
A systematic investigation of T-stresses for a
variety of center-cracked tension specimens

言語: English

出版者: 

公開日: 2015-05-14

キーワード (Ja): 

キーワード (En): 

作成者: Lu, Kai, Meshii, Toshiyuki

メールアドレス: 

所属: 

メタデータ

http://hdl.handle.net/10098/8794URL
〓 2015 Elsevier B.V.



Accepted Manuscript

A systematic investigation of T-stresses for a variety of center-cracked tension

specimens

Kai Lu, Toshiyuki Meshii

PII: S0167-8442(14)20106-6

DOI: http://dx.doi.org/10.1016/j.tafmec.2015.02.001

Reference: TAFMEC 1566

To appear in: Theoretical and Applied Fracture Mechanics

Please cite this article as: K. Lu, T. Meshii, A systematic investigation of T-stresses for a variety of center-cracked

tension specimens, Theoretical and Applied Fracture Mechanics (2015), doi: http://dx.doi.org/10.1016/j.tafmec.

2015.02.001

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers

we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and

review of the resulting proof before it is published in its final form. Please note that during the production process

errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

http://dx.doi.org/10.1016/j.tafmec.2015.02.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.tafmec.2015.02.001
http://dx.doi.org/http://dx.doi.org/10.1016/j.tafmec.2015.02.001


  

 

1 
 

A systematic investigation of T-stresses for a variety of center-cracked 
tension specimens 

Kai Lua*,kai_lu@u-fukui.ac.jp, Toshiyuki Meshiib 
aGraduate School of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui, Japan 

bFaculty of Engineering, University of Fukui, 3-9-1 Bunkyo, Fukui, Fukui, Japan 
*Corresponding author. Fax: +81 776 27 9764. 

 

 

 

 

Abstract 

In this work, a systematic investigation of three-dimensional (3D) T-stresses (T11 and T33) was 

conducted using detailed elastic finite element analysis (FEA). The interaction integral method was 

applied to extract the T-stress solutions. Standard CCT specimens with a thickness-to-width ratio of 

B/(2W) ≤ 0.0625 and a crack length-to-thickness ratio of 2a/B ≥ 8, as specified in ASTM E2472, 

were considered, and the cases of B/(2W) = 0.1 ~ 1.0 and 2a/B = 0.05 ~ 7 were also added. From the 

FEA results, it was found that both T11 and T33 at the specimen mid-plane showed significant 

changes with crack lengths and specimen thicknesses for those CCT configurations that satisfy 

ASTM E2472. Because both the in-plane and out-of-plane T-stresses were negative and showed 

large variations for all the considered CCT specimens which was true even for the CCT specimens 

complying with the ASTM E2472 standard, it was noted that these CCT specimens that complying 

with the standard might show the test specimen size effect (including the crack length and specimen 

thickness effect) on the fracture toughness if tested. 
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Nomenclature 

B               Specimen thickness 

E               Young’s modulus 

H                       Half specimen height 

I                Interaction integral 

Jc               Fracture toughness of a material in the ductile-to-brittle transition temperature region 

KI               Local mode I stress intensity factor 

Rs                      Crack tube radius 

T11, T33          T-stresses obtained from the finite element analysis results  

T11 sup, T33 sup      T-stresses obtained from the superposition method  

W               Half specimen width 

Wmin             Minimum half specimen width 

a         Half crack length 

f                Unit magnitude (see Eq. (2)) 

r, θ          In-plane polar coordinates 

xj          Crack-tip local coordinates (j = 1, 2, 3) 

Δl               Singular element size 

V11, V33           Normalized T-stresses from the finite element analysis results 

V11 Kfouri           Normalized Kfouri’s plane strain T11 solutions 

V11 sup, V33 sup      Normalized T-stresses obtained from the superposition method  

ε33         Out-of-plane strain 

ν         Poisson’s ratio 

σ0         Uniform tension load  

σij         Stress components (i, j = 1, 2, 3) 
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1. Introduction 

The crack-tip constraint difference caused by the specimen configuration and the size of fracture 

test specimens is known to show a strong effect on the measured fracture toughness [1, 2]. The past 

fracture toughness test results [3-5] indicated two common understandings, that is, (1) a high level of 

crack-tip constraint results in low fracture toughness, while a low constraint leads to a higher 

fracture toughness; (2) the change in the measured fracture toughness is small for a high constraint 

case but the fracture toughness is sensitive for a low constraint case. Therefore, the center-cracked 

tension (CCT) specimen in Fig. 1, which is considered to be a representative of the low constraint 

specimen [6, 7], should be sensitive to the constraint difference caused by specimen size difference 

[3, 8, 9], if there is any. The past fracture toughness test results for the various sized CCT specimens 

[10] seemed to validate this sensitivity. Thus, studies on the crack-tip constraint difference for 

various sized CCT specimens were thought to be necessary. As a parameter to quantify the crack-tip 

constraint, the elastic T-stresses were considered [11]. 

The in-plane T-stress, T11, which is thought to be a measure of the in-plane crack-tip constraint, 

has been extensively investigated in the previous works for various fracture toughness test 

specimens and cracked structures [7, 12-25]. 

In discussing the CCT specimens, six T11 solutions in two-dimension (2D) [7, 13, 16, 19, 22, 24] 

and one in three-dimensions (3D) [24] are known. Five of them used the finite element method [7, 

13, 19, 24], one of them used the boundary collocation method [16] and the other used the boundary 

element method [22]. In these six 2D works, five presented T11 solutions for the plane strain 

condition [7, 13, 19, 22, 24] and one for the plane stress condition [16]. Among these five plane-stain 

T11 solutions, Kfouri [13] and Tan and Wang’s solutions [22] were obtained for isotropic materials 

with Poisson’s ratio ν = 0.3. The difference in these two solutions was that Kfouri’s solutions [13] 

covered the crack length-to-width ratio a/W = 0.1-0.6, while Tan and Wang [22] covered a/W = 

0.2-0.6. The third plane strain T11 solutions by Paulino and Kim [7] were obtained for both 

homogeneous and functionally graded materials. In case of a homogeneous material, they assumed ν 
= 0.3 and considered cases for a/W = 0.1-0.8. The fourth plane strain T11 solutions by Henry and 

Luxmoore [24] were obtained for a/W = 0.1-0.9, assuming a homogeneous material of ν = 0.33. The 

remaining one plane strain T11 solutions by Shlyannikov [19] added cases for inclined cracks 

(mixed-mode loading), assuming a homogeneous material of ν = 0.3. The T11 solutions presented for 

a non-inclined crack were for the cases a/W = 0.1-0.9. The only plane stress T11 solutions by Fett 

[16] were obtained for a homogeneous material of ν = 0.25 and for a/W = 0 – 1.0. In addition to the 

effect of a/W on T11, he also examined the effect of H/W in the range of 0.35 – 1.25. In addition to 

the above six 2D works, T11 solutions of 2D CCT specimens were also provided in some benchmark 

analyses (e.g., Chen and Wang [23]). Although various 2D T11 solutions are available for CCT 

specimens, to the best of our knowledge, the 3D T11 solutions of the CCT specimens can only be 
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found in Henry and Luxmoore’s paper [24], assuming a homogeneous material of ν = 0.33 and for 

the specific case of a thickness-to-width ratio B/(2W) of 0.25. The planar size effect of a/W = 0.1-0.9 

was investigated. In addition to the results for ν = 0.33, the effect of Poisson’s ratio (ν = 0 ~ 0.495) 

was also investigated for the case of a/W = 0.7. Although they noted out the existence of the 3D 

effect by comparing the 2D plane-strain T11 with the 3D solutions, the out-of-plane T-stress, T33 [11, 

18, 20, 26-32], which is thought to be a measure of the out-of-plane crack-tip constraint, has not 

been studied for the CCT specimens. Thus, in this work, a systematic investigation of the 3D 

T-stresses (T11 and T33) for a variety of CCT specimens was conducted by using 3D elastic finite 

element analysis (FEA). 

For that purpose, the standard CCT specimens, as specified in ASTM E2472 [33], with a 

minimum half specimen width of Wmin ≥ 150 mm, a specimen height-to-width ratio of H/W ≥ 1.5, a 

thickness-to-width ratio of B/(2W) ≤ 0.0625 and a crack length-to-thickness ratio of 2a/B ≥ 8 were 

investigated. In addition, the cases of B/(2W) = 0.1 ~ 1.0 and 2a/B = 0.05 ~ 7 were added to the 

systematic investigation. 

Based on the FEA results, it was found that the 3D in-plane T11 at the specimen mid-plane was a 

monotonously decreasing function of the crack length when a/W ≥ 0.3 and showed a slight change 

with the crack length when a/W < 0.3. Another finding was that the mid-plane T11 showed a variation 

as high as 22% in the range of B/(2W) = 0.01 to 0.0625 at a/W = 0.5, even though these B/(2W) 

ratios satisfy ASTM E2472 [33]. The newly obtained mid-plane T33 was negative for all of the cases 

considered. The mid-plane T33 was a monotonously increasing function of the specimen thickness. In 

particular, T33 showed a significant change for the cases of B/(2W) ≤ 0.0625 and 2a/B ≥ 8, even for 

those configurations that satisfy ASTM E2472 [33]. Because both the in-plane and out-of-plane 

T-stresses were negative for the CCT specimens and showed large variations for all the considered 

CCT specimens which is true even for cases complying with the standard ASTM E2472 [33], it was 

noted that these CCT specimens that complying with the standard might show the test specimen size 

effect (including the crack length and specimen thickness effect) on the fracture toughness if tested. 

 

Fig. 1. CCT specimen 

 

2. T-stress 

In an isotropic and linear elastic 3D body containing a crack subjected to symmetric (mode I) 

loading, the leading two terms in the Williams series expansion [34] of the crack-tip stress fields 

near the crack front can be written as follows [14]: 
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where r and θ are the in-plane polar coordinates of the plane normal to the crack front shown in Fig. 

2 [28, 32], KI is the local mode I stress intensity factor (SIF) and ν is Poisson’s ratio. Here, x1 is the 

direction formed by the intersection of the plane normal to the crack front and the crack plane. T11 

and T33 are the amplitudes of the second-order terms in the three-dimensional series expansions of 

the crack front stress field in the x1 and x3 directions, respectively.   

 

Fig. 2 Three-dimensional coordinate system for the region along the crack front [28, 32] 

 

Several methods have been proposed to evaluate the elastic T-stresses for different cracked 

geometries in recent studies. Sherry et al. [15] gave a brief summary of the different methods used 

for calculating the in-plane T-stress T11. Based on the works by Cardew et al. [12] and Kfouri [13], 

Nakamura and Parks [14] developed an interaction integral method to extract the elastic T11 for 3D 

mode I crack problems with the related calculation of the crack-tip T11 on the crack front as: 

��� 
 


����
�
�
� �����                                                            (2) 

where E denotes Young’s modulus, ν is Poisson’s ratio and ε33 represents the out-of-plane strain at the 

crack-tip in the direction tangential to the crack front. I represents the interaction integral, and f 

indicates the unit magnitude (f = 1). In Eq. (2), it should be noted that, for a specified material, the 

in-plane T11 will be affected by not only the interaction integral I but also the out-of-plane strain ε33. 

   For a 3D cracked problem, in addition to the in-plane T11, Nakamura and Parks [14] were the 

first to define the relationship for determining the out-of-plane T-stress T33:   

��� 
 ���� � ����                                                               (3) 

According to Eq. (3), it is clear that the out-of-plane T33 naturally depends on the out-of-plane 

strain ε33 and inevitably shows its dependence on the in-plane T11.  

More details of the interaction integral method can be found in Nakamura and Parks [14]. 

 

3. Finite Element Analysis 

3.1 Details of the elastic FEA 

Our interest was focused on the influence of 3D effects on various CCT specimens. Thus, the 3D 
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elastic FEA was run to calculate the elastic T-stresses (T11 and T33) for different CCT specimens. The 

FEA model was configured with a through-thickness straight crack, as shown in Fig. 3(a). For all of 

the cases in the present FEA, the specimen width and specimen height was fixed as 2W = 300 mm 

and 2H = 600 mm, respectively. The set W and H satisfy the size requirements specified in ASTM 

E2472 [33] of Wmin ≥ 150 mm, and H/W ≥ 1.5. H = 2W was selected because the numerical results 

were reported as being slightly affected by the specimen height [13, 35, 36] and because this value 

has been used as a guideline for many years [37].  

To study the 3D T-stresses (T11 and T33) for a variety of CCT specimens, the ASTM E2472 [33] 

standard CCT specimens with a thickness-to-width ratio B/(2W) ≤ 0.0625 and a crack 

length-to-thickness ratio 2a/B ≥ 8 were investigated. In addition, the cases of B/(2W) = 0.1 ~ 1.0 and 

2a/B = 0.05 ~ 7 were added to the systematic investigation. 

Considering the symmetry conditions of the CCT specimens (Fig. 3(a)), the 1/8 symmetric 

model was built using the software FEA Crack [38], as shown in Fig. 3(b). The finite element model 

was generated using twenty-node isoparametric 3D solid elements with reduced (2×2×2) Gauss 

integration. Sixteen singular elements were always used around the crack-tip throughout the 

calculations. A constant crack tube radius, Rs = 1.0 mm, was set with twenty equivalent rings spaced 

inside it (Fig. 3(c)). The smallest element size Δl relative to the crack length in the created models 

was in the range of (0.42 ~ 6.7)×10−3, as summarized in Table A.1. For the present FEA models, 

78,720 to 93,632 elements with a total of 332,459 to 393,141 nodes were generated. The detailed 

mesh generation information is summarized in the Appendix. 

The material is assumed to be isotropic and linearly elastic. The Young’s modulus E = 206 GPa 

and Poisson’s ratio ν = 0.3 were adopted in the present FEA. 

Because of the symmetry conditions (Fig. 3(a)), the displacements normal to the symmetry 

planes of the 1/8 symmetric FEA model were fixed, and they are grey-colored in Fig. 3(b). In 

applying a remote tensile loading, a uniform stress σ0 = 1 MPa was applied on the remote plane x2 = 

H at the far-end of the model. 

WARP3D [39] was used as the FEA solver. 

 

Fig. 3 Typical 1/8 symmetric finite element model of a CCT specimen  

(2W = 300 mm, H/W = 2, B/(2W) = 0.5 and a/W = 0.5). Note that the detailed information for the 

mesh generation parameters (Δl, CD, NR and na) is summarized in the Appendix. 

 

3.2 Validation of the evaluated T-stresses 

For all current FEAs, the T-stress results were evaluated by taking the average values obtained 

from domain 2 to domain 20 (domain m consists of the elements from the 1st ring to the mth ring). T 

values were found to be independent on the chosen domains, as the differences in the T-stress results 
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from domain 2 to domain 20 were within 0.1% of each other. We focused our attention on the 

specimen mid-plane T-stresses under the assumption that fracture initiation occurs at this location 

(e.g., [10, 27, 28]), and reported the T-stress solutions in the normalized form of Vkk = Tkk/σ0 (k = 1 or 

3). 

Before summarizing the various T-stress solutions for CCT specimens with large crack length 

and thickness variations, the FEA model and evaluated T-stresses are validated in two steps. First, 

our 3D T11 solutions at the specimen mid-plane for the thickest specimen of B/(2W) = 1.0 were 

compared with Kfouri’s 2D plane strain T11 solutions [13]. This ratio, B/(2W) = 1.0, was selected to 

confirm whether the 3D T11 solutions might approach the plane strain values for a large thickness 

even though B/(2W) = 1.0 (B = 300 mm) might not be realistic for a CCT specimen. Note that 

Kfouri’s plane strain solutions [13] are only available for a/W = 0.1 to 0.6.  

In Fig. 4 and Table 1, the present mid-plane V11 solutions show a relatively large difference 

compared with Kfouri’s solutions, V11 Kfouri [13] as 5.4% for a/W = 0.5 and 9.5% for a/W = 0.6. 

When comparing the present mid-plane V11 solutions for B/(2W) = 0.5 and 1.0 as summarized later in 

Table 2, it is found that the present V11 solutions have not shown the saturating tendency for B/(2W) 

= 1.0. Moreover, for a thick specimen with B/(2W) ≥ 0.5, the difference between the present V11 

solutions and Kfouri’s solutions [13] increases. This result indicates that the stress state for a CCT 

specimen with a large thickness may deviate from the plane strain condition, which seems to 

contradict the common understanding that a thick specimen approaches the plane strain condition. 

Thus, we proceeded to the second step for T-stress validations.  

 

Fig. 4 Comparison of the normalized 3D mid-plane T11 solutions (V11= T11/σ0) with  

Kfouri’s 2D plane strain solutions [13] and the solutions from the superposition method  

for the CCT specimens with B/(2W) = 1.0 (ν = 0.3) 

 

The second step was to apply the superposition method for T11 [18] and T33 [31] in this work for 

validation. For example, in the case of B/(2W) = 1.0, the normalized mid-plane T-stress solutions 

from the superposition method (designated as V11 sup and V33 sup) were compared with the mid-plane 

V11 and V33 solutions from the present FEA, as summarized in Table 1. It is clear from Table 1 that 

the maximum difference of the mid-plane V11 and V11 sup solutions is 0.03% and the maximum 

difference for the mid-plane V33 and V33 sup solutions is 0.16%. 

Although only one validation example of B/(2W) = 1.0 is presented in this paper, the validations 

for the other CCT models have also been confirmed. Considering all cases, the maximum difference 

for the mid-plane V11 and V11 sup solutions is 0.03% and the maximum difference for the mid-plane 

V33 and V33 sup solutions is 0.40%. Thus, it is concluded that the present FEA models were suitable 

and that the obtained T-stress solutions have sufficient accuracy. 
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Table 1 Comparisons of the mid-plane normalized T-stress results for CCT specimens from  

the present FEA and the superposition method (2W = 300 mm, H/W = 2, B/(2W) = 1.0; ν = 0.3) 

 

3.3 T-stress solutions for CCT specimens 

Next, the normalized mid-plane V11 values for all of the cases in the present FEA are summarized 

as shown in Table 2 and Fig. 5. Note that the mid-plane V11 is always negative for all cases. 

In Fig. 5, regardless of B/(2W), the mid-plane V11 is a monotonously decreasing function of the 

crack length for a/W ≥ 0.3, but it changes slightly for a/W < 0.3, which is similar to Kfouri’s 2D 

plane strain solutions [13]. Considering the ASTM E2472 [33] standard CCT specimens with B/(2W) 

≤ 0.0625 and 2a/B ≥ 8, it is observed that the mid-plane V11 shows a relatively small dependence on 

the crack length for a/W ≤ 0.5, which satisfies the ASTM E2472 standard [33], and this result 

indicates that the a/W specification in ASTM E2472 [33] is appropriate. Conversely, the mid-plane 

V11 decreases significantly with the crack length for the CCT specimens with a/W > 0.5. Similar 

results were also obtained by Henry and Luxmoore [24] and Shlyannikov [19] for the CCT 

specimens. The sudden decrease in V11 for a/W > 0.5 seems to mean that the in-plane crack-tip 

constraint will decrease for a CCT specimen with a deep crack, and this finding coincides with the 

past fracture toughness test results of the CCT specimens, which indicated that a higher Jc (Jc: 

fracture toughness of a material in the ductile-to-brittle transition temperature region) value is obtained 

for a CCT specimen with a deep crack than for a CCT specimen with a shallow crack [3, 40]. 

Although the T11 stress is thought to be an in-plane constraint parameter, it is clear from Fig. 5 

that the mid-plane V11 also exhibits 3D effects, that is, the mid-plane V11 decreases with an increase 

in B/(2W), regardless of a/W. A similar tendency was found by Nakamura and Parks for a single 

edge-cracked plate under tension [14] and during our recent experience with the SE(B) specimens 

[28]. As seen in Fig. 5, the mid-plane T11 showed a variation as high as 22% in the range of B/(2W) = 

0.01 to 0.0625 at a/W = 0.5 even though this set of B/(2W) and a/W satisfies ASTM E2472 [22]. 

 

Table 2 Normalized T11 solutions (V11= T11/σ0) at the specimen mid-plane for CCT specimens (ν = 0.3) 

 

Fig. 5 Normalized T11 solutions (V11= T11/σ0) at the specimen mid-plane  

for CCT specimens (ν = 0.3) 

 

Table 3 and Fig. 6 summarize the mid-plane V33 solutions for various thicknesses and crack 

depths. The newly obtained mid-plane T33 is negative for all of the cases considered. In Fig. 6, it is 

observed that V33 is a monotonously increasing function of B/(2W), as expected. Specifically, T33 

shows a significant change for the cases of B/(2W) ≤ 0.0625 and 2a/B ≥ 8 (a/W ≤ 0.5) even though 
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these configurations satisfy ASTM E2472 [33]. However, it is observed that the increase in V33 with 

B/(2W) for B/(2W) ≤ 0.0625 is smaller than that for B/(2W) ≥ 0.1. 

In summary, both the in-plane and out-of-plane T-stresses were negative and showed large 

variations for all the considered CCT specimens. This was true even for cases complying with the 

ASTM E2472 [33]. 

 

Table 3 Normalized T33 solutions (V33= T33/σ0) at the specimen mid-plane for CCT specimens (ν = 0.3) 

 

Fig. 6 Normalized T33 solutions (V33= T33/σ0) at the specimen mid-plane  

for CCT specimens (ν = 0.3) 

 

4. Discussion 

Although the minimum thickness-to-width ratio B/(2W) = 0.01 might seem unrealistic, there is a 

fracture toughness test for a CCT specimen with B/(2W) = 0.003 reported in [10]. 

Because both the mid-plane T-stresses (T11 and T33) were negative for the CCT specimens and 

showed large variations for all the considered CCT specimens, which was true even for cases 

complying with the ASTM E2472 [33], it was noted that these CCT specimens that complying with 

the standard might show the test specimen size effect (including the crack length and specimen 

thickness effect) on the fracture toughness if tested. 

In addition to the mid-plane T-stress solutions, the variations of the normalized V11 and V33 

solutions in the thickness direction along the crack front were studied for all cases. The similar 

tendency of the V11 and V33 distributions in the thickness direction for the CCT specimens with various 

thicknesses was obtained regardless of a/W. Here, an example case of a/W = 0.5 with various 

thicknesses is summarized in the following figures. Note that the mid-side node values from the FEA 

results were excluded. In these figures, x3 = 0 represents the value at the specimen mid-plane and x3 

= B/2 corresponds to the value at the free surface. 

As observed in Fig. 7, the normalized in-plane T11 (V11) distributions in the specimen thickness 

direction show an overall non-negligible variation for most of the cases studied in this work. There 

might be an opinion that T11 in the thickness direction will show nearly no variation for a very thin 

specimen. However, considering the ASTM E2472 standard CCT specimens with B/(2W) ≤ 0.0625, 

it is clear from Fig. 7 that the variation of V11 in the thickness direction increases visibly as B/(2W) 

decreases and that the largest variation of the V11 distribution is observed as 16.5% for the thinnest 

specimen of B/(2W) = 0.01 in the range of x3/(B/2) = 0 to 0.8. When B/(2W) > 0.0625, it is observed 

that the overall variation of the V11 distributions becomes small. However, for an extremely thick 

specimen of B/(2W) = 1.0 (B = 300 mm), which might be considered to be unrealistic, the variation 

of V11 in the thickness direction is also non-negligible, with a 9.5% variation observed in the range of 
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x3/(B/2) = 0 to 0.8. A similar tendency can be found for a thick SE(B) test specimen (the 

thickness-to-width ratio is two), as reported in our recent work [28]. 

 

Fig. 7 Normalized T11 solutions (V11= T11/σ0) vs. x3/(B/2) for the CCT specimens  

with various thicknesses (a/W = 0.5; ν = 0.3) 

 

Conversely, the normalized out-of-plane T33 distributions in Fig. 8 decrease in the thickness 

direction, considering that the ordinate of this figure ranges from −14 to 0. The decreasing tendency 

is more visible for the ASTM standard CCT specimens with B/(2W) ≤ 0.0625, especially for the case 

of B/(2W) = 0.01, because the difference in V33 in the range of x3/(B/2) = 0 to 0.8 is 76%. However, 

the rate of decrease in V33 becomes small as B/(2W) increases, which is clear for the case of B/(2W) 

= 1.0 (the difference of V33 in the range of x3/(B/2) = 0 to 0.8 is 31%). A similar result can be 

obtained for the SE(B) test specimen in our recent work [28].   

 

Fig. 8 Normalized T33 solutions (V33 = T33/σ0) vs. x3/(B/2) for the CCT specimens  

with various thicknesses (a/W = 0.5; ν = 0.3) 

 

It should also be noted that both T11 and T33 diverge near the free surface (x3/(B/2) = 0.8 to 1.0) 

because ε33 tends to be singular in the region close to the free surface and cannot be accurately 

calculated using the present FEA method [14, 28, 41]. Thus, the T-stresses near the free surface 

calculated by the present FEA method require further study. 

   In addition to the 3D effects on CCT’s T-stresses presented in this paper, another remaining interest is 

the Poisson’s ratio effect on the T-stresses. Among the seven prior works on CCT T-stresses, Henry and 

Luxmoore [24] were the only researchers who examined the effects of Poisson’s ratio ν by obtaining the 

3D mid-plane T11 solutions of CCT specimens for the case of B/(2W) = 0.25 and a/W = 0.7. From their 

results for ν = 0, 0.1, 0.2, 0.33, 0.4 and 0.495, they concluded that T11 ∝ν. Let us see whether this is true 

and the same relationship is obtained for various thicknesses. Also of interest is the relationship between 

T33 and ν, which was not presented by them. 

   Fig. 9(a) is a comparison of the present mid-plane V11 solutions of B/(2W) = 0.25 with Henry and 

Luxmoore’s results obtained from both the boundary layer method (BLM) and the displacement field 

method (i.e., uniform displacement applied on the far end of the specimens) [24]. Although Henry and 

Luxmoore concluded that the relationship T11∝ν could be obtained from their results, it is clearly 

observed from Fig. 9(a) that their conclusion (T11∝ν) seems to be a rough compilation and that, 

rigorously speaking, V11 was a monotonously increasing function of ν. The present results are close to 

their result according to BLM, which they noted to be more accurate. To conclude, V11 was a 

monotonously increasing function of ν, which showed approximately 20% change in the range of ν = 0 to 
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0.495. 

Fig. 9(b) summarizes how the relationship in Fig. 9(a) changes due to specimen thickness. In concrete, 

the effects of ν (ν = 0.1, 0.3 and 0.495) on the mid-plane V11 solutions for CCT specimens with B/(2W) = 

0.01, 0.0625, 0.25, 0.5 and 1.0, for a case of a/W = 0.7, were investigated. It is seen from Fig. 9 (b) that, 

although the mid-plane normalized T11 (V11) solutions monotonously increase with ν, the effect of ν on V11 

is strengthened for thin specimens and becomes negligible for thick specimens. It is worth noting that the 

change in the mid-plane V11 with ν is not negligible for the ASTM standard specimens with B/(2W) ≤ 

0.0625. In summary, T11 solutions are more sensitive to Poisson’s ratio for a thin CCT specimen than 

those for a thick CCT specimen. 

 

Fig. 9 Effects of Poisson’s ratio ν on the mid-plane V11 for the case of a/W = 0.7: (a) comparison of present 

V11 for B/(2W) = 0.25 with Henry and Luxmoore’s results [24] (b) present V11 for various thicknesses 

 

In addition to a/W = 0.7, Fig. 10(a) summarizes the effects of ν on the mid-plane V11 solutions for CCT 

specimens with a/W = 0.5 (standard in ASTM E2472 [33]), but of various thicknesses. In Fig. 10(a), the 

effects of ν on the mid-plane V11 of a/W = 0.5 are similar with those obtained for a/W = 0.7 as shown in 

Fig. 9(b). However, compared with the cases of a/W = 0.7, the change in the mid-plane V11 due to the 

increase in ν becomes smaller for a/W = 0.5. For an example case of B/(2W) = 0.01, the maximum 

difference of V11 between the cases for ν = 0.1 and 0.495 was 394% for a/W = 0.5, while the difference 

was 441% for the case of a/W = 0.7. 

In addition, Fig. 10(b) plots the effects of ν on the mid-plane V33 solutions for CCT specimens with a 

standard a/W = 0.5, but of various thicknesses. It is clear that the mid-plane V33 show a monotonously 

decreasing function of Poisson’s ratio ν, regardless of B/(2W). The observed relationship was 

approximately linear, and this effect was larger compared with the cases of V11. The relationship is 

expected from Eq. (3), in case of negative and constant V11. Because T11 was a monotonously increasing 

function of V11, this enhanced the effect of ν on V33. The decrease in V33 is significant for the ASTM 

standard specimens with B/(2W) ≤ 0.0625, and the maximum difference of V33 for ν = 0.1 and 0.495 is 

very large (531%) for B/(2W) = 0.01, while the change in V33 becomes smaller as B/(2W) increases, and 

the minimum difference of V33 for ν = 0.1 and 0.495 is as large as 476% for B/(2W) = 1.0. 

In summary, T11 and T33 are more sensitive to Poisson’s ratio for a thin CCT specimen than those for a 

thick CCT specimen. The effects of Poisson’s ratio on T11 and T33 become small as a/W decreases. 

 

 

Fig. 10 Effects of Poisson’s ratio ν on the mid-plane V11 and V33 

for a case of a/W = 0.5: (a) V11 vs. ν, (b) V33 vs. ν. 
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5. Conclusions 

The present study conducted a systematic investigation of the 3D T-stresses (T11 and T33) for a 

variety of CCT specimens by running 3D elastic FEA. The conclusions obtained from this work are 

summarized as follows: 

(1) Both the mid-plane T11 and T33 were negative for the CCT specimens considered in this study. 

(2) The 3D in-plane T11 at the specimen mid-plane was a monotonously decreasing function of the 

crack length at a/W ≥ 0.3 and showed a slight change with the crack length at a/W < 0.3. 

(3) The mid-plane T11 showed a variation as high as 22% in the range of B/(2W) = 0.01 to 0.0625 at 

a/W = 0.5, even though these B/(2W) ratios that satisfy ASTM E2472. 

(4) The newly obtained mid-plane T33 was a monotonously increasing function of the specimen 

thickness. In particular, T33 showed a significant change for the cases of B/(2W) ≤ 0.0625 and 2a/B ≥ 

8, even though these configurations satisfy ASTM E2472. 
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Appendix 

   The detailed information of the mesh generation parameters is given in Table A.1. Please refer to 

Fig. 3 for the definitions of the mesh generation parameters Δl, CD, NR and na. 

 

Table A.1 Summary of the detailed mesh generation (NE: number of elements) 
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Table 1 Comparisons of the mid-plane normalized T-stress results for CCT specimens from  

the present FEA and the superposition method (2W = 300 mm, H/W = 2, B/(2W) = 1.0; ν = 0.3) 

a/W 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

V11 Kfouri (−) -0.995  (−) -1.028 -1.076 -1.136 -1.219 -1.350 (−) (−) 

V11 -1.003 -1.010 -1.022 -1.039 -1.090 -1.166 -1.285 -1.479 -1.827 -2.566 

|(V11-V11 Kfouri)/V11 Kfouri | 

×100% 
(−) 1.5 (−) 1.1 1.3 2.6 5.4 9.5 (−) (−) 

V11 sup -1.003 -1.010 -1.022 -1.039 -1.090 -1.166 -1.285 -1.479 -1.827 -2.566 

|(V11-V11 sup)/ V11 sup | 

×100% 
0.02 0 0.02 0.03 0.01 0.02 0.01 0.01 0 0 

V33 -0.5989 -0.5953 -0.5899 -0.5837 -0.5762 -0.5826 -0.6183 -0.6930 -0.8407 -1.124 

V33 sup -0.5988 -0.5953 -0.5899 -0.5838 -0.5758 -0.5831 -0.6175 -0.6941 -0.8401 -1.124 

|(V33-V33 sup)/ V33 sup | 

×100% 
0.01 0 0.01 0.03 0.07 0.09 0.13 0.16 0.07 0.02 

*(−): no result exists for comparison 
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Table 2 Normalized T11 solutions (V11= T11/σ0) at the specimen mid-plane for CCT specimens (ν = 0.3) 

a/W 

B/(2W) 
0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.01 -0.9142 -0.8811 -0.8600 -0.8468 -0.8402 -0.8612 -0.9207 -1.046 -1.306 -1.906 

0.025 -0.9487 -0.9290 -0.9190 -0.9156 -0.9268 -0.9660 -1.046 -1.197 -1.491 -2.146 

0.0625 -0.9920 -0.9616 -0.9567 -0.9593 -0.9819 -1.032 -1.125 -1.291 -1.606 -2.288 

0.1 -1.012 -0.9842 -0.9730 -0.9756 -1.002 -1.056 -1.153 -1.324 -1.643 -2.328 

0.25 -1.009 -1.020 -1.020 -1.019 -1.036 -1.090 -1.189 -1.365 -1.698 -2.457 

0.5 -1.004 -1.014 -1.028 -1.042 -1.075 -1.131 -1.234 -1.425 -1.791 -2.564 

1.0 -1.003 -1.010 -1.022 -1.039 -1.090 -1.166 -1.285 -1.479 -1.827 -2.566 
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Table 3 Normalized T33 solutions (V33= T33/σ0) at the specimen mid-plane for CCT specimens (ν = 0.3) 

a/W 

B/(2W) 
0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.01 -1.048  -1.453  -1.778 -2.067 -2.600 -3.142 -3.758 -4.516 -5.562 -7.267 

0.025 -0.7086  -0.9522  -1.152 -1.331 -1.666 -2.008 -2.394 -2.872 -3.537 -4.599 

0.0625 -0.5272  -0.6529  -0.7718 -0.8811 -1.086 -1.301 -1.543 -1.848 -2.270 -2.952 

0.1 -0.5169  -0.5568  -0.6422 -0.7253 -0.8836 -1.050 -1.242 -1.483 -1.816 -2.346 

0.25 -0.5721  -0.5305  -0.5203 -0.5385 -0.6198 -0.7203 -0.8388 -0.9882 -1.193 -1.537 

0.5 -0.5929  -0.5744  -0.5539 -0.5392 -0.5409 -0.5803 -0.6504 -0.7571 -0.9411 -1.317 

1.0 -0.5989  -0.5953  -0.5899 -0.5837 -0.5762 -0.5826 -0.6183 -0.6930 -0.8407 -1.124 
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Table A.1 Summary of the detailed mesh generation (NE: number of elements) 

 

B/(2W) 
a/W 0.05 0.1 0.15 0.2 0.3 0.4 0.5 0.6 0.7 0.8 

0.01 

Δl/a×103 6.7 3.3 2.2 1.7 1.1 0.83 0.67 0.56 0.48 0.42 

NE of CD 3 5 7 8 15 20 24 28 32 38 

NE of NR 41 41 39 36 31 29 26 21 16 10 

NE of na (bias) 90(2) 

0.025 

Δl/a×103 6.7 3.3 2.2 1.7 1.1 0.83 0.67 0.56 0.48 0.42 

NE of CD 3 5 7 8 15 20 24 28 32 38 

NE of NR 42 42 40 38 32 30 24 20 14 8 

NE of na (bias) 90(2) 

0.0625 

Δl/a×103 6.7 3.3 2.2 1.7 1.1 0.83 0.67 0.56 0.48 0.42 

NE of CD 3 5 7 8 15 20 24 28 32 38 

NE of NR 43 43 41 39 33 31 25 21 16 10 

NE of na (bias) 90(2) 

0.1 

Δl/a×103 6.7 3.3 2.2 1.7 1.1 0.83 0.67 0.56 0.48 0.42 

NE of CD 3 5 7 8 15 20 24 28 32 38 

NE of NR 40 40 38 35 35 27 23 20 16 11 

NE of na (bias) 90(2) 

0.25 

Δl/a×103 6.7 3.3 2.2 1.7 1.1 0.83 0.67 0.56 0.48 0.42 

NE of CD 4 5 7 8 15 20 24 28 32 38 

NE of NR 51 49 47 34 36 28 22 21 16 10 

NE of na (bias) 135 (2) 

0.5 

Δl/a×103 6.7 3.3 2.2 1.7 1.1 0.83 0.67 0.56 0.48 0.42 

NE of CD 4 5 7 8 15 20 24 28 32 38 

NE of NR 54 49 46 44 36 25 24 20 16 10 

NE of na (bias) 135 (2) 

1.0 

Δl/a×103 6.7 3.3 2.2 1.7 1.1 0.83 0.67 0.56 0.48 0.42 

NE of CD 4 6 7 8 15 20 24 25 32 38 

NE of NR 40 40 40 40 36 25 24 20 16 10 

NE of na (bias) 189 (2) 

 

 

 

 



  

Fig. 1 CCT specimen
1
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Fig. 2 Three-dimensional coordinate system for the region along the crack front [28, 32]



  

Fig. 3. Typical 1/8 symmetric finite element model of a CCT specimen 
(2W = 300 mm, H/W = 2, B/(2W) = 0.5 and a/W = 0.5). Note that the detailed information 
for the mesh generation parameters (l, CD, NR and na) is summarized in the Appendix.
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Highlights 

1. T-stresses for CCT specimens with various crack lengths and thicknesses were obtained. 

2. T11 and T33 were negative for all of the CCT specimens studied in this work. 

3. Both T11 and T33 changed significantly for the ASTM E2472 standard CCT specimens. 

 

 


