
Ant Colony Optimization with Memory and Its
Application to Traveling Salesman Problem

言語: English

出版者:

公開日: 2013-06-27

キーワード (Ja):

キーワード (En):

作成者: WANG, Rong-Long, ZHAO, Li-Qing, ZHOU,

Xiao-Fan

メールアドレス:

所属:

メタデータ

http://hdl.handle.net/10098/7574URL

IEICE TRANS. FUNDAMENTALS, VOL.E95—A, NO.3 MARCH 2012

639

PAPER

Ant Colony Optimization with Memory and Its Application to

Traveling Salesman Problem

Rong-Long WANG, Member, Li-Qing ZHAO, and Xiao-Fan ZHOU, Nonmembers

SUMMARY Ant Colony Optimization (ACO) is one of the most re-

cent techniques for solving combinatorial optimization problems, and has
been unexpectedly successful. Therefore, many improvements have been

proposed to improve the performance of the ACO algorithm. In this paper
an ant colony optimization with memory is proposed, which is applied to

the classical traveling salesman problem (TSP). In the proposed algorithm,

each ant searches the solution not only according to the pheromone and
heuristic information but also based on the memory which is from the solu-

tion of the last iteration. A large number of simulation runs are performed,
and simulation results illustrate that the proposed algorithm performs better

than the compared algorithms.
key words: ant colony optimization, memory, combinatorial optimization

problems, traveling salesman problem

1. Introduction

Ant colony optimization (ACO) is a recently developed,

population-based approach which has been successfully ap-
plied to several NP-hard combinatorial optimization prob-
lems [1]. Combinatorial optimization problems are of high
importance both for the industrial world as well as for the
scientific world. It arises in many different fields such as
economy, commerce, engineering, industry and medicine

[2]—[4]. As the name suggests, ACO has been inspired by
the behavior of real ant colonies, in particular, by their for-
aging behavior. One of its main ideas is the indirect commu-
nication among the individuals of a colony of agents based
on an analogy with trails of a chemical substance, called

pheromone, which real ants use for communication. The
pheromone trails are a kind of distributed numeric informa-
tion [5] which is modified by the ants to reflect their ex-

perience accumulated while solving a particular problem.
Recently, the ACO meta-heuristic has been proposed to pro-
vide a unifying framework for most applications of ant algo-
rithms [6], [7] to combinatorial optimization problems. Al-

gorithms which actually are instantiations of the ACO meta-
heuristic will be called ACO algorithms in the following.

 The first ACO algorithm, called Ant System (AS) was

proposed by Dorigo in 1992 [8]. Since then, the ACO algo-
rithm attracted the attention of more researchers and a num-
ber of other ACO algorithms have been introduced. Even
though the original AS algorithm achieved encouraging re-
sults for the TSP problem, it was found to be inferior to

 Manuscript received June 24, 2011.
 Manuscript revised October 27, 2011.

 tThe authors are with the Graduate School of Engineering ,
University of Fukui, Fukui-shi, 910-8507 Japan.

 a) E-mail: wang@u-fukui.ac.jp
 DOI: 10.1587/transfun.E95.A.639

Copyright © 2012 The Institute of Electronics,

state-of-the-art algorithms for the TSP as well as for other

problems. Therefore, several extensions and improvements
of the original AS algorithm were introduced over the years.
ACS [9], [10] has been introduced to improve the perfor-
mance of AS. It differs in three main aspects from the ant
system. First, in ACS ants choose the next city using the

pseudo-random-proportional action choice rule: when lo-
cated at city i, ant k moves with probability qo to city / for
which Tii(t)Ndfi is maximal. With probability (1 — qo) an
ant performs a biased exploration of edges according to the

probability. Second, in ACS only the global best ant is al-
lowed to add pheromone. The most interesting contribution
of ACS is the introduction of a local pheromone update in
addition to the pheromone update performed at the end of
the construction process (called offline pheromone update).
The effect of the local updating rule is to make an already
chosen edge less desirable for a following ant. The Max-
Min AS [11] is a direct improvement over AS. The main
modifications introduced by Max-Min AS with respect to
AS are the following. First, to exploit the best solution
found, after each iteration only the best ant, which can be
either the iteration — best or the best — so — far, is allowed
to add pheromone. Second, to avoid search stagnation, the
allowed range of the pheromone trail strengths is limited to
the interval [7- min, T max]. Last, the pheromone trails are ini-
tialized to the upper trail limit, which causes a higher explo-
ration at the start of the algorithm. Another improvement
about AS is the rank-based version of Ant System (AS rank)

[12]. In AS rank, always the global-best tour is used to update
the pheromone trails. Additionally, a number of best ants of
the current iteration are allowed to add pheromone. To this
aim the ants are sorted by tour length, and the quantity of

pheromone an ant may deposit is weighted according to the
rank r of the ant. Only the (co — 1) best ants of each iteration
are allowed to deposit pheromone. The global best solution,
which gives the strongest feedback, is given weight co. The
rth best ant of the current iteration contributes to pheromone
updating with a weight given by max{0, co — r}.

 Therefore, one important focus of the research on ACO
algorithms is the introduction of algorithmic improvements
to achieve a much better performance. Typically, these im-

proved algorithms have been tested again on the TSP [9],
[12], [13]. Recent researches on the search space charac-
teristics of some combinatorial optimization problems have
shown that during the searching process it is very difficult
to control the balance between intensification and diversi-
fication [14]. In this paper the ant colony optimization al-

Information and Communication Engineers

640

gorithm with memory is proposed. It seems reasonable to
assume that the concentration of the search around the so-
lutions found in last iteration is the key aspect that leads
to the improved performance. In the proposed algorithm,
the ant searches for the solution not only according to the

pheromone and heuristic information but also based on the
memory, which is from the solution of the last iteration.
To evaluate the performance of the proposed algorithm, we
simulated some TSPLIB benchmark problems. The simula-
tion results show that the proposed algorithm produces bet-
ter results over the other existing ACO algorithms [15].

 The remainder of this paper is structured as follows. In
Sect. 2, the traveling salesman problem (TSP) is introduced.
In Sect. 3 we outline how ACO algorithms can be applied
to that problem. The proposed ant colony optimization al-

gorithm with memory is addressed in Sect. 4. In Sect. 5 the
proposed algorithm is applied to the TSP, and experimental
results are presented in Sect. 6. The conclusions are given in
Sect. 7.

2. The Traveling Salesman Problem

The traveling salesman problem is arguably the most fa-
mous problem in combinatorial optimization. The popular-
ity of the TSP derives partly from the contrast between the
simplicity of its statement and its computational complexity

 [16]. The TSP also plays an important role in ant colony
optimization since the first ACO algorithm, called Ant Sys-
tem, as well as many of the subsequently proposed ACO
algorithms, was initially applied to the TSP. The TSP was
chosen for many reasons: (1) it is a problem to which ACO
algorithms are easily applied, (2) it is an NP-hard optimiza-
tion problem [17], (3) it is a standard test-bed for new algo-
rithmic ideas and a good performance on the TSP is often
taken as a proof of their usefulness, and (4) it is easily un-
derstandable, so that the algorithm behavior is not obscured
by too many technicalities.

 Intuitively, the TSP is the problem that a salesman who
wants to find, starting from his home town, the shortest pos-
sible trip through a given set of customer cities and to return
to its home town. The TSP can be represented by a com-

plete graph G = (N, A) with N being the set of nodes, also
called cities, and A being the set of arcs fully connecting the
nodes. Each arc (i, j) E A is assigned a value dij which rep-
resents the distance between cities i and j. The TSP then is
the problem of finding a shortest closed tour visiting each
of the N nodes of G exactly once (Such a tour is called
Hamiltonian.). For symmetric TSP, the distances between
the cities are independent of the direction of traversing the
arcs, that is, di.) = dji for every pair of nodes. In the asym-
metric TSP (ATSP) at least for one pair of nodes i, j we have

 # c/1). In this paper the symmetric TSP is adopted. All
the TSP instances used in the empirical studies presented in
this paper are taken from the TSPLIB benchmark library.
These instances have been used in many other studies and

partly stem from practical applications of the TSP.

 -MICE TRANS
. FUNDAMENTALS, VOL.E95-A, NO.3 MARCH 2012

3. Ant Colony Optimization

The first ACO algorithm, called ant system (AS) was firstly
applied to the traveling salesman problem (TSP). We call

 di,/ the length of the path between towns i and j, and let
 1-)1, which called pheromone be the intensity of trail on edge

(i, j) which connects i and j at time t. Each of m ants de-
cides independently on the city to be visited next based on
the intensity of pheromone trail 7-)1 and a heuristic value qii,
until the tour is completed. Each ant is placed on a random
start city, and builds a solution going from city to city, until
it has visited all of them. The probability by which an ant k
in a city i chooses

/to go to a city j next is given by: TiOa.4
 if j EJk

 psiTii(tr-74 (1)
 0, otherwise

 Where the heuristic value TN, the parameters a and)3
determine the relative influence of pheromone and heuristic,
and Jk is the set of cities that remain to be visited by ant
k positioned on city i. Once all ants have built a tour, ants

perform the following pheromone update rule:

 Tii(t + 1) = (1 — p) • T 1(t) E Arki.,(t) (2)
 k=1

 Equation (2) consists of two parts. The left part makes
the pheromone on all edges decay. The speed of this decay
is defined by p, the evaporation parameter. The right part,
where Ark..(t) is defined by Eq. (3) below, in which Q is a

 j positive constant, increases the pheromone on all the edges
that are visited by ants. The amount of pheromone an ant k
deposits on an arc (i, j) is defined by Lk(t), the length of the
tour created by that ant at iteration t.

 —Qif edge (i,j) is used by ant k Ark(t)–Lk(t)(3) ij–0
, otherwise

 In this way, the increase of pheromone for an edge de-

pends on the number of ants that use this edge, and on the
quality of the solutions found by those ants.

 Afterwards, several extensions and improvements of
the original AS algorithm which mentioned above were in-
troduced over the years. One of the typical extensions is the
Rank-based AS [12]. In Rank-based AS, always the global-
best tour is used to update the pheromone trails. Addition-
ally, a number of best ants of the current iteration are al-
lowed to add pheromone. To this aim the ants are sorted by
tour length, and the quantity of pheromone an ant may de-

posit is weighted according to the rank r of the ant. Only
the (w – 1) best ants of the iteration are allowed to de-

posit pheromone. The rth best ant of the current iteration
contributes to pheromone updating with a weight given by

 max{0, (A) – r}. Thus the improved update rule is:

 Tif(t + 1) = (1 – p) • T 1(t) E(CO - r) A'71 j(t)
 r=1

WANG et al.: ACO WITH MEMORY AND ITS APPLICATION TO TSP

procedure ACO algorithms for TSP
 set parameters, initialize pheromone trails

 while (termination condition not met) do
 construct solutions as follows:

 1) randomly select the initial component
 2) decide the next component according

 to probability, which is based on the

 pheromone and heuristic information
 update trails

 end-while
end-procedure

 Fig. 1 Algorithmic skeleton for ACO algorithm.

 -EcoAr?/.7(t) (4)

 Where Afi(t) = QIE(t) and A71.17(t) = Q/Lgb(t). In
general, the ACO algorithms for the TSP follow the scheme
in Fig. 1.

4. Ant Colony Optimization with Memory

As mentioned above, the first ACO algorithm, called ant
system, was applied to the traveling salesman problem

(TSP). It gave encouraging results, yet its performance was
not competitive with state-of-the-art algorithms for the TSP.
Therefore, one important focus of research on ACO algo-
rithms is the introduction of algorithmic improvements to
achieve a much better performance [18], [19]. Typically,
these improved algorithms are tested again on the TSP.
While they differ mainly in specific aspects of search con-
trol, all these ACO algorithms are based on a stronger ex-

ploitation of the pheromone and heuristic trails.
 The ACO algorithms make use of ant agents which iter-

atively construct candidate solutions to a combinatorial op-
timization. The solution of each ant is constructed accord-
ing to the pheromone trails deposited before and problem-
dependent heuristic information. According to the combina-
torial optimization, a lot of pheromone and heuristic modes
are proposed. However, the searching mechanism has not
been improved. In this paper an algorithm called ant colony
optimization with memory is proposed. In the proposed al-

gorithm, a novel searching mechanism is proposed to en-
hance the searching ability.

 To solve the combinatorial problem, an individual ant
constructs candidate solutions by starting with an empty so-
lution and then iteratively adding solution components un-
til a complete candidate solution is generated. The ants'
solution construction is guided by pheromone trails and

problem-dependent heuristic information. In this paper, the
ant-cycle version of AS (ant system) is adopted, in which,
the pheromone update is only done after all the ants had
constructed the solutions and the amount of pheromone de-

posited by each ant was set to be a function of the solution
quality. After the solution construction is completed, the
ants give feedback on the solutions they have constructed by
depositing pheromone on solution components which they

641

procedure ACO with memory
 set parameters, initialize pheromone trails

 while (termination condition not met) do
 construct solutions as follows:

 1) Randomly select the initial component
 2) Phase I:

 decide the next component according to

 probability, which is based on pheromone
 and heuristic information

 Phase II:
 compare the solution with the memory

 solution and adjust the components.
 update trails

 end-while
end-procedure

Fig. 2 Algorithmic skeleton for the proposed algorithm.

have used in their solution. Typically, solution components,

which are part of better solutions or are used by many ants

receive a higher amount of pheromone, and hence, will more

likely be used by the ants in future iterations of the algo-

rithm. To avoid the search getting stuck, typically before the

pheromone trails get reinforced, all pheromone trails are de-

creased by a factor p. We call each point, at which an ant has

to decide which solution component to add to its current par-

tial solution, a choice point. In the AS, at the choice point,

an ant decides the next component according to certain prob-

ability which is based on the pheromone and heuristic infor-

mation. In the proposed algorithm, each ant searches the

solution not only according to the pheromone and heuristic

information but also based on the memory which is from the

solution of the last iteration. The algorithmic scheme of the

proposed algorithm is outlined in Fig. 2.

5. Ant Colony Optimization with Memory for TSP

After the ant colony optimization with memory was pro-

posed, we applied the algorithm to the TSP. When applying
the proposed algorithm to the TSP, arcs between two cities
are used as solution components, which was mentioned in
Sect. 4. A pheromone trail rij(t), where t is the iteration
counter, is associated with each arc (i, j). These pheromone
trails are modified during the run of the algorithm through
the pheromone trail evaporation and the pheromone trail re-
inforcement by the ant colony. When it is applied to sym-
metric TSP instances, pheromone trails are also symmetric.

 The tour construction is the most important part of
the TSP. To describe the tour construction of the proposed
method, we introduced TOURms(01,02,• • , on, oi) as the
memory solution, TOURps(Pi, P2, • • , pi) as the tour
that is being constructed right now and TOURTs as a tempo-
rary solution in the searching procedure, in which oi, pi E N
in G(N, A) are the city number of the TSP. The tour construc-
tion process of the proposed algorithm is outlined in Fig. 3.
Initially m ants are placed on m randomly chosen cities, and

642

procedure Proposed decision rule
 randomly decide pl in TOURps

 for i=1 to n do

 find ox==p, in TOURms

 decide pi_ki by AS decision rule
 find oi,==p,±1 in TOUR Ms

 if Ox+1!=o, then
 swap ox+1 and oy to get TOURTs

 if LTs<Lms then

 TOUR—TOURTS

 terminate
 else

 TOURms<—TOURTs

 end-if

 end-if
 end-for

end-procedure

Fig. 3 Tour construction of the proposed algorithm.

the pi in TOURps of every ant is decided. In each con-
struction step, two phases are performed. In the first phase,
each ant moves based on a probabilistic decision to a city
it has not yet visited. This probabilistic choice is biased by
the pheromone trail ri j(t) and a locally available heuristic
information ihj. The function about the pheromone trail and
the heuristic information was addressed in Sect. 3. As a re-
sult, the ants prefer cities which are close and connected by
arcs with a high probability which was presented as Eq. (1).
After every ant selects a city as its p2 according to probabil-
ity, the memory of every ant will be used in the following

phase. In the second phase, the ant colony adjusts the so-
lution component based on the memory which is from the
solution of the last iteration. For each ant, the next city /32 is
decided according to the probability in the first phase, and
then every ant compare its arc (p1, 1,2) with its memory so-
lution respectively. As for the result of comparison, for the
ant k, two kinds of situation will happen. The first situation
is that the arc (pi, 132) of present solution is the same to that
of the memory solution. For example (pi = 5, /32 = 3) in the

present solution, and the arc (oi = 5, oin = 3) appeared in
the memory solution. In that situation, the ant make the next
decision at choice city /32, and in other words the next con-
struction step begins from p2 according two-phase selection
formula to searching the next city p3. The other situation is
that the arc (pi, p2) of present solution could not be found
in the memory solution. For example, (pi = 5, p2 = 3) in
the present solution, but in memory solution of ant k, there
is an arc (oi = 5, oi±i # 3). For the second situation, we
can find ox = oi = 5(pi) and ou # 0i+1 = 3(pi±i) in the
memory tour TOURMS, and exchange the values of o„i
and ou of the memory solution to get a temporary solution

 TOURTs. If the tour length of the temporary solution (Lis)
is shorter than that of the memory solution (Lms), the tour
construction process is terminated and the temporary solu-
tion becomes the solution of the present iteration. On the

 -MICE TRANS
. FUNDAMENTALS, VOL.E95-A, NO.3 MARCH 2012

 TOURms(01, 02, 07, 01)
 =(3 44 47 45 46 42 41 43) (LMS=28)

start from a random city TOURp (Pi=1)

V

select next city according to phase I.
 TOURps= (1 45 4) while TOURms=(I 43 4).

V

 TOURivis (04=5 <*0 1=3) c
 TOURTs= (I 45 44 47 43 46 42 41)

V

 (LTS=32)> (LMS=28)

move on to get TOURp5(P3) according to phase I.
 TOURps=(I 45 44 4),

while TOURms turns to be (1 45 44 4).

V

Move on according to phase I.
 TOURps=(1 45 44 46 4)

V

 TOURms (05=6 <*03=7)
 TOURTs= (I 45 44 46 43 47 42 41)

V

 (LTs=22)< (LMS=28)

V

 TOURpsTOURTs

 Fig. 4

 TOURPS(P1, P2, • • •, 195 PI)
 =(1 45 44 46 43 47 42 41)

An instance of the proposed algorithm for TSP.

other hand, if LTS is not shorter than Lms, TOURms is re-

placed with TOURTs , and the next construction step begin
from p2 according to two-phase selection formula to search
the next city p3. Then, in the second phase of the construc-
tion step from city p3 to find the next city p4, we first find

 ox again in TOURms, and then compare ox with o1+2 in the
memory solution. According to the above construction step,
an individual ant constructs a candidate solution by starting
with an empty solution and then iteratively adding solution
component until a complete candidate solution is generated.

 To show the searching process of the proposed algo-
rithm in detail, an instance is given out. Here we maked a
small-sized TSP with seven cities and adopted it to demon-
strate the searching process, which is shown in Fig. 4. From
Fig. 4, we can see that for every searching step, the ant se-
lects one city according to the probabilities firstly, then com-

pares with the memory solution, adjusts the solution accord-
ing to different situation, and finally finds a better solution.

 It is worth noting that although the proposed method
has the similar exchanging operations with 2-opt algorithm,
the exchanging mechanisms are essentially different. 2-opt
considers only exchanging arcs to try to acquire the better
solution, while our method considers exchanging nodes, and
the decision of the nodes is based on the memory solution.

WANG et al.: ACO WITH MEMORY AND ITS APPLICATION TO TSP

643

In addition, the proposed exchanging mechanism is per-
formed in the procedure of building each solution element
based on the memory solution. As a result, the proposed
method concentrates the search around solutions found in
the last iteration to enhance intensification.

 As described above,all the ants can construct their
own tour solutions as the candidate solutions by using
the proposed tour construction procedure, and then up-
date their pheromone trails. In this paper, the method of

pheromone updating is the same as AS mentioned above.
The pheromone trails are updating according to Eq. (2) and

 Eq. (3).
 So far the algorithm of ant colony optimization with

memory has been founded. The following search procedure
describes the proposed ant colony algorithm for the TSP.

1. Set parameters.
2. Initialize the pheromone trails and compute the heuris-

 tic information.
3. All the ants construct candidate solutions according to

 Fig. 3.
4. Evaluate the candidate solutions and judge whether to

 terminate the procedure.
5. Update the pheromone trails and then go to the next

 iteration of tour construction.

the average solution of AS and the proposed algorithm dur-
ing the evolution procedure of solution. We can see that
at the beginning, the effect of the memory is not obvious,
but from the 150th iteration, the memory plays an important
role, and the advantage of the algorithm with memory comes
out. Figure 7 shows the difference in detail. Figure 7 shows
that the proposed algorithm converges quickly and can find
a better solution. By this simulation, we can confirm the ef-
fection of the memory mechanism in the searching process.

 To further evaluate the proposed algorithm, in the next
simulations some other TSPLIB benchmark problems are
selected and some best exsited ACO based algorithm such
as Rank-based AS (AS rank) [12], ACS [10] are used for
comparison. Besides, some other softcomputing algorithms
such as genetic algorithm (GA) [20], [21], evolutionary pro-

gramming (EP) [22], simulated annealing (SA) [23] are also
used for comparison. Note that for each instances, 100 sim-
ulation runs were performed. We give the results in Table 1,
where the best integer tour length, the best real tour length

(in parentheses) and the number of iteration required to find
the best integer tour length (in square brackets) are recorded.
The difference between integer and real tour length is that in
the first case distance between cities are measured by integer
numbers, while in the second case by floating point approx-
imations of real numbers. Note that result of Rank-based

6. Simulation Results

In order to assess the effectiveness of the proposed
ACO algorithm, extensive simulations were carried out
over TSPLIB benchmark problems on a PC station(Intel,
2.66 GHz). The parameters setting used in the proposed al-

gorithm is that suggested in Rank-based AS [12], which are
(a = 1,13 = 5, p = 0.5, Q = 100). The ant colony size is set
to 100 in this paper.

 Our first simulation is performed on Ei150 (50-city)
to see the effect of the memory mechanism. We recorded
the variation of the best, worst and average solutions dur-
ing the evolution procedure of the solution, and illustrated
it in Fig. 5. From this figure, we can find that our algo-
rithm converges very fast. Furthermore, to see how effi-
ciently the memory mechanism affects the performance, we
also applied AS (Ant system) [8] to the Ei150 (50-city) for
comparison. Note that the setting of parameters is the same
as the proposed algorithm. Figure 6 shows the variation of

 -MICE TRANS
. FUNDAMENTALS, VOL.E95—A, NO.3 MARCH 2012

644

Table 1 Simulation results.

Problem Optimum GA EP SA ACS AS rank Proposed algorithm

Ei150 425 428 426 443 425 441 425

 (50-city) (N/A) (N/A) (427.86) (N/A) (427.96) (435.13) (427.85)
[25000] [100000] [68512] [1830] [5000] [458]

Ei175 535 545 542 580 535 564 535

(75-city) (N/A) (N/A) (549.18) (N/A) (542.31) (566.88) (542.30)
 [80000] [325000] [173250] [3480] [5000] [500]

 KroA100 21282 21761 N/A N/A 21282 23278 21282

(100-city) (N/A) (N/A) (N/A) (N/A) (21285.44) (23599.12) (21285.44)
 [103000] [N/A] [N/A] [4820] [5000] [593]

Table 2 Average deviation from optimal value.

Problem

Tabu search

The proposed algorithm

 kroA100

0.26%

 0.01%

 kroB100

0.37%

0.11%

 kroC100

0.42%

 0%

 kroD100

0.15%

0.03%

 kroE100

0.45%

0.08%

 27000
 26500
 26000

 25500
 25000

c 24500

 24000
 23500
 23000
 22500

 22000
 21500
 21000

 ACS

The proposed algorithm

7.

0 20 40 60 80 100 120 140 160 180 200
 time(s)

 Variation of the solution during the evolution procedure.

Conclusions

 Fig. 8

AS is from [14], and those of GA, EP and SA are from [9].
From the Table 1, it is clear that the proposed algorithm out-

performs other algorithms in the solution quality. From the
table we can also know that the proposed algorithm con-
verges in hundreds of iterations comparing with other ACO
algorithms and GA algorithm always performs several thou-
sand search iterations for finding a solution. The reason
why the proposed algorithm can find a good solution within
small searching iterations can be considered that in the pro-

posed algorithm, the memory of the ants present the better
balanced intensification and diversification in searching pro-
cess. In addition, in order to evaluate the proposed method
from the aspect of the calculation cost, we compared the

proposed method with ACS on real calculation time, where
 KroA100 is used. Figure 8 shows the result of the simu-

lations. As shown in this figure, the proposed method can
converge to a good solution within less time comparing with
the other algorithm.

 To evaluate the performance of the proposed algorithm
comparing with other techniques, we also performed ex-
tended comparison with tabu search algorithm [24] on some
100-city problems. The simulation results are shown in Ta-
ble 2, where the average deviations from the optimal value
are listed. From this table, we can see that the performance
of our proposed method is quite good and seems suitable for
obtaining good solutions to the TSP problems.

An improved ACO algorithm with memory for efficiently

solving combinatorial optimization problems have been pro-

posed in this paper. In the proposed ACO algorithm,

each ant searches the solution not only according to the

pheromone and heuristic information but also based on the
memory which is from the solution of the last iteration. The

proposed algorithm was applied to the TSP, and to verify

the effect of the memory, several TSP benchmark problems

were simulated. From the simulation results, we find that

the improved ACO algorithm has very high performance

in searching solution comparing with other compared algo-

rithms.

References

 [1] T. Stutzle and H.H. Hoos, "MAX-MIN ant system," Future Gener.
 Comput. Syst., vol.16, no.8, pp.889-914, 2000.

[2] L.M. Gambardella, E. Taillard, and M. Dorigo, "Ant colonies for
 the quadratic assignment problem," J. Operational Research Society,

 vol.50, pp.167-176, 1999.
[3] T. Teich, M. Fischer, A. Vogel, and J. Fischer, "A new ant colony

 algorithm for the job shop scheduling problem," Proc. Genetic and
 Evolutionary Computation Conference GECCO2001, p.803, 2001.

[4] M. Reimann, K. Doerner, and R.F. Hartl, "D-ants: Savings based
 ants divide and conquer the vehicle routing problems," Computers

 & Operations Research, vol.31, pp.563-591, 2004.
[5] M. Dorigo, E. Bonabeau, and G. Theraulaz, "Ant algorithms and

 stigmergy," Future Gener. Comput. Syst., vol.16, no.8, pp.851-871,
 2000.

[6] M. Dorigo and G. Di Caro, "The ant colony optimization meta-
 heuristic," in New Ideas in Optimization, pp.11-32, McGraw-Hill,

 1999.
[7] M. Dorigo, G. Di Caro, and L.M. Gambardella, "Ant algorithms

 for discrete optimization," Artificial Life, vol.5, no.3, pp.137-172,
 1999.

[8] M. Dorigo, "Optimization, learning and natural algorithms," Italian
 PhD dissertationPolitecnico di MilanoMilan, 1992.

[9] M. Dorigo and L.M. Gambardella, "Ant colony system: A cooper-
 ative learning approach to the traveling salesman problem," IEEE

 Trans. Evol. Comput., vol.1, pp.53-66, 1997.
 [1O] M. Dorigo and L.M. Gambardella, "Ant colonies for the traveling

 salesman problem," Bio Systems, vol.43, no.2, pp.73-81, 1997.

WANG et al.: ACO WITH MEMORY AND ITS APPLICATION TO TSP

645

[11]

 [12]

[131

 [14]

[151

[161

 [17]

[181

[191

 [20]

 [21]

 [22]

 [23]

 [24]

T. Stutzle and M. Dorigo, "A short convergence proof for a class of

ACO algorithms," IEEE Trans. Evol. Comput., vol.6, no.4, pp.358—

365, 2002.

B. Bullnheimer, R.F. Hartl, and C. Strauss, "A new rank based ver-

sion of the ant system: A computational study," Central European

Journal for Operations Research and Economics, vol.7, no.1, pp.25—

38, 1999.

T. Stutzle and H. Hoos, "The MAX-MIN ant system and local search

for the traveling salesman problem," Proc. 1997 IEEE International

Conference on Evolutionary Computation ICEC 97, vol.16, no.8,

pp.309-314, 1997.
R.-L. Wang and X.-F. Zhou, "Ant colony optimization with genetic

operation and its application to traveling salesman problem," IEICE

Trans. Fundamentals, vol.E92-A, no.5, pp.1368-1372, May 2009.

G. Reinelt, "A traveling salesman problem library," ORSA Journal

on Computer, vol.3, no.4, pp.376-384, 1991.

G. Laporte, "A concise guide to traveling salesman problem," J. Op-

erational Research Society, vol.61, no.1, pp.35-40, 2010.

M.R. Garey and D.S. Johnson, "Computers and Intractability: A

Guide to the Theory of NP-Completeness," Revista Da Escola De

Enfermagem Da U S P, vol.44, no.2, p.340, 1979.

L.M. Gambardella and M. Dorigo, "HAS-SOP: Hybrid Ant System
for the Sequential Ordering Problem," Technical Report IDSIA 11-

97, pp.1-22, 1997.
V. Maniezzo, "Exact and Approximate Nondeterministic Tree-

Search Procedures for the Quadratic Assignment Problem," IN-

FORMS Journal on Computing, vol.11, pp.358-369, 1998.

H. Bersini, C. Oury, and M. Dorigo, "Hybridization of Genetic Al-

gorithms," Tech. Rep. no.IRIDIA 95-22, 1995.
D. Whitley, T. Starkweather, and D. Fuquay, "Scheduling problems

and travelling salesman: The genetic edge recombination operator,"

Proc. 3rd International Conference on Genetic Algorithms, pp.133—

140, 1989.

D.B. Fogel, "Applying evolutionary programming to selected travel-

ing salesman problems," Cybernetics and Systems: An International

Journal, vol.24, no.1, pp.27-36, 1993.
F.-T. Lin, C.-Y. Kao, and C.-C. Hsu, "Applying the genetic approach

to simulated annealing in solving some NP-hard problems," IEEE

Trans. Syst. Man. Cybern., vol.23, no.6, pp.1752-1767, 1993.

M.P. Hansen, "Use of substitute scalarizing functions to guide a local

search based heuristic: The case of moTSP," J. Heuristics, vol.6,

no.3, pp.419-431, 2000.

......

Li-Qing Zhao received the B.S. and M.S.
degrees in Micro-electronics from Nan-Kai Uni-
versity, Tianjin, china, in 2006 and 2009, respec-
tively. During 2006 to 2009, she was focus on
LCD research. From 2009 she is working to-
ward her Ph.D degree at University of Fukui,
Fukui, Japan. Her main research interests in-
clude ant colony optimization, neural network,
genetic algorithm and combinatorial optimiza-
tion problems.

Xiao-Fan Zhou received a B.S. degree in

Electronic Science and Technology from Nan-

chang Hangkong University, Jiangxi, China in

2007, and an M.S. degree in Electrical and Elec-

tronics Engineering from University of Fukui,

Fukui, Japan in 2010. During 2006 and 2010,

he was focused on ant colony optimization and

genetic algorithm. From 2010 he is working to-

ward his Ph.D. degree at University of Fukui,

Fukui, Japan. His main research interests in-

clude genetic algorithm, ant colony optimization

and combinatorial optimization problems.

His current research interests include intell

soft computing, and optimization problems.

Rong-Long Wang received a B.S. de-
gree from Hangzhe teacher's college, Zhejiang,
China and an M.S. degree from Liaoning Uni-
versity, Liaoning, China in 1987 and 1990, re-
spectively. He received his D.E. degree from
Toyama University, Toyama, Japan in 2003.
From 1990 to 1998, he was an Instructor in
Benxi University, Liaoning, China. In 2003, he

joined University of Fukui, Fukui Japan, where
he is currently an associate professor in Depart-
ment of Electrical and Electronics Engineering.

 sts include intellectual information technology,

