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Abstract 

   The behavior of electric double layers at polarized interfaces in KC1 solutions is 

revisited in order to examine properties of the constant phase element (CPE). We pay 

attention specifically to frequency dependence of both the capacitance and the 

resistance. Two parallel platinum wires immersed in solution are used as insulator-free 

electrodes. They avoid stray capacitance or irreproducibility of impedance caused by 

incompleteness of electric shield of electrodes. The Nyquist plot takes approximately a 

straight line because the in-phase component, Z1, is inversely proportional to 

ac-frequency, similar to the capacitance. Since Zi extrapolated to zero separation of the 

electrodes is non-zero, a resistance is present at the double layer in parallel form. It is 

not a Faradaic resistance because of absence of any electroactive species. The parallel 

resistance is inversely proportional to the frequency, whereas the capacitance decreases 

with a linear relation to logarithm of the frequency. The latter is responsible for the 

frequency-dependence of the former. The parallel resistance is the apparent one 

involved inevitably in ac-measurements of the capacitance. Values of the capacitance 

are independent of concentration of KC1 in the domain from 0.1 mM to 3 M.
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1. Introduction

    Capacitances of electric double layers are known to exhibit dependence on 

ac-frequency even without faradaic reactions  [1-3]. Some reasons for the frequency-

dependence have been proposed to be dielectric loss  [1], cracks on electrodes and/or 

insulators [2], adsorption  [4-7], surface roughness  [8-11], fractal dimensions of 

electrodes  [12,13], cell geometry  [14], lateral charge spreading in the double layer  [15], 

harmonic components  [  16  ], and heterogeneities on the atomic scale  [  17  ]. The 

frequency-dependence has been diminished at single crystal surfaces  [18], but has still 

been observed  [19,20]. It gets remarkable when adsorption occurs at single crystal 

surfaces [21,22]. 

   Values of double layer capacitances depend on equivalent circuits employed for the 

data analysis. Even if an equivalent circuit is suitable for curve fitting, it is not always 

unique, according to the IUPAC recommendation for equivocal equivalent circuits [23]. 

It is desirable to express the frequency dispersion of capacitances in a simple form. A 

measure of the dispersion is the parameter, a, of the constant phase element (CPE) 

[24-27], which is given in the impedance  Z  by 

Z =  Rs+  (11ZF +  YCPE)-1 (1) 

YCPE =  Vi  Or (2) 

where  Rs is the ohmic resistance in series with the faradaic impedance ZF of the 

electrode reaction in parallel with the admittance  YCPE of the CPE, i is the imaginary 

unit, and Q is a constant. When no Faradaic reaction is present (ZF  —>co), Eq. (1) and (2) 

are reduced to Z -  Rs =  Q-1(ico)-a. The in-phase component,  Z1 and the out of phase one, 

Z2, in Z are written as 

 Z1  —  Rs =  Q-lco-a  cos(oar / 2) (3) 

Z2  =  -Q _IN-a  sin(a7r  /  2) 

                         2



The impedance at a = 1 is the ideal series combination of  Rs and the capacitance, 

whereas that at a = 0 corresponds only to the resistance circuit,  Rs + 1/Q. Taking the

ratio in Eq. (3) leads to 

 —Z2  /  (Zi  —  Rs  )  =  tan(ag  /  2) (4)

If  Rs is much smaller than Z1, the Nyquist plot for polarized interfaces should fall on a 

proportional line. The proportionality in wide frequency domains has been observed at 

aluminum electrodes [28], at the Au(210) in solutions of potassium halides [29], at the 

gold electrode in sulfuric acid  [30], at platinum electrode in KC1 solution  [31], 

conducting polymer-coated electrodes [32,33], and  Li+ insertion to  Nb2O5 [11]. Then, 

values of a for the proportionality have been determined unequivocally, independent of 

frequency. They have also been evaluated from slope of the plot of logarithmic out of 

phase components vs.  log(co) [17,28,30,34,35]. Plot of in-phase components, i.e. log(Zi 

-  Rs) vs .  log(co), should exhibit a similar variation. However, few authors have paid 

attention to the latter dependence [36,37], probably because the in-phase component is 

less dependent on frequency than the out of phase. Introduction of equivalent circuits is 

helpful for understanding approximately the CPE behavior  [38-46]. 

   In order to examine frequency dependence in the in-phase, it is necessary at first to 

evaluate solution resistance accurately. The simplest cell for evaluating solution 

resistance is a rectangular or a cylindrical cell involving parallel plate electrodes. 

However, boundaries between the electrodes and the insulator in these cells provide 

irreproducible capacitance values owing to immersion of solutions in cracks or 

insufficient shielding [47]. Possible electrode geometry without shielding is two parallel 

thin wires immersed in solution. The present work deals with this electrode geometry in 

order to evaluate cell resistance independent of capacitance by means of both the 

frequency-dependence of the in-phase component and the theoretical estimation from 
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the cell geometry. The frequency dependence will be demonstrated to be responsible for 

logarithmic dependence of the capacitance on frequency. The present report does not 

include searching a reason for the dispersion of capacitances.

2. Experimental

   All the chemicals were of analytical grade. Solutions were prepared with 

ion-exchanged distilled water. 

   Working electrodes were platinum wires 0.1 mm in diameter. They were wound 

around a tungsten wire shielded in a glass capillary tube, and were bonded with 

conducting paste. They were soaked in acetone and rinsed with distilled water. One of 

them was fixed vertically with a beam, and the other was mounted on an optical  x-y 

positioner so that the distance, d, between the two wires was adjusted, as illustrated in 

Fig. 1. The positioner was put on a jack so that both tips of the wires were on the same 

level. The active length, L, of the electrodes was controlled with a lift for the aqueous 

solution. Values of d and L were read through an optical microscope. A typical value of 

L was 10 mm. Aqueous solution rose from the aqueous surface on the wire by the 

surface tension. The rise was at most 0.2 mm from an optical microscope. The error of 

surface area of the electrode was less than 2 %. 

    The potentiostat was Compactstat (Ivium, Netherlands), equipping a lock-in 

amplifier. Applied alternating voltage was 10 mV in amplitude. Solution was deaerated 

by nitrogen gas for 15  min before electrochemical measurements. 

    Delay of the potentiostat was examined by a series combination of a carbon 

resistance (1, 10  kf/) and a film capacitor (0.1  jiff) for a frequency range from 1 Hz to 

10 kHz. No abnormality was observed so far as  1Z21/Zi > 0.04. For frequencies larger 

than  1Z21/Zi < 0.04,  1Z21 values were over estimated by a few percentages. Most
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experimental conditions of the double layer measurements were in the domain  of1Z21/Zi 

 >  0.04.

3. Results and Discussion

3.1 Nyquist plot 

   Figure 2(a) shows cyclic  voltammograms of 0.5 M (= mol  dm-3) KC1 solution in 

nitrogen atmosphere at the two-wire electrode. The voltammograms were symmetric 

with respect to the origin because of measurements for the two-electrode system at 

geometrically symmetric electrode. Currents at potential  E  <  0.14 V were proportional 

to the potential scan rates. They must be capacitive current. Voltammograms in 0.2 mM 

 Fe(CN)63- + 0.2 mM  Fe(CN)64- + 0.5 M KC1 increased by 100 times owing to the redox 

reaction, as shown in Fig. 2(b). Even if any Faradaic current is included in the 

voltammograms in the KC1 solution (Fig. 2(a)) as impurity of the solution, the 

concentration of impurity causing the Faradaic current should be less than 2  iuM. 

   Figure 3(A) shows the Nyquist plot at the parallel Pt wire electrodes in 0.5 M KC1 

solution. Some other wire electrodes exhibited almost the common Nyquist plots. This 

is an advantage of unshielded electrodes. Nyquist plots did not vary with whether 

electrodes were immersed in nitrohydrochloric acid before ac-measurements or not. The 

linear plot in Fig. 3(A) is different from a conventional shape of the combination of a 

semicircle and a line. However, straight line-like plots have been reported 

[11,22,28,29,3133,48] for work on the CPE behavior.  HZ' represents solution resistance, 

a change in frequency should vary only Z2 values, retaining Z1 values. Then the plot 

must fall on a vertical line. The observed variation of Zi with the frequency indicates 

that Zi should include contributions of the double later capacity. This corresponds to the 

CPE behavior. 

                         5



  When Eq. (4) is applied to the slope in Fig. 3 on the assumption of neglected 

solution resistance, we obtain a = 0.95 for frequencies more than 50 Hz. Since a = 1 

and 0 correspond to only an ideal capacitor and only an ideal resistor, respectively, the 

impedance at the twin platinum electrode is close to a capacitor. In order to determine a 

more accurately, we evaluated the solution resistance from the extrapolation of Zi to 

zero Z2 for infinite frequency [49], denoted by  R,,N, as is shown in Fig. 3(B). 

3.2 Solution Resistance

   Zi seems to include information of capacitance, and hence  Rs,N may not stand 

accurately for the solution resistance. A technique of estimating how much  Rs,N 

represents the solution resistance is to examine dependence of  Rs,N on geometry of the 

electrodes. Solution resistance between two parallel wires is not expressed by a simple 

proportionality to d. We derive here analytical expressions for the resistance between 

thin parallel wires. 

   A model of the resistance is a pair of parallel cylindrical long wires a in radius, 

separated by the distance, d, between the two centers of the cylinders. Voltage V is 

applied between the two wires immersed in solution with resistivity, p. We put the 

cross-section of the wires (circles) on the coordinate of Fig. 4. If current flows out 

isotropically from a circle located at the origin and flow into the infinity 

two-dimensionally, the current density vector, j, at the radial distance vector, r, is 

satisfied with  27-cr  j = constant, where the dot denotes the inner product. When the 

length of the wire is L, the total current I is given by  27-cajL. Consequently, we have  2Tcr 

 j L= I. When the vector of the current density, ji, flows out from the circle at x =  -d/2 

into the infinity independently from the circle at x =  d/2, it is expressed by 

 271(r  +  d  1  2)•  IL  =  I (5)

6



Similarly the vector of the current density,  j2, flowing out from the infinity enters the 

circle at x = d/2 independently from the circle at x = - d/2, it is given by 

 27r(r  —  d  1  2)  •  j  2L  =  I (6) 

Taking the inner product of Eq. (5) and (6) with  r+d/2,  r-d/2, respectively, yields

 (r+d12)I    (r  —  d  /  2)/ (7) 

                  2  

 2nJr+d121-L 27Er—d/22L 

From Eq. (7), the total current  density,  j  =ji  +j2, is given by 

 = I  (r+d12)  (r—d/2) 
   27EL dr+d/2-   r—d/221 (8)

Electric potential in solution, 0, is correlated  with  j through Ohm's  law,  j =  -(1/p)(d0/dr). 

Applying it to Eq. (8) and integrating the resulting equation along a current line yields 

the potential difference, V, between the two electrodes. If we select a current line on the 

x-axis, and carry out the integration, we obtain 

     d/2-a 1p  I  d V = pid12+a idx = In 
 7EL a  j 

                     (9) 

Then the solution resistance is expressed by 

RsG =TO/ =-p
a-1        7EL y 

                      (10) 

Since the integral contour in Eq. (9) was taken to be the shortest path, the resistance 

should be underestimated. It is important to note that the resistance is proportional to 

 ln(d/a-1) rather than d. 

   The underestimation of Eq. (10) was corrected by means of the numerical 

computation of the two-dimensional Laplace equation for  0. The numerical solution was 

obtained by the finite element method. The boundary conditions were zero flux on all 

the boundaries except on the electrodes. Figure 4 shows an example of the divided 
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triangular elements. The software was home-made. Potential profiles were computed, 

and they are shown as gradient colors in Fig. 4. Fluxes evaluated on the electrode from 

the profiles were summed to yield the total current, and hence the conductance. The 

computed dimensionless resistance,  Rs,GL/p, was plotted against ln(d/a -1) in Fig. 5. 

They were slightly larger than Eq. (10) (solid line in Fig. 5), as was predicted. They fell 

on the line 1.25 times as large as the line of Eq. (10) for ln(d/a-1) > 1.5. Then the 

resistance for monovalent electrolyte with concentration c is given by 

 ln(d/a  —1)  =  0.916  log(d  1  a  —1) R= 1.25 
 irLc(.1±  +  /1_)  Lc(2±  +  /1_)                                    (11) 

where 2+ and  2_ are molar conductivity of the mono-cation and the mono-anion, 

respectively. 

   Values of  Rs,N, were plotted against log(d/a - 1) for some concentrations of KC1 in 

Fig. 6. Although they are approximately linear to log(d/a - 1), all the plots for 

concentrations from 0.001 to 3 M had positive values of intercepts. Furthermore, they 

are slightly smaller than the lines obtained from Eq. (11) for all the concentrations. The 

smaller shift will be explained in terms of the frequency-dependence of the double layer 

capacity in section 3.3. 

   Figure 7 shows dependence of Z1 at some frequencies on log(d/a - 1). The plot for 

a given frequency fell on a line with the common slope, which is similar to the value of 

the slope in Eq. (11) (Fig. 7(d)), 12  Q for 2+ =  7.35x10-3 S  m2mo1-1 and  2_ =  7.63x10-3 S 

 m2mo1-1. In contrast, the intercept at log(d/a - 1) = 0, i.e. d = 2a, means the resistance 

that would appear if the two electrodes were to come in contact each other. This 

resistance should be located at the interface or included in the double layer. It increases 

with a decrease in frequencies.

3.3 Parallel equivalent circuit
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   The above result infers that the observed double layer capacitance, Cd, includes not 

only the double layer capacitance,  Cp, but also the resistance,  Rp, in a parallel 

combination of the equivalent circuit, as illustrated in Fig. 8(A). Two parallel 

combinations of  Cp and  Rp, mean two wire electrodes. The measured quantities, Zi and 

Z2 in Fig. 8(B), do not directly correspond to the solution resistance,  R„ and Cd. The two 

equivalent circuits can be converted through 

Z1+ iZ2 = Rs + 2(12) 
 1/  Rp  +  icoCp 

Equating the real parts on the both hand sides yields 

                        — 2coCR2 
Z1— Rs 

1 ± (coCR)2 '-1+(wCR)2      PPPP (13)

 Rp and  Cp are extracted in the following forms; 

 = 

   (Z1 —Rs)2 +Z2— 2Z2 Rp 
 2  (Zi  —  Rs  )2ri pCOP= (      ,—l} 

                         i — Rs)2+Z22 (14) 

We evaluated  Rp and  Cp by use of  Ro for  Rs from Zi and Z2 at various values of d/a. 

Figure 9 shows dependence of  log(Rp) and  Cp for some values of frequency. Values of 

 Rp and  Cp were independent of d/a, indicating that they should have interfacial 

properties without including any information of d. 

   Values of  Rp and  Cp averaged over d/a are plotted against the frequency in Fig. 10 

and 11, respectively. The logarithm of  Rp shows a linear relation to  log(f)  forf  <104'5 Hz 

with a slope -1. The plots varied negligibly with concentrations of KC1 in the domain 

from 0.005 M to 3 M. The empirical equation for  Rp is given by 

 Rp  =  1.8x106/f (15) 

with a unit in  Q. In contrast, the averaged values of  Cp decrease linearly with the 

logarithms of the frequency. This type of the decrease resembles that of electrolyte 

capacitors  [50,51]. The slope and the intercept were almost independent of the 
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concentration of KC1, c. Letting the concentration variation of the intercept (at 1 Hz) be 

 (Cp)  =1, we can express empirically the dependence of  Cp on  log(f) as 

 Cp =  (Cp)f=i  —  1.20x10-7  log(f) (16) 

where the unit of  Cp is Farad. 

   Figure 12 shows the variation of  (Cp)  =1 with c. Double layer capacities are 

predicted intuitively to increase with an increase in concentrations of ions because ions 

have thought to play a significant role in capacitances. The Gouy-Chapman theory 

mentions that Cd is proportional to  c1/2  (Fig.12(a)), whereas the ion-cell model predicts 

the proportionality to  c1/3 (Fig.12(b)) [52]. However, the present experimental data (Fig. 

12) shows concentration-independence of  (Cp)f=1 within experimental errors. The 

average value of  (Cp)f=i is (1.10 ± 0.04)  IL& or (34 ± 2)  tF  cm-2. The independence 

indicates whether the ions  (K+ and  Cl-) must be accumulated on the electrode by the 

electric tension of the ions to the electrode [52] or the water molecules play a significant 

role in the capacitance, like Stern's model. The independence has been observed for 

polarized mercury electrodes by Grahame [53]. 

   We obtained the impedance of fluoride solution by the same method as for chloride. 

All the variations were almost the same as for chloride (Fig. 3, 9,10,11). Fig. 12 shows 

the plot of  (Cp)  =1 against concentrations of KF. No concentration-variation was found. 

    When alternating voltage,  Voei" at angular velocity  w is applied to an ideal 

capacity,  Cideal, the responding current is expressed by  I =  d(Cideal  V)/dt =  i  coCidealV Then 

the current exhibits a phase shift of  1t/2. If the capacitance C depends on the frequency, 

the current is expressed by 

/ =  d(C(co)V(0) =  C(w)  dV  (t)  +V  (t)ac(co)  dw (17) 
   dt dt  act) dt

The first term on the lhs is  iwCV. Since the time is equivalent to  1/w, we have  do)!  dt = 

 -11  t2  . Replacing C by  Cp, inserting Eq. (16) into Eq. (17) and carrying out the integration 

yields 
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 I =  (icoC,  +  (1.20  x10-7  /  2.3)co)V =  (icoCp  +  3.3  x  10-7f)V (18)

This equation suggests the parallel equivalent circuit composed of  Cp and the 

frequency-dependent admittance,  3.3x10-7f. The latter can be written as a resistance 

3x106/f, which should be identical with  Rp by the definition in Fig. 8(A). Indeed, the 

parallel resistance is inversely proportional to f, as shown in Eq. (15). The 

proportionality constant is not far from that in Eq. (15). The difference may be ascribed 

to the assumption of t = 1/27cf. Since dC/dt in Eq. (17) is an in-phase component, it is 

the non-zero values of dC/dt that provokes the parallel resistance as if  Rp might exist in 

the double layer. 

   We explain the experimental result,  Rs,N  <  Rs,G, in Fig. 6. Taking the ratio in Eq. 

(13) is equal to  —Z2/(Z1-Rs) =  coCpRp. The solution resistance geometrically calculated 

corresponds to a value determined by a direct current, and is approximated as the value 

at the low frequency, 1 Hz. Then we have 

Since  Cp,'-z-2,  (Cp)fri at low frequency (< 10 Hz), the ratio is approximated to 

 —Z2 /(Z1  —  RsG  =  coCpRp  271(3  x106)(Cp  )j.=1 
                             (19) 

In contrast, the solution resistance by the Nyquist plot for large frequency, e.g. fN  =105 

Hz, makes the ratio to yield 

 —Z2  /(Zi  coCpRp  243  x106)[(Cp)1=1  —1.2  x10-7fN] (20)

Comparison Eq. (19) with Eq. (20) yields obviously 

—  Z2  /(Zi —  Rs,G)  >  —Z2  /(Z1  —  Rs,N

from which we obtain  Ro  <  Rs ,G. Consequently, solution resistance evaluated from the 

Nyquist plot is smaller by the decrease in the capacitance than the geometrically
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evaluated solution resistance. The inequality is caused by the decrease in  Cp with an 

increase in frequency. 

    Chloride is adsorbed specifically on mercury electrodes, depending on electrode 

potential [54]. It would be desirable to discuss a possibility of specific adsorption on the 

platinum electrode. Our potential control was, however, made in the two electrode 

system without any reference electrode, because we paid attention to accurate 

determination of solution resistance. Therefore, it is dangerous to discuss effects of 

potential-depending adsorption on  Cp and  Rp from the present experimental results. 

4. Conclusions 

   The behavior of electric double layers at polarized interfaces in electrolyte 

solutions more than 0.1 mM is summarized as follows: 

A) The Nyquist plot takes approximately a straight line because  Zi has roughly the 

inverse proportion to frequency. 

B) Cd is represented by a parallel combination of a capacitance and a resistance. 

C) The resistance parallel to the double layer is inversely proportional to frequency. 

D) The origin of  Rp is ascribed to the linear decrease in  Cp on the scale of logarithmic 

frequency. 

E) Values of  Cp are independent of concentration of salt. 

F) The solution resistance by the Nyquist plot at high frequency is smaller than the 

geometrically evaluated resistance. 

   Without frequency-dependence in Cd,  Rp might be infinite. Consequently, the 

electric properties of the double layer could be represented by a series combination of 

an ideal resistance and an ideal capacitance. The frequency-dependence of Z1 is the 

apparent resistance associated with impedance measurements. If double layer 
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capacitances were to be determined by direct current measurements, it might include no 

resistance component. Application of sinusoidal voltage to the double layer with 

non-zero values of dC/dt provides the parallel resistance unexpectedly. In other words, 

measurements of double layer capacitance belong to breakdown measurements.
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Figure Captions 

Figure 1. Illustration of the cell and a pair of the 

effective length of the wire electrodes immersed 

center-to-center distance of the two wires.

wire electrodes, 

in the solution,

where 

 and

L 

d

 is 

is

the 

the

Figure 2. Cyclic voltammograms in (a) 0.5 M KC1 solution and (b) 0.2 mM K3Fe(CN)6 

+ 0.2 mM K4Fe(CN)6 at the two parallel Pt wires 0.1 mm in diameter 10 mm in length 

with the distances, d = 2 mm for scan rate of 10 mV  s-1.

Figure 3. Nyquist plot at the two parallel Pt wires 0.1 mm in diameter 10 mm in length 

with the distances, d = 2 mm in 0.5 M KC1 aqueous solution obtained for (A) low 

frequencies at (x mark) 5 Hz and (+ mark) 51 Hz, and (B) high frequencies at (x mark) 

 lkHz and (+ mark) 10 kHz.  Rs,N is the value extrapolated  forf  —>  GO. 

Figure 4. Two-dimensional model for potential distribution at the two parallel cylinders 

for d/a = 20, and computed potential distribution by the finite element method in the 

potential field discretized by triangles. 

Figure 5. Dependence of the dimensionless resistance, RL/p, obtained by (circles) the 

finite element method, by (solid line) Eq. (10) on ln(d/a - 1), by (dashed line) Eq. (11) 

for the fitting. 

Figure 6. Dependence of  Rs,N  (=Z1(f—>00)) determined from the Nyquist plots for 

concentrations of  KC1  (a) 0.01, (b) 0.03, and (c) 0.1 M on ln(d/a - 1). The lines are from 

Eq. (11). The dotted line is the recessed line for (a). 

Figure 7. Plots of  Z1 with log(d/a - 1) for frequencies  of  (a) 100 Hz, (b) 1000 Hz and (c) 

5000 Hz in 0,5 M LC1. Line (d) is from Eq. (11).
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Figure 8. Equivalent circuits of (A) series combination (Z1 + iZ2), (B) geometrical 

assignment of  Rs and Cd, and (C) really acting combination of  R„  Cp and  Rp. 

Figure 9. Variations of  Rp (left axis) and  Cp (right axis) in the parallel equivalent circuit 

with d/a for frequencies  of  (a) 100, (b) 760 and (c) 1500 Hz in 0.5 M KC1 solution for L 

= 10 mm. 

Figure 10. Logarithmic dependence of  Rp averaged for d/a  onf at [KC1] = (crosses) 0.01 

M, (circles) 0.1 M, and (triangles) 0.5 M KC1. The slope of the line is -1.

Figure 11. Variation of  Cp averaged for d/a  with  f at [KC1] = (crosses) 0.01 M, (circles) 

0.1 M, and (triangles) 0.5 M KC1. 

Figure 12. Variation of g(c) with concentration of KC1 by (circles) experiments, (a) the 

Gouy-Chapman's theory, and (a) the ion-cell model.
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