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We study the optimal way to estimate the quantum expectation value of a physical observable when a
finite number of copies of a quantum pure state are presented. The optimal estimation is determined
by minimizing the squared error averaged over all pure states distributed in a unitary invariant way. We
find that the optimal estimation is “biased” though the optimal measurement is given by successive projective
measurements of the observable. The optimal estimate is not the sample average of observed data, but the
arithmetic average of observed and “default nonobserved” data, with the latter consisting of all eigenvalues of

the observable.
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I. INTRODUCTION

One of the fundamental tasks in quantum physics is to
determine the expectation value of a physical observable of
an unknown quantum state. With only a single copy of the
quantum state given, we cannot determine the expectation
value of a physical observable because of the statistical na-
ture of quantum measurement. Suppose we are presented
with a certain finite number N of copies of an unknown
quantum state. We cannot increase the number of the copies
since the no-cloning theorem [1] forbids it. Then what is the
optimal way to determine the expectation value of the ob-
servable for a given N? An intuitively plausible optimal es-
timate is given by the arithmetic average of the data pro-
duced by successive projective measurements of the
observable on the individual systems.

This problem, however, is by no means trivial. Given a
quantum system composed of subsystems, we can consider
two types of measurement. One is separate measurements: a
sequence of measurements on the individual subsystems,
possibly dependent on the outcomes of earlier measure-
ments. The other is joint measurement: a single measurement
on the system as a whole. Recent studies on quantum-state
discrimination and estimation [2,3] provide considerable in-
stances in which joint measurements perform better than
separate measurements even for a state composed of mutu-
ally uncorrelated subsystems.

Peres and Wootters showed that a certain set of three bi-
partite product states can be better distinguished by a joint
measurement [4,5] (see also [6-8]). An even stronger ex-
ample was provided by Bennett et al. [9], which shows that
a certain orthogonal set of bipartite product states cannot be
reliably distinguished by any separate measurement though a
joint measurement perfectly distinguishes them because of
their mutual orthogonality. The superiority of joint measure-
ment has also been discussed in the problem of quantum-
state estimation for identically prepared copies of an un-
known state (see [10-14,16], for example).

In [15], D’Ariano, Giovannetti, and Perinotti raised the
question of whether the standard procedure of averaging the
outcomes of repeated measurements of an observable over
equally prepared systems is the best way of estimating the
expectation value of the observable, or whether a joint mea-
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surement can improve the estimation. They showed that the
standard procedure is indeed optimal if one is restricted to
the class of unbiased estimation for any generally mixed
state. Here an estimator is said to be unbiased if the average
over many independent estimates gives the true value to be
estimated.

An unbiased result is certainly one of the desirable prop-
erties for estimation but not a necessary condition. A natural
question is then whether a “biased” estimation performs bet-
ter than the standard unbiased estimation. Let us take a
simple example, in which we estimate the expectation value
of the observable o, for a single-qubit system in an unknown
pure state. We assume that the state of the qubit is chosen
according to the uniform distribution on the Bloch sphere.
Suppose that the projective measurement of o, produced the
outcome 1, which means the sample average is 1. Now, one
can ask if it is reasonable to conclude that the expectation
value of o, is most likely equal to 1. Note that the expecta-
tion value of o, is 1 only if the qubit lies exactly at the north
pole of the Bloch sphere. On the other hand, the measure-
ment of o, can produce the outcome 1 with some probability
unless the qubit is exactly at the south pole. Therefore, it is
more reasonable to consider that the expectation value of o,
is not 1, but somewhere between 0 and 1. In fact, the optimal
estimate turns out to be 1/3 in this case, as we will see in the
next section.

In this paper, without assuming unbiasedness of the esti-
mation, we study the optimal procedure for the expectation
value of a physical observable of an unknown pure state,
when N copies of the state are presented. We assume that the
unknown pure state is chosen from the pure-state space ac-
cording to a unitary invariant a priori distribution. The opti-
mal estimation is determined by minimizing the squared er-
ror averaged over the a priori distribution.

II. OPTIMAL ESTIMATION

We determine the optimal way to estimate the expectation
value of a physical observable {} when N copies of an un-
known pure state p=|¢){¢| on a d-dimensional Hilbert space
'H are given. Let {E_} be a positive-operator-valued measure
(POVM) on the total system H®V, with outcome labeled a
providing an estimate w, for the expectation value given by
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tr[ pQ1]. For a given p, the mean squared error in the estimate
is written as

A(p) = 2 t[Ep™ ), - u pQ])°. (1)

We will first average this A(p) over all pure states p and then
minimize it with respect to the POVM {E_} and the estimate
{w,}.

The distribution of the pure states p is specified in the
following way. Expand a pure state as |¢)=E§l=, c,|i) in terms
of an orthonormal base {|i)} of H. The distribution is then
defined to be the one in which the 2d-component real vector
{x;=Rec¢;, y;=Imc;} is uniformly distributed on the
(2d-1)-dimensional hypersphere of radius 1. The distribu-
tion is unitary invariant in the sense that it is independent of
the orthonormal base {|i)} chosen to define it. Let us denote
the average over this distribution by (- --). All we need in the
following calculation is a useful relation for the average of
p®" given in Ref. [16], that is,

®n>:§

d s

n

(p ()

where S, is the projection operator onto the totally symmet-
ric subspace of H®" and d, is its dimension given by
d,=tr[S,]=p+4-1C4-1. It may be instructive to see how this
formula comes out in some simple cases of qubits (d=2), in
which the above distribution means that the Bloch vector n is
uniformly distributed on the surface of the Bloch sphere.
Then we can easily verify

1 (1+n-0’
dn| ——

®2
- ) Lot o)F

13 (S=1),
={0 (§=0), 3

where S is the eigenvalue of the total spin. This is a special
case of the formula (2), since the state is symmetric if S=1
and antisymmetric if S=0. The case of three qubits provides
another example.
1 l+n-0\® |1/4 (§=3/2),
— | dn\——| = 4)
4t 2 0 (S=1/2).

Now going back to the general-dimensional case, we ex-
pand Eq. (1) and perform averaging over p by use of the
formula (2):

(8) = 2 (UEp™ H o, - 20, t] pQ] + (ulp QD))

=(A1(p) + A2(p) + A5(p)). ()

where we denote the three terms in A(p) by A,(p), A(p),
and A;(p), and we evaluate each separately. The first term
(A}) is readily calculated as
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1
(A= d—E W’ [ E,Sy]. (6)
N a

For (A;), we first use the completeness of the POVM by
summing over a and perform the average in the following
way:

(A3) = ((ulpQ])*) = ([ p**Q(1Q2)])

= ditr[szﬂmn(z)] = [(rQ)* +Q?], (7)
2

1
dd+1)
where p®? is understood to be the tensor product of
two p’s in spaces 1 and 2, and the space on which the opera-
tor () acts is specified by the number in the parentheses.
Hereafter we will use this convention in more general cases,
namely,

QN =1*"Yg00191® . (8)

Evaluation of the second term (A,) is more involved. Intro-
ducing another system on H, which we call system N+1, we
have

(Ay)=-22 0 tE,p*MulpQ])
=-22 o {Ep*MVOWN+1)])

2

> w, t[E, Sy QN+ 1)], 9)
dN+1 a

where the traces in the second and third equalities is under-
stood to be over systems 1,2, ...,N, and N+ 1. The operator
Q(N+1) acts on system N+ 1. The projection operator Sy,
is the sum of all permutation operators of N+1 systems di-
vided by a factor of (N+1)!. Any permutation of N+1
objects is either just a permutation among the first N objects
or the product of a permutation among the first N objects
and the transposition between the (N+1)th object and one
of the first N objects. With this observation we find, for any
operator (),

N
e [Sye1 QN+ 1) ] = %(UQ'* 2 Q(”)) , (10)
n=1

where try,; is the trace over the (N+ 1)st system. We use this
formula to trace out the newly introduced system (N+1) in
the expression A, given by Eq. (9). The result is given by

2 n
Ay=-— d—E w, t[E,SyQ], (11)

N a

where we define the symmetric one-body operator Q to be

. 1 N
Q=N—+d<trﬂ+zﬂ(n)). (12)

Combining the three averages (A,), (A,), and (A3), we obtain
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s A 1
(A= N% [ E,Sy(0? - 20,Q)] + 2dsD)

[(tr Q) +tr Q7].

(13)
To minimize (A) we complete the square with respect to w,
in this expression. Owing to the completeness of the POVM,

this is reduced to the calculation of tr[SNQZ], which can be
performed by using the following formulas:

tr[ SyQ(n)] = dgNtr Q, (14)

W) (n=m),

[ SyQ(n)Q(m)] =

(tr[Qz] +(trQ)?) (n#m).

(15)

d(d

After some calculation we find

dy

32
w Sl = Ve a)

{N [ Q]+ (N +d + 1)(trQ)?}.

(16)

We thus finally obtain the mean squared error in the com-
pleted square form

A= LS W[E. S0, - (d t][0?]

Na

Ao 1
D+ e d)

—(tr Q)?). (17)

Now note that the first term in Eq. (17) is positive. This is
because () is symmetric under exchange of component sub-
systems and therefore Sy(w,—0)?=Sy(w,—Q)2Sy is a posi-
tive operator. The A has a lower bound given by the second
term of Eq. (17). Let us denote the eigenvalue of ) by ();
(i=1,...,d) and the corresponding eigenstate by |i). It is
then readily seen that this lower bound can be achieved if the
index a of the POVM element collectively represents the set
of {iy,is,...,iy}, the POVM element is taken to be the pro-
jector

E; iy iy =ity inXigiy -+ iyl (18)

and the estimate w, to be the corresponding eigenvalue of Q,

N
1
wil’iz IN N+ d(trQ+EQ ) (19)

Thus we conclude that the mean squared error (A) in the
estimation for the expectation value of the observable ()
takes its minimum value given by

A (d [ Q%] - (tr Q)?), (20)

1
P ad+ 1)(N +d)

if one measures the observable () independently for each
system and makes the estimate given by
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N
1
p rQ+ > 0, ) 21
Opl N+ d( n=1
where {€); ,€; ,....(); } are the data observed by the mea-

surement.

The optimal estimate @, is not the arithmetic average of
observed data (the sample average), though the optimal mea-
surement is projective and independent. For a finite N, it is
not unbiased either since

A 1
% w, t[E,p®N] = u[Qp®N] = e d(tr Q+ Nt pQ]),

(22)

which only asymptotically approaches tr[ pQ]. In Sec. IV we
will discuss the biasedness of w,, and present an interpreta-
tion of its structure.

What do we obtain for the mean squared error if we take
the sample average of the values of () observed by the suc-
cessive measurements on each copy? In this case the POVM
is given by Eq. (18) and the estimate by

N

= _2 ‘Q' - de’ (23)

n 1

w. .
iy

which can be easily shown to be unbiased. The squared error
for a given p given in Eq. (1) takes the form

Balp) = (007 - (0. (24)

After the average over p we have

Ay =(Aylp)) = [du Q- ()], (25

1
d(d+1)N
where we used Eq. (7).

Comparing A, and A,,, we find that the only difference
between them is in the factor in the denominators, N+d in
Aoy and N in A,,. While A, is certainly less than A,,, both
show the same asymptotics when the number of copies goes
to infinity. The difference becomes important when the num-
ber of copies is comparable to the dimension of the system.

Let us examine the example discussed in Sec. I, in which
o, is measured with the result 1 for a single qubit in an
unknown pure state (d=2 and N=1). In this case the ob-
served data is {1}. The estimate by the sample average gives
w,,=1 for the expectation value of o, with the mean squared
error A,,=2/3, whereas the optimal estimation predicts
wop=1/3 with the mean squared error A,,=2/9.

III. ESTIMATION WITH THE UNBIASEDNESS
CONDITION

In Ref. [15], D’ Ariano, Giovannetti, and Perinotti consid-
ered the estimation for the expectation of observables under
the unbiasedness condition for any generally mixed state p®V
and showed that the optimal estimate under the constraint is
given by the sample average obtained by the independent
successive measurement of the observable on each copy. In
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this section we briefly discuss the same problem in the pure
state case and show the same conclusion holds.
The unbiasedness condition is written as

> o, t{E,p*"] = u{Qp]. (26)
a
Note that tr[Q)p] on the right-hand side can be expressed as

[ Qp] = tu[Qyyp®M], (27)

1 N
Q,, = NEI Qn). (28)

If the unbiasedness condition (26) is assumed for any gener-
ally mixed state p, then it can be shown [15] that

> 0=y (29)

for any permutation-invariant POVM {E,}. If we require the
unbiasedness condition for any pure state p, we can still
show that the relation (29) holds in the totally symmetric
subspace of H®V, namely,

SN<2 w,E, — QaV)SN 0. (30)

This follows from a lemma for an operator A on H®V:

tr{Ap®Y]=0 for any pure state p,

if and only if SyASy=0.

The “if” part is trivial and we sketch the proof of the “only
if” part. We write |#)=3% ¢;|i) in terms of a basis {|i)} of H,
where p=|¢){(¢|. Then we have

> el clcic; e
iy iy N
X (iyiy - inlAljija - jw)

*ny *n ng my m m

- 1 2.0 1 1 2.0 d

=2 " Cq €y ey
nim

tu[Ap®N] =

X <¢nln2'“nd|A|lzbmlnlz'“md)=0’ (31)

where the summation over integers n;=0 and m;=0 should
be taken under the conditions X; n;=2,;m;=N, and the state
|¢//,,I,,2...,,d> is the occupation-number representation of sym-
metric states (generally not normalized), with n; being the
occupation number of state i. Equation (31) should hold for
any complex c;, implying <1,0,,1,,2..‘,,d|A|¢m1m2...md)=0.

The difference between the two unbiased conditions (29)
and (30) is the projection operator Sy in the pure-state case.
This, however, does not hamper the subsequent argument
since the support of the operator p®" for pure p is the totally
symmetric subspace.

We go back to the expanded form of A(p) as in Eq. (5),
but before being averaged over p. By using the unbiased
condition (30) we readily find A,(p)=—2A5(p) so that we
have
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Alp) =3, @2rA(p) = 3 WP t[E,p™] - (] pQ])2[E,p™]

- (uf pQ])%. (32)

It can be shown that

2 ol E,p®N] = [QF,p7], (33)

since in the symmetric subspace we have

0= 2 (wa - Qav)Ea(wa - Qav) = E wzzzEa - in (34)

It is evident that the equality holds if the POVM element E,,

is the projector of the eigenstate of Qav and the estimate w, is
the corresponding eigenvalue, which is the sample average
of the observed values of () for each copy. Thus the mini-
mum value of the squared error in the unbiased estimation is
given by

[ G2,p°N] - (uf p2])? = }V(tr[pm] — (@pQD?) = A (p),

(35)

which shows that the conclusion of Ref. [15] holds if we
restrict ourselves to the pure-state input ensemble. Averaging
over p gives A,, given in Eq. (25).

IV. DISCUSSION AND CONCLUDING REMARKS

We have seen that the optimal estimation of the expecta-
tion value of a physical observable is biased, though the
optimal measurement is given by the successive projective
measurement of the observable. The optimal estimate w,y is
not given by the arithmetic average of observed data.

We can interpret the expression (21) of the optimal esti-
mate w,, in the following way. First of all, we should re-
member that we have full knowledge on properties of the
observable () including its eigenvalues. Otherwise we cannot
perform a measurement associated with (). Then what can
we expect for outcomes of the ) measurement before per-
forming the measurement? The state p is given to us accord-
ing to the unitary invariant distribution on the pure-state
space, implying that we expect that each eigenvalue (); oc-
curs with equal probabilities as the outcome of the () mea-
surement. This a priori knowledge should be somehow taken
into account in the estimation. We can see that this a priori
knowledge is incorporated into the optimal estimate @, in a
natural way. It is just the arithmetic average of N observed
data points {Qi”}nN=1 and the d “default nonobserved” data
points {Q;}, the latter of which add up to the trace of the
observable.

One may still wonder why the weights of the average
for the observed and nonobserved data are equal. Actually
this is a feature of the pure-state ensemble considered in this
paper. To see this, let us take the simplest example of d=2
and N=1, but this time the state p is generally mixed. We
assume that the Bloch vector n is distributed isotropically
inside the Bloch sphere. The ensemble is characterized by
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the average (n*), which is 1 for the pure-state ensemble, but
generally less than 1.

After some calculation, the mean squared error turns out
to be

2 2\2
(A)= %2 tlE(w, - Q)]+ %(1 - %)Q ufQ’]
—(rQ)?), (36)
where
2
G- %(3_T<n>tr 0+ <n2>Q>. (37)

This implies that the optimal measurement is the projective
measurement of (), and the optimal estimate is given by
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3

2
1<3 _2<” >trQ+<n2)Qil), (38)

Wopt =

where Q,-l is the observed eigenvalue of (). The minimal
mean squared error is given by the second term of Eq. (36).
We can see that the weight for the observed data decreases as
the degree of mixing of the ensemble increases. When
(n*)=0, this w,y implies we should disregard the observed
data. The reason is that we know that the expectation value is
given by tr (/2 for a completely mixed state.

The generalization of our analysis to an ensemble of
mixed states, including the details of the above discussion,
will be presented elsewhere.
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