggish 

charge transfer kinetics. As an example of the charge transfer kinetics, we use here the 

irreversible charge transfer rate of one-electron obeying the Butler-Volmer equation: 

( ) ( )RTEEFkcFj o
sx /)(exp/ 0 −= = α                              (23) 

where α is the anodic transfer coefficient, and ks is the standard charge transfer rate 

constant. Eliminating the surface concentration in Eq.(23) by use of solution of the 

diffusion equation, , we have [22 // xcDtc ∂∂=∂∂ 13] 

( )zzDFcj λλλτ erfc )exp(/)/( 2* =                             (24) 
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where 

( ) DRTEEFk o
s //)(exp ταλ −=                                (25) 

Variations of Eq.(24) are shown in Fig.2 (c)-(e) for some values of λ. Since the Taylor 

expansion of Eq.(24) has the form Λ+− τλλ π/2 t , the current density decays from λ  

with the t1/2-dependence. The variation of Eq.(24) is similar to that for the memory 

effect in that the current decreases from a constant value. It may not easy to discern real 

chronoamperometric curves with the Butler-Volmer kinetics from those for the memory 

effect. If one interprets curve (a) for the memory effect as curve (e) for the electrode 

kinetics, one obtains ks = 2(D/τ)1/2 = 1.1 cm s-1 for c*= 1 mM and τ = 31 μs. This value 

is close to that of limit of the rate constant to be evaluated at fast transient 

electrochemical techniques. 

 

5. Conclusion 

    The diffusion with memory was introduced to the electrochemical mass transport 

problem. In contrast with the Fick’s first law that contains no explicit time-variation, the 

flux with memory shows the first order time-relaxation, approaching -D∂c/∂x. This 

diffusion is expressed as an additional term of the second derivative of the concentration 

with the time to the Fick’s second law. The relaxation time corresponds to the period of 

recognizing the gradient for a redox particle by searching the closest neighboring redox 

particles. It is inversely proportional to the square of the concentration. The delay of the 

diffusion-controlled current was revealed in the chronoamperometric curve as a finite 

value at a short time. The finite value represents the velocity, (D/τ)1/2, of the propagation 

of the relaxation front, as was demonstrated in the concentration profiles. It is of 1 cm 

s-1 order of magnitude. This rate is close to maximum limiting values of the standard 

rate constants that have been evaluated by fast electrochemical techniques. Thus, data 

analysis of fast electrochemical responses requires consideration of not only electrode 

kinetics but diffusion with memory. 

    The above treatment can resolve not only the infinity of the Cottrell current 
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immediately after the potential step but also the irrationally fast propagation velocity of 

the diffusion front. However, it raises other three problems: (a) the decay of the 

concentration under the uniform distribution, regardless of boundary conditions, as has 

been described section 3, (b) ambiguity of the relaxation time by the simple estimation, 

and (c) the neglect of the concentration dependence on the relaxation time when solving 

Eq.(7). Since the three problems are independent, each will require its own resolution. 

In order to apply this concept to real systems, we have not only to examine problem (c) 

in details but also to develop theoretically techniques of analyzing voltammetric data of 

linear sweep, ac, pulse and microelectrode voltammetry. 

 

6. Appendix 

 

6.1. Approximate equation 

 

     The approximate equation (22) is derived in this appendix. When |sτ| is large, the 

term [s(sτ+1)]1/2 in the exponential of Eq.(17) can be expanded into  

Λ+−+=+=+ ssssss 2/38/12/1)/11()1( ττττττ             (A1) 

Retaining the first three terms in [s(sτ+1)]1/2, Eq.(17) is rewritten as 

 
⎥
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⎛ −+−−=
s

s
D
x

ssc
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2/3* 8
1

2
1exp11

ττ
τ                     (A2) 

 

We apply to Eq.(A2) the correspondence F(s)e-ks ⇔ f(t-k)U(t-k) and (1/s)ea/s ⇔ 

I0(2(at)1/2) between the transformed function F(s) and the original function f(t). The first 

term of the exponential argument of Eq.(A2) works as a shift by -x(τ/D)1/2 from t. The 

shift indicates the propagation at the constant velocity, (D/τ)1/2. The result of the 

transformation yields Eq.(22). The error in Eq.(22) is due to a loss of the higher terms in 

Eq.(A1). 
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6.2. Finite difference method 

 

    The time and the space in Eq. (7) were digitized with an equi-interval and an 

equi-space, respectively. The second time-derivative of c was represented by the central 

differences at t and x, i.e., 

                        

                       (A3) ( ) ( )222 /)()(2)(/ tttctcttctc ΔΔ−+−Δ+≈∂∂

In contrast, the first derivative in Eq.(7) was expressed as the forward difference 

                                    (A4) ( ) ttcttctc Δ−Δ+≈∂∂ /)()(/

The space-derivative was expressed by the central differences. Values of c(t+Δt) were 

evaluated from c(t) and c(t-Δt) explicitly at a given x. A problem of applying the finite 

difference method lies in the inconsistency of the central and the forward method in 

Eq.(A3) and (A4). However, there was no significant errors of the concentration when 

values of D(Δx)2/Δt were varied. 
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Figure captions 
 
Fig.1. Illustration of (a) recognition of the concentration gradient by collision between 
the redox particles (black balls), (b) formation of concentration gradient, and (c) 
generation of the flow of the particle. The collision (broad arrows in (a)) is realized by a 
number of replacement (thin arrows in (a)) between the redox particle and solvent 
molecules. 
 
Fig.2. Dimensionless chronoamperometric curves for (a) the memory effect calculated 
from Eq.(19), (b) the Cottrell equation, and charge transfer kinetics at (c) λ = 0.7, (d) 
1.0 and (e) 2.0 calculated from Eq.(24). 
 
Fig.3. Dimensionless Cottrell plot for the chronoamperometric curve with the memory 
effect. There are three domains of exhibiting a line. 
 
Fig.4. Concentration profiles at (a1) t/τ = 0.3 and (b1) 3.0, calculated from Eq.(22). The 
dashed curves are for the conventional concentration profiles, evaluated from the error 
function. Circles at t/τ = 0.3 triangles at 3.0 are by the explicit finite difference method. 
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