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PAPER

Ant Colony Optimization with Memory and Its Application to 

Traveling Salesman Problem

Rong-Long  WANG, Member, Li-Qing  ZHAO, and Xiao-Fan ZHOU, Nonmembers

SUMMARY Ant Colony Optimization (ACO) is one of the most re-

cent techniques for solving combinatorial optimization problems, and has 
been unexpectedly successful. Therefore, many improvements have been 

proposed to improve the performance of the ACO algorithm. In this paper 
an ant colony optimization with memory is proposed, which is applied to 

the classical traveling salesman problem (TSP). In the proposed algorithm, 

each ant searches the solution not only according to the pheromone and 
heuristic information but also based on the memory which is from the solu-

tion of the last iteration. A large number of simulation runs are performed, 
and simulation results illustrate that the proposed algorithm performs better 

than the compared algorithms. 
key words: ant colony optimization, memory, combinatorial optimization 

problems, traveling salesman problem

1. Introduction

Ant colony optimization (ACO) is a recently developed, 

population-based approach which has been successfully ap-
plied to several NP-hard combinatorial optimization prob-
lems [1]. Combinatorial optimization problems are of high 
importance both for the industrial world as well as for the 
scientific world. It arises in many different fields such as 
economy, commerce, engineering, industry and medicine 

[2]—[4]. As the name suggests, ACO has been inspired by 
the behavior of real ant colonies, in particular, by their for-
aging behavior. One of its main ideas is the indirect commu-
nication among the individuals of a colony of agents based 
on an analogy with trails of a chemical substance, called 

pheromone, which real ants use for communication. The 
pheromone trails are a kind of distributed numeric informa-
tion [5] which is modified by the ants to reflect their ex-

perience accumulated while solving a particular problem. 
Recently, the ACO meta-heuristic has been proposed to pro-
vide a unifying framework for most applications of ant algo-
rithms [6], [7] to combinatorial optimization problems. Al-

gorithms which actually are instantiations of the ACO meta-
heuristic will be called ACO algorithms in the following. 

   The first ACO algorithm, called Ant System (AS) was 

proposed by Dorigo in 1992 [8]. Since then, the ACO algo-
rithm attracted the attention of more researchers and a num-
ber of other ACO algorithms have been introduced. Even 
though the original AS algorithm achieved encouraging re-
sults for the TSP problem, it was found to be inferior to
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state-of-the-art algorithms for the TSP as well as for other 

problems. Therefore, several extensions and improvements 
of the original AS algorithm were introduced over the years. 
ACS [9],  [10] has been introduced to improve the perfor-
mance of AS. It differs in three main aspects from the ant 
system. First, in ACS ants choose the next city using the 

pseudo-random-proportional action choice rule: when lo-
cated at city i, ant k moves with probability qo to city  / for 
which  Tii(t)Ndfi is maximal. With probability (1 —  qo) an 
ant performs a biased exploration of edges according to the 

probability. Second, in ACS only the global best ant is al-
lowed to add pheromone. The most interesting contribution 
of ACS is the introduction of a local pheromone update in 
addition to the pheromone update performed at the end of 
the construction process (called offline pheromone update). 
The effect of the local updating rule is to make an already 
chosen edge less desirable for a following ant. The  Max-
Min AS [11] is a direct improvement over AS. The main 
modifications introduced by  Max-Min AS with respect to 
AS are the following. First, to exploit the best solution 
found, after each iteration only the best ant, which can be 
either the iteration — best or the best — so — far, is allowed 
to add pheromone. Second, to avoid search stagnation, the 
allowed range of the pheromone trail strengths is limited to 
the interval  [7-  min,  T  max]. Last, the pheromone trails are ini-
tialized to the upper trail limit, which causes a higher explo-
ration at the start of the algorithm. Another improvement 
about AS is the rank-based version of Ant System (AS rank) 

[12]. In AS rank, always the global-best tour is used to update 
the pheromone trails. Additionally, a number of best ants of 
the current iteration are allowed to add pheromone. To this 
aim the ants are sorted by tour length, and the quantity of 

pheromone an ant may deposit is weighted according to the 
rank r of the ant. Only the  (co — 1) best ants of each iteration 
are allowed to deposit pheromone. The global best solution, 
which gives the strongest feedback, is given weight  co. The 
rth best ant of the current iteration contributes to pheromone 
updating with a weight given by max{0,  co —  r}. 

   Therefore, one important focus of the research on ACO 
algorithms is the introduction of algorithmic improvements 
to achieve a much better performance. Typically, these im-

proved algorithms have been tested again on the TSP [9], 
[12], [13]. Recent researches on the search space charac-
teristics of some combinatorial optimization problems have 
shown that during the searching process it is very difficult 
to control the balance between intensification and diversi-
fication [14]. In this paper the ant colony optimization al-
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gorithm with memory is proposed. It seems reasonable to 
assume that the concentration of the search around the so-
lutions found in last iteration is the key aspect that leads 
to the improved performance. In the proposed algorithm, 
the ant searches for the solution not only according to the 

pheromone and heuristic information but also based on the 
memory, which is from the solution of the last iteration. 
To evaluate the performance of the proposed algorithm, we 
simulated some TSPLIB benchmark problems. The simula-
tion results show that the proposed algorithm produces bet-
ter results over the other existing ACO algorithms [15]. 

   The remainder of this paper is structured as follows. In 
Sect. 2, the traveling salesman problem (TSP) is introduced. 
In Sect. 3 we outline how ACO algorithms can be applied 
to that problem. The proposed ant colony optimization al-

gorithm with memory is addressed in Sect. 4.  In Sect. 5 the 
proposed algorithm is applied to the TSP, and experimental 
results are presented in Sect. 6. The conclusions are given in 
Sect. 7.

2. The Traveling Salesman Problem

The traveling salesman problem is arguably the most fa-
mous problem in combinatorial optimization. The popular-
ity of the TSP derives partly from the contrast between the 
simplicity of its statement and its computational complexity 

 [16]. The TSP also plays an important role in ant colony 
optimization since the first ACO algorithm, called Ant Sys-
tem, as well as many of the subsequently proposed ACO 
algorithms, was initially applied to the TSP. The TSP was 
chosen for many reasons: (1) it is a problem to which ACO 
algorithms are easily applied, (2) it is an NP-hard optimiza-
tion problem  [17], (3) it is a standard test-bed for new algo-
rithmic ideas and a good performance on the TSP is often 
taken as a proof of their usefulness, and (4) it is easily un-
derstandable, so that the algorithm behavior is not obscured 
by too many technicalities. 

   Intuitively, the TSP is the problem that a salesman who 
wants to find, starting from his home town, the shortest pos-
sible trip through a given set of customer cities and to return 
to its home town. The TSP can be represented by a com-

plete graph G = (N, A) with N being the set of nodes, also 
called cities, and A being the set of arcs fully connecting the 
nodes. Each arc (i, j)  E A is assigned a value  dij which rep-
resents the distance between cities i and j. The TSP then is 
the problem of finding a shortest closed tour visiting each 
of the N nodes of G exactly once (Such a tour is called 
Hamiltonian.). For symmetric TSP, the distances between 
the cities are independent of the direction of traversing the 
arcs, that is,  di.) =  dji for every pair of nodes. In the asym-
metric TSP (ATSP) at least for one pair of nodes i, j we have 

 #  c/1). In this paper the symmetric TSP is adopted. All 
the TSP instances used in the empirical studies presented in 
this paper are taken from the TSPLIB benchmark library. 
These instances have been used in many other studies and 

partly stem from practical applications of the TSP.
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3. Ant Colony Optimization

The first ACO algorithm, called ant system (AS) was firstly 
applied to the traveling salesman problem (TSP). We call 

 di,/ the length of the path between towns i and j, and let 
 1-)1, which called pheromone be the intensity of trail on edge 

(i, j) which connects i and j at time t. Each of m ants de-
cides independently on the city to be visited next based on 
the intensity of pheromone trail  7-)1 and a heuristic value  qii, 
until the tour is completed. Each ant is placed on a random 
start city, and builds a solution going from city to city, until 
it has visited all of them. The probability by which an ant k 
in a city i chooses

/to go to a city j next is given by:                TiOa.4 
  if j EJk 

 psiTii(tr-74 (1) 
       0, otherwise 

   Where the heuristic value  TN, the parameters a and  )3 
determine the relative influence of pheromone and heuristic, 
and  Jk is the set of cities that remain to be visited by ant 
k positioned on city i. Once all ants have built a tour, ants 

perform the following pheromone update rule: 

   Tii(t  + 1) = (1 — p)  •  T  1(t)  E  Arki.,(t) (2) 
                                   k=1 

   Equation (2) consists of two parts. The left part makes 
the pheromone on all edges decay. The speed of this decay 
is defined by p, the evaporation parameter. The right part, 
where Ark..(t) is defined by Eq. (3) below, in which Q is a 

         j positive constant, increases the pheromone on all the edges 
that are visited by ants. The amount of pheromone an ant k 
deposits on an arc (i, j) is defined by Lk(t), the length of the 
tour created by that ant at iteration t. 

           —Qif edge (i,j) is used by ant k  Ark(t)–Lk(t)(3)      ij–0
, otherwise 

   In this way, the increase of pheromone for an edge de-

pends on the number of ants that use this edge, and on the 
quality of the solutions found by those ants. 

   Afterwards, several extensions and improvements of 
the original AS algorithm which mentioned above were in-
troduced over the years. One of the typical extensions is the 
Rank-based AS [12]. In Rank-based AS, always the global-
best tour is used to update the pheromone trails. Addition-
ally, a number of best ants of the current iteration are al-
lowed to add pheromone. To this aim the ants are sorted by 
tour length, and the quantity of pheromone an ant may de-

posit is weighted according to the rank r of the ant. Only 
the  (w – 1) best ants of the iteration are allowed to de-

posit pheromone. The rth best ant of the current iteration 
contributes to pheromone updating with a weight given by 

 max{0,  (A) –  r}. Thus the improved update rule is: 

   Tif(t + 1) = (1 – p)  •  T  1(t)  E(CO -  r)  A'71  j(t) 
                                          r=1



WANG et al.: ACO  WITH MEMORY AND ITS APPLICATION TO TSP

procedure ACO algorithms for TSP 
 set parameters, initialize pheromone trails 

 while (termination condition not met) do 
   construct solutions as follows: 

     1) randomly select the initial component 
     2) decide the next component according 

       to probability, which is based on the 

        pheromone and heuristic information 
   update trails 

  end-while 
end-procedure

 Fig.  1 Algorithmic skeleton for ACO algorithm.

       -EcoAr?/.7(t) (4) 

   Where  Afi(t) =  QIE(t) and  A71.17(t) =  Q/Lgb(t). In 
general, the ACO algorithms for the TSP follow the scheme 
in Fig. 1.

4. Ant Colony Optimization with Memory

As mentioned above, the first ACO algorithm, called ant 
system, was applied to the traveling salesman problem 

(TSP). It gave encouraging results, yet its performance was 
not competitive with state-of-the-art algorithms for the TSP. 
Therefore, one important focus of research on ACO algo-
rithms is the introduction of algorithmic improvements to 
achieve a much better performance  [18],  [19]. Typically, 
these improved algorithms are tested again on the TSP. 
While they differ mainly in specific aspects of search con-
trol, all these ACO algorithms are based on a stronger ex-

ploitation of the pheromone and heuristic trails. 
   The ACO algorithms make use of ant agents which iter-

atively construct candidate solutions to a combinatorial op-
timization. The solution of each ant is constructed accord-
ing to the pheromone trails deposited before and problem-
dependent heuristic information. According to the combina-
torial optimization, a lot of pheromone and heuristic modes 
are proposed. However, the searching mechanism has not 
been improved. In this paper an algorithm called ant colony 
optimization with memory is proposed. In the proposed al-

gorithm, a novel searching mechanism is proposed to en-
hance the searching ability. 

   To solve the combinatorial problem, an individual ant 
constructs candidate solutions by starting with an empty so-
lution and then iteratively adding solution components un-
til a complete candidate solution is generated. The ants' 
solution construction is guided by pheromone trails and 

problem-dependent heuristic information. In this paper, the 
ant-cycle version of AS (ant system) is adopted, in which, 
the pheromone update is only done after all the ants had 
constructed the solutions and the amount of pheromone de-

posited by each ant was set to be a function of the solution 
quality. After the solution construction is completed, the 
ants give feedback on the solutions they have constructed by 
depositing pheromone on solution components which they
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procedure ACO with memory 
  set parameters, initialize pheromone trails 

 while (termination condition not met) do 
   construct solutions as follows: 

     1) Randomly select the initial component 
    2) Phase I: 

       decide the next component according to 

       probability, which is based on pheromone 
       and heuristic information 

      Phase II: 
       compare the solution with the memory 

       solution and adjust the components. 
   update trails 

  end-while 
end-procedure

Fig. 2 Algorithmic skeleton for the proposed algorithm.

have used in their solution. Typically, solution components, 

which are part of better solutions or are used by many ants 

receive a higher amount of pheromone, and hence, will more 

likely be used by the ants in future iterations of the algo-

rithm. To avoid the search getting stuck, typically before the 

pheromone trails get reinforced, all pheromone trails are de-

creased by a factor p. We call each point, at which an ant has 

to decide which solution component to add to its current par-

tial solution, a choice point. In the AS, at the choice point, 

an ant decides the next component according to certain prob-

ability which is based on the pheromone and heuristic infor-

mation. In the proposed algorithm, each ant searches the 

solution not only according to the pheromone and heuristic 

information but also based on the memory which is from the 

solution of the last iteration. The algorithmic scheme of the 

proposed algorithm is outlined in Fig. 2.

5. Ant Colony Optimization with Memory for TSP

After the ant colony optimization with memory was pro-

posed, we applied the algorithm to the TSP. When applying 
the proposed algorithm to the TSP, arcs between two cities 
are used as solution components, which was mentioned in 
Sect. 4. A pheromone trail  rij(t), where t is the iteration 
counter, is associated with each arc (i,  j). These pheromone 
trails are modified during the run of the algorithm through 
the pheromone trail evaporation and the pheromone trail re-
inforcement by the ant colony. When it is applied to sym-
metric TSP instances, pheromone trails are also symmetric. 

   The tour construction is the most important part of 
the TSP. To describe the tour construction of the proposed 
method, we introduced  TOURms(01,02,•  •  ,  on,  oi  ) as the 
memory solution,  TOURps(Pi,  P2,  •  •  ,  pi) as the tour 
that is being constructed right now and  TOURTs as a tempo-
rary solution in the searching procedure, in which  oi,  pi E N 
in G(N, A) are the city number of the TSP. The tour construc-
tion process of the proposed algorithm is outlined in Fig. 3. 
Initially m ants are placed on m randomly chosen cities, and
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procedure Proposed decision rule 
 randomly decide  pl in  TOURps 

 for i=1 to n do 

   find  ox==p, in  TOURms 

   decide  pi_ki by AS decision rule 
    find  oi,==p,±1  in  TOUR  Ms 

    if  Ox+1!=o, then 
      swap  ox+1 and  oy to get  TOURTs 

     if  LTs<Lms then 

 TOUR—TOURTS 

        terminate 
      else 

 TOURms<—TOURTs 

      end-if 

    end-if 
  end-for 

end-procedure

Fig. 3 Tour construction of the proposed algorithm.

the  pi in  TOURps of every ant is decided. In each con-
struction step, two phases are performed. In the first phase, 
each ant moves based on a probabilistic decision to a city 
it has not yet visited. This probabilistic choice is biased by 
the pheromone trail  ri  j(t) and a locally available heuristic 
information  ihj. The function about the pheromone trail and 
the heuristic information was addressed in Sect. 3. As a re-
sult, the ants prefer cities which are close and connected by 
arcs with a high probability which was presented as Eq. (1). 
After every ant selects a city as its  p2 according to probabil-
ity, the memory of every ant will be used in the following 

phase. In the second phase, the ant colony adjusts the so-
lution component based on the memory which is from the 
solution of the last iteration. For each ant, the next city  /32 is 
decided according to the probability in the first phase, and 
then every ant compare its arc  (p1,  1,2) with its memory so-
lution respectively. As for the result of comparison, for the 
ant k, two kinds of situation will happen. The first situation 
is that the arc  (pi,  132) of present solution is the same to that 
of the memory solution. For example  (pi = 5,  /32 = 3) in the 

present solution, and the arc  (oi = 5,  oin = 3) appeared in 
the memory solution. In that situation, the ant make the next 
decision at choice city  /32, and in other words the next con-
struction step begins from  p2 according two-phase selection 
formula to searching the next city p3. The other situation is 
that the arc  (pi,  p2) of present solution could not be found 
in the memory solution. For example,  (pi = 5,  p2 = 3) in 
the present solution, but in memory solution of ant k, there 
is an arc  (oi = 5,  oi±i  # 3). For the second situation, we 
can find  ox =  oi =  5(pi) and  ou  #  0i+1 =  3(pi±i  ) in the 
memory tour  TOURMS, and exchange the values of  o„i 
and  ou of the memory solution to get a temporary solution 

 TOURTs. If the tour length of the temporary solution  (Lis  ) 
is shorter than that of the memory solution  (Lms  ), the tour 
construction process is terminated and the temporary solu-
tion becomes the solution of the present iteration. On the
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 TOURms(01,  02,  07,  01) 
 =(3  44  47  45  46  42  41  43)  (LMS=28)

start from a random city  TOURp  (Pi=1)

V

select next city according to phase I.
 TOURps=  (1  45  4)  while  TOURms=(I  43  4).

V

 TOURivis (04=5  <*0  1=3)  c
 TOURTs=  (I  45  44  47  43  46  42  41)

V

 (LTS=32)>  (LMS=28)

move on to get  TOURp5(P3) according to phase I.
 TOURps=(I  45  44  4),

while  TOURms turns to be  (1  45  44  4).

V

Move on according to phase I.
 TOURps=(1  45  44  46  4)

V

 TOURms  (05=6  <*03=7)
 TOURTs=  (I  45  44  46  43  47  42  41)

V

 (LTs=22)<  (LMS=28)

V

 TOURpsTOURTs

 Fig.  4

 TOURPS(P1,  P2,  •  •  •,  195  PI) 
 =(1 45 44 46 43 47 42 41)

An instance of the proposed algorithm for TSP.

other hand, if  LTS is not shorter than  Lms,  TOURms is re-

placed with  TOURTs  , and the next construction step begin 
from  p2 according to two-phase selection formula to search 
the next city p3. Then, in the second phase of the construc-
tion step from city p3 to find the next city p4, we first find 

 ox again in  TOURms, and then compare  ox with  o1+2 in the 
memory solution. According to the above construction step, 
an individual ant constructs a candidate solution by starting 
with an empty solution and then iteratively adding solution 
component until a complete candidate solution is generated. 

   To show the searching process of the proposed algo-
rithm in detail, an instance is given out. Here we maked a 
small-sized TSP with seven cities and adopted it to demon-
strate the searching process, which is shown in Fig. 4. From 
Fig. 4, we can see that for every searching step, the ant se-
lects one city according to the probabilities firstly, then com-

pares with the memory solution, adjusts the solution accord-
ing to different situation, and finally finds a better solution. 

   It is worth noting that although the proposed method 
has the similar exchanging operations with 2-opt algorithm, 
the exchanging mechanisms are essentially different. 2-opt 
considers only exchanging arcs to try to acquire the better 
solution, while our method considers exchanging nodes, and 
the decision of the nodes is based on the memory solution.
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In addition, the proposed exchanging mechanism is per-
formed in the procedure of building each solution element 
based on the memory solution. As a result, the proposed 
method concentrates the search around solutions found in 
the last iteration to enhance intensification. 

   As described above,all the ants can construct their 
own tour solutions as the candidate solutions by using 
the proposed tour construction procedure, and then up-
date their pheromone trails. In this paper, the method of 

pheromone updating is the same as AS mentioned above. 
The pheromone trails are updating according to Eq. (2) and 

 Eq.  (3). 
   So far the algorithm of ant colony optimization with 

memory has been founded. The following search procedure 
describes the proposed ant colony algorithm for the TSP.

1. Set parameters. 
2. Initialize the pheromone trails and compute the heuris-

  tic information. 
3. All the ants construct candidate solutions according to 

 Fig.  3. 
4. Evaluate the candidate solutions and judge whether to 

  terminate the procedure. 
5. Update the pheromone trails and then go to the next 

  iteration of tour construction.

the average solution of AS and the proposed algorithm dur-
ing the evolution procedure of solution. We can see that 
at the beginning, the effect of the memory is not obvious, 
but from the  150th iteration, the memory plays an important 
role, and the advantage of the algorithm with memory comes 
out. Figure 7 shows the difference in detail. Figure 7 shows 
that the proposed algorithm converges quickly and can find 
a better solution. By this simulation, we can confirm the ef-
fection of the memory mechanism in the searching process. 

   To further evaluate the proposed algorithm, in the next 
simulations some other TSPLIB benchmark problems are 
selected and some best exsited ACO based algorithm such 
as Rank-based AS (AS  rank)  [12], ACS  [10] are used for 
comparison. Besides, some other softcomputing algorithms 
such as genetic algorithm (GA) [20], [21], evolutionary pro-

gramming (EP) [22], simulated annealing (SA) [23] are also 
used for comparison. Note that for each instances, 100 sim-
ulation runs were performed. We give the results in Table 1, 
where the best integer tour length, the best real tour length 

(in parentheses) and the number of iteration required to find 
the best integer tour length (in square brackets) are recorded. 
The difference between integer and real tour length is that in 
the first case distance between cities are measured by integer 
numbers, while in the second case by floating point approx-
imations of real numbers. Note that result of Rank-based

6. Simulation Results

In order to assess the effectiveness of the proposed 
ACO algorithm, extensive simulations were carried out 
over TSPLIB benchmark problems on a PC  station(Intel, 
2.66 GHz). The parameters setting used in the proposed al-

gorithm is that suggested in Rank-based AS [12], which are 
(a =  1,13 =  5,  p = 0.5, Q = 100). The ant colony size is set 
to 100 in this paper. 

   Our first simulation is performed on Ei150 (50-city) 
to see the effect of the memory mechanism. We recorded 
the variation of the best, worst and average solutions dur-
ing the evolution procedure of the solution, and illustrated 
it in Fig. 5. From this figure, we can find that our algo-
rithm converges very fast. Furthermore, to see how effi-
ciently the memory mechanism affects the performance, we 
also applied AS (Ant system) [8] to the Ei150 (50-city) for 
comparison. Note that the setting of parameters is the same 
as the proposed algorithm. Figure 6 shows the variation of
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Table 1 Simulation results.

Problem Optimum GA EP SA ACS AS rank Proposed algorithm

Ei150 425 428 426 443 425 441 425

 (50-city) (N/A) (N/A) (427.86) (N/A) (427.96) (435.13) (427.85)
[25000]  [100000]  [68512]  [1830]  [5000]  [458]

Ei175 535 545 542 580 535 564 535

(75-city) (N/A) (N/A) (549.18) (N/A) (542.31) (566.88) (542.30)
 [80000]  [325000]  [173250]  [3480]  [5000]  [500]

 KroA100 21282 21761 N/A N/A 21282 23278 21282

(100-city) (N/A) (N/A) (N/A) (N/A) (21285.44) (23599.12) (21285.44)
 [103000]  [N/A] [N/A] [4820] [5000]  [593]

Table 2 Average deviation from optimal value.

Problem

Tabu search

The proposed algorithm

 kroA100

0.26%

 0.01%

 kroB100

0.37%

0.11%

 kroC100

0.42%

 0%

 kroD100

0.15%

0.03%

 kroE100

0.45%

0.08%

 27000 
 26500 
 26000 

 25500 
 25000 

c 24500 

 24000 
 23500 
 23000 
 22500 

 22000 
 21500 
 21000

 ACS

The proposed algorithm

7.

0 20 40 60 80 100 120 140 160 180 200 
                 time(s) 

 Variation of the solution during the evolution procedure.

Conclusions

 Fig.  8

AS is from [14], and those of GA, EP and SA are from [9]. 
From the Table 1, it is clear that the proposed algorithm out-

performs other algorithms in the solution quality. From the 
table we can also know that the proposed algorithm con-
verges in hundreds of iterations comparing with other ACO 
algorithms and GA algorithm always performs several thou-
sand search iterations for finding a solution. The reason 
why the proposed algorithm can find a good solution within 
small searching iterations can be considered that in the pro-

posed algorithm, the memory of the ants present the better 
balanced intensification and diversification in searching pro-
cess. In addition, in order to evaluate the proposed method 
from the aspect of the calculation cost, we compared the 

proposed method with ACS on real calculation time, where 
 KroA100 is used. Figure 8 shows the result of the simu-

lations. As shown in this figure, the proposed method can 
converge to a good solution within less time comparing with 
the other algorithm. 

   To evaluate the performance of the proposed algorithm 
comparing with other techniques, we also performed ex-
tended comparison with tabu search algorithm [24] on some 
100-city problems. The simulation results are shown in Ta-
ble 2, where the average deviations from the optimal value 
are listed. From this table, we can see that the performance 
of our proposed method is quite good and seems suitable for 
obtaining good solutions to the TSP problems.

An improved ACO algorithm with memory for efficiently 

solving combinatorial optimization problems have been pro-

posed in this paper. In the proposed ACO algorithm, 

each ant searches the solution not only according to the 

pheromone and heuristic information but also based on the 
memory which is from the solution of the last iteration. The 

proposed algorithm was applied to the TSP, and to verify 

the effect of the memory, several TSP benchmark problems 

were simulated. From the simulation results, we find that 

the improved ACO algorithm has very high performance 

in searching solution comparing with other compared algo-

rithms.
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